DISTRIBUCIONES BIDIMENSIONALES

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "DISTRIBUCIONES BIDIMENSIONALES"

Transcripción

1 La estadística unidimensional estudia los elementos de un conjunto de datos considerando sólo una variable o característica. Si ahora incorporamos, otra variable, y se observa simultáneamente el comportamiento de ambas, entonces estamos en el campo del análisis bidimensional, cuya agrupación da origen a las distribuciones bidimensionales de frecuencia. No se trata de elegir dos variables cualesquiera, es una observación simultánea de variables que tengan entre sí alguna relación, afinidad o dependencia. Podemos considerar dos aspectos: a. Las distribuciones bidimensionales de frecuencia, que se refiere a la presentación de tablas de frecuencia, a través del cálculo de medidas de resumen. b. Determinar modelos estadísticos y medir la relación o asociación entre dos variables. Frecuencias Absolutas Los valores que aparecen dentro de la tabla son las frecuencias absolutas que representan el número de veces, que de las n observaciones aparece el valor repetido el valor de la primera variable junto al valor de de la segunda variable. Frecuencias marginales. Sumando las frecuencias absolutas que figuran en cada fila (línea horizontal) se obtiene una cifra que indica cuántas veces se repite cada valor de y que se indica al margen derecho de la tabla, que se representa por

2 CURSO: ESTADÍSTICA DESCRIPTIVA TABLAS DE CONTINGENCIA Las tablas de contingencia se utilizan para conocer si existe o no relación entre variables de tipo cualitativo. Este tipo de variables pueden ser de tipo nominal por ejemplo sexo del encuestado (hombre; mujer), o tipos de marcas de un producto (Coca-cola, Pepsi-cola, ), u ordinal tales como la medición del grado de satisfacción de un grupo de clientes empleando una escala del tipo ( = Nada; 1 = Poco; = Indiferente; 3 = Bastante; 4 = Mucho). El empleo de las tablas de contingencia está especialmente indicado si las variables son de tipo nominal. 1º. Existe relación entre dos variables de tipo cualitativo? En qué condiciones se pueden utilizar las tablas de contingencia? º. Qué grado de relación existe entre las variables? 3º. En qué grado existe la relación? Para responder a la primera pregunta estudiaremos el test de la x Para responder a la segunda analizaremos diferentes coeficientes de asociación: el de contingencia, el de la Q de Yule, la Gamma, el Tau-b, y el Tau-c de Kendall, y la D de Sommers. Para responder a la tercera estudiaremos la técnica de los residuos estandarizados. Explicación de la técnica De forma general, si dos factores o atributos A y B se estudian sobre una misma población y se miden las unidades estadísticas (frecuencias absolutas) se obtienen dos series representativas de cada uno de los factores o atributos. Por ejemplo, tras realizar un estudio en su supermercado sobre la relación entre el sexo del encuestado y la compra de un determinado producto se obtienen los siguientes datos. Compradores sexo Hombres Mujeres Total Si No Total

3 Sobre estos datos podríamos preguntar si existe relación entre esas variables, es decir existe asociación entre la compra del producto y el sexo al que se pertenece? Una forma de plantear los resultados, para contestar al tipo de cuestiones anteriormente planteadas, es su disposición en una tabla de doble entrada, conocida como tabla de contingencia. En nuestro ejemplo, la tabla de contingencia sería: Estas tablas se usan para mostrar la dependencia o independencia entre dos factores, para el caso de muestras independientes. En esta tabla observamos dos atributos (Varón, mujer) X dos atributos (Compra, No compra). Estas tablas se pueden expresar de modo general: A, B, C, y D son las frecuencias observadas del suceso en realidad (3, 1, 11 y 7 en nuestro ejemplo). N es el número total de casos estudiados (8). A + B, C + D, A + C y B + D son las totales marginales. En nuestro ejemplo A + B sería el número total de compradores (4), C + D el número total de no compradores (38), A + C el número total de hombres (43), y B + D (37) el número total de mujeres. En esta clase se analizará la utilidad de las tablas de contingencia para determinar la dependencia/independencia entre varios factores. Analizaremos primero las tablas más sencillas (las tablas x ) para pasar posteriormente a otras más complejas. Cuando los datos de investigación consisten en frecuencias medidas en escala nominal u ordinal, como es el caso de las tablas de contingencia puede usarse la prueba x para determinar la significación de las diferencias entre dos grupos independientes. La hipótesis que usualmente se pone a prueba supone que los dos grupos difieren con respecto a alguna característica y, por lo tanto, con respecto a la frecuencia relativa con que los miembros del grupo son encontrados en diferentes categorías. Para probar esta hipótesis, contamos el número de casos de cada grupo en cada categoría y compramos la proporción de casos en las diferentes categorías de un grupo con las de otro grupo.

4 MÉTODO La hipótesis de nulidad [que implica que existe independencia entre los dos factores(sexo y compra o no del producto)] puede probarse por medio de: ( ) (1) Donde: O ij (Frecuencia observada) es el número de casos observados clasificados en la fila i de la columna j. E ij (Frecuencias esperada ó teórica) es el número de casos esperados correspondientes a esa fila y a esa columna. Podemos definirla como aquella frecuencia que se daría si los sucesos (en el ejemplo de compra y sexo del encuestado) fuesen independientes. Los valores de x dados por la fórmula (1) están distribuidos como una chi-cuadrada con grados de libertad = (r 1)(k - 1), donde r es el número de filas y k es el número de columnas en la tabla de contingencia. Qué está midiendo este estadístico? Está midiendo la diferencia entre el valor que debería resultar si los dos factores (compra del producto y sexo) fueran completamente independientes [determinado por la frecuencia esperada (E ij )], y el que se ha observado en la realidad [recogido en la frecuencia observada O ij ]. Cuanto mayor sea la diferencia entre ambas frecuencias mayor será la relación entre ambas variables. La elevación de la diferencia al cuadrado convierte en positiva a cualquier tipo de diferencia. Este test es por ello un test no dirigido. Indica si existe o no relación entre los factores pero no nos muestra el signo. Es decir, en nuestro ejemplo el estadístico (1) nos indicaría si existe o no relación entre el sexo y el hecho de comprar o no el artículo, pero no podemos saber si el signo de la relación es positivo o negativo, o en otras palabras si son los hombres los que compran más el artículo o sucede al contrario.

