2. Fuerzas fundamentales y aparentes

Tamaño: px
Comenzar la demostración a partir de la página:

Download "2. Fuerzas fundamentales y aparentes"

Transcripción

1 Introducción a la Dinámica de la Atmósfera Fuerzas fundamentales y aparentes Los movimientos de la atmósfera están governados por las leyes físicas fundamentales de conservación de masa, momento y energía. Para derivar esas ecuaciones es necesario aplicar esos principios a un elemento de volumen de la atmósfera. No obstante, en este capiítulo primero discutiremos la naturaleza de las fuerzas que influyen los movimientos. Las fuerzas pueden ser clasificadas como fuerzas de volumen y fuerzas de superficie. Las fuerzas de volumen actúan en el centro de masa de una parcela de fluído y tienen magnitudes proporcionales a la masa de la parcela (por ej. la gravedad). Las fuerzas de superficie actúan sobre la frontera que separa el elemento de volumen de su entorno (por ej. la fuerza de presión) y su magnitud es independiente de la masa de la parcela. Para movimientos atmosféricos de interés meteorológico las fuerzas mas importantes son la fuerza de presión, la fuerza gravitacional y la fricción. Estas son las fuerzas fundamentales. Si, como es usual, el movimiento es referido a un sistema de coordenadas rotando con la Tierra, la segunda ley de Newton se aplica incluyendo dos fuerzas aparentes: la centrífuga y la de Coriolis. 2.1 Fuerza gradiente de presión Consideremos las fuerzas actuando sobre un elemento de volumen como muestra la figura 2.1 Figura 2.1 Fuerza de presión actuando sobre un elemento de volumen.

2 Introducción a la Dinámica de la Atmósfera La fuerza neta en la direccion x es: δf x = p δyδz - (p + δp) δyδz δf x = -δp δy δz Pero y por lo tanto Para hallar la aceleración dividimos entre la densidad Análogamente en las otras direcciones. Por lo tanto la fuerza gradiente de presión total actuando sobre la parcela puede ser expresada como 2.2 Aceleración gravitatoria F M = 1 p La aceleración gravitatoria por unidad de masa es F g M =g = G M E f r r 3 donde G=6.66x10 11 m 2 /kg 2 es la constante gravitatoria y M E =5.988x10 24 kg es la masa de la Tierra. El vector r está determinado por el centro de la Tierra y la parcela en la atmósfera. En ausencia de rotación las fuerzas gravitacionales mantienen la materia unida formando un cuerpo esférico con el material más denso en el centro. Debido a la

3 Introducción a la Dinámica de la Atmósfera rotacion, cada parcela de aire está sujeta a una fuerza centrípeta con sentido hacia el eje de rotación. Para aplicar la segunda ley de Newton en un sistema de coordenadas que se mueva con la Tierra es necesario incluir una fuerza aparente: la fuerza centrífuga. La fuerza centrífuga causa una fuerza hacia afuera del eje de rotación distorsionando el equilibrio esférico de forma que el planeta asume una forma achatada en los polos. La fuerza resultante de las fuerzas de gravedad y centrífuga tiene una dirección que apunta a la vertical local (ver figura 2.2), y no hacia el centro de la Tierra. Por simplicidad llamaremos fuerza gravitacional a la resultante de la fuerza gravitatoria y centrífuga g = g f - Ω x (Ω x r) (Notemos que debido a inhomogeneidades en la distribución de rocas y magma la verdadera fuerza gravitacional no está dirigida hacia el centro de la Tierra.) La superficie que se obtiene se llama un geoide y puede ser interpretado como la superficie de un océano en reposo. Esta superficie virtual es perpendicular en todo punto a la direccion de la gravedad (neta) y forma una superficie equipotencial, o sea que una parcela moviéndose en esa superficie no sufre cambios en la energía potencial. El valor de la energía potencial por unidad de masa se llama geopotencial y el geoide es por lo tanto una superficie de geopotencial constante. Figura 2.3 Fuerza gravitatoria neta resultante de la fuerza gravitatoria y la centrífuga.

4 Introducción a la Dinámica de la Atmósfera La distorsión causada por la fuerza centrífuga es muy pequeña: el radio terrestre es de 6378 km en el ecuador y 6351 km en los polos. Por lo tanto la Tierra puede considerarse como una esfera en la mayoria de los problemas meteorológicos. 2.3 Fuerza de Fricción Todo fluído real está sujeto a una fricción interna entre las partículas que lo forman (viscocidad molecular) que causa una resistencia a fluir. La derivación del termino de fricción es análogo al de la fuerza de presión. Consideremos la figura 2.4 donde consideramos un elemento diferencial de volumen de lados dxdy. τ yy (x,y) τ xy (x,y) τ yx (x,y) dy τ xx (x-dx,y) τ xx (x,y) τ yx (x-dx,y) τ xy (x,y-dy) τ yy (x,y-dy) Figura 2.4 Esfuerzos sobre un elemento de volumen bidimensional. Por ejemplo, xy indica el esfuerzo realizado en la dirección x por un cortante de la velocidad según x en la dirección y. El esfuerzo neto aplicado al elemento de volumen en la direccion x es xy x, y dx xy x, y dy dx xx x, y dy xx x dx, y dy dx

5 Introducción a la Dinámica de la Atmósfera donde el esfuerzo τ depende de la naturaleza del fluido. Notar que τ xy (x,y) y τ yx (x,y) tienen direcciones diferentes pero la misma amplitud: si estos esfuerzos no tuvieran la misma magnitud el elemento de volumen infinitesimal estaría sujeto a un torque que no podría ser balanceado por un torque interno. Entonces, dividiendo entre dxdy el esfuerzo neto en la direccion x se puede escribir como x y y x x x. Para un fluido newtoniano los esfuerzos viscosos son proporcionales a los gradientes de velocidad (figura 2.5). Si el fluído es incompresible podemos escribir donde μ es el coeficiente de viscocidad dinamica. Notar que los esfuerzos xy, xz, yz son términos de deformación por esfuerzo de corte vistos en la sección Figura 2.5 Relación entre esfuerzo y gradiente de velocidades para un fluido newtoniano Para la atmósfera μ se puede considerar constante y podemos simplificar las

