CONTRASTES DE HIPÓTESIS NO PARAMÉTRICOS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CONTRASTES DE HIPÓTESIS NO PARAMÉTRICOS"

Transcripción

1 CONTRASTES DE HIPÓTESIS NO PARAMÉTRICOS 1

2 POR QUÉ SE LLAMAN CONTRASTES NO PARAMÉTRICOS? A diferencia de lo que ocurría en la inferencia paramétrica, ahora, el desconocimiento de la población que vamos a estudiar no se reduce al valor de un parámetro poblacional, sino que es mucho más amplio. Las hipótesis que contrastaremos no hacen referencia a parámetros poblacionales. 2

3 TESTS c 2 Su nombre se debe a que el estadístico que se usará para realizar el contraste tendrá, aproximadamente, una distribución c 2 de Pearson. 1. Bondad del ajuste (Caso I y Caso II) 2. Test de Homogeneidad 3. Test de Independencia 3

4 CONTRASTE DE BONDAD DEL AJUSTE (I) SITUACIÓN: X es una variable aleatoria poblacional con distribución desconocida. Extraemos una m.a.s. de la población (X 1,,X n ). A la vista de la muestra, es razonable admitir que X sigue la distribución F 0? H 0 : X sigue la distribución F 0 H a : X no sigue la distribución F 0 Distribución teórica 4

5 PASOS A SEGUIR: PASO 1: Hacer una partición (arbitraria) del espacio muestral (posibles valores de X) en k clases A 1,,A k. PASO 2: Calcular las siguientes frecuencias absolutas para i=1,,k. O i = frecuencia observada en A i = número de elementos de la m.a.s (x 1,,x n ) que se han situado en la clase A i e i = frecuencia esperada en A i si H 0 es cierta = np(a i ) O i (e i ) A 1.. A k O 1 O k (e 1 ) (e k ) n e i es la esperanza de una B(n,P(A i )) 5

6 PASO 3: Utilizar el estadístico l de Pearson nº de clases Mide la discrepancia entre las frecuencias observadas y las esperadas, si se supone cierta H 0 si n es grande y H 0 es cierta Observación: Si H 0 es cierta, es de esperar que las frecuencias observadas y las esperadas sean parecidas, por lo que si efectivamente H 0 es cierta, el estadístico l debería de tomar valores próximos a cero. 6

7 Consecuencia: Rechazaremos la hipótesis nula cuando los valores del estadístico l de Pearson sean grandes, y la aceptaremos cuando sean pequeños. La separación entre valores grandes y pequeños viene dada por la elección de un nivel de significación a. Región crítica: C = {l>c 2 k-1,a} Nota: Por comodidad, normalmente se usa la siguiente expresión, equivalente a la ya dada, para calcular el valor de l: 7

8 EJEMPLO 1: Para comprobar si un dado está o no cargado, se lanzó 600 veces, con los siguientes resultados: Total O i A la vista de estos datos, podemos afirmar si el dado está cargado o no? H 0 : El dado no está cargado H a : El dado está cargado A i ={i}, i=1,,6 P(A i )=1/6 8

9 Total O i (e i ) 103 (100) 98 (100) 89 (100) 109 (100) 100 (100) 101 (100) 600 np(a i ) n Tomamos a = 0.05 Aceptamos H 0 con un nivel de significación 0.05, es decir, a la vista de estos datos, no podemos afirmar que el dado esté cargado. Confirma la decisión de aceptar H 0 9

10 EJEMPLO 2: Se quiere averiguar si el número de hijos por matrimonio, X, en cierta población sigue una distribución binomial de parámetros 3 y 0.5. Para ello se encuestó a 100 matrimonios obteniéndose los siguientes resultados: X O i Qué podemos afirmar a la vista de estos datos? H 0 : X sigue una B(3,0.5) H a : X no sigue una B(3,0.5) A i ={i-1}, i=1,,4 P(X=0)=0.125 P(X=1)=0.375 P(X=2)=0.375 P(X=3)=

11 X O i (e i ) 22 (12.5) 42 (37.5) 28 (37.5) 8 (12.5) 100 Rechazamos que X siga una binomial de parámetros 3 y

12 BONDAD DEL AJUSTE:CASO 2 En ocasiones queremos averiguar si los datos se ajustan a un determinado tipo de distribución pero sin precisar los valores de los parámetros que la caracterizan. Así por ejemplo, para realizar muchos de los contrastes del tema anterior, necesitamos saber si la variable poblacional sigue una distribución normal. Por lo tanto, debemos contrastar la normalidad de los datos, pero sin precisar la media y la varianza poblacionales. 12

13 DOS DIFERENCIAS Trabajamos con los estimadores de máxima verosimilitud. Calculamos las frecuencias esperadas si los estimadores fueran los autenticos CUIDADO: Si usamos los mismos datos muestrales para estimar r parámetros poblacionales desconocidos y para realizar el contraste de bondad del ajuste, el estadístico l de Pearson se aproxima a una c 2 k-1-r en lugar de a una c 2 k-1. 13

14 EJEMPLO 3: Al digitalizar 300 imágenes se ha obtenido la siguiente distribución de frecuencias absolutas del tamaño en Kb del fichero correspondiente: X O i Podemos afirmar, a la vista de estos datos, que X sigue una distribución normal? ˆ 3.88 H 0 : X sigue una N H a : X no sigue una N 14

15 X < O i (e i ) 6 (5.9) 9 (12.3) 33 (27.3) 48 (45) 54 (59.5) 57 (59.5) 45 (45) 30 (27.3) 12 (12.3) 6 (5.9) 300 P(X<38)=P(Z<(38-46)/3.88)=P(Z<-2.06)= e 1 =0.0197*300= =7 c 2 7, Aceptamos al nivel

16 CONSIDERACIONES ADICIONALES PRIMERA: - Para que l se aproxime a una c 2, además de que el tamaño muestral sea grande, las frecuencias esperadas no pueden ser muy pequeñas. - Por norma se requiere que e i 5 para el 20% de las clases i=1,,k 16

17 SEGUNDA: -Cuando ni la estructura del problema, ni la agrupación de las observaciones muestrales, nos sugieran las clases A 1,,A k más adecuadas para dividir el espacio muestral, lo más conveniente es elegirlas de forma que P(A i )=1/k para i=1,,k, con k<n/5. - De esta forma conseguimos una mejor aproximación de la distribución del estadístico l a una distribución c 2, y que las frecuencias esperadas no sean pequeñas. 17

18 CONTRASTE DE HOMOGENEIDAD DE POBLACIONES SITUACIÓN: X es una característica común a r poblaciones independientes. Extraemos m.a.s. de cada población con A la vista de las muestras, es razonable admitir que las poblaciones son homogéneas, es decir, que todas ellas siguen la misma distribución? H 0 : Las poblaciones son homogéneas H a : Las poblaciones no son homogéneas 18