5 Distribución chi cuadrado ( x ) La distribución chi cuadrado es la técnica estadística utilizada con mayor frecuencia para el análisis de conteo o datos de frecuencias. Existen tres tipos de pruebas: prueba de bondad de ajuste, prueba de homogeneidad y prueba de independencia. a) Prueba de bondad de ajuste.- Consiste en determinar si los datos de cierta muestra corresponden a cierta distribución poblacional. En este caso es necesario que los valores de la variable de la muestra y sobre la cual queremos realizar la inferencia esté dividida en clases de ocurrencia, o equivalentemente, sea cual sea la variable de estudio, deberemos categorizar los datos asignando sus valores a diferentes clases o grupos. Este tipo de pruebas se verá cuando se revisen las pruebas no paramétricas. b) Prueba de homogeneidad.- Consiste en comprobar si varias muestras de carácter cualitativo proceden de una misma población. c) Prueba de independencia.- Consiste en comprobar si dos características cualitativas están relacionadas entre sí. Prueba de Homogeneidad. Ejemplo Se tienen un grupo de pacientes procedentes de tres localidades (campo, rural y urbano) en las cuales se ha observado la presencia del síndrome metabólico, como aparece en la tabla: Síndrome metabólico Procedencia Campo Rural Urbano Total Con SM Sin SM Total Para la prueba Chi cuadrado procedemos de la siguiente manera:

6 1. Formulación de hipótesis: H : La presencia de síndrome metabólico no difiere de acuerdo la procedencia. H : 1 La presencia de síndrome metabólico difiere de acuerdo la procedencia. Establecer un nivel de significancia:.5 3. Elección del estadístico de prueba: 4. Determinar la región crítica. x 5.99 tab x n ( oi ei) e i 1 i 5. Decisión: como p=.1<.5 entonces rechazamos H 6. Conclusión: La presencia de síndrome metabólico difiere de acuerdo a la procedencia o dicho de otro modo el síndrome metabólico se encuentra en frecuencias diferentes en cada una de estas tres poblaciones. Prueba de independencia Ejemplo: Se tiene 61 personas de diferente sexo; masculino y femenino, algunas con síndrome metabólico y otras sin él, tal como muestra la siguiente tabla: Síndrome Sexo Metabólico Femenino Masculino Total Con SM Sin SM Total

7 Se desea saber si existe una relación entre la variable síndrome metabólico y la variable sexo. 1. Formulación de hipótesis: H : La presencia de síndrome metabólico es independiente del sexo. H : 1 La presencia de síndrome metabólico es dependiente del sexo. Establecer un nivel de significancia:.5 3. Elección del estadístico de prueba: x n ( oi ei) e i 1 4. Determinar la región crítica. x Decisión: como p=.<.5 entonces rechazamos H tab 6. Conclusión: Existe una dependencia entre estas dos variables. La variable síndrome metabólico es dependiente de la variable sexo. i Corrección por continuidad o corrección de yates Ejemplo En la siguiente tabla se muestran los datos de 43 niños de diferente género, en donde se ha evaluado la satisfacción familiar Satisfacción Sexo Familiar Femenino Masculino Total Satisfecho Insatisfecho Total Lo que se plantea es que alguno de los dos géneros pueda tener mayor frecuencia de satisfacción familiar. 1. Formulación de hipótesis: H : La satisfacción familiar es igual en hombres y mujeres. H : 1 La satisfacción familiar no es igual en hombres y mujeres

8 . Establecer un nivel de significancia:.5 3. Elección del estadístico de prueba: x n ( oi ei) e i 1 4. Determinar la región crítica. x Decisión: como p=.<.5 entonces rechazamos H tab 6. Conclusión: La satisfacción familiar no es igual en hombres que en mujeres. i Sin embargo una casilla o el 5% de las casillas, tienen una frecuencia esperada menor a 5. La frecuencia mínima esperada es Este valor nos indica que debemos realizar una corrección. Deberemos, por lo tanto, utilizar la corrección por continuidad. Esta corrección se utiliza cuando los valores en la tabla son muy pequeños Corrección de Yates: x n ( oi ei.5) e i 1 i 5. Decisión: como p=.51 no es menor que,5 entonces no rechazo H. 6. Conclusión: No existe suficiente evidencia estadística para afirmar que la satisfacción familiar no es igual en hombres y mujeres. Es importante aclarar que cuando la hipótesis nula no es rechazada, tampoco se puede decir que se acepta. Se debe decir que la hipótesis nula no se rechaza. Se debe evitar el uso de la palabra aceptar en este caso porque pudiera haberse cometido el error de tipo II. Dado que, frecuentemente, la probabilidad de cometer un error de tipo II puede ser realmente alta, no se pretende cometerlo al aceptar la hipótesis nula.

9 Test Exacto de Fisher Ejemplo Se tienen 17 niños de diferente sexo; masculino y femenino, a quienes se les ha evaluado la satisfacción familiar. Los datos se presentan en la siguiente tabla: Satisfacción Sexo Familiar Femenino Masculino Total Satisfecho 8 1 Insatisfecho 5 7 Total Formulación de hipótesis: H : La satisfacción familiar es igual en hombres y mujeres. H : 1 La satisfacción familiar no es igual en hombres y mujeres. Establecer un nivel de significancia:.5 3. Elección del estadístico de prueba: x n ( oi ei) e i 1 4. Determinar la región crítica. x Decisión: como p=.34<.5 entonces rechazamos H tab 6. Conclusión: La satisfacción familiar no es igual en hombres que en mujeres. i Sin embargo, tres casillas, es decir, el 75% de ellas tienen una frecuencia esperada menor a 5. La frecuencia mínima esperada es.88. Como este valor es demasiado bajo no se puede aplicar la corrección de Yates. Aplicamos entonces la siguiente regla de decisión: cuando una de las frecuencias esperadas es menor que 5 aplicamos la corrección de yates; sin embargo, si esta frecuencia es menor a tres, aplicaremos la corrección de Fisher.

10 CURSO: ESTADÍSTICA DESCRIPTIVA En este caso la frecuencia mínima esperada es,9 que es menor que 3; por lo tanto aplicaremos la corrección de Fisher o el Test exacto de Fisher. Test de Fisher Calcula exactamente la probabilidad a través de: ( a b)!( c d)!( a c)!( b d)! p n! a! b! c! d! 5. Decisión: como p=.58>.5 entonces no rechazamos H 6. Conclusión: No existe suficiente evidencia estadística para afirmar que la satisfacción familiar no es igual en hombres que en mujeres. Hay que tener en cuenta que a pesar que las proporciones son muy diferentes y aparentemente existe diferencias, no se puede afirmar tal hecho debido a que la muestra es muy pequeña.

