DISTRIBUCIONES BIDIMENSIONALES

Tamaño: px
Comenzar la demostración a partir de la página:

Download "DISTRIBUCIONES BIDIMENSIONALES"

Transcripción

1 La estadística unidimensional estudia los elementos de un conjunto de datos considerando sólo una variable o característica. Si ahora incorporamos, otra variable, y se observa simultáneamente el comportamiento de ambas, entonces estamos en el campo del análisis bidimensional, cuya agrupación da origen a las distribuciones bidimensionales de frecuencia. No se trata de elegir dos variables cualesquiera, es una observación simultánea de variables que tengan entre sí alguna relación, afinidad o dependencia. Podemos considerar dos aspectos: a. Las distribuciones bidimensionales de frecuencia, que se refiere a la presentación de tablas de frecuencia, a través del cálculo de medidas de resumen. b. Determinar modelos estadísticos y medir la relación o asociación entre dos variables. Frecuencias Absolutas Los valores que aparecen dentro de la tabla son las frecuencias absolutas que representan el número de veces, que de las n observaciones aparece el valor repetido el valor de la primera variable junto al valor de de la segunda variable. Frecuencias marginales. Sumando las frecuencias absolutas que figuran en cada fila (línea horizontal) se obtiene una cifra que indica cuántas veces se repite cada valor de y que se indica al margen derecho de la tabla, que se representa por

2 CURSO: ESTADÍSTICA DESCRIPTIVA TABLAS DE CONTINGENCIA Las tablas de contingencia se utilizan para conocer si existe o no relación entre variables de tipo cualitativo. Este tipo de variables pueden ser de tipo nominal por ejemplo sexo del encuestado (hombre; mujer), o tipos de marcas de un producto (Coca-cola, Pepsi-cola, ), u ordinal tales como la medición del grado de satisfacción de un grupo de clientes empleando una escala del tipo ( = Nada; 1 = Poco; = Indiferente; 3 = Bastante; 4 = Mucho). El empleo de las tablas de contingencia está especialmente indicado si las variables son de tipo nominal. 1º. Existe relación entre dos variables de tipo cualitativo? En qué condiciones se pueden utilizar las tablas de contingencia? º. Qué grado de relación existe entre las variables? 3º. En qué grado existe la relación? Para responder a la primera pregunta estudiaremos el test de la x Para responder a la segunda analizaremos diferentes coeficientes de asociación: el de contingencia, el de la Q de Yule, la Gamma, el Tau-b, y el Tau-c de Kendall, y la D de Sommers. Para responder a la tercera estudiaremos la técnica de los residuos estandarizados. Explicación de la técnica De forma general, si dos factores o atributos A y B se estudian sobre una misma población y se miden las unidades estadísticas (frecuencias absolutas) se obtienen dos series representativas de cada uno de los factores o atributos. Por ejemplo, tras realizar un estudio en su supermercado sobre la relación entre el sexo del encuestado y la compra de un determinado producto se obtienen los siguientes datos. Compradores sexo Hombres Mujeres Total Si No Total

3 Sobre estos datos podríamos preguntar si existe relación entre esas variables, es decir existe asociación entre la compra del producto y el sexo al que se pertenece? Una forma de plantear los resultados, para contestar al tipo de cuestiones anteriormente planteadas, es su disposición en una tabla de doble entrada, conocida como tabla de contingencia. En nuestro ejemplo, la tabla de contingencia sería: Estas tablas se usan para mostrar la dependencia o independencia entre dos factores, para el caso de muestras independientes. En esta tabla observamos dos atributos (Varón, mujer) X dos atributos (Compra, No compra). Estas tablas se pueden expresar de modo general: A, B, C, y D son las frecuencias observadas del suceso en realidad (3, 1, 11 y 7 en nuestro ejemplo). N es el número total de casos estudiados (8). A + B, C + D, A + C y B + D son las totales marginales. En nuestro ejemplo A + B sería el número total de compradores (4), C + D el número total de no compradores (38), A + C el número total de hombres (43), y B + D (37) el número total de mujeres. En esta clase se analizará la utilidad de las tablas de contingencia para determinar la dependencia/independencia entre varios factores. Analizaremos primero las tablas más sencillas (las tablas x ) para pasar posteriormente a otras más complejas. Cuando los datos de investigación consisten en frecuencias medidas en escala nominal u ordinal, como es el caso de las tablas de contingencia puede usarse la prueba x para determinar la significación de las diferencias entre dos grupos independientes. La hipótesis que usualmente se pone a prueba supone que los dos grupos difieren con respecto a alguna característica y, por lo tanto, con respecto a la frecuencia relativa con que los miembros del grupo son encontrados en diferentes categorías. Para probar esta hipótesis, contamos el número de casos de cada grupo en cada categoría y compramos la proporción de casos en las diferentes categorías de un grupo con las de otro grupo.

4 MÉTODO La hipótesis de nulidad [que implica que existe independencia entre los dos factores(sexo y compra o no del producto)] puede probarse por medio de: ( ) (1) Donde: O ij (Frecuencia observada) es el número de casos observados clasificados en la fila i de la columna j. E ij (Frecuencias esperada ó teórica) es el número de casos esperados correspondientes a esa fila y a esa columna. Podemos definirla como aquella frecuencia que se daría si los sucesos (en el ejemplo de compra y sexo del encuestado) fuesen independientes. Los valores de x dados por la fórmula (1) están distribuidos como una chi-cuadrada con grados de libertad = (r 1)(k - 1), donde r es el número de filas y k es el número de columnas en la tabla de contingencia. Qué está midiendo este estadístico? Está midiendo la diferencia entre el valor que debería resultar si los dos factores (compra del producto y sexo) fueran completamente independientes [determinado por la frecuencia esperada (E ij )], y el que se ha observado en la realidad [recogido en la frecuencia observada O ij ]. Cuanto mayor sea la diferencia entre ambas frecuencias mayor será la relación entre ambas variables. La elevación de la diferencia al cuadrado convierte en positiva a cualquier tipo de diferencia. Este test es por ello un test no dirigido. Indica si existe o no relación entre los factores pero no nos muestra el signo. Es decir, en nuestro ejemplo el estadístico (1) nos indicaría si existe o no relación entre el sexo y el hecho de comprar o no el artículo, pero no podemos saber si el signo de la relación es positivo o negativo, o en otras palabras si son los hombres los que compran más el artículo o sucede al contrario.