6 Introducción a la Dinámica de la Atmósfera expresiones anteriores. Se define el coeficiente de viscocidad cinemática = que tiene un valor empírico de 1.46 x 10-5 m 2 /s en la atmósfera, y obtenemos las siguientes expresiones para las componentes de fricción por unidad de masa en las tres coordenadas F rx = 2 u x 2 2 u y 2 2 u z 2 F ry = 2 v x 2 2 v y 2 2 v z 2 F rx = 2 w x 2 2 w y 2 2 w z 2 En la tropósfera es tan pequeña que la viscosidad molecular es despreciable excepto en una capa de unos milímetros justo arriba de la superficie de la Tierra donde el cortante vertical es muy grande. En las cercanías de la superficie las moléculas chocan contra ella y le transfieren momento. Moléculas mas alejadas colisionan con las moléculas que chocaron con la superficie transfiriendo el cambio de momento al interior del fluído. Esta trasnferencia de momento por viscosidad molecular es muy ineficiente ya que las moléculas viajan micrómetros entre colisiones (figura 2.6) Figura Moléculas colisionan con la superficie y entre ellas transfiriendo el momento del fluído a la superficie, disminuyendo la velocidad el flujo. Por encima de esta capa cercana a la superficie el momento es transferido fundamentalmente por los movimientos turbulentos. El efecto de los movimientos turbulentos puede visualizarse considerando al fluído como compuesto de torbellinos que se mueven y transfieren momento hacia o desde la superficie en forma análoga a las moléculas en la viscocidad molecular. Es posible definir una longitud de mezcla que es el camino promedio que recorre un torbellino antes de mezclarse con el entorno y

7 Introducción a la Dinámica de la Atmósfera transferir momento. Con este ajuste los efectos dispativos de la turbulencia de pequeña escala puede ser representado definiendo una viscocidad turbulenta K. 2.4 Fuerza de Coriolis Supongamos que se le da un impulso hacia el este a una parcela de aire y que la fricción es despreciable. En esas circunstancias la parcela se mueve más rápido que la Tierra por lo que la fuerza centrífuga actuando sobre la parcela es Fcen= u R 2 R= 2 R 2 u R R u2 R R 2 donde u/r es el cambio incremental en la velocidad angular debido al impulso inicial. El primer término es la fuerza centrífuga, incluída en la gravedad efectiva. Los otros términos son fuerzas que van en la dirección de R (perpendicular al eje de rotación). Para escalas sinópticas u << ΩR por lo que el tercer término es despreciable comparado con el segundo. El segundo término representa la fuerza de Coriolis por unidad de masa que resulta de un movimiento a lo largo de un círculo de latitud y tiene dos componentes, una vertical y otra horizontal (figura 2.7) que se pueden escribir como dw =2 u cos dt dv = 2 u sin dt donde es la latitud. Definiendo f =2 sin como el parámetro de Coriolis es dv posible reescribir las fuerzas horizontales resultantes como dt = f u lo cual muestra que dado un impulso inicial hacia el este la fuerza de Coriolis tenderá a desviar la parcela hacia el norte (H.S., recordemos que f<0 en el H.S.).

8 Introducción a la Dinámica de la Atmósfera Figura Para movimientos este-oeste relativos a la Tierra la fuerza de Coriolis aparece como un exceso de fuerza centrífuga. Consideremos ahora que el movimiento inicial de la parcela es hacia el ecuador. En la ausencia de torques en la dirección este-oeste la parcela debe conservar su momento angular. Puesto que la distancia R al eje de rotación cambia en el desplazamiento, la velocidad angular absoluta u R debe cambiar para que la parcela conserve su momento angular. Como Ω es constante, debe aparecer una velocidad relativa u y la parcela se moverá como si existiera una fuerza actuando en la dirección zonal. Si δu es la velocidad hacia el este en el nuevo radio de rotación R + δr obtenemos R 2 = u R R R R 2 R 2 = u R R R 2 2 R R R 2 Como δr y δu son pequeños se desprecia el producto de esos términos y se obtiene

9 Introducción a la Dinámica de la Atmósfera R 2 = u R R R 2 2 R R R 2 = R 2 2 R R R 2 u R R 2 R R= R 2 u R R O sea que u= 2 R. El aumento de velocidad δu puede ser inducido por movimientos meridionales o verticales pues el aumento en el radio de rotación tiene componentes en esas direcciones. Para movimientos meridionales sin = R y (figura 2.8) y u=2 sin y. De la figura 2.8 puede verse que y=a y Por lo tanto u=2 sin a du d =2 sin a dt dt Como v=a d du podemos escribir dt dt =f v, y una parcela moviéndose hacia el ecuador en el H.S. tenderá a torcerse hacia el oeste. Para movimiendos verticales vale cos = R z. y u= 2 cos z. Dividiendo entre δt y tomando el límite se obtiene du dz = 2 cos = 2 cos w dt dt

10 Introducción a la Dinámica de la Atmósfera Figura 2.8 Efecto de movimientos meridionales en el radio de rotación R. Movimientos de ascenso o hacia el ecuador producen un aumento de R. Entonces la expresión completa para la fuerza de Coriolis está dada por du =f v 2 w cos dt dv dt = fu dw =2 u cos dt Como punto final es bueno remarcar que la fuerza de Coriolis siempre actúa en forma perpendicular a la dirección del movimiento y por lo tanto no realiza trabajo. Referencias An Introduction to Dynamical Meteorology, Holton, Mid-Latitude Atmospheric Dynamics, Martin, 2006.

2. Fuerzas fundamentales y aparentes

2. Fuerzas fundamentales y aparentes Introducción a la Dinámica de la Atmósfera 2014 1 2. Fuerzas fundamentales y aparentes Los movimientos de la atmósfera están gobernados por las leyes físicas fundamentales de conservación de masa, momento

Más detalles

Fenómenos atmosféricos

Fenómenos atmosféricos Fenómenos atmosféricos Escalas horizontales y temporales de fenómenos atmosféricos Fenómenos oceánicos Dinámica de la atmósfera y los océanos Ecuaciones de movimiento Ecuacion de conservacion de masa

Más detalles

ECUACION DEL MOVIMIENTO EN LA ATMOSFERA

ECUACION DEL MOVIMIENTO EN LA ATMOSFERA BOLILLA 7 Atmósfera en Movimiento ECUACION DEL MOVIMIENTO EN LA ATMOSFERA Las parcelas de aire se mueven en la horizontal y en la vertical, con rapidez variable. El viento se asocia con la componente horizontal.