INFERENCIA ESTADÍSTICA. Metodología de Investigación. Tesifón Parrón

INFERENCIA ESTADÍSTICA. Metodología de Investigación. Tesifón Parrón Metodología de Investigación Tesifón Parrón Contraste de hipótesis Inferencia Estadística Medidas de asociación Error de Tipo I y Error de Tipo II α β CONTRASTE DE HIPÓTESIS Tipos de Test Chi Cuadrado

Más detalles

PRUEBAS DE BONDAD DE AJUSTE y DE INDEPENDENCIA

PRUEBAS DE BONDAD DE AJUSTE y DE INDEPENDENCIA PRUEBAS DE BONDAD DE AJUSTE y DE INDEPENDENCIA Quien hace puede equivocarse, quien no hace ya está equivocado. DANIEL KON Ji CUADRADA Material preparado por: Profesor León Darío Bello Parias Ji CUADRADA-

Más detalles

A. PRUEBAS DE BONDAD DE AJUSTE: B.TABLAS DE CONTINGENCIA. Chi cuadrado Metodo G de Fisher Kolmogorov-Smirnov Lilliefords

A. PRUEBAS DE BONDAD DE AJUSTE: B.TABLAS DE CONTINGENCIA. Chi cuadrado Metodo G de Fisher Kolmogorov-Smirnov Lilliefords A. PRUEBAS DE BONDAD DE AJUSTE: Chi cuadrado Metodo G de Fisher Kolmogorov-Smirnov Lilliefords B.TABLAS DE CONTINGENCIA Marta Alperin Prosora Adjunta de Estadística alperin@fcnym.unlp.edu.ar http://www.fcnym.unlp.edu.ar/catedras/estadistica

Más detalles

CONTRASTES DE HIPÓTESIS NO PARAMÉTRICOS

CONTRASTES DE HIPÓTESIS NO PARAMÉTRICOS CONTRASTES DE HIPÓTESIS NO PARAMÉTRICOS 1 POR QUÉ SE LLAMAN CONTRASTES NO PARAMÉTRICOS? A diferencia de lo que ocurría en la inferencia paramétrica, ahora, el desconocimiento de la población que vamos

Más detalles

INFERENCIA ESTADISTICA

INFERENCIA ESTADISTICA 1 INFERENCIA ESTADISTICA Es una rama de la Estadística que se ocupa de los procedimientos que nos permiten analizar y extraer conclusiones de una población a partir de los datos de una muestra aleatoria,

Más detalles

Capítulo 6. Análisis bivariante de variables

Capítulo 6. Análisis bivariante de variables Contenidos: Capítulo 6 Análisis bivariante de variables Distribución bidimensional de frecuencias ( tabla de correlación o contingencia ) Distribuciones marginales Coeficientes de Asociación Análisis de

Más detalles

Análisis de datos cualitativos

Análisis de datos cualitativos Capítulo Análisis de datos cualitativos DEFINICIÓN DE VARIABLES CUALITATIVAS Son aquellas variables cuyos valores son un conjunto de cualidades no numéricas a las que se llama categorías o modalidades.

Más detalles

Tema: Medidas de Asociación con SPSS

Tema: Medidas de Asociación con SPSS Tema: Medidas de Asociación con SPSS 1.- Introducción Una de las tareas habituales en el análisis de encuestas es la generación y análisis de tablas de contingencia, para las variables y categorías objetivo

Más detalles

Nivel socioeconómico medio. Nivel socioeconómico alto SI 8 15 28 51 NO 13 16 14 43 TOTAL 21 31 42 94

Nivel socioeconómico medio. Nivel socioeconómico alto SI 8 15 28 51 NO 13 16 14 43 TOTAL 21 31 42 94 6. La prueba de ji-cuadrado Del mismo modo que los estadísticos z, con su distribución normal y t, con su distribución t de Student, nos han servido para someter a prueba hipótesis que involucran a promedios

Más detalles

El Análisis de Correspondencias tiene dos objetivos básicos:

El Análisis de Correspondencias tiene dos objetivos básicos: Tema 8 Análisis de correspondencias El Análisis de Correspondencias es una técnica de reducción de dimensión y elaboración de mapas percentuales. Los mapas percentuales se basan en la asociación entre

Más detalles

Fundamentos de Estadística y Simulación Básica

Fundamentos de Estadística y Simulación Básica Fundamentos de Estadística y Simulación Básica TEMA 2 Estadística Descriptiva Clasificación de Variables Escalas de Medición Gráficos Tabla de frecuencias Medidas de Tendencia Central Medidas de Dispersión

Más detalles

CAPITULO ANÁLISIS ESTADÍSTICO MULTIVARIADO /1/ /2/ En el presente capítulo se realiza el análisis estadístico multivariado de los

CAPITULO ANÁLISIS ESTADÍSTICO MULTIVARIADO /1/ /2/ En el presente capítulo se realiza el análisis estadístico multivariado de los 112 CAPITULO 5 5.- ANÁLISIS ESTADÍSTICO MULTIVARIADO /1/ /2/ 5.1. Introducción En el presente capítulo se realiza el análisis estadístico multivariado de los datos obtenidos en censo correspondientes a

Más detalles

Teorema Central del Límite (1)

Teorema Central del Límite (1) Teorema Central del Límite (1) Definición. Cualquier cantidad calculada a partir de las observaciones de una muestra se llama estadístico. La distribución de los valores que puede tomar un estadístico

Más detalles

a. Poisson: los totales marginales y el total muestral varían libremente.

a. Poisson: los totales marginales y el total muestral varían libremente. TEMA 2º: TABLAS DE CONTINGENCIA BIDIMENSIONALES 1º Distribución de frecuencias observadas El único aspecto cuantificable en el análisis cualitativo es el número de individuos que presenta una combinación

Más detalles

ÍNDICE INTRODUCCIÓN... 21

ÍNDICE INTRODUCCIÓN... 21 INTRODUCCIÓN... 21 CAPÍTULO 1. ORGANIZACIÓN DE LOS DATOS Y REPRESENTACIONES GRÁFICAS... 23 1. ORGANIZACIÓN DE LOS DATOS... 23 1.1. La distribución de frecuencias... 24 1.2. Agrupación en intervalos...

Más detalles

PATRONES DE DISTRIBUCIÓN ESPACIAL

PATRONES DE DISTRIBUCIÓN ESPACIAL PATRONES DE DISTRIBUCIÓN ESPACIAL Tipos de arreglos espaciales Al azar Regular o Uniforme Agrupada Hipótesis Ecológicas Disposición al Azar Todos los puntos en el espacio tienen la misma posibilidad de

Más detalles

Estadística aplicada a la comunicación

Estadística aplicada a la comunicación Estadística aplicada a la comunicación Tema 5: Análisis de datos cuantitativos I: estadística descriptiva b. Análisis bivariante OpenCourseWare UPV/EHU Unai Martín Roncero Departamento de Sociología 2

Más detalles

Estadísticos Aplicados en el SPSS 2008

Estadísticos Aplicados en el SPSS 2008 PRUEBAS ESTADISTICAS QUE SE APLICAN (SPSS 10.0) PARAMÉTRICAS:... 2 Prueba t de Student para una muestra... 2 Prueba t par muestras independientes... 2 ANOVA de una vía (multigrupo)... 2 ANOVA de dos vías

Más detalles

Fase 2. Estudio de mercado: ESTADÍSTICA

Fase 2. Estudio de mercado: ESTADÍSTICA 1. CONCEPTO DE ESTADÍSTICA. ESTADÍSTICA DESCRIPTIVA 2. 3. TABLA DE FRECUENCIAS 4. REPRESENTACIONES GRÁFICAS 5. TIPOS DE MEDIDAS: A. MEDIDAS DE POSICIÓN B. MEDIDAS DE DISPERSIÓN C. MEDIDAS DE FORMA 1 1.