19 PASOS A SEGUIR: PASO 1: Hacer una partición (arbitraria) del espacio muestral (que es común a todas las poblaciones) en k clases A 1,,A k. PASO 2: Calcular las siguientes frecuencias absolutas para i=1,,k y j=1,,r. O ij = frecuencia observada en A i con la muestra j- ésima= número de elementos de la muestra j-ésima que se han situado en la clase A i e ij = frecuencia esperada en A i con la muestra j-ésima si H 0 es cierta = n j P(A i ) e ij es la esperanza de una B(n j,p(a i )) 19

20 Muestra 1 Muestra j Muestra r m j A 1 O 11 (e 11 ) O 1j (e 1j ) O 1r (e 1r ) A i O i1 (e i1 ) O ij (e ij ) O ir (e ir ) A k O k1 (e k1 ) O kj (e ki ) O kr (e kr ) m 1 m i m k Frecuencias marginales n i n 1 n j n r n Desconocido Tamaños muestrales Suponiendo cierta H 0 20

21 PASO 3: Utilizar el estadístico l de Pearson nº de clases nº de muestras Contrastes de hipótesis no paramétricos Mide la discrepancia entre las frecuencias observadas y las esperadas, si se supone cierta H 0 si n es grande y H 0 es cierta Demostración: Para la muestra j-ésima, Sumando los r estadísticos que tenemos,como las poblaciones son independientes, tenemos que Pero como no conocemos la distribución que siguen las poblaciones, hemos tenido que estimar k-1 probabilidades para estimar los e ij, por lo tanto 21

22 Observación: Si H 0 es cierta, es de esperar que las frecuencias observadas y las esperadas sean parecidas, por lo que si efectivamente H 0 es cierta, el estadístico l debería de tomar valores próximos a cero. Consecuencia: Rechazaremos la hipótesis nula cuando los valores del estadístico l de Pearson sean grandes, y la aceptaremos cuando sean pequeños. La separación entre valores grandes y pequeños viene dada por la elección de un nivel de significación a. Región crítica: C = {l>c 2 (k-1) (r-1),a} 22

23 EJEMPLO 5: Un estudio sobre tabaquismo en las comunidades de Galicia, Madrid y Cataluña proporcionó los siguientes resultados: Comunidad Fumadores No fumadores Total Galicia Madrid Cataluña Pueden considerarse homogéneas las tres poblaciones en cuanto a sus hábitos fumadores? H 0 : Las poblaciones son homogéneas H a : Las poblaciones no son homogéneas 23

24 Comunidad Fumadores No fumadores Total Galicia Madrid Cataluña Muestras r=3 c 2 4,605 2,0.1 Clases 13 (16) 17 (16) 18 (16) k=2 87 (84) 83 (84) 82 (84) Contrastes de hipótesis no paramétricos Frecuencias marginales Aceptamos que las poblaciones son homogéneas Tamaños muestrales 24

25 CONTRASTE DE INDEPENDENCIA DE CARACTERES SITUACIÓN: X e Y son dos características de una misma población. Extraemos una m.a.s. de la población ((X 1, Y 1 ),, ((X n, Y n ) ). A la vista de la muestra, es razonable admitir que las características son independientes? H 0 : Las características son independientes H a : Las características no son independientes 25

26 PASOS A SEGUIR: PASO 1: Hacer una partición (arbitraria) del espacio muestral (posibles valores de X e Y) en k x r clases A 1 x B 1,, A i x B j,,a k x B r. PASO 2: Calcular las siguientes frecuencias absolutas para i=1,,k y j=1,,r. O ij = frecuencia observada en A i x B j = número de elementos de la muestra j-ésima que se han situado en la clase A i x B j e ij = frecuencia esperada en A i x B j si H 0 es cierta = n P(A i ) P(B j ) e ij es la esperanza de una B(n,P(A i )P(B j )) 26

27 Tabla de contingencias k x r Contrastes de hipótesis no paramétricos A 1 O 11 (e 11 ) B 1 B j B r n i. O 1j (e 1j ) O 1r (e 1r ) A i O i1 (e i1 ) O ij (e ij ) O ir (e ir ) A k O k1 (e k1 ) O kj (e ki ) O kr (e kr ) n 1. n i. n k. Frecuencias marginales n.j n.1 n.j n.r n Desconocido Frecuencias marginales 27

28 PASO 3: Utilizar el estadístico l de Pearson Contrastes de hipótesis no paramétricos Mide la discrepancia entre las frecuencias observadas y las esperadas, si se supone cierta H 0 si n es grande y H 0 es cierta Demostración: Como el número de clases es rk, Pero como no conocemos las distribuciones que siguen las dos variables poblacionales, hemos tenido que estimar k-1+r-1 probabilidades para estimar los e ij, por lo tanto 28

29 Observación: Si H 0 es cierta, es de esperar que las frecuencias observadas y las esperadas sean parecidas, por lo que si efectivamente H 0 es cierta, el estadístico l debería de tomar valores próximos a cero. Consecuencia: Rechazaremos la hipótesis nula cuando los valores del estadístico l de Pearson sean grandes, y la aceptaremos cuando sean pequeños. La separación entre valores grandes y pequeños viene dada por la elección de un nivel de significación a. Región crítica: C = {l>c 2 (k-1) (r-1),a} 29

30 EJEMPLO 6: Para averiguar si existe relación entre el peso y la altura de los segovianos, se extrajo una m.a.s. con los siguientes resultados: Qué conclusión podemos extraer de estos datos? H 0 : El peso y la altura son independientes H a : El peso y la altura no son independientes 30

31 Altura Peso (3.78) (7.14) (6.72) (3.36) (5.04) (9.52) (8.96) (4.48) (5.94) (11.22) (10.56) (5.28) (3.24) (6.12) (5.76) (2.88) =28*18/100 K=3=r l 39,459 c 2 3*3,0.1 21,66 Rechazo H_0 31

32 32

Caso particular: Contraste de homocedasticidad

Caso particular: Contraste de homocedasticidad 36 Bioestadística: Métodos y Aplicaciones 9.5.5. Caso particular: Contraste de homocedasticidad En la práctica un contraste de gran interés es el de la homocedasticidad o igualdad de varianzas. Decimos

Más detalles

Estadística. Generalmente se considera que las variables son obtenidas independientemente de la misma población. De esta forma: con

Estadística. Generalmente se considera que las variables son obtenidas independientemente de la misma población. De esta forma: con Hasta ahora hemos supuesto que conocemos o podemos calcular la función/densidad de probabilidad (distribución) de las variables aleatorias. En general, esto no es así. Más bien se tiene una muestra experimental

Más detalles

Intervalo para la media si se conoce la varianza

Intervalo para la media si se conoce la varianza 178 Bioestadística: Métodos y Aplicaciones nza para la media (caso general): Este se trata del caso con verdadero interés práctico. Por ejemplo sirve para estimar intervalos que contenga la media del colesterol

Más detalles

Podemos definir un contraste de hipótesis como un procedimiento que se basa en lo observado en las muestras y en la teoría de la probabilidad para

Podemos definir un contraste de hipótesis como un procedimiento que se basa en lo observado en las muestras y en la teoría de la probabilidad para VII. Pruebas de Hipótesis VII. Concepto de contraste de hipótesis Podemos definir un contraste de hipótesis como un procedimiento que se basa en lo observado en las muestras y en la teoría de la probabilidad

Más detalles

Conceptos básicos de inferencia estadística (III): Inferencia no paramétrica: Contrastes de bondad de ajuste.