Más detalles

Dinámica Oceánica. suma de fuerzas = masa x aceleración

Dinámica Oceánica. suma de fuerzas = masa x aceleración gradientes de presión: altura de la columna de agua y/o variaciones de la densidad del fluido viscosidad: efectos del viento + fricción interna + fondo + costas gravitacionales aceleración = dv/dt Dinámica

Más detalles

Dinámica de fluidos: Fundamentos

Dinámica de fluidos: Fundamentos Capítulo 2 Dinámica de fluidos: Fundamentos Los fluidos, como genéricamente llamamos a los líquidos y los gases, nos envuelven formando parte esencial de nuestro medio ambiente. El agua y el aire son los

Más detalles

DINÁMICA DE FLUIDOS 1. Propiedades de los Fluidos. 2. Cinemática de fluidos.

DINÁMICA DE FLUIDOS 1. Propiedades de los Fluidos. 2. Cinemática de fluidos. DINÁMICA DE FLUIDOS 1. Propiedades de los Fluidos. Concepto de fluido. Fluido ideal. Fluidos reales. Viscosidad Tensión superficial. Capilaridad Estática. Presión en un punto. Ecuación general de la estática.

Más detalles

Ley de Newton. Masa Acceleración = Fuerza. ρ dv!" = F!"

Ley de Newton. Masa Acceleración = Fuerza. ρ dv! = F! Ley de Newton Masa Acceleración = Fuerza ρ dv!" dt = F!" Fuerzas F = m a F! m = a = F / m F Presión + F Coriolis + F gravedad + F marea + F fricción! Fx m = F Presión fv + F gravedad + F marea + F fricción!

Más detalles

UNIVERSIDAD AUTÓNOMA DE SINALOA FACULTAD DE AGRONOMÍA HIDRÁULICA

UNIVERSIDAD AUTÓNOMA DE SINALOA FACULTAD DE AGRONOMÍA HIDRÁULICA UNIVERSIDAD AUTÓNOMA DE SINALOA FACULTAD DE AGRONOMÍA HIDRÁULICA UNIDAD III. HIDROCINEMÁTICA Introducción. La hidrocinemática o cinemática de los líquidos se ocupa del estudio de las partículas que integran

Más detalles

Caídas de presión en tuberías horizontales

Caídas de presión en tuberías horizontales Caídas de presión en tuberías horizontales PROBLEMAS 1. Obtener las ecuaciones fenomenológicas que muestre la dependencia de la caída de presión con: Longitud Diámetro Velocidad del fluido Para las siguientes

Más detalles

Tema 9: Introducción a la Dinámica

Tema 9: Introducción a la Dinámica Tema 9: Introducción a la Dinámica 1º Ingenieros Aeronáuticos Escuela Técnica Superior de Ingenieros Universidad de Sevilla 1 Situación en la asignatura Primer Parcial Introducción Mecánica Cinemática

Más detalles

Dinámica de una partícula

Dinámica de una partícula Dinámica de una partícula W. Barreto Junio, 2008. I. INTRODUCCIÓN La cinemática permite la descripción del movimiento per se. Pero por qué los cuerpos se mueven? por qué describen trayectorias tan específicas?

Más detalles

Dinamica de rotacion. Torque. Momentum Angular. Aplicaciones.

Dinamica de rotacion. Torque. Momentum Angular. Aplicaciones. Dinamica de rotacion. Torque. Momentum Angular. Aplicaciones. Movimiento de rotación. Cuerpos rígidos un cuerpo con una forma definida, que no cambia en forma que las partículas que lo componen permanecen

Más detalles

TEMA 5 ECUACIONES DINÁMICAS FUNDAMENTALES

TEMA 5 ECUACIONES DINÁMICAS FUNDAMENTALES TEMA 5 ECUACIONES DINÁMICAS FUNDAMENTALES 5.1 Sistema cerrado de cinco ecuaciones 5.1.1 Ecuación del movimiento 5.1.2 Ecuación de estado 5.1.3 Ecuación de la termodinámica 5.1.4 Ecuación de continuidad

Más detalles

BACHILLERATO FÍSICA B. REPASO DE MECÁNICA. Dpto. de Física y Química. R. Artacho

BACHILLERATO FÍSICA B. REPASO DE MECÁNICA. Dpto. de Física y Química. R. Artacho BACHILLERATO FÍSICA B. REPASO DE MECÁNICA R. Artacho Dpto. de Física y Química B. REPASO DE MECÁNICA ÍNDICE 1. Las magnitudes cinemáticas 2. Movimientos en una dimensión. Movimientos rectilíneos 3. Movimientos

Más detalles

Momento angular o cinético

Momento angular o cinético Momento angular o cinético Definición de momento angular o cinético Consideremos una partícula de masa m, con un vector de posición r y que se mueve con una cantidad de movimiento p = mv z L p O r y x

Más detalles

Física: Torque y Momento de Torsión

Física: Torque y Momento de Torsión Física: Torque y Momento de Torsión Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Relación entre cantidades angulares y traslacionales. En un cuerpo que rota alrededor de un origen O, el punto

Más detalles

2 o Bachillerato. Conceptos básicos

2 o Bachillerato. Conceptos básicos Física 2 o Bachillerato Conceptos básicos Movimiento. Cambio de posición de un cuerpo respecto de un punto que se toma como referencia. Cinemática. Parte de la Física que estudia el movimiento de los cuerpos

Más detalles

Dinámica del movimiento rotacional

Dinámica del movimiento rotacional Dinámica del movimiento rotacional Torca, momento angular, momento cinético o momento de torsión: La habilidad de una fuerza para rotar o girar un cuerpo alrededor de un eje. τ = r F r= es la posición

