La división euclídea. Algoritmo de Euclides. En esta práctica estudiamos algunos aspectos del algoritmo de Euclides para hallar el Mcd de dos enteros.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "La división euclídea. Algoritmo de Euclides. En esta práctica estudiamos algunos aspectos del algoritmo de Euclides para hallar el Mcd de dos enteros."

Transcripción

1 IMD-IS Sesión de laboratorio 4. El algoritmo de Euclides La hoja de SAGE que corresponde a la práctica puede obtenerse de: http: // personal. us. es/ ebriand/ practica4. sws En esta práctica estudiamos algunos aspectos del algoritmo de Euclides para hallar el Mcd de dos enteros. La división euclídea En SAGE, el resto en la división de a por b con b > 0 se obtiene con: a %b, y el cociente, con a//b. Por ejemplo: 341//23 341% Figura 1: Euclides de Alejandria. En efecto, la división euclídea de 341 entre 23 es: 341 = Podemos obtener el cociente y el resto de una división euclídea a la vez, con el comando quo_rem: Como quotient y remainder. (q,r)=341.quo_rem(23) print q,r Ejercicio 1. Calcular, primero a mano y luego comprobando con SAGE, el cociente y el resto en: la división de 341 entre 23. la división de 341 entre 23. la división de 341 entre 23. Lo que da SAGE, Corresponde bien a la definición de división euclídea en todos los casos? Algoritmo de Euclides Recordamos en un ejemplo el funcionamiento del algoritmo de Euclides, que calcula el Mcd de dos enteros a y b. Aquí a = 1482, b = 517 y se obtiene 1 como Mcd = , por lo tanto Mcd(1483, 517) = Mcd(517, 449) 517 = , por lo tanto Mcd(517, 449) = Mcd(449, 68) 449 = , por lo tanto Mcd(449, 68) = Mcd(68, 41) 68 = , por lo tanto Mcd(68, 41) = Mcd(41, 27) 41 = , por lo tanto Mcd(41, 27) = Mcd(27, 14) 27 = , por lo tanto Mcd(27, 14) = Mcd(14, 13) 14 = , por lo tanto Mcd(14, 13) = Mcd(13, 1) 13 = , por lo tanto Mcd(13, 1) = Mcd(1, 0).

2 2 La función siguiente implementa el algoritmo de Euclides para a y b (se supone que b > 0) y además imprime la sucesión de los restos. def euclides(a,b): (penultimoresto,ultimoresto)=(a,b) while not (ultimoresto == 0): print penultimoresto (penultimoresto,ultimoresto)=(ultimoresto, penultimoresto % ultimoresto) return penultimoresto Explicación: cada etapa del algoritmo de Euclides consiste en dividir el penultimo resto por el ultimo resto. Esto produce un nuevo resto. Luego se cambian los papeles: El nuevo resto pasa a llamarse ultimo resto y al mismo tiempo, lo que era el ultimo resto pasa a llamarse penultimo resto. Ejercicio 2. Utilizar esta función euclides para calcular los Mcd y los mcm de los pares de enteros siguientes: 729 y 243. El mcm de a y b se deduce de su Mcd gracias a la relación: Mcd(a, b) mcm(a, b) = a b. 729 y y y Calcular también esta función los Mcd de dos enteros aleatorios de N cifras para N = 100, N = 1000, N = hasta que el ordenador tarde un poco (digamos unos segundos). Es eficiente el algoritmo de Euclides? Para producir un entero entre p y q se utiliza randint(p,q). Para producir un entero de N cifras (es decir entre 10 N y 10 N+1 ) se utiliza por lo tanto randint(10^n,10^(n+1)). Pares de números coprimos Recordamos que dos enteros a y b son coprimos si su Mcd vale 1. Si elegimos dos enteros aleatoriamente es muy probable que sean coprimos? Queremos evaluar la probabilidad que dos enteros sean coprimos. Para esto, construimos M pares de enteros (a, b) entre 1 y N (M es el tamaño de la muestra, N es el valor máximo de los enteros), calculamos el Mcd de cada par (a, b) y contamos los Mcd iguales a 1. La proporción de pares coprimos de la muestra estima la proporción de pares de enteros inferiores o igual a N que son coprimos. El bucle siguiente realiza este plan:

3 3 N=100 ## valor maximo para a y b c=0 ## contador de pares coprimos M=10000 ## tamaño de la muestra for i in [1..M]: a=randint(1,n) b=randint(1,n) d=euclides(a,b) if d == 1: c=c+1 print float(c/m) ## proporción de pares coprimos Ejercicio 3. Ejecutar el bucle varias veces, con valoes más y más grandes de N. Se observa alguna tendencia? Jugamos al juego siguiente: elegimos dos grandes enteros aleatoriamente. Si son coprimos, pierdes un euro. Si no, ganas un euro. Jugarías unos cien partidos? El algoritmo de Euclides extendido Recordamos en un ejemplo el algoritmo de Euclides extendido, que calcula el Mcd de dos enetros a y b y al mismo tiempo una identidad de Bézout para a y b, es decir una descomposición de Mcd(a, b) de la forma xa + yb. División Aislar el nuevo resto Sustituir Simplificar 1483 = = = a 2 b 517 = = = b (a 2b) = a + 3b 449 = = = (a 2b) 6(3b a) = 7a 20b 68 = = = (3b a) (7a 20b) = 8a + 23b 41 = = = (7a 20b) ( 8a + 23b) = 15a 43b 27 = = = ( 8a + 23b) (15a 43b) = 23a + 66b 14 = = = (15a 43b) ( 23a + 66b) = 38a 109b 13 = La identidad de Bézout obtenida es: 1 = 38a 109b. A cada etapa del algoritmo se ha obtenido una descomposición del ultimo resto como combinación lineal de a y b. Las descomposisiones del ultimo resto y del penultimo resto sirven para calcular la descomposición del ultimo resto. Ejercicio 4. Programar el algoritmo de Euclides extendido, de manera que devuelva, en vez de solamente el Mcd de a y b, también los coeficientes x e y en la identidad de Bézout Mcd(a, b) = xa + yb. Utilizar esta función para calular identidades de Bézout para los pares de enteros del ejercicio 2. Comprobar, en todas las identidades de Bézout obtenidas, que x < b e y < a. Indicaciones: en el algoritmo de Euclides simple en cada paso