Más detalles

TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD

TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD Contrastes de hipótesis paramétricos para una y varias muestras: contrastes sobre la media, varianza y una proporción. Contrastes sobre la diferencia

Más detalles

Tabla de Test de Hipótesis ( Caso: Una muestra ) A. Test para µ con σ 2 conocida: Suponga que X 1, X 2,, X n, es una m.a.(n) desde N( µ, σ 2 )

Tabla de Test de Hipótesis ( Caso: Una muestra ) A. Test para µ con σ 2 conocida: Suponga que X 1, X 2,, X n, es una m.a.(n) desde N( µ, σ 2 ) Test de Hipótesis II Tabla de Test de Hipótesis ( Caso: Una muestra ) A. Test para µ con σ conocida: Suponga que X, X,, X n, es una m.a.(n) desde N( µ, σ ) Estadística de Prueba X - μ Z 0 = σ / n ~ N(0,)

Más detalles

LECTURA 01: LA ESTADÍSTICA. TÉRMINOS DE ESTADÍSTICA. RECOLECCIÓN DE DATOS TEMA 1: LA ESTADISTICA: DEFINICION Y CLASIFICACION

LECTURA 01: LA ESTADÍSTICA. TÉRMINOS DE ESTADÍSTICA. RECOLECCIÓN DE DATOS TEMA 1: LA ESTADISTICA: DEFINICION Y CLASIFICACION LECTURA 01: LA ESTADÍSTICA. TÉRMINOS DE ESTADÍSTICA. RECOLECCIÓN DE DATOS TEMA 1: LA ESTADISTICA: DEFINICION Y CLASIFICACION 1. DEFINICION La estadística es una ciencia que proporciona un conjunto métodos

Más detalles

EJERCICIOS RESUELTOS TEMA 1.

EJERCICIOS RESUELTOS TEMA 1. EJERCICIOS RESUELTOS TEMA 1. 1.1. El proceso por el cual se asignan números a objetos o características según determinadas reglas se denomina: A) muestreo; B) estadística; C) medición. 1.2. Mediante la

Más detalles

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua ESTADÍSTICA Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal Cuantitativa discreta continua DISTRIBUCIÓN DE FRECUENCIAS Frecuencia absoluta: fi Frecuencia relativa:

Más detalles

Pruebas de Hipótesis-ANOVA. Curso de Seminario de Tesis Profesor QF Jose Avila Parco Año 2016

Pruebas de Hipótesis-ANOVA. Curso de Seminario de Tesis Profesor QF Jose Avila Parco Año 2016 Pruebas de Hipótesis-ANOVA Curso de Seminario de Tesis Profesor Q Jose Avila Parco Año 2016 Análisis de la Varianza de un factor (ANOVA) El análisis de la varianza (ANOVA) es una técnica estadística paramétrica

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA Medidas de tendencia central y de dispersión Giorgina Piani Zuleika Ferre 1. Tendencia Central Son un conjunto de medidas estadísticas que determinan un único valor que define el

Más detalles

CAPITULO IV ANÁLISIS, INTERPRETACIÓN Y COMPROBACIÓN DE

CAPITULO IV ANÁLISIS, INTERPRETACIÓN Y COMPROBACIÓN DE CAPITULO IV ANÁLISIS, INTERPRETACIÓN Y COMPROBACIÓN DE RESULTADOS 4.1 TABULACIÓN DE DATOS N PREGUNTA ALTERNATIVAS SI NO A VECES TOTAL 1 Considera que la normativa de los programas del Plan 2021 favorecen

Más detalles

Método de cuadrados mínimos

Método de cuadrados mínimos REGRESIÓN LINEAL Gran parte del pronóstico estadístico del tiempo está basado en el procedimiento conocido como regresión lineal. Regresión lineal simple (RLS) Describe la relación lineal entre dos variables,

Más detalles

LECTURA 01: LA ESTADÍSTICA. TÉRMINOS DE ESTADÍSTICA. RECOLECCIÓN DE DATOS TEMA 1: LA ESTADISTICA Y CLASIFICACION

LECTURA 01: LA ESTADÍSTICA. TÉRMINOS DE ESTADÍSTICA. RECOLECCIÓN DE DATOS TEMA 1: LA ESTADISTICA Y CLASIFICACION LECTURA 01: LA ESTADÍSTICA. TÉRMINOS DE ESTADÍSTICA. RECOLECCIÓN DE DATOS TEMA 1: LA ESTADISTICA Y CLASIFICACION 1. LA ESTADÍSTICA La estadística es una ciencia que proporciona un conjunto métodos y técnicas

Más detalles

Unidad IV: Distribuciones muestrales

Unidad IV: Distribuciones muestrales Unidad IV: Distribuciones muestrales 4.1 Función de probabilidad En teoría de la probabilidad, una función de probabilidad (también denominada función de masa de probabilidad) es una función que asocia

Más detalles

Tema: ESTADÍSTICA DESCRIPTIVA BÁSICA CON SPSS 8.0

Tema: ESTADÍSTICA DESCRIPTIVA BÁSICA CON SPSS 8.0 Ignacio Martín Tamayo 11 Tema: ESTADÍSTICA DESCRIPTIVA BÁSICA CON SPSS 8.0 ÍNDICE ------------------------------------------------------------- 1. Introducción 2. Frecuencias 3. Descriptivos 4. Explorar

Más detalles

Técnicas de validación estadística Bondad de ajuste

Técnicas de validación estadística Bondad de ajuste Técnicas de validación estadística Bondad de ajuste Georgina Flesia FaMAF 28 de mayo, 2013 Pruebas de bondad de ajuste Dado un conjunto de observaciones, de qué distribución provienen o cuál es la distribución

Más detalles

ANÁLISIS CUANTITATIVO DE DATOS EN CIENCIAS SOCIALES CON EL SPSS (I) Tablas de contingencia y pruebas de asociación

ANÁLISIS CUANTITATIVO DE DATOS EN CIENCIAS SOCIALES CON EL SPSS (I) Tablas de contingencia y pruebas de asociación ANÁLISIS CUANTITATIVO DE DATOS EN CIENCIAS SOCIALES CON EL SPSS (I) Tablas de contingencia y pruebas de asociación Francisca José Serrano Pastor Pedro A. Sánchez Rodríguez - Implica siempre a variables