Más detalles

Física de Fluidos Aplicada Tema 1: INTRODUCCIÓN A LA FÍSICA DE FLUIDOS 3 er curso de Licenciado en Ciencias Ambientales

Física de Fluidos Aplicada Tema 1: INTRODUCCIÓN A LA FÍSICA DE FLUIDOS 3 er curso de Licenciado en Ciencias Ambientales Física de Fluidos Aplicada Tema 1: INTRODUCCIÓN A LA FÍSICA DE FLUIDOS 3 er curso de Licenciado en Ciencias Ambientales Dr. Eduardo García Ortega Departamento de Química y Física Aplicadas. Área de Física

Más detalles

B. REPASO DE MECÁNICA ÍNDICE

B. REPASO DE MECÁNICA ÍNDICE BACHILLERATO FÍSICA B. REPASO DE MECÁNICA R. Artacho Dpto. de Física y Química B. REPASO DE MECÁNICA ÍNDICE 1. Las magnitudes cinemáticas 2. Movimientos en una dimensión. Movimientos rectilíneos 3. Movimientos

Más detalles

Tipos de fluidos. Fluido IDEAL. No posee fricción interna. Dinámica de fluidos

Tipos de fluidos. Fluido IDEAL. No posee fricción interna. Dinámica de fluidos Dinámica de fluidos Cátedra de Física- FFyB-UBA Tipos de fluidos Fluido IDEAL Tipos de Fluidos INCOMPRESIBLE No varía su volumen al variar la presión al cual está sometido (δ cte) Según su variación de

Más detalles

convección (4.1) 4.1. fundamentos de la convección Planteamiento de un problema de convección

convección (4.1) 4.1. fundamentos de la convección Planteamiento de un problema de convección convección El modo de transferencia de calor por convección se compone de dos mecanismos de transporte, que son, la transferencia de energía debido al movimiento aleatorio de las moléculas (difusión térmica)

Más detalles

Momento angular de una partícula. Momento angular de un sólido rígido

Momento angular de una partícula. Momento angular de un sólido rígido Momento angular de una partícula Se define momento angular de una partícula respecto de del punto O, como el producto vectorial del vector posición r por el vector momento lineal mv L=r mv Momento angular

Más detalles

Sistemas de referencia acelerados

Sistemas de referencia acelerados Sistemas de referencia acelerados Supongamos que tenemos un sistema de referencia que esta rotando con una velocidad angular w. Y supongamos que observamos un vector A cuyas componentes varían en el tiempo

Más detalles

Fenómenos atmosféricos

Fenómenos atmosféricos Fenómenos atmosféricos Escalas horizontales y temporales de fenómenos atmosféricos Escalas de tiempo de transporte en la atmósfera Horizontal Vertical http://acmg.seas.harvard.edu/people/faculty/djj/book/

Más detalles

Movimiento Relativo. Movimiento relativo de Traslación general. Relatividad del movimiento velocidad relativa aceleración relativa

Movimiento Relativo. Movimiento relativo de Traslación general. Relatividad del movimiento velocidad relativa aceleración relativa Movimiento Relativo Relatividad del movimiento velocidad relativa aceleración relativa Movimiento relativo de Traslación general Movimiento relativo de Rotación pura O X Y Z S.R., respecto del cual el

Más detalles

Análisis II - Análisis matemático II - Matemática 3 2do. cuatrimestre de 2013

Análisis II - Análisis matemático II - Matemática 3 2do. cuatrimestre de 2013 Análisis II - Análisis matemático II - Matemática 3 do. cuatrimestre de 3 Práctica 4 - Teoremas de Stokes y de Gauss. Campos conservativos. Aplicaciones.. Verificar el teorema de Stokes para el hemisferio

Más detalles

2. Ecuaciones Básicas

2. Ecuaciones Básicas 2. Ecuaciones Básicas 2.1 Ecuación de continuidad donde ρ es la densidad, c es la velocidad tridimensional del fluído. En la atmósfera se usa generalmente la presión como coordenada vertical debido a que

Más detalles

3. Ecuaciones de conservación

3. Ecuaciones de conservación Introducción a la Dinámica de la Atmósfera 2014 1 3. Ecuaciones de conservación El comportamiento de la atmósfera se estudia considerando la evolución de su masa, su momento y su energía. Para ello es

Más detalles

Dinámica : parte de la física que estudia las fuerzas y su relación con el movimiento

Dinámica : parte de la física que estudia las fuerzas y su relación con el movimiento DINÁMICA 1. Fuerza 2. Ley de Hooke 3. Impulso. 4. Momento lineal o cantidad de movimiento. Teorema del impulso. Principio de conservación de la cantidad de movimiento. 5. Leyes del movimiento. Definición

Más detalles

Momento angular o cinético

Momento angular o cinético Momento angular o cinético Definición de momento angular o cinético Consideremos una partícula de masa m, con un vector de posición r y que se mueve con una cantidad de movimiento p = mv z L p O r y x

Más detalles

ESTÁTICA. Mecánica de Fluidos Avanzada UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA CIVIL DEPARTAMENTO DE HIDRÁULICA E HIDROLOGÍA

ESTÁTICA. Mecánica de Fluidos Avanzada UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA CIVIL DEPARTAMENTO DE HIDRÁULICA E HIDROLOGÍA ESTÁTICA Mecánica de Fluidos Avanzada UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA CIVIL DEPARTAMENTO DE HIDRÁULICA E HIDROLOGÍA 1. ESFUERZOS (1) Una partícula de fluido está sujeta a dos

Más detalles

DINAMICA DEL PUNTO. Es el momento con respecto a un punto O de la cantidad de movimiento de una partícula móvil.

