Álgebra Básica C Grado en Matemáticas Examen 1

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Álgebra Básica C Grado en Matemáticas Examen 1"

Transcripción

1 Álgebra Básica C Grado en Matemáticas Examen 1 Lee detenidamente las preguntas antes de contestarlas. Justifica todas tus respuestas. Evita los cálculos innecesarios y las repeticiones. Nombre y apellido(s): 1. (3 puntos) Sea A = Z N y la relación en A definida del siguiente modo: (a, b) (x, y) ay = xb. (a) (1 punto) Demuestra que esta relación es de equivalencia. Solución: Hemos de probar que satisface las tres propiedades siguientes. Reflexividad. Todo elemento de A está relacionado consigo mismo pues (a, b) (a, b) ab = ab, lo cual es obviamente cierto. Simetría. Decir que (a, b) (x, y), según la definición de arriba, equivale a decir que (x, y) (a, b), es decir xb = ay, pues ambas ecuaciones coinciden. Transitividad. Este es el único punto delicado. Supongamos que (a, b) (x, y) (u, v). La primera relación equivale a la ecuación de la definición y la segunda relación a xv = uy. Hemos de probar que (a, b) (u, v), es decir que av = ub. Si multiplicamos la ecuación de (a, b) (x, y) por v obtenemos ayv = xbv = xvb. Aquí hemos usado también que el producto de números enteros es conmutativo. Usando además la ecuación de (x, y) (u, v) deducimos que ayv = xbv = xvb = uyb. Como y N, y 0, luego cancela a ambos lados de la igualdad y nos queda precisamente av = ub, que es lo que teníamos que demostrar. (b) (1 punto) Define una aplicación sobreyectiva f : A Q tal que coincida con la relación de equivalencia f inducida por f. Solución: Definimos f : A Q del siguiente modo, f(a, b) := a b. 20 de noviembre de 2015

2 Tiene sentido ya que b N, luego b 0. Es sobreyectiva porque todo número racional se puede expresar como una fracción de números enteros con denominador positivo. Además, (a, b) f (x, y) f(a, b) = f(x, y) a b = x y ay = xb (a, b) (x, y), con lo que = f. (c) (1 punto) Deduce que existe una aplicación biyectiva (A/ ) = Q. Solución: Consideramos la factorización canónica de f, A proyección natural inclusión = A/ f Im f Como f es sobreyectiva Im f = Q y como = f, A/ f = A/, por tanto la flecha horizontal inferior nos da la biyección buscada (A/ ) = Q. f Q 2. (1 punto) Dadas dos aplicaciones A f B g C, demuestra que g(im f) = Im(g f) Im g. Muestra con un ejemplo que la inclusión de la derecha puede ser estricta. Solución: Veamos que g(im f) Im(g f). Todo elemento x g(im f) es de la forma x = g(y) para cierto y Im f. Es más, este y ha de ser de la forma y = f(z) para cierto z A, luego x = g(y) = g(f(z)) = (g f)(z) Im(g f). Veamos que la inclusión contraria también es cierta. Todo x Im(g f) es x = (g f)(y) para cierto y A, luego x = (g f)(y) = g(f(y)). Como f(y) Im f, deducimos que x = g(f(y)) g(im f). Probemos ahora que Im(g f) Im g. En el párrafo anterior hemos visto que todo x Im(g f) se puede escribir como x = g(f(y)) para cierto y A, y claramente g(f(y)) Im g. Para ver un ejemplo en el que esta inclusión es estricta basta tomar

3 A =, B = C un conjunto no vacío cualquiera, f : B la única aplicación existente y g = id: B B = C la identidad, A = f B g=id B = C. En este caso Im(g f) = pues A =, Im g = B e Im(g f) Im g porque estamos tomando B. 3. (5 puntos) Sean σ, τ S 4 las permutaciones y H = {id, σ, τ, στ} S 4. σ = (1 2)(3 4), τ = (1 3)(2 4), (a) (2 puntos) Descompón στ y τσ como productos de ciclos disjuntos y halla los signos y los órdenes de todos los elementos de H. Usando estos cálculos, demuestra que H S 4 es un subgrupo. Es abeliano? Solución: Es inmediato comprobar que στ = (1 2)(3 4)(1 3)(2 4) = (1 4)(2 3) = τσ. La identidad id sabemos que tiene signo positivo y orden 1. Los elementos σ, τ y στ tienen signo positivo y orden dos por ser el producto de dos trasposiciones disjuntas (en general, el signo de un producto de n trasposiciones es ( 1) n y el orden de un producto de ciclos disjuntos es el mínimo común múltiplo de sus longitudes). Para ver que H S 4 es un subgrupo hemos de realizar las siguientes comprobaciones: id H por definición. Como todos los elementos de H, a excepción de la identidad, tienen orden dos, sus inversos son ellos mismos, que están en H. Veamos que el producto de dos elementos cualesquiera de H sigue estando en H. Esto es obvio si alguno de los dos es la identidad. El resto de los casos posibles son los siguientes, σσ = σ 2 = id H, στ H, σ(στ) = σ 2 τ = τ H, τσ = στ H, ττ = τ 2 = id H, τ(στ) = τ(τσ) = τ 2 σ = σ H, (στ)σ = (τσ)σ = τσ 2 = τ H, (στ)τ = στ 2 = σ H, (στ)(στ) = (στ) 2 = id H.