5 Distribución chi cuadrado ( x ) La distribución chi cuadrado es la técnica estadística utilizada con mayor frecuencia para el análisis de conteo o datos de frecuencias. Existen tres tipos de pruebas: prueba de bondad de ajuste, prueba de homogeneidad y prueba de independencia. a) Prueba de bondad de ajuste.- Consiste en determinar si los datos de cierta muestra corresponden a cierta distribución poblacional. En este caso es necesario que los valores de la variable de la muestra y sobre la cual queremos realizar la inferencia esté dividida en clases de ocurrencia, o equivalentemente, sea cual sea la variable de estudio, deberemos categorizar los datos asignando sus valores a diferentes clases o grupos. Este tipo de pruebas se verá cuando se revisen las pruebas no paramétricas. b) Prueba de homogeneidad.- Consiste en comprobar si varias muestras de carácter cualitativo proceden de una misma población. c) Prueba de independencia.- Consiste en comprobar si dos características cualitativas están relacionadas entre sí. Prueba de Homogeneidad. Ejemplo Se tienen un grupo de pacientes procedentes de tres localidades (campo, rural y urbano) en las cuales se ha observado la presencia del síndrome metabólico, como aparece en la tabla: Síndrome metabólico Procedencia Campo Rural Urbano Total Con SM Sin SM Total Para la prueba Chi cuadrado procedemos de la siguiente manera:

6 1. Formulación de hipótesis: H : La presencia de síndrome metabólico no difiere de acuerdo la procedencia. H : 1 La presencia de síndrome metabólico difiere de acuerdo la procedencia. Establecer un nivel de significancia:.5 3. Elección del estadístico de prueba: 4. Determinar la región crítica. x 5.99 tab x n ( oi ei) e i 1 i 5. Decisión: como p=.1<.5 entonces rechazamos H 6. Conclusión: La presencia de síndrome metabólico difiere de acuerdo a la procedencia o dicho de otro modo el síndrome metabólico se encuentra en frecuencias diferentes en cada una de estas tres poblaciones. Prueba de independencia Ejemplo: Se tiene 61 personas de diferente sexo; masculino y femenino, algunas con síndrome metabólico y otras sin él, tal como muestra la siguiente tabla: Síndrome Sexo Metabólico Femenino Masculino Total Con SM Sin SM Total

7 Se desea saber si existe una relación entre la variable síndrome metabólico y la variable sexo. 1. Formulación de hipótesis: H : La presencia de síndrome metabólico es independiente del sexo. H : 1 La presencia de síndrome metabólico es dependiente del sexo. Establecer un nivel de significancia:.5 3. Elección del estadístico de prueba: x n ( oi ei) e i 1 4. Determinar la región crítica. x Decisión: como p=.<.5 entonces rechazamos H tab 6. Conclusión: Existe una dependencia entre estas dos variables. La variable síndrome metabólico es dependiente de la variable sexo. i Corrección por continuidad o corrección de yates Ejemplo En la siguiente tabla se muestran los datos de 43 niños de diferente género, en donde se ha evaluado la satisfacción familiar Satisfacción Sexo Familiar Femenino Masculino Total Satisfecho Insatisfecho Total Lo que se plantea es que alguno de los dos géneros pueda tener mayor frecuencia de satisfacción familiar. 1. Formulación de hipótesis: H : La satisfacción familiar es igual en hombres y mujeres. H : 1 La satisfacción familiar no es igual en hombres y mujeres

8 . Establecer un nivel de significancia:.5 3. Elección del estadístico de prueba: x n ( oi ei) e i 1 4. Determinar la región crítica. x Decisión: como p=.<.5 entonces rechazamos H tab 6. Conclusión: La satisfacción familiar no es igual en hombres que en mujeres. i Sin embargo una casilla o el 5% de las casillas, tienen una frecuencia esperada menor a 5. La frecuencia mínima esperada es Este valor nos indica que debemos realizar una corrección. Deberemos, por lo tanto, utilizar la corrección por continuidad. Esta corrección se utiliza cuando los valores en la tabla son muy pequeños Corrección de Yates: x n ( oi ei.5) e i 1 i 5. Decisión: como p=.51 no es menor que,5 entonces no rechazo H. 6. Conclusión: No existe suficiente evidencia estadística para afirmar que la satisfacción familiar no es igual en hombres y mujeres. Es importante aclarar que cuando la hipótesis nula no es rechazada, tampoco se puede decir que se acepta. Se debe decir que la hipótesis nula no se rechaza. Se debe evitar el uso de la palabra aceptar en este caso porque pudiera haberse cometido el error de tipo II. Dado que, frecuentemente, la probabilidad de cometer un error de tipo II puede ser realmente alta, no se pretende cometerlo al aceptar la hipótesis nula.

9 Test Exacto de Fisher Ejemplo Se tienen 17 niños de diferente sexo; masculino y femenino, a quienes se les ha evaluado la satisfacción familiar. Los datos se presentan en la siguiente tabla: Satisfacción Sexo Familiar Femenino Masculino Total Satisfecho 8 1 Insatisfecho 5 7 Total Formulación de hipótesis: H : La satisfacción familiar es igual en hombres y mujeres. H : 1 La satisfacción familiar no es igual en hombres y mujeres. Establecer un nivel de significancia:.5 3. Elección del estadístico de prueba: x n ( oi ei) e i 1 4. Determinar la región crítica. x Decisión: como p=.34<.5 entonces rechazamos H tab 6. Conclusión: La satisfacción familiar no es igual en hombres que en mujeres. i Sin embargo, tres casillas, es decir, el 75% de ellas tienen una frecuencia esperada menor a 5. La frecuencia mínima esperada es.88. Como este valor es demasiado bajo no se puede aplicar la corrección de Yates. Aplicamos entonces la siguiente regla de decisión: cuando una de las frecuencias esperadas es menor que 5 aplicamos la corrección de yates; sin embargo, si esta frecuencia es menor a tres, aplicaremos la corrección de Fisher.

10 CURSO: ESTADÍSTICA DESCRIPTIVA En este caso la frecuencia mínima esperada es,9 que es menor que 3; por lo tanto aplicaremos la corrección de Fisher o el Test exacto de Fisher. Test de Fisher Calcula exactamente la probabilidad a través de: ( a b)!( c d)!( a c)!( b d)! p n! a! b! c! d! 5. Decisión: como p=.58>.5 entonces no rechazamos H 6. Conclusión: No existe suficiente evidencia estadística para afirmar que la satisfacción familiar no es igual en hombres que en mujeres. Hay que tener en cuenta que a pesar que las proporciones son muy diferentes y aparentemente existe diferencias, no se puede afirmar tal hecho debido a que la muestra es muy pequeña.

INFERENCIA ESTADÍSTICA. Metodología de Investigación. Tesifón Parrón

INFERENCIA ESTADÍSTICA. Metodología de Investigación. Tesifón Parrón Metodología de Investigación Tesifón Parrón Contraste de hipótesis Inferencia Estadística Medidas de asociación Error de Tipo I y Error de Tipo II α β CONTRASTE DE HIPÓTESIS Tipos de Test Chi Cuadrado

Más detalles

PRUEBAS DE BONDAD DE AJUSTE y DE INDEPENDENCIA

PRUEBAS DE BONDAD DE AJUSTE y DE INDEPENDENCIA PRUEBAS DE BONDAD DE AJUSTE y DE INDEPENDENCIA Quien hace puede equivocarse, quien no hace ya está equivocado. DANIEL KON Ji CUADRADA Material preparado por: Profesor León Darío Bello Parias Ji CUADRADA-

Más detalles

Tema: Medidas de Asociación con SPSS

Tema: Medidas de Asociación con SPSS Tema: Medidas de Asociación con SPSS 1.- Introducción Una de las tareas habituales en el análisis de encuestas es la generación y análisis de tablas de contingencia, para las variables y categorías objetivo

Más detalles

INFERENCIA CON RECUENTOS

INFERENCIA CON RECUENTOS . INFERENCIA CON RECUENTOS PEDRO M. VALERO MORA Inferencia con Recuentos-Pedro M. Valero Mora 2009 1 Parte 1 Análisis con 1 variable 1.1. De dónde vienen las frecuencias?. 1.1. De dónde vienen las frecuencias?