Conceptos básicos de inferencia estadística (III): Inferencia no paramétrica: Contrastes de bondad de ajuste. Conceptos básicos de inferencia estadística (III): Inferencia no paramétrica: Contrastes de bondad de ajuste. Tema 1 (III) Estadística 2 Curso 08/09 Tema 1 (III) (Estadística 2) Contrastes de bondad de

Más detalles

Teorema Central del Límite (1)

Teorema Central del Límite (1) Teorema Central del Límite (1) Definición. Cualquier cantidad calculada a partir de las observaciones de una muestra se llama estadístico. La distribución de los valores que puede tomar un estadístico

Más detalles

CONTRASTE DE HIPÓTESIS

CONTRASTE DE HIPÓTESIS CONTRASTE DE HIPÓTESIS Antonio Morillas A. Morillas: Contraste de hipótesis 1 CONTRASTE DE HIPÓTESIS 1. Introducción 2. Conceptos básicos 3. Región crítica óptima i. Teorema de Neyman-Pearson ii. Región

Más detalles

Tema 10: Introducción a los problemas de Asociación y Correlación

Tema 10: Introducción a los problemas de Asociación y Correlación Tema 10: Introducción a los problemas de Asociación y Correlación Estadística 4 o Curso Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 10: Asociación y Correlación

Más detalles

Tema 5: Introducción a la inferencia estadística

Tema 5: Introducción a la inferencia estadística Tema 5: Introducción a la inferencia estadística 1. Planteamiento y objetivos 2. Estadísticos y distribución muestral 3. Estimadores puntuales 4. Estimadores por intervalos 5. Contrastes de hipótesis Lecturas

Más detalles

Proyecto Tema 8: Tests de hipótesis. Resumen teórico

Proyecto  Tema 8: Tests de hipótesis. Resumen teórico Temas de Estadística Práctica Antonio Roldán Martínez Proyecto http://www.hojamat.es/ Tema 8: Tests de hipótesis Resumen teórico Tests de hipótesis Concepto de test de hipótesis Un test de hipótesis (o

Más detalles

INFERENCIA DE LA PROPORCIÓN

INFERENCIA DE LA PROPORCIÓN ESTADISTICA INFERENCIA DE LA PROPORCIÓN DISTRIBUCIÓN MUESTRAL DE PROPORCIONES En una población la proporción de elementos (personas, animales, cosas o entes) que posee una cierta característica es p. En

Más detalles

Inferencia con una variable Tema 2

Inferencia con una variable Tema 2 Inferencia con una variable Tema 2 1. Contraste sobre una proporción 2. Bondad de ajuste 3. Contraste de hipótesis sobre una media 3.1. Con σ 2 conocida, prueba Z 3.2. Con σ 2 desconocida, prueba T 4.

Más detalles

Tema 9: Introducción al problema de la comparación de poblaciones

Tema 9: Introducción al problema de la comparación de poblaciones Tema 9: Introducción al problema de la comparación de poblaciones Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 9: Introducción al problema

Más detalles

INTERVALOS DE CONFIANZA. La estadística en cómic (L. Gonick y W. Smith)

INTERVALOS DE CONFIANZA. La estadística en cómic (L. Gonick y W. Smith) INTERVALOS DE CONFIANZA La estadística en cómic (L. Gonick y W. Smith) EJEMPLO: Será elegido el senador Astuto? 2 tamaño muestral Estimador de p variable aleatoria poblacional? proporción de personas que

Más detalles

Contrastes de hipótesis estadísticas. Contrastes paramétricos

Contrastes de hipótesis estadísticas. Contrastes paramétricos Índice 7 Contrastes de hipótesis estadísticas. Contrastes paramétricos 7.1 7.1 Introducción.......................................... 7.1 7.2 Conceptos básicos...................................... 7.2

Más detalles

1. La Distribución Normal

1. La Distribución Normal 1. La Distribución Normal Los espacios muestrales continuos y las variables aleatorias continuas se presentan siempre que se manejan cantidades que se miden en una escala continua; por ejemplo, cuando

Más detalles

4. Prueba de Hipótesis

4. Prueba de Hipótesis 4. Prueba de Hipótesis Como se ha indicado anteriormente, nuestro objetivo al tomar una muestra es extraer alguna conclusión o inferencia sobre una población. En nuestro interés es conocer acerca de los

Más detalles

Tema 9: Contraste de hipótesis.

Tema 9: Contraste de hipótesis. Estadística 84 Tema 9: Contraste de hipótesis. 9.1 Introducción. El objetivo de este tema es proporcionar métodos que permiten decidir si una hipótesis estadística debe o no ser rechazada, en base a los

Más detalles

ÍNDICE INTRODUCCIÓN... 21

ÍNDICE INTRODUCCIÓN... 21 INTRODUCCIÓN... 21 CAPÍTULO 1. ORGANIZACIÓN DE LOS DATOS Y REPRESENTACIONES GRÁFICAS... 23 1. ORGANIZACIÓN DE LOS DATOS... 23 1.1. La distribución de frecuencias... 24 1.2. Agrupación en intervalos...

Más detalles

Contraste de hipótesis Tema Pasos del contraste de hipótesis. 1.1 Hipótesis estadísticas: nula y alternativa. 1.3 Estadístico de contraste

Contraste de hipótesis Tema Pasos del contraste de hipótesis. 1.1 Hipótesis estadísticas: nula y alternativa. 1.3 Estadístico de contraste 1 Contraste de hipótesis Tema 3 1. Pasos del contraste de hipótesis 1.1 Hipótesis estadísticas: nula y alternativa 1.2 Supuestos 1.3 Estadístico de contraste 1.4 Regla de decisión: zona de aceptación y

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación. Facultad de Ciencias Sociales, UdelaR

Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación. Facultad de Ciencias Sociales, UdelaR Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación Facultad de Ciencias Sociales, UdelaR Índice 1. Repaso: estimadores y estimaciones. Propiedades de los estimadores. 2. Estimación puntual.