Más detalles

UNIDAD 12.- Estadística. Tablas y gráficos (tema12 del libro)

UNIDAD 12.- Estadística. Tablas y gráficos (tema12 del libro) UNIDAD 12.- Estadística. Tablas y gráficos (tema12 del libro) 1. ESTADÍSTICA: CLASES Y CONCEPTOS BÁSICOS En sus orígenes históricos, la Estadística estuvo ligada a cuestiones de Estado (recuentos, censos,

Más detalles

Tablas de contingencia y contrastes χ 2

Tablas de contingencia y contrastes χ 2 Tablas de contingencia y contrastes χ 2 Independencia Grados de Biología y Biología sanitaria M. Marvá e-mail: marcos.marva@uah.es Unidad docente de Matemáticas, Universidad de Alcalá 22 de noviembre de

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central Medidas de Tendencia Central En cualquier análisis o interpretación, se pueden usar muchas medidas descriptivas que representan las propiedades de tendencia central, variación y forma para resumir las

Más detalles

GRÁFICOS DE CONTROL. Datos tipo atributo

GRÁFICOS DE CONTROL. Datos tipo atributo GRÁFICOS DE CONTROL Datos tipo atributo SELECCIÓN DE LOS GRÁFICOS DE CONTROL Total GRÁFICOS PARA ATRIBUTOS Se distinguen dos grandes grupos: Por unidad Los gráficos p, 100p y u difieren de los gráficos

Más detalles

GRÁFICOS DE CONTROL. Datos tipo atributo

GRÁFICOS DE CONTROL. Datos tipo atributo GRÁFICOS DE CONTROL Datos tipo atributo SELECCIÓN DE LOS GRÁFICOS DE CONTROL GRÁFICOS PARA ATRIBUTOS Se distinguen dos grandes grupos: Los gráficos p, 100p y u difieren de los gráficos np y c en que los

Más detalles

PRUEBAS PARA DOS MUESTRAS RELACIONADAS

PRUEBAS PARA DOS MUESTRAS RELACIONADAS PRUEBAS PARA DOS MUESTRAS RELACIONADAS Estos contrastes permiten comprobar si hay diferencias entre las distribuciones de dos poblaciones a partir de dos muestras dependientes o relacionadas; es decir,

Más detalles

Tema 7 : DATOS BIVARIADOS. CORRELACION Y REGRESION.

Tema 7 : DATOS BIVARIADOS. CORRELACION Y REGRESION. Tema 7 : DATOS BIVARIADOS. CORRELACION Y REGRESION. Distribuciones uni- y pluridimensionales. Hasta ahora se han estudiado los índices y representaciones de una sola variable por individuo. Son las distribuciones

Más detalles

Técnicas de validación estadística Bondad de ajuste

Técnicas de validación estadística Bondad de ajuste Técnicas de validación estadística Bondad de ajuste Georgina Flesia FaMAF 31 de mayo, 2011 Pruebas de bondad de ajuste Dado un conjunto de observaciones, de qué distribución provienen o cuál es la distribución

Más detalles

Estadística Inferencial. Estadística Descriptiva

Estadística Inferencial. Estadística Descriptiva INTRODUCCIÓN Estadística: Ciencia que trata sobre la teoría y aplicación de métodos para coleccionar, representar, resumir y analizar datos, así como realizar inferencias a partir de ellos. Recogida y

Más detalles

Análisis de datos en los estudios epidemiológicos III Correlación y regresión

Análisis de datos en los estudios epidemiológicos III Correlación y regresión Análisis de datos en los estudios epidemiológicos III Correlación y regresión Salinero. Departamento de Investigación Fuden Introducción En el capitulo anterior estudiamos lo que se denomina estadística

Más detalles

Capítulo 8. Análisis Discriminante

Capítulo 8. Análisis Discriminante Capítulo 8 Análisis Discriminante Técnica de clasificación donde el objetivo es obtener una función capaz de clasificar a un nuevo individuo a partir del conocimiento de los valores de ciertas variables

Más detalles

Ejemplos y ejercicios de. Estadística Descriptiva. yanálisis de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios.

Ejemplos y ejercicios de. Estadística Descriptiva. yanálisis de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios. ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS Ejemplos y ejercicios de Estadística Descriptiva yanálisis de Datos Diplomatura en Estadística Curso 007/08 Descripción estadística de una variable. Ejemplos

Más detalles

REGRESIÓN LINEAL SIMPLE, COEFICIENTE DE DETERMINACIÓN Y CORRELACIONES (EJERCICIOS RESUELTOS)

REGRESIÓN LINEAL SIMPLE, COEFICIENTE DE DETERMINACIÓN Y CORRELACIONES (EJERCICIOS RESUELTOS) 1 REGRESIÓN LINEAL SIMPLE, COEFICIENTE DE DETERMINACIÓN Y CORRELACIONES (EJERCICIOS RESUELTOS) 1. EN LA REGIÓN DE DRAKUL DE LA REPÚBLICA DE NECROLANDIA, LAS AUTORIDADES ECONÓMICAS HAN REALIZADO UNA REVISIÓN

Más detalles

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos Agro 6998 Conferencia Introducción a los modelos estadísticos mixtos Los modelos estadísticos permiten modelar la respuesta de un estudio experimental u observacional en función de factores (tratamientos,

Más detalles

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7)

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7) TEMA Nº 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD OBJETIVOS DE APRENDIZAJE: Conocer las características de la distribución normal como distribución de probabilidad de una variable y la aproximación de

Más detalles

DISEÑO METODOLÓGICO. SEMINARIO TALLER DIRIGIDO POR: CLAUDIA ZAPATA FERREIRA, MSc. University of Buffalo

DISEÑO METODOLÓGICO. SEMINARIO TALLER DIRIGIDO POR: CLAUDIA ZAPATA FERREIRA, MSc. University of Buffalo DISEÑO METODOLÓGICO hfghfghghdfghfgh CÓMO ESCOGER EL MEJOR DISEÑO? SEMINARIO TALLER DIRIGIDO POR: CLAUDIA ZAPATA FERREIRA, MSc. University of Buffalo DISEÑO METODOLÓGICO También denominada material y métodos

Más detalles

GUÍA 5 : EFECTO DEL ESTRÉS EN EL PESO DE RECIÉN NACIDOS

GUÍA 5 : EFECTO DEL ESTRÉS EN EL PESO DE RECIÉN NACIDOS GUÍA 5 : EFECTO DEL ESTRÉS EN EL PESO DE RECIÉN NACIDOS Se realizó un estudio a partir de una muestra aleatoria de mujeres atendidas por el departamento de obstetricia y ginecología de cierta clínica particular.