4 Además el subgrupo H es abeliano, es decir, dados dos elementos cuales quiera obtenemos el mismo resultado si los multiplicamos en los dos órdenes posibles. Esto se deduce de las ecuaciones anteriores y de que el elemento neutro conmuta con todos. (b) (1 punto) Halla el subconjunto de S 4 formado por todas las trasposiciones y prueba que H está formado por la identidad y por todos los posibles productos de dos trasposiciones disjuntas. Usando además el hecho conocido de que σ(i j) = (σ(i) σ(j))σ para todas las permutaciones σ S 4 y trasposiciones (i j) S 4, demuestra que el subgrupo H S 4 es normal. Solución: Las trasposiciones de S 4 son los ciclos de la forma (i j), donde 1 i < j 4, es decir, los elementos del conjunto siguiente: {(1 2), (1 3), (1 4), (2 3), (2 4), (3 4)} S 4. Dos permutaciones con soporte disjunto siempre conmutan, por tanto los posibles productos de dos trasposiciones disjuntas son exactamente los siguientes: (1 2)(3 4) = σ, (1 3)(2 4) = τ, (1 4)(2 3) = στ. Por tanto H está formado por la identidad y todos los productos de dos trasposiciones disjuntas en S 4. Para ver que H S 4 es normal hemos de comprobar que dados µ S 4 y ν H, µνµ 1 H. Si ν = id entonces µνµ 1 = µ id µ 1 = µµ 1 = id H. En caso contrario ν es el producto de dos trasposiciones disjuntas en S 4, es decir ν = (i j)(k l), donde i, j, k, l son los números 1, 2, 3, 4 posiblemente reordenados. Es más, de acuerdo con la indicación del enunciado µνµ 1 = µ(i j)(k l)µ 1 = (µ(i) µ(j))µ(k l)µ 1 = (µ(i) µ(j))(µ(k) µ(l))µµ 1 = (µ(i) µ(j))(µ(k) µ(l)) H. Este último elemento pertenece en efecto a H ya que es el producto de dos trasposiciones disjuntas. (c) (2 puntos) Calcula el orden de (1 2)H y el de (1 2 3)H en el grupo cociente S 4 /H. Prueba que S 4 /H = (1 2)H, (1 2 3)H. Es S 4 /H abeliano?