Más detalles

Teoría de muestras. Distribución de variables aleatorias en el muestreo. 1. Distribución de medias muestrales

Teoría de muestras. Distribución de variables aleatorias en el muestreo. 1. Distribución de medias muestrales Teoría de muestras Distribución de variables aleatorias en el muestreo 1. Distribución de medias muestrales Dada una variable estadística observada en una población, se puede calcular se media y su desviación

Más detalles

ESTIMACIÓN Y PRUEBA DE HIPÓTESIS INTERVALOS DE CONFIANZA

ESTIMACIÓN Y PRUEBA DE HIPÓTESIS INTERVALOS DE CONFIANZA www.jmontenegro.wordpress.com UNI ESTIMACIÓN Y PRUEBA DE HIPÓTESIS INTERVALOS DE CONFIANZA PROF. JOHNNY MONTENEGRO MOLINA Objetivos Desarrollar el concepto de estimación de parámetros Explicar qué es una

Más detalles

Contrastes de hipótesis. 1: Ideas generales

Contrastes de hipótesis. 1: Ideas generales Contrastes de hipótesis 1: Ideas generales 1 Inferencia Estadística paramétrica población Muestra de individuos Técnicas de muestreo X 1 X 2 X 3.. X n Inferencia Estadística: métodos y procedimientos que

Más detalles

Tema 8: Contraste de hipótesis

Tema 8: Contraste de hipótesis Tema 8: Contraste de hipótesis 1 En este tema: Conceptos fundamentales: hipótesis nula y alternativa, nivel de significación, error de tipo I y tipo II, p-valor. Contraste de hipótesis e IC. Contraste

Más detalles

Contrastes de Hipótesis paramétricos y no-paramétricos.

Contrastes de Hipótesis paramétricos y no-paramétricos. Capítulo 1 Contrastes de Hiptesis paramétricos y no-paramétricos. Estadística Inductiva o Inferencia Estadística: Conjunto de métodos que se fundamentan en la Teoría de la Probabilidad y que tienen por

Más detalles

TODO ECONOMETRIA. Bondad del ajuste Contraste de hipótesis

TODO ECONOMETRIA. Bondad del ajuste Contraste de hipótesis TODO ECONOMETRIA Bondad del ajuste Contraste de hipótesis Índice Bondad del ajuste: Coeficiente de determinación, R R ajustado Contraste de hipótesis Contrastes de hipótesis de significación individual:

Más detalles

Estadística II Tema 4. Regresión lineal simple. Curso 2009/10

Estadística II Tema 4. Regresión lineal simple. Curso 2009/10 Estadística II Tema 4. Regresión lineal simple Curso 009/10 Tema 4. Regresión lineal simple Contenidos El objeto del análisis de regresión La especificación de un modelo de regresión lineal simple Estimadores

Más detalles

Curso de Estadística Aplicada a las Ciencias Sociales. Tema 12. Contraste de hipótesis. Introducción. Introducción

Curso de Estadística Aplicada a las Ciencias Sociales. Tema 12. Contraste de hipótesis. Introducción. Introducción Curso de Estadística Aplicada a las Ciencias Sociales Tema 12. Contraste de (Cap. 22 del libro) Tema 12. Contraste de 1. Tipos de 2. La nula y la Ejercicios Tema 12, Contraste de 2 En muchas investigaciones

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO 00-.003 - CONVOCATORIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumno debe elegir sólo una de las pruebas (A o B) y, dentro de ella, sólo

Más detalles

UNIVERSIDAD TECNICA PARTICULAR DE LOJA ESTADISTICA Y PROBABILIDAD ENSAYO N 8

UNIVERSIDAD TECNICA PARTICULAR DE LOJA ESTADISTICA Y PROBABILIDAD ENSAYO N 8 UNIVERSIDAD TECNICA PARTICULAR DE LOJA ESTADISTICA Y PROBABILIDAD ENSAYO N 8 DOCENTE: Ing. Patricio Puchaicela ALUMNA: Andrea C. Puchaicela G. CURSO: 4to. Ciclo de Electrónica y Telecomunicaciones AÑO

Más detalles

Técnicas de Inferencia Estadística II. Tema 3. Contrastes de bondad de ajuste

Técnicas de Inferencia Estadística II. Tema 3. Contrastes de bondad de ajuste Técnicas de Inferencia Estadística II Tema 3. Contrastes de bondad de ajuste M. Concepción Ausín Universidad Carlos III de Madrid Grado en Estadística y Empresa Curso 2014/15 Contenidos 1. Introducción

Más detalles

INFERENCIA ESTADÍSTICA: CONTRASTES DE HIPÓTESIS

INFERENCIA ESTADÍSTICA: CONTRASTES DE HIPÓTESIS INFERENCIA ESTADÍSTICA: CONTRASTES DE HIPÓTESIS Autor: Clara Laguna 6.1 INTRODUCCIÓN En el tema anterior estudiamos cómo a partir de una muestra podemos obtener una estimación puntual o bien establecer

Más detalles

Conceptos del contraste de hipótesis

Conceptos del contraste de hipótesis Análisis de datos y gestión veterinaria Contraste de hipótesis Departamento de Producción Animal Facultad de Veterinaria Universidad de Córdoba Córdoba, 14 de Diciembre de 211 Conceptos del contraste de

Más detalles

Análisis Estadístico de Datos Climáticos. Pruebas de Hipótesis (Wilks, cap. 5)

Análisis Estadístico de Datos Climáticos. Pruebas de Hipótesis (Wilks, cap. 5) Análisis Estadístico de Datos Climáticos Pruebas de Hipótesis (Wilks, cap. 5) 2015 PRUEBAS DE HIPÓTESIS (o pruebas de significación) Objetivo: A partir del análisis de una muestra de datos, decidir si

Más detalles

EJERCICIOS DE SELECTIVIDAD

EJERCICIOS DE SELECTIVIDAD EJERCICIOS DE SELECTIVIDAD INFERENCIA 1998 JUNIO OPCIÓN A Un fabricante de electrodomésticos sabe que la vida media de éstos sigue una distribución normal con media μ = 100 meses y desviación típica σ

Más detalles

INFERENCIA ESTADÍSTICA

INFERENCIA ESTADÍSTICA INFERENCIA ESTADÍSTICA 1. DEFINICIÓN DE INFERENCIA ESTADÍSTICA Llamamos Inferencia Estadística al proceso de sacar conclusiones generales para toda una población a partir del estudio de una muestra, así

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales 6. Prueba de hipótesis. Facultad de Ciencias Sociales, UdelaR

Estadística y sus aplicaciones en Ciencias Sociales 6. Prueba de hipótesis. Facultad de Ciencias Sociales, UdelaR Estadística y sus aplicaciones en Ciencias Sociales 6. Prueba de hipótesis Facultad de Ciencias Sociales, UdelaR Índice 1. Introducción: hipótesis estadística, tipos de hipótesis, prueba de hipótesis 2.