Más detalles

DISTRIBUCIÓN CHI-CUADRADO O JI-CUADRADO X 2 CONCEPTO BÁSICO Frecuencia: es el número de datos que caen en cada celda. Frecuencias Observadas (fo):

DISTRIBUCIÓN CHI-CUADRADO O JI-CUADRADO X 2 CONCEPTO BÁSICO Frecuencia: es el número de datos que caen en cada celda. Frecuencias Observadas (fo): DISTRIBUCIÓN CHI-CUADRADO O JI-CUADRADO X CONCEPTO BÁSICO Frecuencia: es el número de datos que caen en cada celda. Frecuencias Observadas (fo): son aquellas que representan los valores muestrales observados

Más detalles

A. PRUEBAS DE BONDAD DE AJUSTE: B.TABLAS DE CONTINGENCIA. Chi cuadrado Metodo G de Fisher Kolmogorov-Smirnov Lilliefords

A. PRUEBAS DE BONDAD DE AJUSTE: B.TABLAS DE CONTINGENCIA. Chi cuadrado Metodo G de Fisher Kolmogorov-Smirnov Lilliefords A. PRUEBAS DE BONDAD DE AJUSTE: Chi cuadrado Metodo G de Fisher Kolmogorov-Smirnov Lilliefords B.TABLAS DE CONTINGENCIA Marta Alperin Prosora Adjunta de Estadística alperin@fcnym.unlp.edu.ar http://www.fcnym.unlp.edu.ar/catedras/estadistica

Más detalles

a. Poisson: los totales marginales y el total muestral varían libremente.

a. Poisson: los totales marginales y el total muestral varían libremente. TEMA 2º: TABLAS DE CONTINGENCIA BIDIMENSIONALES 1º Distribución de frecuencias observadas El único aspecto cuantificable en el análisis cualitativo es el número de individuos que presenta una combinación

Más detalles

El análisis de correspondencias. Ana María López Jiménez Dept. Psicología Experimental (USE)

El análisis de correspondencias. Ana María López Jiménez Dept. Psicología Experimental (USE) El análisis de correspondencias Ana María López Jiménez Dept. Psicología Experimental (USE) 4. El análisis de correspondencias 4.. Introducción 4.2. Tabla de correspondencias 4.3. Dependencia e independencia

Más detalles

Análisis descriptivo con SPSS. Favio Murillo García

Análisis descriptivo con SPSS. Favio Murillo García Análisis descriptivo con SPSS Favio Murillo García Tablas de contingencia Cuando se trabaja con variables categóricas, los datos suelen organizarse en tablas de doble entrada en las que cada entrada representa

Más detalles

Tema 10: Introducción a los problemas de Asociación y Correlación

Tema 10: Introducción a los problemas de Asociación y Correlación Tema 10: Introducción a los problemas de Asociación y Correlación Estadística 4 o Curso Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 10: Asociación y Correlación

Más detalles

El Análisis de Correspondencias tiene dos objetivos básicos:

El Análisis de Correspondencias tiene dos objetivos básicos: Tema 8 Análisis de correspondencias El Análisis de Correspondencias es una técnica de reducción de dimensión y elaboración de mapas percentuales. Los mapas percentuales se basan en la asociación entre

Más detalles

Tema B6. Tablas de contingencia. Ejemplo

Tema B6. Tablas de contingencia. Ejemplo Ejemplo En esta tabla se representan los mismos datos que en la tabla anterior, pero en términos de frecuencias ( recuento ) Para simplificar la tabla vamos a agrupar variables 1. Juntamos las personas

Más detalles

CONTRASTES DE HIPÓTESIS NO PARAMÉTRICOS

CONTRASTES DE HIPÓTESIS NO PARAMÉTRICOS CONTRASTES DE HIPÓTESIS NO PARAMÉTRICOS 1 POR QUÉ SE LLAMAN CONTRASTES NO PARAMÉTRICOS? A diferencia de lo que ocurría en la inferencia paramétrica, ahora, el desconocimiento de la población que vamos

Más detalles

Inferencia Estadística. Pruebas paramétricas y no paramétricas. Análisis de datos

Inferencia Estadística. Pruebas paramétricas y no paramétricas. Análisis de datos Inferencia Estadística. Pruebas paramétricas y no paramétricas. Análisis de datos VDC Prof. Mª JOSÉ PRIETO CASTELLÓ ANÁLISIS ESTADÍSTICO DE DATOS Estadística Descriptiva: -Cualitativas: frecuencias, porcentajes

Más detalles

ÍNDICE INTRODUCCIÓN... 21

ÍNDICE INTRODUCCIÓN... 21 INTRODUCCIÓN... 21 CAPÍTULO 1. ORGANIZACIÓN DE LOS DATOS Y REPRESENTACIONES GRÁFICAS... 23 1. ORGANIZACIÓN DE LOS DATOS... 23 1.1. La distribución de frecuencias... 24 1.2. Agrupación en intervalos...

Más detalles

2 Contraste de independencia

2 Contraste de independencia 2 Contraste de independencia 2 Independencia entre variables cualitativas Consideremos dos variables cualitativas X e Y con I y J modalidades cada una respectivamente, y sea N IJ la tabla de contingencia

Más detalles

INDICE 1. Qué es la Estadística? 2.Descripción de Datos: Distribuciones de Frecuencia y Presentación Gráfica

INDICE 1. Qué es la Estadística? 2.Descripción de Datos: Distribuciones de Frecuencia y Presentación Gráfica INDICE 1. Qué es la Estadística? 1 Introducción 2 Qué significa estadística? 2 Por qué se estudia la estadística? 4 Tipos de estadística 5 Estadística descriptiva 5 Estadística inferencial 6 Tipos de variables

Más detalles

ANÁLISIS DE LA INFORMACIÓN

ANÁLISIS DE LA INFORMACIÓN Estadística Cátedra de Administración - IMES - Abril 006 - Lic. Daniella M. Repetto Pereira 1 ANÁLISIS DE LA INFORMACIÓN REGLAS DE CONSTRUCCIÓN DE UN CUADRO ESTRUCTURA LÓGICA Los cuadros no tienen una

Más detalles

Podemos definir un contraste de hipótesis como un procedimiento que se basa en lo observado en las muestras y en la teoría de la probabilidad para

Podemos definir un contraste de hipótesis como un procedimiento que se basa en lo observado en las muestras y en la teoría de la probabilidad para VII. Pruebas de Hipótesis VII. Concepto de contraste de hipótesis Podemos definir un contraste de hipótesis como un procedimiento que se basa en lo observado en las muestras y en la teoría de la probabilidad