5 Solución: En el cociente S 4 /H, (xh) n = x n H e yh = id H si y solo si y H, por tanto el orden de xh es el mínimo n N tal que x n H. Para x = (1 2) tenemos que x 1 = (1 2) / H pero x 2 = id H, luego el orden de (1 2)H es 2. Si x = (1 2 3) tenemos que x 1 = (1 2 3) / H y x 2 = (1 3 2) / H pero x 3 = id H, luego el orden de (1 2 3)H es 3. Veamos ahora que el subgrupo (1 2)H, (1 2 3)H S 4 /H generado por los dos elementos anteriores es de hecho igual a todo S 4 /H. Para ello, como son finitos, basta ver que tienen el mismo número de elementos. Por un lado, la inclusión y el teorema de Lagrange nos dicen que #( (1 2)H, (1 2 3)H ) #(S 4 /H) = #(S 4) #(H) = 4! 4 = 3! = 6. Por otro lado (1 2)H (1 2)H, (1 2 3)H y (1 2 3)H (1 2)H, (1 2 3)H son subgrupos, así que por el teorema de Lagrange tenemos las dos siguientes relaciones de divisibilidad: # (1 2)H ) #( (1 2)H, (1 2 3)H ), # (1 2 3)H ) #( (1 2)H, (1 2 3)H ). Es más, #( (1 2)H ) = (orden de (1 2)H) = 2, #( (1 2 3)H ) = (orden de (1 2 3)H) = 3. Como tanto el 2 como el 3 dividen a #( (1 2)H, (1 2 3)H ) deducimos que el 6, que es el mínimo común múltiplo de 2 y 3, también divide a #( (1 2)H, (1 2 3)H ), luego #( (1 2)H, (1 2 3)H ) 6. Ya habíamos probado la otra desigualdad, así que deducimos que #( (1 2)H, (1 2 3)H ) = 6 = #(S 4 /H). Para ver que S 4 /H no es abeliano comprobaremos que los dos generadores anteriores no conmutan. Según la definición del producto en el grupo cociente, ((1 2)H)((1 2 3)H) = ((1 2)(1 2 3))H = (2 3)H, ((1 2 3)H)((1 2)H) = ((1 2 3)(1 2))H = (1 3)H. Es más (2 3)H = (1 3)H si y solo si (2 3) 1 (1 3) H, pero (2 3) 1 (1 3) = (2 3)(1 3) = (1 2 3) / H. 4. (1 punto) Dado un homomorfismo f : G H, prueba que si G es finito entonces #(G) = #(Im f) #(Ker f).

6 Solución: Consideramos la factorización canónica del homomorfismo f, G proyección natural G/ Ker f f H = Im f inclusión Como G es finito, el núcleo Ker f G será también finito. La imagen Im f H es finita aunque H no lo sea, pues la cantidad de elementos de Im f no puede superar a la del dominio de f, que es G. La flecha horizontal inferior es una biyección entre conjuntos finitos, luego ambos tienen el mismo cardinal #(Im f) = #(G/ Ker f) = #(G) #(Ker f). Aquí, para la segunda igualdad, usamos el teorema de Lagrange. Despejando el denominador deducimos la igualdad que andábamos buscando.

Tema 2: Introducción a la teoría de grupos

Tema 2: Introducción a la teoría de grupos Tema 2: Introducción a la teoría de grupos Miguel Ángel Olalla Acosta miguelolalla@us.es Departamento de Álgebra Universidad de Sevilla Octubre de 2018 Olalla (Universidad de Sevilla) Tema 2: Introducción

Más detalles

Álgebra y estructuras finitas/discretas (Grupos A)

Álgebra y estructuras finitas/discretas (Grupos A) Álgebra y estructuras finitas/discretas (Grupos A) Curso 2007-2008 Soluciones a algunos de los ejercicios propuestos en el Tema 2 Antes de ver la solución de un ejercicio, repase la teoría correspondiente

Más detalles

Estructuras algebraicas. Departamento de Álgebra. Apuntes de teoría

Estructuras algebraicas. Departamento de Álgebra.  Apuntes de teoría ESTRUCTURAS ALGEBRAICAS GRADO EN MATEMÁTICAS. CURSO 2015/2016 Apuntes de teoría Tema 1: Grupos y subgrupos. 1.1. Introducción Definición 1.1. Un grupo es un par (G, ), donde G es un conjunto no vacío,

Más detalles

una aplicación biyectiva h : A A.

una aplicación biyectiva h : A A. Álgebra Básica Examen de septiembre 9-9-016 apellidos nombre Observaciones: -) Los cuatro ejercicios tienen el mismo valor. Cada ejercicio será puntuado sobre 10 para después calcular la nota global. -)

Más detalles

Ejercicios de Álgebra Básica. Curso 2018/19

Ejercicios de Álgebra Básica. Curso 2018/19 Ejercicios de Álgebra Básica Curso 2018/19 Tema 2: Introducción a la teoría de grupos Introducción Ejercicio 1 Probar que Z con la operación a b = a + b + 1 es un grupo Ejercicio 2 En Z consideramos la

Más detalles

Tema 2: El grupo de las permutaciones

Tema 2: El grupo de las permutaciones Tema 2: El grupo de las permutaciones Miguel Ángel Olalla Acosta miguelolalla@us.es Departamento de Álgebra Universidad de Sevilla Octubre de 2014 Olalla (Universidad de Sevilla) Tema 2: El grupo de las

Más detalles

Ejercicios de Álgebra Básica. Curso 2015/16

Ejercicios de Álgebra Básica. Curso 2015/16 Ejercicios de Álgebra Básica Curso 2015/16 Tema 2: Introducción a la teoría de grupos Propiedades El grupo de las permutaciones Ejercicio 1 Probar que Z con la operación a b = a+b+1 es un grupo Ejercicio