Más detalles

ANÁLISIS DE LA VARIANZA CON UN FACTOR (ANOVA)

ANÁLISIS DE LA VARIANZA CON UN FACTOR (ANOVA) ANÁLISIS DE LA VARIANZA CON UN FACTOR (ANOVA) El análisis de la varianza permite contrastar la hipótesis nula de que las medias de K poblaciones (K >2) son iguales, frente a la hipótesis alternativa de

Más detalles

Estructura de este tema. Tema 3 Contrastes de hipótesis. Ejemplo

Estructura de este tema. Tema 3 Contrastes de hipótesis. Ejemplo Estructura de este tema Tema 3 Contrastes de hipótesis José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Qué es un contraste de hipótesis? Elementos de un contraste: hipótesis,

Más detalles

Problemas resueltos. Tema 12. 2º La hipótesis alternativa será que la distribución no es uniforme.

Problemas resueltos. Tema 12. 2º La hipótesis alternativa será que la distribución no es uniforme. Tema 12. Contrastes No Paramétricos. 1 Problemas resueltos. Tema 12 1.- En una partida de Rol se lanza 200 veces un dado de cuatro caras obteniéndose 60 veces el número 1, 45 veces el número 2, 38 veces

Más detalles

TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD

TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD Contrastes de hipótesis paramétricos para una y varias muestras: contrastes sobre la media, varianza y una proporción. Contrastes sobre la diferencia

Más detalles

DISTRIBUCIONES BIDIMENSIONALES

DISTRIBUCIONES BIDIMENSIONALES La estadística unidimensional estudia los elementos de un conjunto de datos considerando sólo una variable o característica. Si ahora incorporamos, otra variable, y se observa simultáneamente el comportamiento

Más detalles

2 Contraste de independencia

2 Contraste de independencia 2 Contraste de independencia 2 Independencia entre variables cualitativas Consideremos dos variables cualitativas X e Y con I y J modalidades cada una respectivamente, y sea N IJ la tabla de contingencia

Más detalles

Inferencia Estadística. Pruebas paramétricas y no paramétricas. Análisis de datos

Inferencia Estadística. Pruebas paramétricas y no paramétricas. Análisis de datos Inferencia Estadística. Pruebas paramétricas y no paramétricas. Análisis de datos VDC Prof. Mª JOSÉ PRIETO CASTELLÓ ANÁLISIS ESTADÍSTICO DE DATOS Estadística Descriptiva: -Cualitativas: frecuencias, porcentajes

Más detalles

Formulario. Estadística Administrativa. Módulo 1. Introducción al análisis estadístico

Formulario. Estadística Administrativa. Módulo 1. Introducción al análisis estadístico Formulario. Estadística Administrativa Módulo 1. Introducción al análisis estadístico Histogramas El número de intervalos de clase, k, se elige de tal forma que el valor 2 k sea menor (pero el valor más

Más detalles

EJERCICIOS RESUELTOS DE ESTADÍSTICA II

EJERCICIOS RESUELTOS DE ESTADÍSTICA II EJERCICIOS RESUELTOS DE ESTADÍSTICA II RESUMEN DE EJERCICIOS DADOS EN CLASES POR: EILEEN JOHANA ARAGONES GENEY DISTRIBUCIONES DOCENTE: JUAN CARLOS VERGARA SCHMALBACH ESTIMACIÓN PRUEBAS DE HIPÓTESIS Grupo

Más detalles

Guía docente MÉTODOS ESTADÍSTICOS PARA LA EMPRESA

Guía docente MÉTODOS ESTADÍSTICOS PARA LA EMPRESA 1. Introducción Guía docente MÉTODOS ESTADÍSTICOS PARA LA EMPRESA Los análisis económicos y empresariales se efectúan sobre la base de la toma de decisiones, las cuales se toman a partir de la información

Más detalles

1. Ejercicios. 2 a parte

1. Ejercicios. 2 a parte 1. Ejercicios. 2 a parte Ejercicio 1 Calcule 1. P (χ 2 9 3 33) 2. P (χ 2 15 7 26). 3. P (15 51 χ 2 8 22). 4. P (χ 2 70 82). Ejercicio 2 Si X χ 2 26, obtenga un intervalo [a, b] que contenga un 95 % de

Más detalles

Práctica 4. Contraste de hipótesis

Práctica 4. Contraste de hipótesis Práctica 4. Contraste de hipótesis Estadística Facultad de Física Objetivos Ajuste a una distribución discreta uniforme Test χ 2 Comparación de muestras Ajuste a una distribución normal 1 Introducción

Más detalles

Contraste de hipótesis paramétricas

Contraste de hipótesis paramétricas Contraste de hipótesis paramétricas Prof, Dr. Jose Jacobo Zubcoff Departamento de Ciencias del Mar y Biología Aplicada Proceso de la investigación estadística Etapas PROBLEMA HIPÓTESIS DISEÑO RECOLECCIÓN

Más detalles

CONTRASTES DE HIPÓTESIS PARAMÉTRICOS. La estadística en cómic (L. Gonick y W. Smith)

CONTRASTES DE HIPÓTESIS PARAMÉTRICOS. La estadística en cómic (L. Gonick y W. Smith) CONTRASTES DE HIPÓTESIS PARAMÉTRICOS La estadística en cómic (L. Gonick y W. Smith) EJEMPLO: UN JUICIO INJUSTO 2 APELAREMOS EL VERIDICTO 3 SEÑOR ESTADÍSTICO, PODRÍA EXPLICARNOS LO QUE ESTOS DATOS EVIDENCIAN?

Más detalles

INTERVALO DE CONFIANZA PARA LA PROPORCIÓN

INTERVALO DE CONFIANZA PARA LA PROPORCIÓN INTERVALO DE CONFIANZA PARA LA PROPORCIÓN Si deseamos estimar la proporción p con que una determinada característica se da en una población, a partir de la proporción p' observada en una muestra de tamaño

Más detalles

TEMA 2: Estimadores y distribuciones en el muestreo. Alfredo García Hiernaux. Grupos 69 y 73 Estadística I. Curso 2006/07

TEMA 2: Estimadores y distribuciones en el muestreo. Alfredo García Hiernaux. Grupos 69 y 73 Estadística I. Curso 2006/07 TEMA 2: Estimadores y distribuciones en el muestreo 1) Introducción 2) Tipos de muestreos 3) Estadísticos INDICE 4) Estimadores y propiedades 5) Distribución muestral 6) Teorema Central del Límite 7) Distribuciones

Más detalles

CONTRASTE SOBRE UN COEFICIENTE DE LA REGRESIÓN

CONTRASTE SOBRE UN COEFICIENTE DE LA REGRESIÓN Modelo: Y =! 1 +! 2 X + u Hipótesis nula: Hipótesis alternativa H 1 :!!! 2 2 Ejemplo de modelo: p =! 1 +! 2 w + u Hipótesis nula: Hipótesis alternativa: H :!! 1 2 1. Como ilustración, consideremos un modelo