4 4 considerabamos un par: (penultimoresto,ultimoresto) que se modifica a cada paso. Aquí necesitaremos considerar una familia de 6 números: (penultimoresto,penultimo_x, penultimo_y,ultimoresto, ultimo_x, ultimo_y) que se modifica a cada paso, y tal que: penultimoresto = penultimo_x a + penultimo_y b, ultimoresto = ultimo_x a + ultimo_y b El teorema de Euclides (por si haz acabado todo lo anterior) En teoría hemos demostrado que hay una infinidad de números primos (el Teorema de Euclides ), produciendo una sucesión infinita de primos distintos. Esta sucesión es definida recursivamente por las condiciones siguientes: p 1 = 2 para cualquier n 2, p n es el menor factor primo del entero p 1 p 2 p n Este algoritmo esta implementado en SAGE por la función siguiente: def DemoDeEuclides(N): res=[] producto=1 for i in [1..N]: n=producto+1 factores=n.prime_factors() p=factores[0] # Lista de los divisores primos de n, en orden creciente # El primer elemento de esta lista. Es el menor divisor prim producto=producto*p res.append(p) return res Ejercicio 5. Obtener los primeros números primos producidos de esta manera, hasta obtener por lo menos 2, 3, 5, 7 y 11. Vienen en orden? La criba de Eratostenes La función siguiente devuelve la lista de los números primos p inferiores o igual a N, por medio del criba de Eratistenes. def criba(n): L=[2..N] res=[] Figura 2: Eratóstenes.

5 5 while L<>[]: p=l[0] res.append(p) ## seleccionamos el primer elemento ## Lo ponemos en la lista-resultado for x in L: if x%p == 0: ## quitamos de L todos sus multiplós L.remove(x) return res Ejercicio 6. Utilizarla para contar los primos inferiores a N = 100, N = 1000, y N = (la longitud de una lista L se obtiene con len(l)). Comprobar en cada caso que una buena estimación de este número viene dada por N/ log(n), y que una aproximación aún mejor viene dado por: N 2 1 log(t) dt La integral del ejercicio se calcula de la manera siguiente con SAGE: var('t') numerical_integral(1/log(t),2,n) La función devuelve dos números: el primero es una aproximación del valor del integral, el segundo es una cota del error.

Aritmética entera. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Aritmética entera 1 / 15

Aritmética entera. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Aritmética entera 1 / 15 Aritmética entera AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Aritmética entera 1 / 15 Objetivos Al finalizar este tema tendréis que: Calcular el máximo común divisor de

Más detalles

ALGEBRA I - Práctica N 4 (Primera parte) - Primer cuatrimestre de Números enteros

ALGEBRA I - Práctica N 4 (Primera parte) - Primer cuatrimestre de Números enteros ALGEBRA I - Práctica N 4 (Primera parte) - Primer cuatrimestre de 2002 Números enteros Ejercicio. Dados a, b y c números enteros, decidir cuáles de las siguientes afirmaciones son verdaderas y cuáles son

Más detalles

Relaciones de orden. Definición 1. Llamamos conjunto ordenado a un par (E, ) donde E es un conjunto y es un orden definido en E

Relaciones de orden. Definición 1. Llamamos conjunto ordenado a un par (E, ) donde E es un conjunto y es un orden definido en E Relaciones de orden Diremos que una relación R es de orden si verifica las propiedades reflexiva, antisimétrica y transitiva. Generalmente usaremos la notación en lugar de R para expresar relaciones de

Más detalles

Introducción a la Matemática Discreta

Introducción a la Matemática Discreta Introducción a la Matemática Discreta Aritmética Entera Luisa María Camacho Camacho Introd. a la Matemática Discreta 1 / 36 Introducción a la Matemática Discreta Temario Tema 1. Teoría de Conjuntos. Tema

Más detalles

El Algoritmo de Euclides

El Algoritmo de Euclides El Algoritmo de Euclides Pablo L. De Nápoli Departamento de Matemática Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires 25 de abril de 2014 Pablo L. De Nápoli (Departamento de Matemática

Más detalles

Propiedades de números enteros (lista de problemas para examen)

Propiedades de números enteros (lista de problemas para examen) Propiedades de números enteros (lista de problemas para examen) Denotamos por Z al conjunto de los números enteros y por N al conjunto de los números enteros positivos: N = 1, 2, 3,...}. Valor absoluto

Más detalles

Divisibilidad (en N = N {0})

Divisibilidad (en N = N {0}) Divisibilidad (en N = N {0}) Dados dos números naturales a y c, se dice que c es un divisor de a si existe q N tal que a = q c (es decir, si en la división a c el resto es 0). c a significa que c es divisor

Más detalles

4 Aritmética. 4.1 Introducción: ecuaciones lineales diofánticas

4 Aritmética. 4.1 Introducción: ecuaciones lineales diofánticas 4 Aritmética 4.1 Introducción: ecuaciones lineales diofánticas En este tema presentamos los objetos básicos del aritmética: divisores, números primos, máximo común divisor. Su estudio continuará en el

Más detalles

Ejercicios del tema 7

Ejercicios del tema 7 U N I V E R S I D A D D E M U R C I A Ejercicios del tema 7 DEPARTAMENTO DE MATEMÁTICAS CONJUNTOS Y NÚMEROS 2013/2014. Ejercicios de aritmética y congruencias 1. Un amigo le pregunta a otro: Cuántos hijos

Más detalles

ARITMÉTICA ENTERA LOS NÚMEROS ENTEROS. = {..., n,..., 3, 2, 1, 0, 1, 2, 3,..., n,...} (Zahlen, en alemán, números)