Más detalles

DISEÑO Y ANÁLISIS DE DATOS EN PSICOLOGÍA II

DISEÑO Y ANÁLISIS DE DATOS EN PSICOLOGÍA II DISEÑO Y ANÁLISIS DE DATOS EN PSICOLOGÍA II PRÁCTICA 5 En una determinada investigación se estudió el rendimiento en matemáticas en función del estilo de aprendizaje de una serie de estudiantes de educación

Más detalles

TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD

TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD Contrastes de hipótesis paramétricos para una y varias muestras: contrastes sobre la media, varianza y una proporción. Contrastes sobre la diferencia

Más detalles

INDICE Prefacio 1. Introducción 2. Distribuciones de frecuencia: tablas estadísticas y graficas

INDICE Prefacio 1. Introducción 2. Distribuciones de frecuencia: tablas estadísticas y graficas INDICE Prefacio XIII 1. Introducción 1.1. la imagen de la estadística 1 1.2. dos tipos de estadísticas 1.3. estadística descriptiva 2 1.4. estadística inferencial 1.5. naturaleza interdisciplinaria de

Más detalles

Análisis de datos cualitativos

Análisis de datos cualitativos Capítulo Análisis de datos cualitativos DEFINICIÓN DE VARIABLES CUALITATIVAS Son aquellas variables cuyos valores son un conjunto de cualidades no numéricas a las que se llama categorías o modalidades.

Más detalles

INFERENCIA ESTADISTICA

INFERENCIA ESTADISTICA 1 INFERENCIA ESTADISTICA Es una rama de la Estadística que se ocupa de los procedimientos que nos permiten analizar y extraer conclusiones de una población a partir de los datos de una muestra aleatoria,

Más detalles

Estadísticos Aplicados en el SPSS 2008

Estadísticos Aplicados en el SPSS 2008 PRUEBAS ESTADISTICAS QUE SE APLICAN (SPSS 10.0) PARAMÉTRICAS:... 2 Prueba t de Student para una muestra... 2 Prueba t par muestras independientes... 2 ANOVA de una vía (multigrupo)... 2 ANOVA de dos vías

Más detalles

Nivel socioeconómico medio. Nivel socioeconómico alto SI 8 15 28 51 NO 13 16 14 43 TOTAL 21 31 42 94

Nivel socioeconómico medio. Nivel socioeconómico alto SI 8 15 28 51 NO 13 16 14 43 TOTAL 21 31 42 94 6. La prueba de ji-cuadrado Del mismo modo que los estadísticos z, con su distribución normal y t, con su distribución t de Student, nos han servido para someter a prueba hipótesis que involucran a promedios

Más detalles

CAPITULO ANÁLISIS ESTADÍSTICO MULTIVARIADO /1/ /2/ En el presente capítulo se realiza el análisis estadístico multivariado de los

CAPITULO ANÁLISIS ESTADÍSTICO MULTIVARIADO /1/ /2/ En el presente capítulo se realiza el análisis estadístico multivariado de los 112 CAPITULO 5 5.- ANÁLISIS ESTADÍSTICO MULTIVARIADO /1/ /2/ 5.1. Introducción En el presente capítulo se realiza el análisis estadístico multivariado de los datos obtenidos en censo correspondientes a

Más detalles

Contraste de hipótesis con STATGRAPHICS

Contraste de hipótesis con STATGRAPHICS Contraste de hipótesis con STATGRAPHICS Ficheros empleados: Transistor.sf3, Estaturas.sf3 1. Introducción: Una forma habitual de hacer inferencia acerca de uno o más parámetros de una población consiste

Más detalles

Capítulo 6. Análisis bivariante de variables

Capítulo 6. Análisis bivariante de variables Contenidos: Capítulo 6 Análisis bivariante de variables Distribución bidimensional de frecuencias ( tabla de correlación o contingencia ) Distribuciones marginales Coeficientes de Asociación Análisis de

Más detalles

Tests de Hipótesis basados en una muestra. ESTADÍSTICA (Q) 5. TESTS DE HIPÓTESIS PARA LA MEDIA DE UNA POBLACIÓN NORMAL CON VARIANZA CONOCIDA

Tests de Hipótesis basados en una muestra. ESTADÍSTICA (Q) 5. TESTS DE HIPÓTESIS PARA LA MEDIA DE UNA POBLACIÓN NORMAL CON VARIANZA CONOCIDA 2 5. TESTS DE HIPÓTESIS PARA LA MEDIA DE UNA POBLACIÓN NORMAL CON VARIANZA CONOCIDA 5. Desarrollo de un ejemplo Interesa saber si el método de absorción atómica de vapor frío para determinar mercurio introduce

Más detalles

EJEMPLO PRÁCTICO DE CORRELACIÓN Y CHI-CUADRADO (X 2 )

EJEMPLO PRÁCTICO DE CORRELACIÓN Y CHI-CUADRADO (X 2 ) Jesús Eduardo Pulido Guatire, marzo 010 EJEMPLO PRÁCTICO DE CORRELACIÓN Y CHI-CUADRADO (X ) EJEMPLO PRÁCTICO DE CORRELACIÓN Con base en la fundamentación teórica de la correlación lineal y el Archivo de

Más detalles

CAPITULO IV ANÁLISIS, INTERPRETACIÓN Y COMPROBACIÓN DE

CAPITULO IV ANÁLISIS, INTERPRETACIÓN Y COMPROBACIÓN DE CAPITULO IV ANÁLISIS, INTERPRETACIÓN Y COMPROBACIÓN DE RESULTADOS 4.1 TABULACIÓN DE DATOS N PREGUNTA ALTERNATIVAS SI NO A VECES TOTAL 1 Considera que la normativa de los programas del Plan 2021 favorecen

Más detalles

Métodos de Investigación en Psicología (5) Dra. Lucy Reidl Martínez Dra. Corina Cuevas Reynaud Dra. Renata López Hernández

Métodos de Investigación en Psicología (5) Dra. Lucy Reidl Martínez Dra. Corina Cuevas Reynaud Dra. Renata López Hernández Métodos de Investigación en Psicología (5) Dra. Lucy Reidl Martínez Dra. Corina Cuevas Reynaud Dra. Renata López Hernández El método incluye diferentes elementos Justificación Planteamiento del problema

Más detalles

Universidad Nacional de Colombia Curso Análisis de Datos Cuantitativos Profesor Iván Fernando Camacho. Caso 2. Dos variables cualitativas

Universidad Nacional de Colombia Curso Análisis de Datos Cuantitativos Profesor Iván Fernando Camacho. Caso 2. Dos variables cualitativas Universidad Nacional de Colombia Curso Análisis de Datos Cuantitativos Profesor Iván Fernando Camacho Caso 2. Dos variables cualitativas Escalas de medición Variables Cualitativas NOMINAL ORDINAL Variables

Más detalles

en Enfermería del Trabajo

en Enfermería del Trabajo revista noviembre:maquetación 1 16/11/2011 6:27 Página 30. 203 Metodología de la investigación Metodología de Investigación en Enfermería del Trabajo Autor Romero Saldaña M Enfermero Especialista en Enfermería

Más detalles

Distribuciones bidimensionales. Correlación.