Más detalles

Álgebra Básica Primera parte

Álgebra Básica Primera parte Álgebra Básica Primera parte 21-1-2016 apellidos nombre Observaciones: -) Todos los ejercicios tienen el mismo valor. Cada ejercicio será puntuado sobre 10 para después calcular la nota global, según se

Más detalles

Álgebra básica Soluciones del examen de segunda convocatoria Curso 2016/ de septiembre de 2017

Álgebra básica Soluciones del examen de segunda convocatoria Curso 2016/ de septiembre de 2017 Álgebra básica Soluciones del examen de segunda convocatoria Curso 2016/2017 12 de septiembre de 2017 Ejercicio 1. Se pide lo siguiente: 1. (2 puntos) Dados unos conjuntos X, Y, unos subconjuntos A X,

Más detalles

Estructuras algebraicas

Estructuras algebraicas Semana 10[1/14] 26 de abril de 2007 Semana 10[2/14] Grupos Un grupo es un caso particular de una estructura algebraica. Veremos que esta noción rescata ampliamente las propiedades de estructuras tales

Más detalles

EL TEOREMA DE SEIFERT-VAN KAMPEN. 1. Preliminares sobre grupos

EL TEOREMA DE SEIFERT-VAN KAMPEN. 1. Preliminares sobre grupos EL TEOREMA DE SEIFERT-VAN KAMPEN 1. Preliminares sobre grupos Sea G un grupo. Denotaremos de forma multiplicativa la operación en G. Así, el producto de x, y G es x y, y el inverso de x G es x 1. Para

Más detalles

Grupos. Subgrupos. El Teorema de Lagrange. Grupo cociente. Teoremas de

Grupos. Subgrupos. El Teorema de Lagrange. Grupo cociente. Teoremas de TEMA 8 Grupos. Subgrupos. El Teorema de Lagrange. Grupo cociente. Teoremas de Isomorfía En la primera sección introducimos los conceptos de grupo y subgrupo y, además de presentar varios ejemplos, prestamos

Más detalles

Algebra II. Relación 2. Curso Grupos: generalidades y ejemplos. Ejercicio 2. Describir explícitamente la tabla de multiplicar de los grupos

Algebra II. Relación 2. Curso Grupos: generalidades y ejemplos. Ejercicio 2. Describir explícitamente la tabla de multiplicar de los grupos Algebra II Relación 2 Curso 2017-2018 Grupos: generalidades y ejemplos Ejercicio 1. Describir explícitamente la tabla de multiplicar de los grupos Z n para n = 4, n = 6 y n = 8, donde por Z n denotamos

Más detalles

b) Sea una relación de equivalencia en A y una operación en A. Decimos que y son compatibles si a b a c b c y c a c b para todo a, b, c A

b) Sea una relación de equivalencia en A y una operación en A. Decimos que y son compatibles si a b a c b c y c a c b para todo a, b, c A APENDICE Relaciones y Operaciones Compatibles 1 Definición: a) Sea A un conjunto y una relación entre elementos de A. Decimos que es una relación de equivalencia si es: i Reflexiva: a A, a a. ii Simétrica:

Más detalles

Estructuras algebraicas

Estructuras algebraicas Estructuras algebraicas Natalia Boal María Luisa Sein-Echaluce Universidad de Zaragoza 1 Relaciones binarias 11 Recordatorio Definición Dados dos conjuntos A y B se llama producto cartesiano de A por B

Más detalles

Definición 1 Un semigrupo es un conjunto E provisto de una operación binaria asociativa sobre E, se denota por (E, ).

Definición 1 Un semigrupo es un conjunto E provisto de una operación binaria asociativa sobre E, se denota por (E, ). ALGEBRA La primera parte del presente libro está dedicada a las estructuras algebraicas. En esta parte vamos a iniciar agregándole a los conjuntos operaciones. Cuando las operaciones tienen determinadas

Más detalles

Para motivar los axiomas de grupo, en este capítulo vamos a considerar solamente grupos de permutaciones, también conocidos como grupos simétricos.