ARITMÉTICA ENTERA LOS NÚMEROS ENTEROS. = {..., n,..., 3, 2, 1, 0, 1, 2, 3,..., n,...} (Zahlen, en alemán, números) LOS NÚMEROS ENTEROS ARITMÉTICA ENTERA = {..., n,..., 3, 2, 1, 0, 1, 2, 3,..., n,...} (Zahlen, en alemán, números) Recordamos la estructura de sus propiedades aritméticas la relación de orden usual, compatible

Más detalles

DIVISIBILIDAD: Resultados

DIVISIBILIDAD: Resultados DIVISIBILIDAD: Resultados Página 1 de 9 Se enumeran a continuación, como referencia, ciertos resultados sobre divisibilidad. 1.1 Definición. Dados los enteros a y b, se dice que a divide a b (Notación:

Más detalles

Olimpiada de Matemáticas en Chiapas

Olimpiada de Matemáticas en Chiapas UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE CIENCIAS EN FÍSICA Y MATEMÁTICAS Divisibilidad, MCD, MCM, Primos y TFA Olimpiada de Matemáticas en Chiapas Julio del 2018 Divisibilidad El conjunto de los números

Más detalles

TEORIA DE NUMEROS. Temas: MAXIMO COMUN DIVISOR ALGORITMO MCD(A,B) IDENTIDAD DE BEZOUT ALGORITMO ST(A,B) EL TEOREMA FUNDAMENTAL DE LA ARITMETICA.

TEORIA DE NUMEROS. Temas: MAXIMO COMUN DIVISOR ALGORITMO MCD(A,B) IDENTIDAD DE BEZOUT ALGORITMO ST(A,B) EL TEOREMA FUNDAMENTAL DE LA ARITMETICA. . 1 TEORIA DE NUMEROS Temas: CLASE 2 HS: MAXIMO COMUN DIVISOR ALGORITMO MCD(A,B) IDENTIDAD DE BEZOUT ALGORITMO ST(A,B) CLASE 1:15 H: EL TEOREMA FUNDAMENTAL DE LA ARITMETICA. GENERACION DE LA DESCOMPOSICIÓN

Más detalles

Algoritmos en teoría de números

Algoritmos en teoría de números Algoritmos en teoría de números IIC2283 IIC2283 Algoritmos en teoría de números 1 / 92 Para recordar: aritmética modular Dados dos números a, b Z, si b > 0 entonces existen α, β Z tales que 0 β < b y a

Más detalles

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Enteros

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Enteros Resumen teoría Prof. Alcón ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Z = N {0} N Enteros Las operaciones + y. son cerradas en Z, es decir la suma de dos números enteros es un número entero y el producto

Más detalles

Aritmética Entera y Modular.

Aritmética Entera y Modular. Tema 5 Aritmética Entera y Modular. 5.1 Divisibilidad en Z. Definición 1. Si a, b Z, a 0, se dice que a divide a b, y se indica por a b, si existe k Z, tal que b = ak. También se dice que a es un divisor

Más detalles

Aritmética en Haskell

Aritmética en Haskell Aritmética en Haskell Taller de Álgebra I Primer cuatrimestre de 2014 Algoritmo de división Para obtener el cociente y resto entre dos números enteros, tenemos las funciones div y mod, respectivamente.

Más detalles

Tema 1 Aritmética entera

Tema 1 Aritmética entera Tema 1 Aritmética entera Tema 1 Aritmética entera 1.1 Los números enteros 1.1.1 Relaciones de orden Una relación en un conjunto A es un subconjunto R del producto cartesiano AxA. Se dice que dos elementos

Más detalles

TEORÍA DE DIVISIBILIDAD

TEORÍA DE DIVISIBILIDAD TEORÍA DE DIVISIBILIDAD MÚLTIPLOS Y DIVISORES.- Dados dos números naturales a y b, con a b, se dice que a es divisible por b o que a es múltiplo de b o que b es divisor de a, si la división de a : b es

Más detalles

4.1 Anillo de polinomios con coeficientes en un cuerpo

4.1 Anillo de polinomios con coeficientes en un cuerpo Tema 4 Polinomios 4.1 Anillo de polinomios con coeficientes en un cuerpo Aunque se puede definir el conjunto de los polinomios con coeficientes en un anillo, nuestro estudio se va a centrar en el conjunto

Más detalles

3er Encuentro de Educación en

3er Encuentro de Educación en 3er Encuentro de Educación en Cienciadela 3er Encuentro de Educación en Cienciadela Formación de Profesores de Ciencia i de la 3er Encuentro de Educación en Cienciadela Formación de Profesores Vinculo

Más detalles

Procesamiento Cuántico de Datos

Procesamiento Cuántico de Datos Procesamiento Cuántico de Datos Miguel Arizmendi, Gustavo Zabaleta 15 de diciembre de 2016 Sitio web: www3..mdp.edu.ar/fes/procq.html Miguel Arizmendi, Gustavo Zabaleta () Procesamiento Cuántico de Datos

Más detalles

Índice La División Entera El Máximo Común Divisor Algoritmo de Euclides Ecuaciones Diofánticas Factorización. Aritmética I.

Índice La División Entera El Máximo Común Divisor Algoritmo de Euclides Ecuaciones Diofánticas Factorización. Aritmética I. Leandro Marín Septiembre 2010 Índice La División Entera El Máximo Común Divisor Algoritmo de Euclides Ecuaciones Diofánticas Factorización Los Números Enteros Llamaremos números enteros al conjunto infinito

Más detalles

Tema 1: Los números naturales

Tema 1: Los números naturales N = {1, 2, 3, 4, 5...} Tema 1: Los números naturales Origen: necesidad de contar. Problema: representación (oral y escrita) de números grandes. 1 1. Sistemas aditivos Tipos de sistemas de numeración El

Más detalles

DIVISIBILIDAD NÚMEROS NATURALES

DIVISIBILIDAD NÚMEROS NATURALES DIVISIBILIDAD NÚMEROS NATURALES MÚLTIPLOS Un número a es múltiplo de otro b cuando es el resultado de multiplicarlo por otro número c. a = b c Ejemplo: 12 es múltiplo de 2, ya que resulta de multiplicar