Distribuciones bidimensionales. Correlación. Temas de Estadística Práctica Antonio Roldán Martínez Proyecto http://www.hojamat.es/ Tema 4: Distribuciones bidimensionales. Correlación. Resumen teórico Resumen teórico de los principales conceptos estadísticos

Más detalles

DISEÑOS EXPERIMENTALES DE DOS GRUPOS Y MULTIGRUPO

DISEÑOS EXPERIMENTALES DE DOS GRUPOS Y MULTIGRUPO TEMA II ESQUEMA GENERAL Diseño experimental de dos grupos: definición y clasificación Formatos del diseño y prueba de hipótesis Diseño experimental multigrupo: definición Formato del diseño multigrupo

Más detalles

Prueba de Hipótesis. Tipos de inferencias (2)

Prueba de Hipótesis. Tipos de inferencias (2) Prueba de Hipótesis Tipos de inferencias (2) PRUEBA DE HIPOTESIS: busca responder a una pregunta sobre el valor de un parámetro en la población (siempre utilizando los resultados de la muestra) Esta pregunta

Más detalles

Estadística aplicada a la comunicación

Estadística aplicada a la comunicación Estadística aplicada a la comunicación Tema 5: Análisis de datos cuantitativos I: estadística descriptiva b. Análisis bivariante OpenCourseWare UPV/EHU Unai Martín Roncero Departamento de Sociología 2

Más detalles

PATRONES DE DISTRIBUCIÓN ESPACIAL

PATRONES DE DISTRIBUCIÓN ESPACIAL PATRONES DE DISTRIBUCIÓN ESPACIAL Tipos de arreglos espaciales Al azar Regular o Uniforme Agrupada Hipótesis Ecológicas Disposición al Azar Todos los puntos en el espacio tienen la misma posibilidad de

Más detalles

Caso 105. Tamaño de muestra y potencia de una prueba. Diseño de experimentos. Jesús López Fidalgo

Caso 105. Tamaño de muestra y potencia de una prueba. Diseño de experimentos. Jesús López Fidalgo Caso 105. Tamaño de muestra y potencia de una prueba. Diseño de experimentos. Jesús López Fidalgo Caso Práctico El objetivo de este ejercicio es analizar diferentes tipos de pruebas estadísticas en las

Más detalles

ANÁLISIS DE LA VARIANZA CON UN FACTOR (ANOVA)

ANÁLISIS DE LA VARIANZA CON UN FACTOR (ANOVA) ANÁLISIS DE LA VARIANZA CON UN FACTOR (ANOVA) El análisis de la varianza permite contrastar la hipótesis nula de que las medias de K poblaciones (K >2) son iguales, frente a la hipótesis alternativa de

Más detalles

Teorema Central del Límite (1)

Teorema Central del Límite (1) Teorema Central del Límite (1) Definición. Cualquier cantidad calculada a partir de las observaciones de una muestra se llama estadístico. La distribución de los valores que puede tomar un estadístico

Más detalles

DIFERENCIAS EN LA UTILIZACIÓN DE LA BIBLIOTECA DEL IIESCA ANTE UN CAMBIO DE INFORMACIÓN

DIFERENCIAS EN LA UTILIZACIÓN DE LA BIBLIOTECA DEL IIESCA ANTE UN CAMBIO DE INFORMACIÓN DIFERENCIAS EN LA UTILIZACIÓN DE LA BIBLIOTECA DEL IIESCA ANTE UN CAMBIO DE INFORMACIÓN Beatriz Meneses A. de Sesma * I. INTRODUCCIÓN En todo centro educativo, es de suma importancia el uso que se haga

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales 6. Prueba de hipótesis. Facultad de Ciencias Sociales, UdelaR

Estadística y sus aplicaciones en Ciencias Sociales 6. Prueba de hipótesis. Facultad de Ciencias Sociales, UdelaR Estadística y sus aplicaciones en Ciencias Sociales 6. Prueba de hipótesis Facultad de Ciencias Sociales, UdelaR Índice 1. Introducción: hipótesis estadística, tipos de hipótesis, prueba de hipótesis 2.

Más detalles

Tabla de Test de Hipótesis ( Caso: Una muestra ) A. Test para µ con σ 2 conocida: Suponga que X 1, X 2,, X n, es una m.a.(n) desde N( µ, σ 2 )

Tabla de Test de Hipótesis ( Caso: Una muestra ) A. Test para µ con σ 2 conocida: Suponga que X 1, X 2,, X n, es una m.a.(n) desde N( µ, σ 2 ) Test de Hipótesis II Tabla de Test de Hipótesis ( Caso: Una muestra ) A. Test para µ con σ conocida: Suponga que X, X,, X n, es una m.a.(n) desde N( µ, σ ) Estadística de Prueba X - μ Z 0 = σ / n ~ N(0,)

Más detalles

ANÁLISIS CUANTITATIVO DE DATOS EN CIENCIAS SOCIALES CON EL SPSS (I) Tablas de contingencia y pruebas de asociación

ANÁLISIS CUANTITATIVO DE DATOS EN CIENCIAS SOCIALES CON EL SPSS (I) Tablas de contingencia y pruebas de asociación ANÁLISIS CUANTITATIVO DE DATOS EN CIENCIAS SOCIALES CON EL SPSS (I) Tablas de contingencia y pruebas de asociación Francisca José Serrano Pastor Pedro A. Sánchez Rodríguez - Implica siempre a variables

Más detalles

Contrastes de Hipótesis paramétricos y no-paramétricos.

Contrastes de Hipótesis paramétricos y no-paramétricos. Capítulo 1 Contrastes de Hiptesis paramétricos y no-paramétricos. Estadística Inductiva o Inferencia Estadística: Conjunto de métodos que se fundamentan en la Teoría de la Probabilidad y que tienen por

Más detalles

Tema 3: Análisis de datos bivariantes

Tema 3: Análisis de datos bivariantes Tema 3: Análisis de datos bivariantes 1 Contenidos 3.1 Tablas de doble entrada. Datos bivariantes. Estructura de la tabla de doble entrada. Distribuciones de frecuencias marginales. Distribución conjunta

Más detalles

Fundamentos de Estadística y Simulación Básica

Fundamentos de Estadística y Simulación Básica Fundamentos de Estadística y Simulación Básica TEMA 2 Estadística Descriptiva Clasificación de Variables Escalas de Medición Gráficos Tabla de frecuencias Medidas de Tendencia Central Medidas de Dispersión

Más detalles

Estadísticas Pueden ser

Estadísticas Pueden ser Principios Básicos Para iniciar en el curso de Diseño de experimentos, es necesario tener algunos conceptos claros en la parte de probabilidad y estadística. A continuación se presentan los conceptos más

Más detalles

PLAN DE TRABAJO 9 Período 3/09/07 al 28/09/07

PLAN DE TRABAJO 9 Período 3/09/07 al 28/09/07 PLAN DE TRABAJO 9 Período 3/09/07 al 28/09/07 TEMAS A ESTUDIAR En esta guía nos dedicaremos a estudiar el tema de Estimación por intervalo y comenzaremos a estudiar las pruebas de hipótesis paramétricas.