Para motivar los axiomas de grupo, en este capítulo vamos a considerar solamente grupos de permutaciones, también conocidos como grupos simétricos. Capítulo 1 Permutaciones Para motivar los axiomas de grupo, en este capítulo vamos a considerar solamente grupos de permutaciones, también conocidos como grupos simétricos. 1.0.1. Definición. Sea X un

Más detalles

ÁLGEBRA II Primer Cuatrimestre 2014

ÁLGEBRA II Primer Cuatrimestre 2014 ÁLGEBRA II Primer Cuatrimestre 2014 Práctica 3: Grupos - Tercera Parte 1. Si un grupo G actúa sobre un conjunto finito X, el carácter de X es la aplicación χ X : G 0 dada por χ X (g) = {x X : g x = x},

Más detalles

Tema 1: Fundamentos.

Tema 1: Fundamentos. Tema 1: Fundamentos. 1. Nociones básicas de la Teoría de Conjuntos. Definición. Un conjunto es una colección de objetos. A los objetos de un conjunto se les llama elementos del conjunto. Se denominará

Más detalles

Tema 1.- Nociones preliminares: grupos, anillos, cuerpos. Divisibilidad

Tema 1.- Nociones preliminares: grupos, anillos, cuerpos. Divisibilidad Tema 1.- Nociones preliminares: grupos, anillos, cuerpos. Divisibilidad 1.1 Grupos Al haber alterado el orden de los temas, este apartado ya se ha visto en el tema 9 1.2 Anillos y cuerpos Definición 1.2.1.

Más detalles

Terminaremos el capítulo con una breve referencia a la teoría de cardinales.

Terminaremos el capítulo con una breve referencia a la teoría de cardinales. TEMA 5. CARDINALES 241 Tema 5. Cardinales Terminaremos el capítulo con una breve referencia a la teoría de cardinales. Definición A.5.1. Diremos que el conjunto X tiene el mismo cardinal que el conjunto

Más detalles

ÍNDICE INTRODUCCIÓN... 9 INSTRUCCIONES PARA EL LECTOR... 13

ÍNDICE INTRODUCCIÓN... 9 INSTRUCCIONES PARA EL LECTOR... 13 ÍNDICE INTRODUCCIÓN 9 INSTRUCCIONES PARA EL LECTOR 13 CAPÍTULO 1 GENERALIDADES TEOREMA DE LAGRANGE I Grupos 17 II Subgrupos 25 III Orden de un grupo 36 IV Índice de un subgrupo 40 Ejercicios correspondientes

Más detalles

Tema 1: Conjuntos. Miguel Ángel Olalla Acosta Departamento de Álgebra Universidad de Sevilla. Septiembre de 2017

Tema 1: Conjuntos. Miguel Ángel Olalla Acosta Departamento de Álgebra Universidad de Sevilla. Septiembre de 2017 Tema 1: Conjuntos Miguel Ángel Olalla Acosta miguelolalla@us.es Departamento de Álgebra Universidad de Sevilla Septiembre de 2017 Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2017 1

Más detalles

Tema 1: Conjuntos. Miguel Ángel Olalla Acosta Departamento de Álgebra Universidad de Sevilla. Septiembre de 2016

Tema 1: Conjuntos. Miguel Ángel Olalla Acosta Departamento de Álgebra Universidad de Sevilla. Septiembre de 2016 Tema 1: Conjuntos Miguel Ángel Olalla Acosta miguelolalla@us.es Departamento de Álgebra Universidad de Sevilla Septiembre de 2016 Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2016 1

Más detalles

y exámenes. Temas 3 y 4

y exámenes. Temas 3 y 4 U N I V E R S I D A D D E M U R C I A Ejercicios DEPARTAMENTO DE MATEMÁTICAS CONJUNTOS Y NÚMEROS 2017/2018. de talleres y exámenes. Temas 3 y 4 Se recuerda que la resolución de algunos de estos ejercicios

Más detalles

Álgebra y Matemática Discreta,

Álgebra y Matemática Discreta, CALIFICACIÓN SOLUCIONES Álgebra y Matemática Discreta, 2 do Parcial, 31 de Enero de 2004 1. Para cada afirmación, especificar si es V o F, justificando brevemente la respuesta en el caso de ser V o dando

Más detalles

Ejercicios de Álgebra Básica. Curso 2017/18

Ejercicios de Álgebra Básica. Curso 2017/18 Ejercicios de Álgebra Básica. Curso 2017/18 Tema 1: Conjuntos Conjuntos. Operaciones básicas Ejercicio 1. Describir las relaciones de inclusión o pertenencia entre los siguientes conjuntos: A =, B = {

Más detalles

58 7. ESPACIOS COCIENTE

58 7. ESPACIOS COCIENTE CAPíULO 7 Espacios cociente En esta sección estudiamos el cociente de un espacio vectorial por un subespacio W. Este cociente se define como el conjunto cociente de por una relación de equivalencia conveniente.