Más detalles

Álgebra Lineal y Estructuras Matemáticas. J. C. Rosales y P. A. García Sánchez. Departamento de Álgebra, Universidad de Granada

Álgebra Lineal y Estructuras Matemáticas. J. C. Rosales y P. A. García Sánchez. Departamento de Álgebra, Universidad de Granada Álgebra Lineal y Estructuras Matemáticas J. C. Rosales y P. A. García Sánchez Departamento de Álgebra, Universidad de Granada Capítulo 2 Aritmética entera y modular 1. Los números enteros Dado un entero

Más detalles

Euclides Extendido y Teorema Chino del Resto

Euclides Extendido y Teorema Chino del Resto Euclides Extendido y Teorema Chino del Resto Taller de Álgebra I Segundo cuatrimestre de 2013 Lema de Bézout Recordemos este lema: Lema (Étienne Bézout) Sean a, b Z, alguno distinto de 0. Entonces existen

Más detalles

1. Escribir los Z del 7 al 23: 2. Representar en la recta real los siguientes Z: 5, -4, 2, 0, -1, 1

1. Escribir los Z del 7 al 23: 2. Representar en la recta real los siguientes Z: 5, -4, 2, 0, -1, 1 FICHA 1: Concepto de nº entero, múltiplo y divisor, nº primo Concepto de nº entero (Z): 1. Escribir los Z del 7 al 23: 2. Representar en la recta real los siguientes Z: 5, -4, 2, 0, -1, 1 A la vista de

Más detalles

Aritmética entera y modular

Aritmética entera y modular CAPíTULO 2 Aritmética entera y modular 1. Los números enteros Dado un entero z, z es su opuesto, y denotamos por z = máx{z, z} al valor absoluto de z. Propiedades de la suma. La suma de enteros es asociativa,

Más detalles

TEMA 2: DIVISIBILIDAD

TEMA 2: DIVISIBILIDAD TEMA 2: DIVISIBILIDAD Conceptos de múltiplo y divisor (ejemplos): Del 2 2,4,6,8,10,12,14,16, Del 3 3,6,9,12,15,18,21,24, Por ejemplo: Diremos que 8 es múltiplo de 2 o que 2 es divisor de 8 Conceptos de

Más detalles

UNIDAD 2. MÚLTIPLOS Y DIVISORES

UNIDAD 2. MÚLTIPLOS Y DIVISORES UNIDAD. MÚLTIPLOS Y DIVISORES. MÚLTIPLOS DE UN NÚMERO.. DIVISORES DE UN NÚMERO. 3. NÚMEROS PRIMOS Y NÚMEROS COMPUESTOS. 4. CRITERIOS DE DIVISIBILIDAD. 5. MÍNIMO COMÚN MÚLTIPLO. 6. MÁXIMO COMÚN DIVISOR..

Más detalles

DIVISIBILIDAD NÚMEROS NATURALES

DIVISIBILIDAD NÚMEROS NATURALES DIVISIBILIDAD NÚMEROS NATURALES MÚLTIPLOS Un número a es múltiplo de otro b cuando es el resultado de multiplicarlo por otro número c. a = b c Ejemplo: 12 es múltiplo de 2, ya que resulta de multiplicar

Más detalles

Álgebra y Matemática Discreta

Álgebra y Matemática Discreta Álgebra y Matemática Discreta Sesión de Teoría 1 (c) 2013 Leandro Marín, Francisco J. Vera, Gema M. Díaz 16 Sep 2013-22 Sep 2013 Los Números Enteros El Conjunto Z Vamos a empezar por la aritmética más

Más detalles

Práctica 5.- Recursividad

Práctica 5.- Recursividad Benemérita Universidad Autónoma de Puebla Facultad de Ciencias de la Computación Programación Avanzada en Java Prim. 2009 Práctica 5.- Recursividad Datos de la práctica Fecha 6 de marzo de 2009 Conceptos

Más detalles

TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS

TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS 1.- POLINOMIOS Recordemos que un monomio es una expresión algebraica (combinación de letras y números) en la que las únicas operaciones que aparecen entre las

Más detalles

Divisibilidad en Z. Apéndice A. A.0 Subgrupos de Z

Divisibilidad en Z. Apéndice A. A.0 Subgrupos de Z Apéndice A Divisibilidad en Z Todo número compuesto es medido por algún número primo. Todo número o bien es número primo o es medido por algún número primo. Euclides, Elementos, Libro VII Cualquier número

Más detalles

PROBLEMAS RESUELTOS DE PREPARACIÓN PARA OPOSICIONES. Problemas 02

PROBLEMAS RESUELTOS DE PREPARACIÓN PARA OPOSICIONES. Problemas 02 PROBLEMAS RESUELTOS DE PREPARACIÓN PARA OPOSICIONES Problemas 0 Salvador Pérez Gómez pies3coma14@hotmail.com 4 de abril de 007 PROBLEMA 1 Sea n un número natural. Sea A n = n + n + 3n. a) Demostrar que

Más detalles

Introducción a la Teoría de Números

Introducción a la Teoría de Números Introducción a la Teoría de Números La Teoría de Números es un área de las matemáticas que se encarga de los números primos, factorizaciones, de qué números son múltiplos de otros, etc. Aunque se inventó

Más detalles

Teoría de Números. UCR ECCI CI-1204 Matemática Discretas Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Teoría de Números. UCR ECCI CI-1204 Matemática Discretas Prof. M.Sc. Kryscia Daviana Ramírez Benavides UCR ECCI CI-1204 Matemática Discretas Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción Esta presentación brinda una breve revisión de nociones de la teoría elemental de números, concernientes

Más detalles

Álgebra I Práctica 3 - Números enteros (Parte 1)

Álgebra I Práctica 3 - Números enteros (Parte 1) Divisibilidad Álgebra I Práctica 3 - Números enteros (Parte 1 1. Decidir cuáles de las siguientes afirmaciones son verdaderas para todo a, b, c Z i a b c a c y b c, ii 4 a a, iii a b a ó b, iv 9 a b 9

Más detalles

Práctica del Primer Trimestre. 4º ESO A

Práctica del Primer Trimestre. 4º ESO A Práctica del Primer Trimestre. 4º ESO A La práctica del primer trimestre se divide en tres partes: Actividades I, II, III y Proyecto Final. En el presente documento es un tutorial del programa wxmaxima,

Más detalles

Introducción a la Matemática Discreta. Grado en Ingeniería Informática. Informática de Computadores. 22 de Diciembre de Grupo 3.