Más detalles

ESTIMACIÓN Y PRUEBA DE HIPÓTESIS INTERVALOS DE CONFIANZA

ESTIMACIÓN Y PRUEBA DE HIPÓTESIS INTERVALOS DE CONFIANZA www.jmontenegro.wordpress.com UNI ESTIMACIÓN Y PRUEBA DE HIPÓTESIS INTERVALOS DE CONFIANZA PROF. JOHNNY MONTENEGRO MOLINA Objetivos Desarrollar el concepto de estimación de parámetros Explicar qué es una

Más detalles

ESTADISTICA. Tradicionalmente la aplicación del término estadística se ha utilizado en tres ámbitos:

ESTADISTICA. Tradicionalmente la aplicación del término estadística se ha utilizado en tres ámbitos: ESTADISTICA Tradicionalmente la aplicación del término estadística se ha utilizado en tres ámbitos: a) Estadística como enumeración de datos. b) Estadística como descripción, es decir, a través de un análisis

Más detalles

Tablas de contingencia y contrastes χ 2

Tablas de contingencia y contrastes χ 2 Tablas de contingencia y contrastes χ 2 Independencia Grados de Biología y Biología sanitaria M. Marvá e-mail: marcos.marva@uah.es Unidad docente de Matemáticas, Universidad de Alcalá 22 de noviembre de

Más detalles

Pruebas de Hipótesis-ANOVA. Curso de Seminario de Tesis Profesor QF Jose Avila Parco Año 2016

Pruebas de Hipótesis-ANOVA. Curso de Seminario de Tesis Profesor QF Jose Avila Parco Año 2016 Pruebas de Hipótesis-ANOVA Curso de Seminario de Tesis Profesor Q Jose Avila Parco Año 2016 Análisis de la Varianza de un factor (ANOVA) El análisis de la varianza (ANOVA) es una técnica estadística paramétrica

Más detalles

Tema: ESTADÍSTICA DESCRIPTIVA BÁSICA CON SPSS 8.0

Tema: ESTADÍSTICA DESCRIPTIVA BÁSICA CON SPSS 8.0 Ignacio Martín Tamayo 11 Tema: ESTADÍSTICA DESCRIPTIVA BÁSICA CON SPSS 8.0 ÍNDICE ------------------------------------------------------------- 1. Introducción 2. Frecuencias 3. Descriptivos 4. Explorar

Más detalles

INGENIERO EN COMPUTACION TEMA 1.2: PRESENTACIÓN GRÁFICA DE DATOS

INGENIERO EN COMPUTACION TEMA 1.2: PRESENTACIÓN GRÁFICA DE DATOS UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO CENTRO UNIVERSITARIO UAEM ZUMPANGO INGENIERO EN COMPUTACION TEMA 1.2: PRESENTACIÓN GRÁFICA DE DATOS ELABORÓ: M. EN C. LUIS ENRIQUE KU MOO FECHA: Agosto de 2016

Más detalles

Pruebas de Hipótesis

Pruebas de Hipótesis Pruebas de Hipótesis Tipos de errores Se pueden cometer dos tipos de errores: Decisión Población Ho es erdadera Ho es falsa No rechazar Ho Decisión correcta. Error tipo II Rechazar Ho Error tipo I Decisión

Más detalles

INDICE. Introducción Capitulo uno. La idea nace un proyecto de investigación Como se originan las investigaciones? 2 Resumen Conceptos básicos

INDICE. Introducción Capitulo uno. La idea nace un proyecto de investigación Como se originan las investigaciones? 2 Resumen Conceptos básicos INDICE Introducción Capitulo uno. La idea nace un proyecto de investigación 1 1.1. Como se originan las investigaciones? 2 Resumen 6 Ejemplo 7 Capitulo dos. El planteamiento del problema objetivos, preguntas

Más detalles

Bloque 3 Tema 13 PRUEBAS ESTADÍSTICAS PARA EL CONTRASTE DE HIPÓTESIS: PRUEBAS NO PARAMÉTRICAS

Bloque 3 Tema 13 PRUEBAS ESTADÍSTICAS PARA EL CONTRASTE DE HIPÓTESIS: PRUEBAS NO PARAMÉTRICAS Bloque 3 Tema 13 PRUEBAS ESTADÍSTICAS PARA EL CONTRASTE DE HIPÓTESIS: PRUEBAS NO PARAMÉTRICAS Todos los estadísticos y las fórmulas de contraste de z, la t de Student, y la F de Fisher, parten de unos

Más detalles

DEFINICIONES BÁSICAS

DEFINICIONES BÁSICAS 1 CLASES DE ESTADÍSTICA II CLASE 14) INTRODUCCIÓN A LAS PRUEBAS DE HIPÓTESIS. A menudo el analista debe tomar decisiones acerca de la investigación que se está desarrollando. En ese proceso de toma de

Más detalles

Asociación de variables cualitativas: El test exacto de Fisher y el test de McNemar

Asociación de variables cualitativas: El test exacto de Fisher y el test de McNemar Investigación Asociación de variables cualitativas: El test exacto de Fisher y el test de McNemar CAD. ATEN. PRIMARIA 2004; 11: 304-308 Pértega Díaz, S. 1 ; Pita Fernández, S. 2 1. Unidad de Epidemiología

Más detalles

478 Índice alfabético

478 Índice alfabético Índice alfabético Símbolos A, suceso contrario de A, 187 A B, diferencia de los sucesos A y B, 188 A/B, suceso A condicionado por el suceso B, 194 A B, intersección de los sucesos A y B, 188 A B, unión

Más detalles

TEMA-1 CONCEPTOS BÁSICOS Y ORGANIZACIÓN DE DATOS INTRODUCCIÓN:

TEMA-1 CONCEPTOS BÁSICOS Y ORGANIZACIÓN DE DATOS INTRODUCCIÓN: TEMA-1 CONCEPTOS BÁSICOS Y ORGANIZACIÓN DE DATOS INTRODUCCIÓN: Debemos diferenciar dos tipos de estadística: Estadística teórica que se ocupa de aspectos formales y educativos. Estadística aplicada que

Más detalles

GUÍA 5 : EFECTO DEL ESTRÉS EN EL PESO DE RECIÉN NACIDOS

GUÍA 5 : EFECTO DEL ESTRÉS EN EL PESO DE RECIÉN NACIDOS GUÍA 5 : EFECTO DEL ESTRÉS EN EL PESO DE RECIÉN NACIDOS Se realizó un estudio a partir de una muestra aleatoria de mujeres atendidas por el departamento de obstetricia y ginecología de cierta clínica particular.