Más detalles

Conceptos básicos de la estadística

Conceptos básicos de la estadística Para iniciar el estudio de la estadística deberemos de homogenizar la concepción de algunos conceptos sobre los que ha de moverse la estadística, lo primero que habremos de realizar es la construcción

Más detalles

478 Índice alfabético

478 Índice alfabético Índice alfabético Símbolos A, suceso contrario de A, 187 A B, diferencia de los sucesos A y B, 188 A/B, suceso A condicionado por el suceso B, 194 A B, intersección de los sucesos A y B, 188 A B, unión

Más detalles

Asociación de variables cualitativas: El test exacto de Fisher y el test de McNemar

Asociación de variables cualitativas: El test exacto de Fisher y el test de McNemar Investigación Asociación de variables cualitativas: El test exacto de Fisher y el test de McNemar CAD. ATEN. PRIMARIA 2004; 11: 304-308 Pértega Díaz, S. 1 ; Pita Fernández, S. 2 1. Unidad de Epidemiología

Más detalles

ESTADÍSTICA. Tema 4 Regresión lineal simple

ESTADÍSTICA. Tema 4 Regresión lineal simple ESTADÍSTICA Grado en CC. de la Alimentación Tema 4 Regresión lineal simple Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 1 Estructura de este tema Planteamiento del

Más detalles

Tema 1.- Correlación Lineal

Tema 1.- Correlación Lineal Tema 1.- Correlación Lineal 3.1.1. Definición El término correlación literalmente significa relación mutua; de este modo, el análisis de correlación mide e indica el grado en el que los valores de una

Más detalles

INDICE Semblanzas de los autores Prologo Introducción Capitulo 1: el proceso de la investigación y los enfoques

INDICE Semblanzas de los autores Prologo Introducción Capitulo 1: el proceso de la investigación y los enfoques INDICE Semblanzas de los autores Prologo Introducción Capitulo 1: el proceso de la investigación y los enfoques cuantitativo y cualitativo hacia un modelo integral 3 Qué enfoques se han presentado par

Más detalles

CAPÍTULO IV TRABAJO DE CAMPO Y PROCESO DE CONTRASTE DE LAS HIPÓTESIS

CAPÍTULO IV TRABAJO DE CAMPO Y PROCESO DE CONTRASTE DE LAS HIPÓTESIS CAPÍTULO IV TRABAJO DE CAMPO Y PROCESO DE CONTRASTE DE LAS HIPÓTESIS 1. HIPÓTESIS ALTERNA E HIPÓTESIS NULA Para someter a contraste una hipótesis es necesario formular las Hipótesis Alternas ( H1 ) y formular

Más detalles

LIGAMIENTO Y RECOMBINACIÓN

LIGAMIENTO Y RECOMBINACIÓN LIGAMIENTO Y RECOMBINACIÓN Los principales apartados de este tema serán: Introducción n y Estimación n de la fracción n de recombinación Ánálisis del ligamiento: Planteamiento directo Planteamiento inverso

Más detalles

1. Cómo introducir datos en SPSS/PC? - Recordatorio

1. Cómo introducir datos en SPSS/PC? - Recordatorio 1 Taller de Estadística Curso 2oo5/2oo6 Descripción de datos bivariantes El objetivo de esta práctica es familiarizarse con las técnicas de descripción de datos bidimensionales y con algunas de las opciones

Más detalles

3. ASOCIACIÓN ENTRE DOS VARIABLES CUALITATIVAS

3. ASOCIACIÓN ENTRE DOS VARIABLES CUALITATIVAS 1. INTRODUCCIÓN Este tema se centra en el estudio conjunto de dos variables. Dos variables cualitativas - Tabla de datos - Tabla de contingencia - Diagrama de barras - Tabla de diferencias entre frecuencias

Más detalles

Aplicación del modelo de frontera estocástica de producción para analizar la eficiencia técnica de la industria eléctrica en México

Aplicación del modelo de frontera estocástica de producción para analizar la eficiencia técnica de la industria eléctrica en México SECCIÓN DE ESTUDIOS DE POSGRADO E INVESTIGACIÓN Aplicación del modelo de frontera estocástica de producción para analizar la eficiencia técnica de la industria eléctrica en México Presentan: Dr. Miguel

Más detalles

UNIVERSIDAD DE LOS ANDES FACULTAD DE MEDICINA DEPARTAMENTO DE MEDICINA PREVENTIVA Y SOCIAL CÁTEDRA DEMOGRAFÍA MÉDICA. Prof.

UNIVERSIDAD DE LOS ANDES FACULTAD DE MEDICINA DEPARTAMENTO DE MEDICINA PREVENTIVA Y SOCIAL CÁTEDRA DEMOGRAFÍA MÉDICA. Prof. UNIVERSIDAD DE LOS ANDES FACULTAD DE MEDICINA DEPARTAMENTO DE MEDICINA PREVENTIVA Y SOCIAL CÁTEDRA DEMOGRAFÍA MÉDICA Prof. Evy Guerrero Análisis e interpretación de los datos Una vez recolectada la información

Más detalles

Bioestadística. Curso Capítulo 9

Bioestadística. Curso Capítulo 9 Bioestadística. Curso 2011-2012 Capítulo 9 Carmen M a Cadarso, M a del Carmen Carollo, Xosé Luis Otero, Beatriz Pateiro Índice 1. Introducción 2 2. Tablas de contingencia para datos categóricos 2 2.1.

Más detalles

MANEJO DE VARIABLES EN INVESTIGACIÓN CLÍNICA Y EXPERIMENTAL

MANEJO DE VARIABLES EN INVESTIGACIÓN CLÍNICA Y EXPERIMENTAL MANEJO DE VARIABLES EN INVESTIGACIÓN CLÍNICA Y EXPERIMENTAL Israel J. Thuissard David Sanz-Rosa IV JORNADAS INVESTIGACIÓN COEM UNIVERSIDADES 4 de marzo de 2016 Escuela de Doctorado e Investigación. Vicerrectorado

Más detalles

VARIABLES ESTADÍSTICAS BIDIMENSIONALES

VARIABLES ESTADÍSTICAS BIDIMENSIONALES VARIABLES ESTADÍSTICAS BIDIMENSIONALES 1.- En una variable estadística bidimensional, el diagrama de dispersión representa: a) la nube de puntos. b) las varianzas de las dos variables. c) los coeficientes

Más detalles

Dos matrices son iguales cuando tienen la misma dimensión y los elementos que ocupan el mismo lugar en ambas son iguales

Dos matrices son iguales cuando tienen la misma dimensión y los elementos que ocupan el mismo lugar en ambas son iguales Introducción Las matrices aparecen por primera vez hacia el año 1850, introducidas por J.J. Sylvester. El desarrollo inicial de la teoría se debe al matemático W.R. Hamilton en 1853. En 1858, A. Cayley

Más detalles

Pruebas para evaluar diferencias

Pruebas para evaluar diferencias Pruebas para evaluar diferencias Métodos paramétricos vs no paramétricos Mayoría se basaban en el conocimiento de las distribuciones muestrales (t- student, Normal, F): EsFman los parámetros de las poblaciones

Más detalles

ESTADÍSTICA SEMANA 3

ESTADÍSTICA SEMANA 3 ESTADÍSTICA SEMANA 3 ÍNDICE MEDIDAS DESCRIPTIVAS... 3 APRENDIZAJES ESPERADOS... 3 DEFINICIÓN MEDIDA DESCRIPTIVA... 3 MEDIDAS DE POSICIÓN... 3 MEDIDAS DE TENDENCIA CENTRAL... 4 MEDIA ARITMÉTICA O PROMEDIO...