DINAMICA DEL PUNTO. Es el momento con respecto a un punto O de la cantidad de movimiento de una partícula móvil. DINMIC DEL PUNTO Leyes de Newton Primera ley o ley de inercia: si sobre un sistema material no actúa fuerza alguna sigue en reposo o movimiento rectilíneo uniforme si inicialmente lo estaba. Segunda ley

Más detalles

Dinámica del Sólido Rígido

Dinámica del Sólido Rígido Dinámica del Sólido Rígido El presente documento de clase sobre dinámica del solido rígido está basado en los contenidos volcados en la excelente página web del curso de Física I del Prof. Javier Junquera

Más detalles

Mecánica de Fluidos. Análisis Diferencial

Mecánica de Fluidos. Análisis Diferencial Mecánica de Fluidos Análisis Diferencial Análisis Diferencial: Descripción y caracterización del flujo en función de la descripción de una partícula genérica del flujo. 1. Introducción 2. Movimiento de

Más detalles

Equilibrio de fuerzas Σ F z = 0. Σ M y = 0 Σ M x = 0 Σ M z = 0. Equilibrio de momentos. Segunda ley de Newton (masa)

Equilibrio de fuerzas Σ F z = 0. Σ M y = 0 Σ M x = 0 Σ M z = 0. Equilibrio de momentos. Segunda ley de Newton (masa) Estática: leyes de Newton: equilibrio, masa, acción y reacción Primera ley de Newton (equilibrio) Un cuerpo permanece en reposo o en movimiento rectilíneo uniforme (M.R.U. = velocidad constante) si la

Más detalles

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR Física General 1 Proecto PMME - Curso 007 Instituto de Física Facultad de Ingeniería UdelaR TITULO DINAMICA DEL CARRETEL AUTORES Santiago Duarte, Nicolás Puppo Juan Manuel Del Barrio INTRODUCCIÓN En este

Más detalles

Cinemática rotacional

Cinemática rotacional Cinemática rotacional θ s r s = r θ ω = θ v = r ω rapidez t α = ω a t = r α acel. tangencial t a c = v2 r = r ω2 acel. radial o centrípeta θ = θ o + ω o t + 1 2 α t2 ω = ω o + α t ω 2 = ω 2 o + 2 α (θ

Más detalles

Análisis II Análisis matemático II Matemática 3.

Análisis II Análisis matemático II Matemática 3. Análisis II Análisis matemático II Matemática 3. er. cuatrimestre de 8 Práctica 4 - Teoremas de Stokes y de Gauss. Campos conservativos. Aplicaciones. Ejercicio. Verificar el teorema de Stokes para el

Más detalles

Cinemática: parte de la Física que estudia el movimiento de los cuerpos.

Cinemática: parte de la Física que estudia el movimiento de los cuerpos. CINEMÁTICA Cinemática: parte de la Física que estudia el movimiento de los cuerpos. Movimiento: cambio de posición de un cuerpo respecto de un punto de referencia que se supone fijo. Objetivo del estudio

Más detalles

Dinámica del Sólido Rígido

Dinámica del Sólido Rígido Dinámica del Sólido Rígido El presente documento de clase sobre dinámica del solido rígido está basado en los contenidos volcados en la excelente página web del curso de Física I del Prof. Javier Junquera

Más detalles

Capítulo 1. Propiedades de los fluidos y definiciones. - Problemas resueltos -

Capítulo 1. Propiedades de los fluidos y definiciones. - Problemas resueltos - Capítulo 1 Propiedades de los fluidos y definiciones - resueltos - Propiedades de los fluidos y definiciones Ejemplo 1.1: Densidad, gravedad específica y masa de aire en un cuarto. Determine la densidad,

Más detalles

Dinámica de los Fluídos

Dinámica de los Fluídos Dinámica de los Fluídos Flujos Fluídos Sustancias que no transmiten esfuerzos Se deforman cuando se les aplica una fuerza Incluye, agua y gases Fuerzas actuan en todo el fluido Propiedades de los Fluidos

Más detalles

Javier Junquera. Movimiento de rotación

Javier Junquera. Movimiento de rotación Javier Junquera Movimiento de rotación Bibliografía Física, Volumen 1, 3 edición Raymod A. Serway y John W. Jewett, Jr. Ed. Thomson ISBN: 84-9732-168-5 Capítulo 10 Física, Volumen 1 R. P. Feynman, R. B.

Más detalles

Física y Química 1º Bachillerato LOMCE. Bloque 3: Trabajo y Energía. Trabajo y Energía

Física y Química 1º Bachillerato LOMCE. Bloque 3: Trabajo y Energía. Trabajo y Energía Física y Química 1º Bachillerato LOMCE Bloque 3: Trabajo y Energía Trabajo y Energía 1 El Trabajo Mecánico El trabajo mecánico, realizado por una fuerza que actúa sobre un cuerpo que experimenta un desplazamiento,

Más detalles

Dinámica de los Fluídos

Dinámica de los Fluídos Dinámica de los Fluídos Flujos Fluídos Sustancias que no transmiten esfuerzos Se deforman cuando se les aplica una fuerza Incluye, agua y gases Fuerzas actuan en todo el fluido Propiedades de los Fluidos

Más detalles

MECÁNICA CLÁSICA CINEMATICA. FAyA Licenciatura en Química Física III año 2006

MECÁNICA CLÁSICA CINEMATICA. FAyA Licenciatura en Química Física III año 2006 Física III año 26 CINEMATICA MECÁNICA CLÁSICA La cinemática estudia el movimiento de los cuerpos, sin tener en cuenta las causas que lo producen. Antes de continuar establezcamos la diferencia entre un

Más detalles

Anejo 1. Teoría de Airy. Solución lineal de la ecuación de ondas.

Anejo 1. Teoría de Airy. Solución lineal de la ecuación de ondas. Anejo 1. Teoría de Airy. Solución lineal de la ecuación de ondas. Introducción y ecuaciones que rigen la propagación del oleaje. La propagación de oleaje en un fluido es un proceso no lineal. Podemos tratar

Más detalles

FÍSICA I 13/06/03 2 a Ev. Teoría. DNI Centre Assignatura Parc. Per. Grup VALOR DE LA PRUEBA: 30% del examen.

FÍSICA I 13/06/03 2 a Ev. Teoría. DNI Centre Assignatura Parc. Per. Grup VALOR DE LA PRUEBA: 30% del examen. 2 a Ev. Teoría DNI Centre Assignatura Parc. Per. Grup 2 2 0 1 3 2 1 0 0 2 0 Cognoms: Nom: Indica si las siguientes propuestas son CIERTAS (opción A) o FALSAS (opción B) VALOR DE LA PRUEBA: 30% del examen.