Más detalles

PROGRAMA DE ESTUDIO : UN SEMESTRE ACADÉMICO : TERCER AÑO, PRIMER SEMESTRE

PROGRAMA DE ESTUDIO : UN SEMESTRE ACADÉMICO : TERCER AÑO, PRIMER SEMESTRE PROGRAMA DE ESTUDIO A. Antecedentes Generales ASIGNATURA : Estadística CÓDIGO : IIM313A DURACIÓN : UN SEMESTRE ACADÉMICO PRE - REQUISITO : PROBABILIDADES CO REQUISITO : NO TIENE UBICACIÓN : TERCER AÑO,

Más detalles

Datos y Probabilidades

Datos y Probabilidades Datos y Probabilidades Estadística La Estadística es la Ciencia que estudia los procedimientos que tienen por finalidad recopilar, representar, resumir, analizar e interpretar los datos extraídos de un

Más detalles

TEMA 3 : PRUEBA CHI-CUADRADA Y ESTADISTICA NO PARAMETRICA

TEMA 3 : PRUEBA CHI-CUADRADA Y ESTADISTICA NO PARAMETRICA TEMA 3 : PRUEBA CHI-CUADRADA Y ESTADISTICA NO PARAMETRICA PRUEBAS CHI-CUADRADA Y ESTADISTICA NO PARAMETRICA Como ya se ha visto varias veces, los resultados obtenidos de muestras no siempre concuerdan

Más detalles

Prueba de Hipótesis. Bondad de Ajuste. Tuesday, August 5, 14

Prueba de Hipótesis. Bondad de Ajuste. Tuesday, August 5, 14 Prueba de Hipótesis Bondad de Ajuste Conceptos Generales Hipótesis: Enunciado que se quiere demostrar. Prueba de Hipótesis: Procedimiento para determinar si se debe rechazar o no una afirmación acerca

Más detalles

Módulo de Estadística

Módulo de Estadística Módulo de Estadística Tema 1: Introducción a la Estadística Tema 1: Introdución 1 -ÍNDICE Introducción Estadística descriptiva Estadística descriptiva bivariante y regresión lineal. Probabilidad Módelos

Más detalles

PROYECTO DEL CURSO DE ESTADÍSTICA INFERENCIAL

PROYECTO DEL CURSO DE ESTADÍSTICA INFERENCIAL 1 PROYECTO DEL CURSO DE ESTADÍSTICA INFERENCIAL Prof.: MSc. Julio R. Vargas A. I. INTRODUCCION El presente trabao está orientado a aplicar los conocimientos de estadística inferencial a un caso práctico

Más detalles

D I S T R I B U C I O N E S B I D I M E N S I O N A L E S

D I S T R I B U C I O N E S B I D I M E N S I O N A L E S D I S T R I B U C I O N E S B I D I M E N S I O N A L E S 1 INTRODUCCIÓN: Variables estadísticas bidimensionales En numerosas ocasiones interesa estudiar simultáneamente dos (o más) caracteres de una población

Más detalles

Universidad Central del Este UCE Facultad de Ciencias de la Salud Escuela de Medicina

Universidad Central del Este UCE Facultad de Ciencias de la Salud Escuela de Medicina Universidad Central l Este UCE Facultad Ciencias la Salud Escuela Medicina Programa la asignatura: : MED-052 Bioestadística II Código: Semestre: Asignatura electiva Total créditos 3 Teóricos 3 Prácticos

Más detalles

Tema 8: Introducción a la Teoría sobre Contraste de hipótesis

Tema 8: Introducción a la Teoría sobre Contraste de hipótesis Tema 8: Introducción a la Teoría sobre Contraste de hipótesis Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 8: Introducción a la Teoría

Más detalles

Análisis de correspondencias

Análisis de correspondencias Análisis de correspondencias utilizando el SPSS Vamos a realizar el Análisis de correspondencias sobre el mismo ejemplo (ejemplo 6.1 de los apuntes), sobre el que ya se obtuvo el análisis mediante el R,

Más detalles

Diseño de experimentos Hugo Alexer Pérez Vicente

Diseño de experimentos Hugo Alexer Pérez Vicente Diseño de experimentos Hugo Alexer Pérez Vicente Métodos complementarios al análisis de varianza Comparaciones múltiples Comparación o pruebas de rangos múltiples Después de que se rechazó la hipótesis

Más detalles

MANEJO DE VARIABLES EN INVESTIGACIÓN CLÍNICA Y EXPERIMENTAL

MANEJO DE VARIABLES EN INVESTIGACIÓN CLÍNICA Y EXPERIMENTAL MANEJO DE VARIABLES EN INVESTIGACIÓN CLÍNICA Y EXPERIMENTAL Israel J. Thuissard David Sanz-Rosa IV JORNADAS INVESTIGACIÓN COEM UNIVERSIDADES 4 de marzo de 2016 Escuela de Doctorado e Investigación. Vicerrectorado

Más detalles

TEMA 10 COMPARAR MEDIAS

TEMA 10 COMPARAR MEDIAS TEMA 10 COMPARAR MEDIAS Los procedimientos incluidos en el menú Comparar medias permiten el cálculo de medias y otros estadísticos, así como la comparación de medias para diferentes tipos de variables,

Más detalles

Ejercicios T.5 CONTRASTES PARAMÉTRICOS

Ejercicios T.5 CONTRASTES PARAMÉTRICOS Ejercicios T.5 CONTRASTES PARAMÉTRICOS 1. Un fabricante de perfume asegura que los frascos que produce contienen por término medio 100 ml. distribuyéndose el contenido de dichos frascos según una distribución

Más detalles

Escuela Nacional de Estadística e Informática ESPECIALIZACIÓN EN ESTADÍSTICA APLICADA ESPECIALIZACIÓN EN ESTADÍSTICA APLICADA

Escuela Nacional de Estadística e Informática ESPECIALIZACIÓN EN ESTADÍSTICA APLICADA ESPECIALIZACIÓN EN ESTADÍSTICA APLICADA ESPECIALIZACIÓN EN ESTADÍSTICA APLICADA ESPECIALIZACIÓN EN ESTADÍSTICA APLICADA Lima Perú 2013 DISEÑO COMPLETAMENTE ALEATORIZADO Es el diseño más simple y sencillo de realizar, en el cual los tratamientos

Más detalles

2.1. DEFINICIÓN Y OBJETIVOS DE LA ESTADÍSTICA. Definición:

2.1. DEFINICIÓN Y OBJETIVOS DE LA ESTADÍSTICA. Definición: CAPITULO 2. LA ESTADISTICA 2.1. DEFINICIÓN Y OBJETIVOS DE LA ESTADÍSTICA Definición: La estadística es la ciencia que nos proporciona un conjunto de, métodos, técnicas o procedimientos, mediante los cuales

Más detalles

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición...

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición... Contenidos 1 Introducción al paquete estadístico S-PLUS 19 1.1 Introducción a S-PLUS............................ 21 1.1.1 Cómo entrar, salir y consultar la ayuda en S-PLUS........ 21 1.2 Conjuntos de datos..............................