Más detalles

UNIVERSIDAD NACIONAL EXPERIMENTAL DE GUAYANA VICERRECTORADO ACADÉMICO COORDINACION DE PRE-GRADO PROYECTO DE CARRERA DE INGENIERIA INDUSTRIAL

UNIVERSIDAD NACIONAL EXPERIMENTAL DE GUAYANA VICERRECTORADO ACADÉMICO COORDINACION DE PRE-GRADO PROYECTO DE CARRERA DE INGENIERIA INDUSTRIAL VICERRECTORADO ACADÉMICO COORDINACION DE PRE-GRADO PROYECTO DE CARRERA DE INGENIERIA INDUSTRIAL PROGRAMA: ESTADISTICA II CÓDIGO ASIGNATURA: 1215-22 PRE-REQUISITO: 1215-311 SEMESTRE: CUARTO UNIDADES DE

Más detalles

Práctica 5 MÉTODOS DESCRIPTIVOS PARA DETERMINAR LA NORMALIDAD

Práctica 5 MÉTODOS DESCRIPTIVOS PARA DETERMINAR LA NORMALIDAD Práctica 5.Métodos descriptivos para determinar la normalidad 1 Práctica 5 MÉTODOS DESCRIPTIVOS PARA DETERMINAR LA NORMALIDAD Objetivos: En esta práctica utilizaremos el paquete SPSS para determinar si

Más detalles

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición...

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición... Contenidos 1 Introducción al paquete estadístico S-PLUS 19 1.1 Introducción a S-PLUS............................ 21 1.1.1 Cómo entrar, salir y consultar la ayuda en S-PLUS........ 21 1.2 Conjuntos de datos..............................

Más detalles

ANOVA. Análisis de la Varianza. Univariante Efectos fijos Muestras independientes

ANOVA. Análisis de la Varianza. Univariante Efectos fijos Muestras independientes ANOVA Análisis de la Varianza Univariante Efectos fijos Muestras independientes De la t a la F En el test de la t de Student para muestras independientes, aprendimos como usar la distribución t para contrastar

Más detalles

Análisis de la varianza

Análisis de la varianza Análisis de la varianza José Gabriel Palomo Sánchez gabriel.palomo@upm.es E.U.A.T. U.P.M. Julio de 2011 I 1 Introducción 1 Comparación de medias 2 El pricipio de aleatorización 2 El problema de un factor

Más detalles

TEMA 3 : PRUEBA CHI-CUADRADA Y ESTADISTICA NO PARAMETRICA

TEMA 3 : PRUEBA CHI-CUADRADA Y ESTADISTICA NO PARAMETRICA TEMA 3 : PRUEBA CHI-CUADRADA Y ESTADISTICA NO PARAMETRICA PRUEBAS CHI-CUADRADA Y ESTADISTICA NO PARAMETRICA Como ya se ha visto varias veces, los resultados obtenidos de muestras no siempre concuerdan

Más detalles

Regresión múltiple. Demostraciones. Elisa Mª Molanes López

Regresión múltiple. Demostraciones. Elisa Mª Molanes López Regresión múltiple Demostraciones Elisa Mª Molanes López El modelo de regresión múltiple El modelo que se plantea en regresión múltiple es el siguiente: y i = β 0 + β 1 x 1i + β 2 x 2i +...+ β k x ki +

Más detalles

INDICE Capítulo I: Conceptos Básicos Capitulo II: Estadística Descriptiva del Proceso

INDICE Capítulo I: Conceptos Básicos Capitulo II: Estadística Descriptiva del Proceso INDICE Capítulo I: Conceptos Básicos 1.- Introducción 3 2.- Definición de calidad 7 3.- Política de calidad 10 4.- Gestión de la calidad 12 5.- Sistema de calidad 12 6.- Calidad total 13 7.- Aseguramiento

Más detalles

= P (Z ) - P (Z ) = P (Z 1 25) P (Z -1 25)= P (Z 1 25) [P (Z 1 25)] = P (Z 1 25) [1- P (Z 1 25)] =

= P (Z ) - P (Z ) = P (Z 1 25) P (Z -1 25)= P (Z 1 25) [P (Z 1 25)] = P (Z 1 25) [1- P (Z 1 25)] = El peso en kg de los estudiantes universitarios de una gran ciudad se supone aproximado por una distribución normal con media 60kg y desviación típica 8kg. Se toman 100 muestras aleatorias simples de 64

Más detalles

INFERENCIA ESTADÍSTICA. Metodología de Investigación. Tesifón Parrón

INFERENCIA ESTADÍSTICA. Metodología de Investigación. Tesifón Parrón Metodología de Investigación Tesifón Parrón Contraste de hipótesis Inferencia Estadística Medidas de asociación Error de Tipo I y Error de Tipo II α β CONTRASTE DE HIPÓTESIS Tipos de Test Chi Cuadrado

Más detalles

CAPÍTULO 7 INFERENCIA ESTADÍSTICA CON DATOS DE FRECUENCIAS

CAPÍTULO 7 INFERENCIA ESTADÍSTICA CON DATOS DE FRECUENCIAS CAPÍTULO 7 INFERENCIA ESTADÍSTICA CON DATOS DE FRECUENCIAS 7.1 INTRODUCCIÓN En el presente capítulo se aborda el tema de la realización de inferencias respecto a una población en situaciones en las que

Más detalles

PROGRAMA DE CURSO. Horas de Trabajo Personal Horas de Cátedra. Básica. Resultados de Aprendizaje

PROGRAMA DE CURSO. Horas de Trabajo Personal Horas de Cátedra. Básica. Resultados de Aprendizaje Código Nombre MA3403 Probabilidades y Estadística Nombre en Inglés Probability and Statistics SCT es Docentes PROGRAMA DE CURSO Horas de Cátedra Horas Docencia Auxiliar Horas de Trabajo Personal 6 10 3

Más detalles

Tema 5. Contraste de hipótesis (I)

Tema 5. Contraste de hipótesis (I) Tema 5. Contraste de hipótesis (I) CA UNED de Huelva, "Profesor Dr. José Carlos Vílchez Martín" Introducción Bienvenida Objetivos pedagógicos: Conocer el concepto de hipótesis estadística Conocer y estimar

Más detalles

ÍNDICE CAPÍTULO 1. INTRODUCCIÓN

ÍNDICE CAPÍTULO 1. INTRODUCCIÓN ÍNDICE CAPÍTULO 1. INTRODUCCIÓN 1.1. OBJETO DE LA ESTADÍSTICA... 17 1.2. POBLACIONES... 18 1.3. VARIABLES ALEATORIAS... 19 1.3.1. Concepto... 19 1.3.2. Variables discretas y variables continuas... 20 1.3.3.