Más detalles

Ecuaciones de Navier-Stokes. Fenómenos Turbulentos.

Ecuaciones de Navier-Stokes. Fenómenos Turbulentos. Capítulo 3 Ecuaciones de Navier-Stokes. Fenómenos Turbulentos. 3.1. Ecuaciones de Navier-Stokes. 3.1.1. ntroducción. Antes de obtener las ecuaciones fundamentales que gobiernan el comportamiento de los

Más detalles

En los trópicos se absorbe la mayor parte de la energía solar que luego se transfiere a la atmósfera

En los trópicos se absorbe la mayor parte de la energía solar que luego se transfiere a la atmósfera En los trópicos se absorbe la mayor parte de la energía solar que luego se transfiere a la atmósfera Circulación Atmosférica El modelo Tricelular La ITCZ Introducción (origen ) Introducción (Factores de

Más detalles

DINÁMICA DE LA ROTACIÓN

DINÁMICA DE LA ROTACIÓN DINÁMICA DE LA ROTACIÓN 1. La polea de la figura tiene radio R y momento de inercia, respecto a un eje que pasa por su centro de masa perpendicular al plano del papel. La cuerda no resbala sobre la polea

Más detalles

Tema 8: Movimiento relativo

Tema 8: Movimiento relativo Tema 8: Movimiento relativo Física I, º, Grado en Ingeniería Energética, Robótica y Mecatrónica Departamento de Física Aplicada III Escuela Técnica Superior de Ingeniería Universidad de Sevilla Índice

Más detalles

UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN FACULTAD DE CIENCIAS-ESCUELA DE FÍSICA FÍSICA MECÁNICA MÓDULO # 11: CINEMÁTICA -CONCEPTOS BÁSICOS-

UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN FACULTAD DE CIENCIAS-ESCUELA DE FÍSICA FÍSICA MECÁNICA MÓDULO # 11: CINEMÁTICA -CONCEPTOS BÁSICOS- UNIERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN FACULTAD DE CIENCIAS-ESCUELA DE FÍSICA FÍSICA MECÁNICA MÓDULO # 11: CINEMÁTICA -CONCEPTOS BÁSICOS- Diego Luis Aristizábal R., Roberto Restrepo A., Tatiana

Más detalles

Sistemas de Partículas

Sistemas de Partículas Sistemas de Partículas Los objetos reales de la naturaleza están formados por un número bastante grande de masas puntuales que interactúan entre sí y con los demás objetos. Cómo podemos describir el movimiento

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA SEGUNDA EVALUACIÓN DE FÍSICA A FEBRERO 18 DE 2015 SOLUCIÓN Analice las siguientes preguntas

Más detalles

10 cm longitud 30 m. Calcular: (a) la velocidad en el pie del plano inclinado si

10 cm longitud 30 m. Calcular: (a) la velocidad en el pie del plano inclinado si Las pesas de la figura ruedan sin deslizar y sin 6 cm rozamiento por un plano inclinado 30 y de 10 cm longitud 30 m. Calcular: (a) la velocidad en el pie del plano inclinado si 100 cm las pesas parten

Más detalles

Física 2º Bto. (A y B) Movimiento ondulatorio. Campos gravitatorio y eléctrico 19 marzo 2008

Física 2º Bto. (A y B) Movimiento ondulatorio. Campos gravitatorio y eléctrico 19 marzo 2008 Alumno o alumna: Puntuación: 1. El oscilador armónico Una partícula de 1,4 kg de masa se conecta a un muelle de masa despreciable y constante recuperadora k = 15 N/m, de manera que el sistema se mueve

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA TERCERA EVALUACIÓN DE FÍSICA A MARZO 4 DE 015 SOLUCIÓN Analice las siguientes siete preguntas,

Más detalles

Objetos en equilibrio - Ejemplo

Objetos en equilibrio - Ejemplo Objetos en equilibrio - Ejemplo Una escalera de 5 m que pesa 60 N está apoyada sobre una pared sin roce. El extremo de la escalera que apoya en el piso está a 3 m de la pared, ver figura. Cuál es el mínimo

Más detalles

Para qué aprender FISICA? Materiales Potencia Rozamiento y Fricción Viscosidad Turbulencias Movimiento

Para qué aprender FISICA? Materiales Potencia Rozamiento y Fricción Viscosidad Turbulencias Movimiento Para qué aprender FISICA? Materiales Potencia Rozamiento y Fricción Viscosidad Turbulencias Movimiento OBJETIVOS Formular: Conceptos, Definiciones Leyes resolver PROBLEMAS Fomentar: Habilidades Destrezas

Más detalles

Presión y vientos. Universidad Nacional de La Plata Facultad de Ciencias Astronómicas y Geofísicas. Cátedra: Introducción a las Ciencias Atmosféricas

Presión y vientos. Universidad Nacional de La Plata Facultad de Ciencias Astronómicas y Geofísicas. Cátedra: Introducción a las Ciencias Atmosféricas Presión y vientos Universidad Nacional de La Plata Facultad de Ciencias Astronómicas y Geofísicas Cátedra: Introducción a las Ciencias Atmosféricas Variaciones horizontales de la presión Modelo teórico:

Más detalles

TRANSFERENCIA DE CANTIDAD DE MOVIMIENTO

TRANSFERENCIA DE CANTIDAD DE MOVIMIENTO TRANSFERENCIA DE CANTIDAD DE MOVIMIENTO Clasificación de los fluidos Un fluido es una sustancia o medio continuo que se deforma continuamente en el tiempo ante la aplicación de una solicitación o tensión

Más detalles

Momento de una Fuerza (Torque)

Momento de una Fuerza (Torque) Rotación Momento de una Fuerza (Torque) El análisis del Momento de una fuerza es el análogo rotacional de las leyes de Newton. Situación Equilibrio (Sist. Inercial) Fuera del equilibrio Lineal Las fuerzas