Más detalles

Tema 7. Contrastes de Hipótesis

Tema 7. Contrastes de Hipótesis 7.1. Conceptos básicos Tema 7. Contrastes de Hipótesis Uno de los problemas comunes en inferencia consiste en contrastar una hipótesis estadística. Ejemplo: El fabricante de un determinado tipo de piezas

Más detalles

4 Descripción conjunta de varias variables. Ejemplos y ejercicios.

4 Descripción conjunta de varias variables. Ejemplos y ejercicios. ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS 7 4 Descripción conjunta de varias variables. Ejemplos y ejercicios. 4.1 Ejemplos. Ejemplo 4.1 La siguiente tabla de frecuencias absolutas corresponde a 200

Más detalles

MODELO DE RESPUESTAS Objetivos 2, 3, 4, 5, 6, 7, Y 8.

MODELO DE RESPUESTAS Objetivos 2, 3, 4, 5, 6, 7, Y 8. UNIVERSIDAD NACIONAL ABIERTA ESTADÍSTICA GENERAL 745) VICERRECTORADO ACADÉMICO INTEGRAL ÁREA DE MATEMÁTICA Fecha: 17/ 01 /009 MODELO DE RESPUESTAS Objetivos, 3, 4, 5, 6, 7, Y 8. OBJ. 1 PTA 1 Una compañía

Más detalles

4. Prueba de Hipótesis

4. Prueba de Hipótesis 4. Prueba de Hipótesis Como se ha indicado anteriormente, nuestro objetivo al tomar una muestra es extraer alguna conclusión o inferencia sobre una población. En nuestro interés es conocer acerca de los

Más detalles

DE VARIABLES CUALITATIVAS O CATEGÓRICAS

DE VARIABLES CUALITATIVAS O CATEGÓRICAS TEST Chi-Cuadrado ASOCIACIÓN DE VARIABLES CUALITATIVAS O CATEGÓRICAS Carmen M. Cadarso-Suárez eicadar@usc.es En ocaones, el investigador está interesado en el estudio de una poble Asociación entre dos

Más detalles

EJERCICIOS RESUELTOS TEMA 1.

EJERCICIOS RESUELTOS TEMA 1. EJERCICIOS RESUELTOS TEMA 1. 1.1. El proceso por el cual se asignan números a objetos o características según determinadas reglas se denomina: A) muestreo; B) estadística; C) medición. 1.2. Mediante la

Más detalles

Bioestadística. Curso Capítulo 9

Bioestadística. Curso Capítulo 9 Bioestadística. Curso 2011-2012 Capítulo 9 Carmen M a Cadarso, M a del Carmen Carollo, Xosé Luis Otero, Beatriz Pateiro Índice 1. Introducción 2 2. Tablas de contingencia para datos categóricos 2 2.1.

Más detalles

ANÁLISIS DE DATOS CUANTITATIVOS

ANÁLISIS DE DATOS CUANTITATIVOS ANÁLISIS DE DATOS CUANTITATIVOS TEMAS A ABORDAR El dato: definición; fuentes. Matriz de datos Tabulación: las tablas de contingencia. Distribución de frecuencias. Cálculo de porcentajes. Análisis: univariados/bivariados/multivariados.

Más detalles

Pruebas de Hipótesis. Diseño Estadístico y Herramientas para la Calidad. Pruebas de Hipótesis. Hipótesis

Pruebas de Hipótesis. Diseño Estadístico y Herramientas para la Calidad. Pruebas de Hipótesis. Hipótesis Diseño Estadístico y Herramientas para la Calidad Pruebas de Hipótesis Expositor: Dr. Juan José Flores Romero juanf@umich.mx http://lsc.fie.umich.mx/~juan M. en Calidad Total y Competitividad Pruebas de

Más detalles

METODOLOGÍA DE LA INVESTIGACIÓN LA HIPOTESIS

METODOLOGÍA DE LA INVESTIGACIÓN LA HIPOTESIS METODOLOGÍA DE LA INVESTIGACIÓN LA HIPOTESIS Ing. Cruces Hernández Guerra ORIGEN DE LAS INVESTIGACIONES Las investigaciones se originan en ideas Para iniciar una investigación siempre se necesita una idea

Más detalles

ESTIMACION DEL TAMAÑO DE LA MUESTRA Y DE LA POTENCIA

ESTIMACION DEL TAMAÑO DE LA MUESTRA Y DE LA POTENCIA ESTIMACION DEL TAMAÑO DE LA MUESTRA Y DE LA POTENCIA HIPOTESIS Y PRINCIPIOS Sabemos a quién y qué vamos a estudiar. Ahora hay que decidir cuántos individuos contendrá la muestra. Hipótesis nula (H o )

Más detalles

Análisis de datos en los estudios epidemiológicos III Correlación y regresión

Análisis de datos en los estudios epidemiológicos III Correlación y regresión Análisis de datos en los estudios epidemiológicos III Correlación y regresión Salinero. Departamento de Investigación Fuden Introducción En el capitulo anterior estudiamos lo que se denomina estadística

Más detalles

Cuaderno de actividades 1º

Cuaderno de actividades 1º Cuaderno de actividades 1º 1 ITRODUCCIÓ: Variables estadísticas bidimensionales En numerosas ocasiones interesa estudiar simultáneamente dos (o más) caracteres de una población En el caso de dos (o más)

Más detalles

PRUEBA DE HIPÓTESIS BENJAMIN MAMANI CONDORI

PRUEBA DE HIPÓTESIS BENJAMIN MAMANI CONDORI PRUEBA DE HIPÓTESIS BENJAMIN MAMANI CONDORI 2014 Para qué es útil la estadística inferencial? Se utiliza para probar hipótesis y generalizar los resultados obtenidos en la muestra a la población o universo.

Más detalles

Contraste de hipótesis paramétricas

Contraste de hipótesis paramétricas Contraste de hipótesis paramétricas Prof, Dr. Jose Jacobo Zubcoff Departamento de Ciencias del Mar y Biología Aplicada Proceso de la investigación estadística Etapas PROBLEMA HIPÓTESIS DISEÑO RECOLECCIÓN

Más detalles

Universidad Rafael Belloso Chacín (URBE) Cátedra: Fundamentos de Estadística y Simulación Básica Semestre Profesor: Jaime Soto

Universidad Rafael Belloso Chacín (URBE) Cátedra: Fundamentos de Estadística y Simulación Básica Semestre Profesor: Jaime Soto Universidad Rafael Belloso Chacín (URBE) Cátedra: Fundamentos de Estadística y Simulación Básica Semestre 2011-1 Profesor: Jaime Soto PRUEBA DE HIPÓTESIS Ejemplo El jefe de la Biblioteca de la URBE manifiesta

Más detalles

HIPOTESIS. Unidad de Investigación Científica Facultad de Ciencias Medicas Universidad Nacional Autónoma de Honduras

HIPOTESIS. Unidad de Investigación Científica Facultad de Ciencias Medicas Universidad Nacional Autónoma de Honduras HIPOTESIS Unidad de Investigación Científica Facultad de Ciencias Medicas Universidad Nacional Autónoma de Honduras HIPOTESIS Una explicación anticipada que permite al investigador acercarse a la realidad.

Más detalles