Introducción a la Matemática Discreta. Grado en Ingeniería Informática. Informática de Computadores. 22 de Diciembre de Grupo 3. Introducción a la Matemática Discreta. Grado en Ingeniería Informática. Informática de Computadores. 22 de Diciembre de 2014. Grupo 3. Nombre: Ejercicio 1 (1.5 puntos) a) Hallar una fórmula explícita para

Más detalles

DIVISIBILIDAD. El cero es múltiplo de cualquier número. El producto de cualquier número por 0 es igual a 0

DIVISIBILIDAD. El cero es múltiplo de cualquier número. El producto de cualquier número por 0 es igual a 0 DIVISIBILIDAD MÚLTIPLOS DE UN NÚMERO Definición: Un número es múltiplo de otro cuando lo contiene un número exacto de veces, es decir, cuando la división del primero entre el segundo es exacta. 10 es múltiplo

Más detalles

Traduciendo el absurdo enunciado a problema matemático puro, sería muy corto:

Traduciendo el absurdo enunciado a problema matemático puro, sería muy corto: Desafío 113: Recortes. Traduciendo el absurdo enunciado a problema matemático puro, sería muy corto: Si trabajamos en aritmética modular, Está definida la división para todos los divisores de 1 a 100 cuando

Más detalles

open green road Guía Matemática MÚLTIPLOS Y DIVISORES profesor: Nicolás Melgarejo .cl

open green road Guía Matemática MÚLTIPLOS Y DIVISORES profesor: Nicolás Melgarejo .cl Guía Matemática MÚLTIPLOS Y DIVISORES profesor: Nicolás Melgarejo.cl 1. Múltiplos y divisibilidad Se dice que un número a es divisible por otro b si al dividir a con b, el residuo o resto es cero, dicho

Más detalles

1. Escribir los Z del 7 al 23: 2. Representar en la recta real los siguientes Z: 5, -4, 2, 0, -1, 1

1. Escribir los Z del 7 al 23: 2. Representar en la recta real los siguientes Z: 5, -4, 2, 0, -1, 1 FICHA 1: Concepto de nº entero, múltiplo y divisor, nº primo Concepto de nº entero (Z): 1. Escribir los Z del 7 al 23: 2. Representar en la recta real los siguientes Z: 5, -4, 2, 0, -1, 1 A la vista de

Más detalles

Tema 3: Expresiones algebraicas

Tema 3: Expresiones algebraicas .1 Polinomios Tema : Expresiones algebraicas Determina cuáles de las siguientes expresiones son polinomios. Cuando lo sean, dí cuáles son sus monomios(términos), su grado, término principal, término independiente,

Más detalles

Criptografía de clave pública Sistemas basados en el problema de la mochila

Criptografía de clave pública Sistemas basados en el problema de la mochila de la la La Criptografía de clave pública Sistemas basados de la DSIC - UPV (DSIC - UPV) de la 1 / 21 Contenidos del tema de la la La 1 Características de los sistemas de clave pública Principios para

Más detalles

El primer día del mes es juves. Cuál es el 29 día del mes?

El primer día del mes es juves. Cuál es el 29 día del mes? Divisibilidad. Para resolver juntos: Un cartel tiene 4 luces de colores Amarillo, Verde; Rojo; Blanco. Se van encendiendo, por minuto. El primer minuto, la luz amarilla, el segundo minuto la verde, el

Más detalles

2. Obtener, por ensayo y error, una aproximación del entero más grande. Sugerencia: leer n y escribir n y n+1. (Puede ser muy largo el ensayo).

2. Obtener, por ensayo y error, una aproximación del entero más grande. Sugerencia: leer n y escribir n y n+1. (Puede ser muy largo el ensayo). En los ejercicios, cuando se hable de un entero (un número entero), se trata de un entero del lenguaje C. Por ejemplo, 10 20 es un número entero en el sentido matemático, pero muy posiblemente este entero

Más detalles

Las demostraciones de las propiedades (1) y (2) quedan a cargo del estudiante.

Las demostraciones de las propiedades (1) y (2) quedan a cargo del estudiante. Sección II CONCEPTOS PREVIOS.. Definición.. Se dice que un número entero! es divisible por otro entero! (distinto de cero) si existe un tercer entero! tal que! =!!. Se expresa como!!, que se lee! es divisible

Más detalles

MATEMÁTICAS 2º DE ESO LOE

MATEMÁTICAS 2º DE ESO LOE MATEMÁTICAS 2º DE ESO LOE TEMA I: NÚMEROS ENTEROS (parte 3/3) Los divisores de un número entero. Descomposición factorial de un número entero. Máximo común divisor (m.c.d.) de dos o más números enteros.

Más detalles

1º ESO B Contenidos para la convocatoria extraordinaria de septiembre

1º ESO B Contenidos para la convocatoria extraordinaria de septiembre 1º ESO B 2011-2012 Contenidos para la convocatoria extraordinaria de septiembre U1 Los números naturales Lectura y escritura de números Aproximación por redondeo Resolver problemas con números naturales

Más detalles

Bloque 1. Aritmética y Álgebra

Bloque 1. Aritmética y Álgebra Bloque 1. Aritmética y Álgebra Los números naturales Los números naturales Los números naturales se definen como: N = { 0,1, 2, 3, 4, 5,...,64, 65, 66,...,1639,1640,1641,1642,... } El sistema de numeración

Más detalles

UNIDAD 2 Polinomios y fracciones algebraicas

UNIDAD 2 Polinomios y fracciones algebraicas UNIDAD Polinomios y fracciones algebraicas.. Operaciones básicas con polinomios. Realiza las siguientes sumas y restas: a) ( + + ) + ( 4 + + ) b) ( 4 + + ) + ( 4 + + ) c) ( 4 + + ) (5 + + ) d) ( + + 6)

Más detalles

MATEMÁTICAS TEMA 50. Polinomios. Operaciones. Fórmula de Newton. Divisibilidad de polinomios. Fracciones algebraicas

MATEMÁTICAS TEMA 50. Polinomios. Operaciones. Fórmula de Newton. Divisibilidad de polinomios. Fracciones algebraicas MATEMÁTICAS TEMA 50 Polinomios. Operaciones. Fórmula de Newton. Divisibilidad de polinomios. Fracciones algebraicas ÍNDICE. 1. Introducción. 2. El anillo de los polinomios. 3. Potencia de un polinomio.