Más detalles

ANÁLISIS DE CORRELACIÓN

ANÁLISIS DE CORRELACIÓN ELECCIONES GENERALES 006 ANÁLISIS DE CORRELACIÓN VOTO PRESIDENCIAL VOTO CONGRESAL Jurado Nacional de Elecciones ANÁLISIS ESTADÍSTICO En este capítulo realizaremos un análisis estadístico a partir de los

Más detalles

Ejercicios Resueltos

Ejercicios Resueltos Ejercicios Resueltos Ejercicio 1 La función de transferencia de un sistema de control tiene como expresión: Determinar, aplicando el método de Routh, si el sistema es estable. Para comprobar la estabilidad

Más detalles

Micro y Macroeconomía

Micro y Macroeconomía Micro y Macroeconomía 1 Sesión No. 6 Nombre: Teoría del consumidor Contextualización: La microeconomía como herramienta de análisis nos permite el poder comprender el comportamiento de las personas en

Más detalles

Problemas resueltos. Tema 12. 2º La hipótesis alternativa será que la distribución no es uniforme.

Problemas resueltos. Tema 12. 2º La hipótesis alternativa será que la distribución no es uniforme. Tema 12. Contrastes No Paramétricos. 1 Problemas resueltos. Tema 12 1.- En una partida de Rol se lanza 200 veces un dado de cuatro caras obteniéndose 60 veces el número 1, 45 veces el número 2, 38 veces

Más detalles

Técnicas Cuantitativas para el Management y los Negocios I

Técnicas Cuantitativas para el Management y los Negocios I Técnicas Cuantitativas para el Management y los Negocios I Licenciado en Administración Módulo II: ESTADÍSTICA INFERENCIAL Contenidos Módulo II Unidad 4. Probabilidad Conceptos básicos de probabilidad:

Más detalles

Contraste de hipótesis Tema Pasos del contraste de hipótesis. 1.1 Hipótesis estadísticas: nula y alternativa. 1.3 Estadístico de contraste

Contraste de hipótesis Tema Pasos del contraste de hipótesis. 1.1 Hipótesis estadísticas: nula y alternativa. 1.3 Estadístico de contraste 1 Contraste de hipótesis Tema 3 1. Pasos del contraste de hipótesis 1.1 Hipótesis estadísticas: nula y alternativa 1.2 Supuestos 1.3 Estadístico de contraste 1.4 Regla de decisión: zona de aceptación y

Más detalles

1 Introducción. 2 Modelo. Hipótesis del modelo MODELO DE REGRESIÓN LOGÍSTICA

1 Introducción. 2 Modelo. Hipótesis del modelo MODELO DE REGRESIÓN LOGÍSTICA MODELO DE REGRESIÓN LOGÍSTICA Introducción A grandes rasgos, el objetivo de la regresión logística se puede describir de la siguiente forma: Supongamos que los individuos de una población pueden clasificarse

Más detalles

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición...

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición... Contenidos 1 Introducción al paquete estadístico S-PLUS 19 1.1 Introducción a S-PLUS............................ 21 1.1.1 Cómo entrar, salir y consultar la ayuda en S-PLUS........ 21 1.2 Conjuntos de datos..............................

Más detalles

Administración de la producción. Sesión 9: Hojas de cálculo (Microsoft Excel)

Administración de la producción. Sesión 9: Hojas de cálculo (Microsoft Excel) Administración de la producción Sesión 9: Hojas de cálculo (Microsoft Excel) Contextualización Microsoft Excel es un programa de hoja de cálculo electrónica que permite la representación gráfica y el análisis

Más detalles

Jesús Eduardo Pulido Guatire, marzo Diagrama de Dispersión y Correlación Lineal Simple

Jesús Eduardo Pulido Guatire, marzo Diagrama de Dispersión y Correlación Lineal Simple Jesús Eduardo Pulido Guatire, marzo 0 Diagrama de Dispersión y Correlación Lineal Simple Hasta el momento el trabajo lo hemos centrado en resumir las características de una variable mediante la organización

Más detalles

Curva de Lorenz e Indice de Gini Curva de Lorenz

Curva de Lorenz e Indice de Gini Curva de Lorenz Curva de Lorenz e Indice de Gini Curva de Lorenz La curva de Lorenz es útil para demostrar la diferencia entre dos distribuciones: por ejemplo quantiles de población contra quantiles de ingresos. También

Más detalles

ESTADÍSTICA INFERENCIAL

ESTADÍSTICA INFERENCIAL ESTADÍSTICA INFERENCIAL ESTADÍSTICA INFERENCIAL 1 Sesión No. 4 Nombre: Distribuciones de probabilidad para variables Contextualización En la sesión anterior se definió el concepto de variable aleatoria

Más detalles

Variable Estadística Bidimensional

Variable Estadística Bidimensional Capítulo 2 Variable Estadística Bidimensional 21 Distribución de Frecuencias Bidimensional Sea una población de n individuos donde estudiamos, simultáneamente, dos variables X e Y Seanx 1,x 2,,x k las

Más detalles

UNIVERSIDAD NACIONAL DEL COMAHUE Centro Regional Universitario Bariloche Licenciatura en Enfermería METODOLOGÍA DE LA INVESTIGACIÓN

UNIVERSIDAD NACIONAL DEL COMAHUE Centro Regional Universitario Bariloche Licenciatura en Enfermería METODOLOGÍA DE LA INVESTIGACIÓN UNIVERSIDAD NACIONAL DEL COMAHUE Centro Regional Universitario Bariloche Licenciatura en Enfermería METODOLOGÍA DE LA INVESTIGACIÓN Lic. Andrea Carroz y Lic. Mariano Costa CLASE 5 TÉCNICAS DE RECOLECCIÓN

Más detalles

Curso 2016/17 Grados en Biología y Biología Sanitaria Departamento de Física y Matemáticas Marcos Marvá Ruiz ESTADÍSTICA

Curso 2016/17 Grados en Biología y Biología Sanitaria Departamento de Física y Matemáticas Marcos Marvá Ruiz ESTADÍSTICA Curso 2016/17 Grados en Biología y Biología Sanitaria Departamento de Física y Matemáticas Marcos Marvá Ruiz ESTADÍSTICA Algunas ideas generales Una definición de Estadística: parte de las matemáticas

Más detalles

Algebra lineal y conjuntos convexos

Algebra lineal y conjuntos convexos Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar

Más detalles

ÍNDICE CAPÍTULO 1. INTRODUCCIÓN

ÍNDICE CAPÍTULO 1. INTRODUCCIÓN ÍNDICE CAPÍTULO 1. INTRODUCCIÓN 1.1. OBJETO DE LA ESTADÍSTICA... 17 1.2. POBLACIONES... 18 1.3. VARIABLES ALEATORIAS... 19 1.3.1. Concepto... 19 1.3.2. Variables discretas y variables continuas... 20 1.3.3.