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA SEGUNDA EVALUACIÓN DE FÍSICA A FEBRERO 1 DE 014 SOLUCIÓN TEMA 1 (1 puntos) El diagrama ilustra

Más detalles

K m = 20,0[N m 1 ] =6,32 rad/s 0,500[kg] 0,050 = 0,050 sen (ω 0+ φ 0 ) φ 0 = arc sen 1 = π / 2. x = 0,050 sen (6,32 t + 1,57) [m]

K m = 20,0[N m 1 ] =6,32 rad/s 0,500[kg] 0,050 = 0,050 sen (ω 0+ φ 0 ) φ 0 = arc sen 1 = π / 2. x = 0,050 sen (6,32 t + 1,57) [m] Física º Bach. Examen de Setiembre de 005 DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre: [1½ PUNTOS / UNO] X 1. El cuerpo de la figura tiene masa m = 500 g, está apoyado sobre una superficie horizontal

Más detalles

Unidad 5. Fluidos (Dinámica)

Unidad 5. Fluidos (Dinámica) Unidad 5 Fluidos (Dinámica) Tipos de Movimiento (Flujos) Flujo Laminar o aerodinámico: el fluido se mueve de forma ordenada y suave, de manera que las capas vecinas se deslizan entre si, y cada partícula

Más detalles

Flujo estacionario laminar

Flujo estacionario laminar HIDRODINÁMICA Hidrodinámica Es una disciplina parte de la física cuyo objetivo es explicar el comportamiento de los fluidos en movimiento, para lo cual se hace necesario definir algunos conceptos importantes:

Más detalles

Guía para oportunidades extraordinarias de Física 2

Guía para oportunidades extraordinarias de Física 2 Guía para oportunidades extraordinarias de Física 2 Capitulo 1 Vectores a) Introducción b) Cantidades vectoriales c) Métodos analíticos Capitulo 2 Dinámica a) Fuerza b) Leyes de Newton sobre el movimiento

Más detalles

SEMINARIO 1: ELEMENTOS DIFERENCIALES DE LÍNEA, SUPERFICIE Y VOLUMEN

SEMINARIO 1: ELEMENTOS DIFERENCIALES DE LÍNEA, SUPERFICIE Y VOLUMEN SEMINARIO 1: ELEMENTOS DIFERENCIALES DE LÍNEA, SUPERFICIE Y VOLUMEN Sistemas de coordenadas 3D Transformaciones entre sistemas Integrales de línea y superficie SISTEMA COORDENADO CARTESIANO O RECTANGULAR

Más detalles

( x) = a b, donde a y b son ciertas constantes

( x) = a b, donde a y b son ciertas constantes Examen de Física-1 1 Ingeniería Química Segundo parcial. Enero de 01 Cuestiones (Un punto por cuestión). Cuestión 1: Una partícula de masa m se encuentra en un campo de energía potencial que solo depende

Más detalles

Examen de Física-1, 1 Ingeniería Química Examen final. Enero de 2013 Problemas (Dos puntos por problema).

Examen de Física-1, 1 Ingeniería Química Examen final. Enero de 2013 Problemas (Dos puntos por problema). Examen de Física-1, 1 Ingeniería Química Examen final. Enero de 013 Problemas Dos puntos por problema. Problema 1 Primer parcial: El radio de una noria de feria mide 5 m y da una vuelta en 10 s. a Hállese

Más detalles

Cuestionario sobre las Leyes de Newton

Cuestionario sobre las Leyes de Newton Cuestionario sobre las Leyes de Newton 1. Enuncie las leyes de Newton y represente gráficamente o por medio de una ilustración Primera Ley: La primera ley de Newton, conocida también como Ley de inercia,

Más detalles

SEGUNDA EVALUACIÓN. FÍSICA Septiembre 10 del 2014 (11h30-13h30)

SEGUNDA EVALUACIÓN. FÍSICA Septiembre 10 del 2014 (11h30-13h30) SEGUNDA EVALUACIÓN DE FÍSICA Septiembre 10 del 2014 (11h30-13h30) Como aspirante a la ESPOL me comprometo a combatir la mediocridad y actuar con honestidad, por eso no copio ni dejo copiar" NOMBRE: FIRMA:

Más detalles

OLIMPIADAS DE FISICA ETAPA CLASIFICATORIA

OLIMPIADAS DE FISICA ETAPA CLASIFICATORIA OLIMPIADAS DE FISICA ETAPA CLASIFICATORIA PROBLEMA 1: CINEMÁTICA El maquinista de un tren que avanza con una velocidad advierte delante de él, a una distancia, la cola de un tren de carga que se mueve

Más detalles

TEOREMAS GENERALES DE LA DINÁMICA DEL PUNTO MATERIAL

TEOREMAS GENERALES DE LA DINÁMICA DEL PUNTO MATERIAL Capítulo 4 TEOREMAS GENERALES DE LA DINÁMICA DEL PUNTO MATERIAL 4.1 Introducción En el tema anterior hemos estudiado los principios fundamentales de la dinámica. La segunda ley de Newton, que relaciona

Más detalles

Dinámica de una partícula. Leyes de Newton, fuerzas, representación vectorial

Dinámica de una partícula. Leyes de Newton, fuerzas, representación vectorial Dinámica de una partícula. Leyes de Newton, fuerzas, representación vectorial PRIMERA LEY DE NEWTON. Todo cuerpo continuará en su estado de reposo o de velocidad constante en línea recta, a menos que una

Más detalles

( ) 1/2, podemos calcular la componente x de la fuerza como

( ) 1/2, podemos calcular la componente x de la fuerza como Examen de Física-1, 1 del Grado en Ingeniería Química Examen final. Septiembre de 2013 Cuestiones (Un punto por cuestión). Cuestión 1 (Primer parcial): Consideremos un sistema compuesto por un núcleo de

Más detalles

Física: Movimiento Circular y Gravitación

Física: Movimiento Circular y Gravitación Física: Movimiento Circular y Gravitación Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Movimiento circular uniforme Propiedades: Este objeto tiene una trayectoria circular. El objeto demora el

Más detalles

Examen de Física-1, 1 Ingeniería Química Examen final. Enero de 2015 Problemas (Dos puntos por problema).