Más detalles

1. Escribir los Z del 7 al 23: 2. Ordenar de menor a mayor los siguientes Z: -34, 23, 7, 100, -33, 0, 24, -2, 14, -1, 132, -1000

1. Escribir los Z del 7 al 23: 2. Ordenar de menor a mayor los siguientes Z: -34, 23, 7, 100, -33, 0, 24, -2, 14, -1, 132, -1000 FICHA 1: Concepto de nº entero, múltiplo y divisor, nº primo Concepto de nº entero (Z): 1. Escribir los Z del 7 al 23: 2. Ordenar de menor a mayor los siguientes Z: -34, 23, 7, 100, -33, 0, 24, -2, 14,

Más detalles

Ecuaciones Diofánticas

Ecuaciones Diofánticas 2 Ecuaciones Diofánticas (c) 2011 leandromarin.com 1. Introducción Una ecuación diofántica es una ecuación con coeficientes enteros y de la que tenemos que calcular las soluciones enteras. En este tema

Más detalles

TEMA 6: DIVISIÓN DE POLINOMIOS RAÍCES MATEMÁTICAS 3º ESO

TEMA 6: DIVISIÓN DE POLINOMIOS RAÍCES MATEMÁTICAS 3º ESO TEMA 6: DIVISIÓN DE POLINOMIOS RAÍCES MATEMÁTICAS 3º ESO 1. División de polinomios Dados dos polinomios P (el dividendo) y D (el divisor), dividir P entre D es encontrar dos polinomios Q (el cociente)

Más detalles

RSA: Implementación. Ya resolvimos (3), ahora vamos a resolver (2). IIC3242 Complejidad Probabiĺıstica 28 / 77

RSA: Implementación. Ya resolvimos (3), ahora vamos a resolver (2). IIC3242 Complejidad Probabiĺıstica 28 / 77 RSA: Implementación Para poder implementar RSA necesitamos algoritmos eficientes para los siguientes problemas: (1) Generar primos P y Q (2) Generar números e y d tales que e d modφ(n) = 1 (3) Calcular

Más detalles

Fracciones. Tipos de fracciones. Impropia. El numerador es más grande o igual que el denominador. 7 3, 9 4, 11 6

Fracciones. Tipos de fracciones. Impropia. El numerador es más grande o igual que el denominador. 7 3, 9 4, 11 6 Fracciones Es una expresión que representa una o varias partes de la unidad. Numerador y Denominador El denominador indica en cuantas partes se divide la unidad y el numerador indica cuantas partes se

Más detalles

Cómo resolver ecuaciones y sistemas de ecuaciones en congruencias?

Cómo resolver ecuaciones y sistemas de ecuaciones en congruencias? Cómo resolver ecuaciones y sistemas de ecuaciones en congruencias? Álgebra I Mayo de 2018 Marcelo Rubio Abstract En estas notas ofrecemos una guía para resolver ecuaciones y sistemas lineales de ecuaciones

Más detalles

(n, a)(m, b) = (nm, ma + nb) (a, b) + (c, d) = (a + c, b + d) y (a, b)(c, d) = (ac, bd)

(n, a)(m, b) = (nm, ma + nb) (a, b) + (c, d) = (a + c, b + d) y (a, b)(c, d) = (ac, bd) TEMA 3 Anillos. Dominios euclídeos. Ejercicio 3.1. Sea X un conjunto no vacío y R = P(X), el conjunto de partes de X. Si se consideran en R las operaciones: A + B = (A B) (A B) A B = A B demostrar que

Más detalles

Estructura de datos y de la información Boletín de problemas - Tema 9

Estructura de datos y de la información Boletín de problemas - Tema 9 Estructura de datos y de la información Boletín de problemas - Tema 9 1. Dada la siguiente función recursiva: void F(char c) { if (( A

Más detalles

MÚLTIPLOS, DIVISORES Y DIVISIBILIDAD

MÚLTIPLOS, DIVISORES Y DIVISIBILIDAD MÚLTIPLOS, DIVISORES Y DIVISIBILIDAD 1 DIVISIBILIDAD La divisibilidad es una parte de la teoría de los números que analiza cada una de las condiciones que debe tener un número para que sea divisible por

Más detalles

ARITMÉTICA II. Adolfo Quirós. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso

ARITMÉTICA II. Adolfo Quirós. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso ARITMÉTICA II COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2010-2011 LA ÚLTIMA PREGUNTA DEL OTRO DÍA: CUÁNTOS NÚMEROS PRIMOS HAY? Si nos referimos al cardinal del conjunto P de primos,

Más detalles

Bloque 1. Tema 3 Divisibilidad, máximo común divisor y mínimo común múltiplo. Potencias y raíces.