Más detalles

Medidas descriptivas I. Medidas de tendencia central A. La moda

Medidas descriptivas I. Medidas de tendencia central A. La moda Medidas descriptivas I. Medidas de tendencia central A. La moda Preparado por: Roberto O. Rivera Rodríguez Coaching de matemática Escuela Eduardo Neuman Gandía 1 Introducción En muchas ocasiones el conjunto

Más detalles

La producción de acero en Monterrey N.L. (México) en millones de toneladas, durante el año de 1992 a partir del mes de enero se muestra en la tabla:

La producción de acero en Monterrey N.L. (México) en millones de toneladas, durante el año de 1992 a partir del mes de enero se muestra en la tabla: El objetivo al estudiar el concepto razón de cambio, es analizar tanto cuantitativa como cualitativamente las razones de cambio instantáneo y promedio de un fenómeno, lo cual nos permite dar solución a

Más detalles

El conjunto de datos obtenidos en un estudio se pueden describir en base a tres elementos esenciales:

El conjunto de datos obtenidos en un estudio se pueden describir en base a tres elementos esenciales: Análisis de datos en los estudios epidemiológicos Análisis de datos en los estudios epidemiológicos ntroducción En este capitulo, de continuación de nuestra serie temática de formación en metodología de

Más detalles

Indicaciones para el lector... xv Prólogo... xvii

Indicaciones para el lector... xv Prólogo... xvii ÍNDICE Indicaciones para el lector... xv Prólogo... xvii 1. INTRODUCCIÓN Qué es la estadística?... 3 Por qué estudiar estadística?... 5 Empleo de modelos en estadística... 6 Perspectiva hacia el futuro...

Más detalles

Discretas. Continuas

Discretas. Continuas UNIDAD 0. DISTRIBUCIÓN TEÓRICA DE PROBABILIDAD Discretas Binomial Distribución Teórica de Probabilidad Poisson Normal Continuas Normal Estándar 0.1. Una distribución de probabilidad es un despliegue de

Más detalles

Ing. Eduardo Cruz Romero w w w. tics-tlapa. c o m

Ing. Eduardo Cruz Romero w w w. tics-tlapa. c o m Ing. Eduardo Cruz Romero eduar14_cr@hotmail.com w w w. tics-tlapa. c o m La estadística es tan vieja como la historia registrada. En la antigüedad los egipcios hacían censos de las personas y de los bienes

Más detalles

Tema 2. Descripción Conjunta de Varias Variables

Tema 2. Descripción Conjunta de Varias Variables Tema 2. Descripción Conjunta de Varias Variables Cuestiones de Verdadero/Falso 1. La covarianza mide la relación lineal entre dos variables, pero depende de las unidades de medida utilizadas. 2. El análisis

Más detalles

Estadísticos Descriptivos

Estadísticos Descriptivos ANÁLISIS EXPLORATORIO DE DATOS El análisis exploratorio tiene como objetivo identificar el modelo teórico más adecuado para representar la población de la cual proceden los datos muéstrales. Dicho análisis

Más detalles

I UNIDAD METODOLOGÍA: RECOLECCIÓN DE DATOS

I UNIDAD METODOLOGÍA: RECOLECCIÓN DE DATOS UNIVERSIDAD CATÓLICA LOS ÁNGELES DE CHIMBOTE FACULTAD DE DERECHO Y CIENCIAS POLÍTICAS ESCUELA POSGRADO DE DERECHO TESIS I I UNIDAD METODOLOGÍA: RECOLECCIÓN DE DATOS Mg. Rosina M. Gonzales Napurí RECOLECCIÓN

Más detalles

UNIVERSIDAD AUTONOMA DE SANTO DOMINGO

UNIVERSIDAD AUTONOMA DE SANTO DOMINGO UNIVERSIDAD AUTONOMA DE SANTO DOMINGO FACULTAD DE CIENCIAS ECONOMICAS Y SOCIALES DEPARTAMENTO DE ESTADISITICA CATEDRA Estadística Especializada ASIGNATURA Estadística Industrial (EST-121) NUMERO DE CREDITOS

Más detalles

Distribuciones muestrales. Distribución muestral de Medias

Distribuciones muestrales. Distribución muestral de Medias Distribuciones muestrales. Distribución muestral de Medias TEORIA DEL MUESTREO Uno de los propósitos de la estadística inferencial es estimar las características poblacionales desconocidas, examinando

Más detalles

Bioestadística para Reumatólogos

Bioestadística para Reumatólogos Bioestadística para Reumatólogos Xavier Barber Vallés Mabel Sánchez Barrioluengo Colaboradores - Umh Todos los datos que se muestran son ficticios Tablas 2x2: Riesgos Relativos y Odds ratio En cada sociedad

Más detalles

Métodos, técnicas e instrumentos de recolección de datos

Métodos, técnicas e instrumentos de recolección de datos Métodos, técnicas e instrumentos de recolección de datos Un buen instrumento determina en gran medida la calidad de la información, siendo esta la base para las etapas subsiguientes y para los resultados.

Más detalles

Pregunta 1. Pregunta 2. Pregunta 3. Pregunta 4. Pregunta 5. Pregunta 6. Pregunta 7. Comenzado el lunes, 25 de marzo de 2013, 17:24

Pregunta 1. Pregunta 2. Pregunta 3. Pregunta 4. Pregunta 5. Pregunta 6. Pregunta 7. Comenzado el lunes, 25 de marzo de 2013, 17:24 Comenzado el lunes, 25 de marzo de 2013, 17:24 Estado Finalizado Finalizado en sábado, 30 de marzo de 2013, 17:10 Tiempo empleado 4 días 23 horas Puntos 50,00/50,00 Calificación 10,00 de un máximo de 10,00

Más detalles

3.1. Administración de la medición y de la información estratégica:

3.1. Administración de la medición y de la información estratégica: Unidad III Aspectos Generales Sobre la Gestión de la Calidad 3.1. Administración de la medición y de la información estratégica: Los siguientes criterios corresponden a la administración de la medición

Más detalles