Examen de Física-1, 1 Ingeniería Química Examen final. Enero de 2015 Problemas (Dos puntos por problema). Examen de Física-, Ingeniería Química Examen final. Enero de 205 Problemas (Dos puntos por problema). Problema : La posición de una partícula móvil en el plano Oxy viene dada por : x(t) = 2 t 2 y(t) =

Más detalles

UD 10. Leyes de la dinámica

UD 10. Leyes de la dinámica UD 10. Leyes de la dinámica 1- Concepto de fuerza. 2- Primer principio de la dinámica. 3- Segundo principio de la dinámica. 4- Tercer principio de la dinámica. 5- Momento lineal. 6- Fuerzas: Peso, Normal,

Más detalles

Examen de Física-1, 1 Ingeniería Química Examen final. Enero de 2011 Problemas (Dos puntos por problema).

Examen de Física-1, 1 Ingeniería Química Examen final. Enero de 2011 Problemas (Dos puntos por problema). Examen de Física-1, 1 Ingeniería Química Examen final Enero de 2011 Problemas (Dos puntos por problema) Problema 1 (Primer parcial): Un muelle de constante k =10 4 N/m está comprimido 20 cm Al liberarlo

Más detalles

Tema 6: Cinética de la partícula

Tema 6: Cinética de la partícula Tema 6: Cinética de la partícula FISICA I, 1º Grado en Ingeniería Civil Departamento Física Aplicada III Escuela Técnica Superior de Ingeniería Universidad de Sevilla Índice Introducción Trabajo mecánico

Más detalles

Mecánica de fluidos. Fis 018- Ref. Capitulo 10 Giancoli Vol II. 6ta ed. 23 de octubre de 2016

Mecánica de fluidos. Fis 018- Ref. Capitulo 10 Giancoli Vol II. 6ta ed. 23 de octubre de 2016 Mecánica de fluidos Fis 018- Ref. Capitulo 10 Giancoli Vol II. 6ta ed. 23 de octubre de 2016 ESTATICA DE FLUIDOS 1. Estados de la materia 2. Propiedades de los fluidos 3. Volumen, densidad y peso específico,

Más detalles

FLUJO POTENCIAL. Mecánica de Fluidos Avanzada UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA CIVIL DEPARTAMENTO DE HIDRÁULICA E HIDROLOGÍA

FLUJO POTENCIAL. Mecánica de Fluidos Avanzada UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA CIVIL DEPARTAMENTO DE HIDRÁULICA E HIDROLOGÍA FLUJO POTENCIAL Mecánica de Fluidos Avanzada UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA CIVIL DEPARTAMENTO DE HIDRÁULICA E HIDROLOGÍA CIRCULACIÓN La circulación del vector velocidad se define

Más detalles

Dinámica de la atmósfera y los océanos

Dinámica de la atmósfera y los océanos Dinámica de la atmósfera y los océanos Ecuaciones de movimiento Ecuación de conservación de masa Ecuación de conservación de energía y salinidad (para el océano) Las ecuaciones de conservación de momento

Más detalles

Tema 5: Energía y Leyes de Conservación*

Tema 5: Energía y Leyes de Conservación* Tema 5: Energía y Leyes de Conservación* Física I Grado en Ingeniería Electrónica, Robótica y Mecatrónica (GIERM) Primer Curso *Prof.Dr. Joaquín Bernal Méndez y Prof.Dra. Ana Mª Marco Ramírez 1 Índice

Más detalles

DINAMICA DE FLUIDOS ING. GIOVENE PEREZ CAMPOMANES

DINAMICA DE FLUIDOS ING. GIOVENE PEREZ CAMPOMANES DINAMICA DE FLUIDOS ING. GIOVENE PEREZ CAMPOMANES 4.1 OBJETIVOS Aplicar los principios de la física sobre la: conservación de masa, cantidad de movimiento y de la energía. Representar los conceptos del

Más detalles

FUERZAS Y LEYES DE NEWTON. Profesor : Marco Rivero Menay Ingeniero Ejecución Industrial UVM

FUERZAS Y LEYES DE NEWTON. Profesor : Marco Rivero Menay Ingeniero Ejecución Industrial UVM FUERZAS Y LEYES DE NEWTON Profesor : Marco Rivero Menay Ingeniero Ejecución Industrial UVM 1 FUERZAS Y Leyes de Newton Una fuerza es toda causa capaz de deformar un cuerpo o modificar su estado de reposo

Más detalles

Cinemática del sólido rígido

Cinemática del sólido rígido Cinemática del sólido rígido Teoría básica para el curso Cinemática del sólido rígido, ejercicios comentados α δ ω B B A A P r B AB A ω α O Ramírez López-Para, Pilar Loizaga Garmendia, Maider López Soto,

Más detalles

6. Transporte de energía y balance de momento angular

6. Transporte de energía y balance de momento angular 6. Transporte de energía y balance de momento angular Como vimos en capítulos anteriores la atmósfera y el océano deben transportar energía desde la región tropical hacia los polos para distribuir el surplus

Más detalles

Transferencia de Momentum

Transferencia de Momentum Transferencia de Momentum 1740-2 2014-02-06 3ª. Contenido Aspectos básicos de fluidos Esfuerzo cortante (Stress); Diferencia entre fluido y sólido; Definición de fluido; Ley de la viscosidad de Newton;

Más detalles

Estática. M = r F. donde r = OA.

Estática. M = r F. donde r = OA. Estática. Momento de un vector respecto de un punto: Momento de una fuerza Sea un vector genérico a = AB en un espacio vectorial V. Sea un punto cualesquiera O. Se define el vector momento M del vector

Más detalles

ASPECTOS AVANZADOS EN MECÁNICA DE FLUIDOS SOLUCIONES EXACTAS

ASPECTOS AVANZADOS EN MECÁNICA DE FLUIDOS SOLUCIONES EXACTAS Problema 1 Un fluido de propiedades constantes (densidad ρ, viscosidad µ, conductividad térmica k y calor específico c) se encuentra confinado entre dos paredes horizontales infinitas separadas una distancia

Más detalles