Bloque 1. Tema 3 Divisibilidad, máximo común divisor y mínimo común múltiplo. Potencias y raíces. ÍNDICE Bloque 1. Tema 3 Divisibilidad, máximo común divisor y mínimo común múltiplo. 1. Divisibilidad 1.1. Múltiplos de un número natural 1.2. Divisores de un número natural 1.2.1. Cálculo de los divisores

Más detalles

Introducción a la Teoría de Números

Introducción a la Teoría de Números Introducción a la Teoría de Números Elaborado por: Jeff Maynard Guillén Eliminatoria II Julio, 2011 Introducción a la Teoría de Números A manera de repaso vamos a recordar algunos conjuntos N = {1, 2,

Más detalles

1. NÚMEROS PRIMOS Y COMPUESTOS.

1. NÚMEROS PRIMOS Y COMPUESTOS. . NÚMEROS PRIMOS Y COMPUESTOS. De acuerdo a las propiedades ya vistas de los divisores, sabemos que: todo natural no nulo es divisor de sí mismo es divisor de todo número natural. Ahora: el natural tiene

Más detalles

Teoría de Números. Divisibilidad. Olimpiada de Matemáticas en Tamaulipas

Teoría de Números. Divisibilidad. Olimpiada de Matemáticas en Tamaulipas Teoría de Números Divisibilidad Olimpiada de Matemáticas en Tamaulipas 1. Introducción Divisibilidad es una herramienta de la aritmética que nos permite conocer un poco más la naturaleza de un número,

Más detalles

Manos a la obra: Recursión, división y listas

Manos a la obra: Recursión, división y listas Manos a la obra: Recursión, división y listas Taller de Álgebra I Cuatrimestre de verano de 2015 Calentando motores La clase pasada vimos ejemplos de definiciones recursivas. Hoy vamos a continuar con

Más detalles

2 Divisibilidad. 1. Múltiplos y divisores

2 Divisibilidad. 1. Múltiplos y divisores 2 Divisibilidad 1. Múltiplos y divisores Calcula mentalmente e indica, de las siguientes divisiones, cuáles son exactas o enteras: a) 125 : 5 b) 28 : 6 c) 140 : 7 d) 23 400 : 100 P I E N S A Y C A L C

Más detalles

Álgebra Básica 11/01/2017 Grado en Matemáticas. Grupo C. Curso 2016/2017

Álgebra Básica 11/01/2017 Grado en Matemáticas. Grupo C. Curso 2016/2017 Álgebra Básica 11/01/2017 Grado en Matemáticas. Grupo C. Curso 2016/2017 SOLUCIONES Ejercicio 1 (5 puntos). Sea A un anillo conmutativo y K un cuerpo. a) Definir: i) Unidad en A. ii) Elemento irreducible

Más detalles

Aritmética Entera MATEMÁTICA DISCRETA I. F. Informática. UPM. MATEMÁTICA DISCRETA I () Aritmética Entera F. Informática.

Aritmética Entera MATEMÁTICA DISCRETA I. F. Informática. UPM. MATEMÁTICA DISCRETA I () Aritmética Entera F. Informática. Aritmética Entera MATEMÁTICA DISCRETA I F. Informática. UPM MATEMÁTICA DISCRETA I () Aritmética Entera F. Informática. UPM 1 / 18 Estructura de los números enteros Estructura de los números enteros Definición

Más detalles

Tema 2 Aritmética modular

Tema 2 Aritmética modular 1 Tema 2 Aritmética modular 2.1 Relaciones de equivalencia Definición 2.1 Una relación que verifique las propiedades reflexiva, simétrica y transitiva se denomina relación de equivalencia. Dos elementos

Más detalles

Álgebra y Matemática Discreta

Álgebra y Matemática Discreta Álgebra y Matemática Discreta Sesión de Teoría 3 (c) 2013 Leandro Marín, Francisco J. Vera, Gema M. Díaz 23 Sep 2013-29 Sep 2013 Congruencias Definición Congruencia Módulo n Sea n 1 un número entero. Diremos

Más detalles

Índice Máximo Común Divisor Aritmética Modular Polinomios Cuerpos. Álgebra y Matemática Discreta Sesión de Prácticas 2.

Índice Máximo Común Divisor Aritmética Modular Polinomios Cuerpos. Álgebra y Matemática Discreta Sesión de Prácticas 2. Álgebra y Matemática Discreta - 2012 Sesión de Prácticas 2 Leandro Marín Dpto. de Matemática Aplicada Facultad de Informática 2012 1 Máximo Común Divisor 2 Aritmética Modular 3 Polinomios 4 Cuerpos Definición

Más detalles

EJERCICIOS DE POLINOMIOS

EJERCICIOS DE POLINOMIOS EJERCICIOS DE POLINOMIOS NOMBRE:... Nº:... º....- Escribe el grado, el número de términos y el nombre (monomio, binomio, trinomio, polinomio) que recibe cada una de las siguientes expresiones algebraicas:

Más detalles

Gu ıa Departamento. Matem aticas U.V.

Gu ıa Departamento. Matem aticas U.V. Universidad de Valparaíso Instituto de Matemáticas 1. Determinar el cociente y el residuo de 541 y de -541al dividir por 17 391 y -391 al dividir por 17 Guía de Teoría de Números 2. Sea a Z,n N comparar

Más detalles

Divisibilidad y primos

Divisibilidad y primos Divisibilidad y primos Números primos y compuestos Entre los números naturales podemos distinguir números primeros y compuestos. Un número es compuesto si es igual al producto de dos números naturales

Más detalles

SOLUCIONES A LOS EJERCICIOS BÁSICOS POLINOMIOS. VALOR NUMÉRICO

SOLUCIONES A LOS EJERCICIOS BÁSICOS POLINOMIOS. VALOR NUMÉRICO Unidad : Polinomios y fracciones algebraicas SOLUCIONES A LOS EJERCICIOS BÁSICOS POLINOMIOS. VALOR NUMÉRICO. De las siguientes epresiones indicar las que son polinomios o pueden transformarse en polinomios

Más detalles

Capítulo 3: El anillo de los números enteros

Capítulo 3: El anillo de los números enteros Capítulo 3: El anillo de los números enteros Miguel Ángel Olalla Acosta miguelolalla@us.es Departamento de Álgebra Universidad de Sevilla Noviembre de 2016 Olalla (Universidad de Sevilla) El anillo de

Más detalles

Un tercer ejemplo: verificación de primalidad

Un tercer ejemplo: verificación de primalidad Un tercer ejemplo: verificación de primalidad Vamos a ver un algoritmo aleatorizado para verificar si un número es primo. I Este algoritmo es más eficiente que los algoritmos sin componentes aleatorias

Más detalles

MÚLTIPLOS Y DIVISORES DE UN NÚMERO (Apuntes Tema 2 y parte del Tema 3)

MÚLTIPLOS Y DIVISORES DE UN NÚMERO (Apuntes Tema 2 y parte del Tema 3) . Múltiplos de un número MÚLTIPLOS Y DIVISORES DE UN NÚMERO (Apuntes Tema y parte del Tema ) Un número es múltiplo de otro número cuando es el resultado de multiplicar el segundo por cualquier número natural

Más detalles

FICHAS REPASO 3º ESO. Para restar números enteros, se suma al minuendo el opuesto del sustraendo y después se aplican las reglas de la suma.