Más detalles

Inferencia. Mauricio Olivares. 19 de junio de 2015 ITAM

Inferencia. Mauricio Olivares. 19 de junio de 2015 ITAM Inferencia Mauricio Olivares ITAM 19 de junio de 2015 Recuerda de nuestra clase anterior que m(x) = α + βx. Recuerda de nuestra clase anterior que m(x) = α + βx. Esta es una relación poblacional, no hay

Más detalles

Tema 8: Introducción a la Teoría sobre Contraste de hipótesis

Tema 8: Introducción a la Teoría sobre Contraste de hipótesis Tema 8: Introducción a la Teoría sobre Contraste de hipótesis Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 8: Introducción a la Teoría

Más detalles

Tema 1: Distribuciones en el muestreo

Tema 1: Distribuciones en el muestreo Tema 1: Distribuciones en el muestreo 1 (transparencias de A. Jach http://www.est.uc3m.es/ajach/) Muestras aleatorias Estadísticos Concepto de distribución muestral Media muestral Distribución muestral

Más detalles

1 Introducción. 2 Modelo. Hipótesis del modelo MODELO DE REGRESIÓN LOGÍSTICA

1 Introducción. 2 Modelo. Hipótesis del modelo MODELO DE REGRESIÓN LOGÍSTICA MODELO DE REGRESIÓN LOGÍSTICA Introducción A grandes rasgos, el objetivo de la regresión logística se puede describir de la siguiente forma: Supongamos que los individuos de una población pueden clasificarse

Más detalles

478 Índice alfabético

478 Índice alfabético Índice alfabético Símbolos A, suceso contrario de A, 187 A B, diferencia de los sucesos A y B, 188 A/B, suceso A condicionado por el suceso B, 194 A B, intersección de los sucesos A y B, 188 A B, unión

Más detalles

a. Poisson: los totales marginales y el total muestral varían libremente.

a. Poisson: los totales marginales y el total muestral varían libremente. TEMA 2º: TABLAS DE CONTINGENCIA BIDIMENSIONALES 1º Distribución de frecuencias observadas El único aspecto cuantificable en el análisis cualitativo es el número de individuos que presenta una combinación

Más detalles

Estadistica II Tema 0. Repaso de conceptos básicos. Curso 2009/10

Estadistica II Tema 0. Repaso de conceptos básicos. Curso 2009/10 Estadistica II Tema 0. Repaso de conceptos básicos Curso 2009/10 Tema 0. Repaso de conceptos básicos Contenidos Variables aleatorias y distribuciones de probabilidad La distribución normal Muestras aleatorias,

Más detalles

Tabla de Test de Hipótesis ( Caso: Una muestra ) A. Test para µ con σ 2 conocida: Suponga que X 1, X 2,, X n, es una m.a.(n) desde N( µ, σ 2 )

Tabla de Test de Hipótesis ( Caso: Una muestra ) A. Test para µ con σ 2 conocida: Suponga que X 1, X 2,, X n, es una m.a.(n) desde N( µ, σ 2 ) Test de Hipótesis II Tabla de Test de Hipótesis ( Caso: Una muestra ) A. Test para µ con σ conocida: Suponga que X, X,, X n, es una m.a.(n) desde N( µ, σ ) Estadística de Prueba X - μ Z 0 = σ / n ~ N(0,)

Más detalles

Universidad de Chile DIPLOMA PREPARACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS Prof: Sara Arancibia

Universidad de Chile DIPLOMA PREPARACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS Prof: Sara Arancibia Universidad de Chile DIPLOMA PREPARACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS Prof: Sara Arancibia Estudio de Caso: Estudio Morfología Coeficiente de Correlación Considere el archivo Estudio Morfología.sav.

Más detalles

ENUNCIADO y SOLUCIONES. Problema 1

ENUNCIADO y SOLUCIONES. Problema 1 Ingeniería Industrial Métodos estadísticos de la Ingeniería Examen Junio 007. ENUNCIADO y SOLUCIONES Problema La memoria RAM para un ordenador se puede recibir de dos fabricantes A y B con igual probabilidad.

Más detalles

Técnicas de Muestreo Métodos

Técnicas de Muestreo Métodos Muestreo aleatorio: Técnicas de Muestreo Métodos a) unidad muestral elemental: a.1) muestreo aleatorio simple a.2) muestreo (seudo)aleatorio sistemático a.3) muestreo aleatorio estratificado b) unidad

Más detalles

Contrastes de hipótesis paramétricos

Contrastes de hipótesis paramétricos Estadística II Universidad de Salamanca Curso 2011/2012 Outline Introducción 1 Introducción 2 Contraste de Neyman-Pearson Sea X f X (x, θ). Desonocemos θ y queremos saber que valor toma este parámetro,

Más detalles

A. PRUEBAS DE BONDAD DE AJUSTE: B.TABLAS DE CONTINGENCIA. Chi cuadrado Metodo G de Fisher Kolmogorov-Smirnov Lilliefords

A. PRUEBAS DE BONDAD DE AJUSTE: B.TABLAS DE CONTINGENCIA. Chi cuadrado Metodo G de Fisher Kolmogorov-Smirnov Lilliefords A. PRUEBAS DE BONDAD DE AJUSTE: Chi cuadrado Metodo G de Fisher Kolmogorov-Smirnov Lilliefords B.TABLAS DE CONTINGENCIA Marta Alperin Prosora Adjunta de Estadística alperin@fcnym.unlp.edu.ar http://www.fcnym.unlp.edu.ar/catedras/estadistica

Más detalles

Ejemplos Resueltos Tema 4

Ejemplos Resueltos Tema 4 Ejemplos Resueltos Tema 4 2012 1. Contraste de Hipótesis para la Media µ (con σ conocida) Dada una muestra de tamaño n y conocida la desviación típica de la población σ, se desea contrastar la hipótesis

Más detalles

INDICE. Prólogo a la Segunda Edición

INDICE. Prólogo a la Segunda Edición INDICE Prólogo a la Segunda Edición XV Prefacio XVI Capitulo 1. Análisis de datos de Negocios 1 1.1. Definición de estadística de negocios 1 1.2. Estadística descriptiva r inferencia estadística 1 1.3.