FICHAS REPASO 3º ESO. Para restar números enteros, se suma al minuendo el opuesto del sustraendo y después se aplican las reglas de la suma. FICHAS REPASO º ESO OPERACIONES CON NÚMEROS ENTEROS El valor absoluto de un número entero es el número natural que resulta al prescindir del signo. Por ejemplo, el valor absoluto de es y el valor absoluto

Más detalles

Algoritmo de Euclides y ecuaciones de congruencia

Algoritmo de Euclides y ecuaciones de congruencia Algoritmo de Euclides y ecuaciones de congruencia Taller de Álgebra I Primer cuatrimestre de 2017 Algoritmo de Euclides El algoritmo de Euclides calcula el máximo común divisor entre dos números a, b Z.

Más detalles

Cálculo Infinitesimal y Numérico. E.T.S. de Ingeniería Informática. Universidad de Sevilla1

Cálculo Infinitesimal y Numérico. E.T.S. de Ingeniería Informática. Universidad de Sevilla1 Cálculo Infinitesimal y Numérico. E.T.S. de Ingeniería Informática. Universidad de Sevilla1 Tema 2: Interpolación. Ejercicios y Problemas 1. Ejercicios Ejercicio 1. 1. Dar, sin desarrollar, los polinomios

Más detalles

NÚMEROS PRIMOS Y COMPUESTOS

NÚMEROS PRIMOS Y COMPUESTOS LECCIÓN 5: NÚMEROS PRIMOS Y COMPUESTOS 5.1.- NÚMEROS PRIMOS Y COMPUESTOS Un número se puede descomponer en un producto de dos factores buscando un divisor de dicho número y dividiéndolo entre el divisor

Más detalles

Práctica 4. Contenido: Estructuras de control iterativas (while, do-while, for). Sentencias break y continue.

Práctica 4. Contenido: Estructuras de control iterativas (while, do-while, for). Sentencias break y continue. CI-2125 Computación I Práctica 4 Contenido: Estructuras de control iterativas (while, do-while, for). Sentencias break y continue. 1. Suponga que un estudiante cambia 5 barajitas en un día. Cada día siguiente

Más detalles

ESCUELA PREPARATORIA OFICIAL NO.16 MATERÍA: PENSAMIENTO NUMÉRICO Y ALGEBRAICO I

ESCUELA PREPARATORIA OFICIAL NO.16 MATERÍA: PENSAMIENTO NUMÉRICO Y ALGEBRAICO I ARITMÉTICA 1. Números naturales 2. Divisibilidad 3. Números enteros 4. Números decimales 5. Fracciones y números racionales 6. Proporcionalidad 7. Sistema métrico decimal 8. Sistema sexagesimal 9. Números

Más detalles

Reglas de divisibilidad

Reglas de divisibilidad Reglas de divisibilidad 1. La Criba de Eratóstenes. Se trata de un algoritmo que nos permite calcular todos los números primos menores que un número natural n dado, que en nuestro caso va a ser 100. Comenzamos

Más detalles

Matemática y programación

Matemática y programación NI FCC - EI FING UDELAR CES ANEP 2014 Clase 1 Breve historia la ciencia de la computación o informática programación: paradigmas filosóficos en el sistema educativo Este curso Problemas, soluciones, implementaciones

Más detalles

FÓRMULA PARA OBTENER NÚMEROS DE CARMICHAEL CON n FACTORES PRIMOS, DONDE n 3.

FÓRMULA PARA OBTENER NÚMEROS DE CARMICHAEL CON n FACTORES PRIMOS, DONDE n 3. FÓRMULA PARA OBTENER NÚMEROS DE CARMICHAEL CON n FACTORES PRIMOS, DONDE n 3 Un entero positivo es un número de Carmichael si ocurre que es un número compuesto libre de cuadrados y cumple la congruencia

Más detalles

Algoritmo de Euclides

Algoritmo de Euclides Algoritmo de Euclides Melanie Sclar Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires AED III Melanie Sclar (UBA) Algoritmo de Euclides AED III 1 / 21 Ejercicio 2.8 de la práctica Ejercicio

Más detalles

Este material es producido por José Arturo Barreto, M,A,, en Caracas, Venezuela,

Este material es producido por José Arturo Barreto, M,A,, en Caracas, Venezuela, Este material es producido por José Arturo Barreto, M,A,, en Caracas, Venezuela, mailto:josearturobarreto@yahoo,com Octubre 29/2002 Prueba de Aptitud Académica. Habilidad Numérica. Guía # 2. Relación entre

Más detalles

Unidad 4 ECUACIONES DE GRADO TRES O SUPERIOR

Unidad 4 ECUACIONES DE GRADO TRES O SUPERIOR Profesor: Blas Torres Suárez. Versión.0 Unidad 4 ECUACIONES DE GRADO TRES O SUPERIOR Competencias a desarrollar: Aplicar el teorema del residuo, para hallar el residuo de un cociente entre un polinomio

Más detalles

Matemáticas B 4º E.S.O. Polinomios y fracciones algebraicas. 1. x 5x 2 6 5

Matemáticas B 4º E.S.O. Polinomios y fracciones algebraicas. 1. x 5x 2 6 5 Matemáticas B 4º E.S.O. Polinomios y fracciones algebraicas. 1 POLINOMIOS Y FRACCIONES ALGEBRAICAS.1 COCIENTE DE POLINOMIOS COCIENTE DE MONOMIOS El cociente de un monomio entre otro monomio de grado igual

Más detalles