Más detalles

CONTRASTES DE HIPÓTESIS

CONTRASTES DE HIPÓTESIS Estadística.FBA I. Curso 2011-2012 CONTRASTES DE HIPÓTESIS M.Carmen Carollo Contrastes de hipótesis 1 Estadística.FBA I. Curso 2011-2012 CONTRASTES DE HIPÓTESIS A partir de una o varias muestras nos proponemos

Más detalles

Tema 5. Muestreo y distribuciones muestrales

Tema 5. Muestreo y distribuciones muestrales 1 Tema 5. Muestreo y distribuciones muestrales En este tema: Muestreo y muestras aleatorias simples. Distribución de la media muestral: Esperanza y varianza. Distribución exacta en el caso normal. Distribución

Más detalles

Análisis de la varianza ANOVA

Análisis de la varianza ANOVA Estadística Básica. Mayo 2004 1 Análisis de la varianza ANOVA Francisco Montes Departament d Estadística i I. O. Universitat de València http://www.uv.es/~montes Estadística Básica. Mayo 2004 2 Comparación

Más detalles

Muestreo de variables aleatorias

Muestreo de variables aleatorias Estadística II Universidad de Salamanca Curso 2011/2012 Outline 1 Introducción 2 Distribución de la muestra 3 4 5 Distribuciones de la media y la varianza en poblaciones normales Introducción Tiene como

Más detalles

TEMA 3.- EL ANALISIS ESTADISTICO DE LA INFORMACION (MODELIZACION) DIFERENTES TIPOS DE PROCEDIMIENTOS ESTADISTICOS

TEMA 3.- EL ANALISIS ESTADISTICO DE LA INFORMACION (MODELIZACION) DIFERENTES TIPOS DE PROCEDIMIENTOS ESTADISTICOS TEMA 3.- EL ANALISIS ESTADISTICO DE LA INFORMACION (MODELIZACION) PROCEDIMIENTOS ESTADISTICOS CONSTRUCCION DE MODELOS DIFERENTES TIPOS DE PROCEDIMIENTOS ESTADISTICOS Cada procedimiento es aplicable a un

Más detalles

SOLUCIÓN EXAMEN IV Nombres: Apellidos: C.I.: Firma: Fecha: 19/11/2004

SOLUCIÓN EXAMEN IV Nombres: Apellidos: C.I.: Firma: Fecha: 19/11/2004 Nombres: Apellidos: C.I.: Firma: Fecha: 19/11/004 MÉTODOS ESTADÍSTICOS I EXAMEN IV PARTE I: Encierre con un círculo la respuesta correcta (0,5 puntos c/u): 1. (V F) Los contrastes de hipótesis de dos muestras

Más detalles

1) Características del diseño en un estudio de cohortes.

1) Características del diseño en un estudio de cohortes. Departamento de Estadística Universidad Carlos III de Madrid BIOESTADISTICA (55-10536) Estudios de cohortes CONCEPTOS CLAVE 1) Características del diseño en un estudio de cohortes. ) Elección del tamaño

Más detalles

Escuela Nacional de Estadística e Informática ESPECIALIZACIÓN EN ESTADÍSTICA APLICADA ESPECIALIZACIÓN EN ESTADÍSTICA APLICADA

Escuela Nacional de Estadística e Informática ESPECIALIZACIÓN EN ESTADÍSTICA APLICADA ESPECIALIZACIÓN EN ESTADÍSTICA APLICADA ESPECIALIZACIÓN EN ESTADÍSTICA APLICADA ESPECIALIZACIÓN EN ESTADÍSTICA APLICADA Lima Perú 2013 DISEÑO COMPLETAMENTE ALEATORIZADO Es el diseño más simple y sencillo de realizar, en el cual los tratamientos

Más detalles

a. N(19 5, 1 2) P(19 X 21) = P( Z ) = = P = P P = = P P = P = = = El 55 72% no son adecuados.

a. N(19 5, 1 2) P(19 X 21) = P( Z ) = = P = P P = = P P = P = = = El 55 72% no son adecuados. El diámetro de los tubos de cartón para un envase ha de estar entre 19 y 21mm. La maquina prepara tubos cuyos diámetros están distribuidos como una manual de media 19 5mm y desviación típica 1 2mm. Qué

Más detalles

Contraste de hipótesis con STATGRAPHICS

Contraste de hipótesis con STATGRAPHICS Contraste de hipótesis con STATGRAPHICS Ficheros empleados: Transistor.sf3, Estaturas.sf3 1. Introducción: Una forma habitual de hacer inferencia acerca de uno o más parámetros de una población consiste

Más detalles

ESTADISTICA II. INGENIERIA INFORMATICA, 3 ER Curso

ESTADISTICA II. INGENIERIA INFORMATICA, 3 ER Curso ESTADISTICA II INGENIERIA INFORMATICA, 3 ER Curso 22 - Diciembre - 2.006 Primera Parte - Test Apellidos y Nombre:... D.N.I. :... Nota : En la realización de este examen sólo esta permitido utilizar calculadoras

Más detalles

PROBABILIDAD Y ESTADÍSTICA. Sesión 6 (A partir de tema 5.9)

PROBABILIDAD Y ESTADÍSTICA. Sesión 6 (A partir de tema 5.9) PROBABILIDAD Y ESTADÍSTICA Sesión 6 (A partir de tema 5.9) 5.9 Muestreo: 5.9.1 Introducción al muestreo 5.9.2 Tipos de muestreo 5.10 Teorema del límite central 5.11 Distribución muestral de la media 5.12

Más detalles

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua ESTADÍSTICA Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal Cuantitativa discreta continua DISTRIBUCIÓN DE FRECUENCIAS Frecuencia absoluta: fi Frecuencia relativa:

Más detalles

DISEÑO Y ANÁLISIS DE DATOS EN PSICOLOGÍA II

DISEÑO Y ANÁLISIS DE DATOS EN PSICOLOGÍA II DISEÑO Y ANÁLISIS DE DATOS EN PSICOLOGÍA II PRÁCTICA 5 En una determinada investigación se estudió el rendimiento en matemáticas en función del estilo de aprendizaje de una serie de estudiantes de educación

Más detalles

Tests de Hipótesis basados en una muestra. ESTADÍSTICA (Q) 5. TESTS DE HIPÓTESIS PARA LA MEDIA DE UNA POBLACIÓN NORMAL CON VARIANZA CONOCIDA

Tests de Hipótesis basados en una muestra. ESTADÍSTICA (Q) 5. TESTS DE HIPÓTESIS PARA LA MEDIA DE UNA POBLACIÓN NORMAL CON VARIANZA CONOCIDA 2 5. TESTS DE HIPÓTESIS PARA LA MEDIA DE UNA POBLACIÓN NORMAL CON VARIANZA CONOCIDA 5. Desarrollo de un ejemplo Interesa saber si el método de absorción atómica de vapor frío para determinar mercurio introduce

Más detalles

Ejercicios T.5 CONTRASTES PARAMÉTRICOS

Ejercicios T.5 CONTRASTES PARAMÉTRICOS Ejercicios T.5 CONTRASTES PARAMÉTRICOS 1. Un fabricante de perfume asegura que los frascos que produce contienen por término medio 100 ml. distribuyéndose el contenido de dichos frascos según una distribución

Más detalles