Más detalles

Conjuntos, relaciones y funciones Susana Puddu

Conjuntos, relaciones y funciones Susana Puddu Susana Puddu 1. Repaso sobre la teoría de conjuntos. Denotaremos por IN al conjunto de los números naturales y por ZZ al de los enteros. Dados dos conjuntos A y B decimos que A está contenido en B o también

Más detalles

Álgebra Básica. Departamento de Álgebra.

Álgebra Básica. Departamento de Álgebra. Ejercicios de Álgebra Básica. Curso 2010/11 Ejercicio 1. Construir las tablas de verdad de las siguientes proposiciones: (1). p q (2). [(p q) q] p (3). [(p q) r] p (q r) (4). [(p q) q] p (5). [(p q) p]

Más detalles

Tema 2. Grupos. 3. El conjunto de matrices de orden 2 con coeficientes enteros (o reales) con la suma es un grupo conmutativo.

Tema 2. Grupos. 3. El conjunto de matrices de orden 2 con coeficientes enteros (o reales) con la suma es un grupo conmutativo. Tema 2. Grupos. 1 Grupos Definición 1 Un grupo es una estructura algebraica (G, ) tal que la operación binaria verifica: 1. * es asociativa 2. * tiene elemento neutro 3. todo elemento de G tiene simétrico.

Más detalles

Tema 1: Conjuntos. Miguel Ángel Olalla Acosta Departamento de Álgebra Universidad de Sevilla. Septiembre de 2018

Tema 1: Conjuntos. Miguel Ángel Olalla Acosta Departamento de Álgebra Universidad de Sevilla. Septiembre de 2018 Tema 1: Conjuntos Miguel Ángel Olalla Acosta miguelolalla@us.es Departamento de Álgebra Universidad de Sevilla Septiembre de 2018 Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2018 1

Más detalles

Álgebra Básica. Departamento de Álgebra (2n 1) = n 2,

Álgebra Básica. Departamento de Álgebra (2n 1) = n 2, Ejercicios de Álgebra Básica. Curso 2012/13 Ejercicio 1. Probar, usando el método de inducción, la fórmula de la suma de n términos de una progresión geométrica de razón r, S n = ra n a 1 r 1. Ejercicio

Más detalles

Teorema de Lagrange. En esta sección demostramos algunos hechos básicos sobre grupos, que se pueden deducir de la definición

Teorema de Lagrange. En esta sección demostramos algunos hechos básicos sobre grupos, que se pueden deducir de la definición Teorema de Lagrange Capítulo 3 3.1 Introducción En este capítulo estudiaremos uno de los teoremas más importantes de toda la teoría de grupos como lo es el Teorema de Lagrange. Daremos en primer lugar

Más detalles

Capítulo 4: Conjuntos

Capítulo 4: Conjuntos Capítulo 4: Conjuntos Miguel Ángel Olalla Acosta miguelolalla@us.es Departamento de Álgebra Universidad de Sevilla Septiembre de 2014 Olalla (Universidad de Sevilla) Capítulo 4: Conjuntos Septiembre de

Más detalles

Exámenes de álgebra básica de enero de Grupos 1 y 3.

Exámenes de álgebra básica de enero de Grupos 1 y 3. Exámenes de álgebra básica de enero de 2019. Grupos 1 y 3. GRUPOS 1. Calcular razonadamente todos los subgrupos normales de S 4. Un subgrupo H de un grupo G es normal si y solamente si para cada g G se

Más detalles

Un elemento de un monoide se dice que es inversible si tiene elemento inverso.

Un elemento de un monoide se dice que es inversible si tiene elemento inverso. Tema 1: Semigrupos 1 Tema 1: Semigrupos 1. Semigrupos: Conceptos fundamentales. Recordemos que un sistema algebraico es un conjunto S con una o varias operaciones sobre él, siendo una operación ó ley de

Más detalles

TEMA 1. Teoría de Conjuntos. Ejercicio 1.1. Decidir si A = B, A B ó A B en los siguientes casos:

TEMA 1. Teoría de Conjuntos. Ejercicio 1.1. Decidir si A = B, A B ó A B en los siguientes casos: TEMA 1 Teoría de Conjuntos Ejercicio 1.1. Decidir si A = B, A B ó A B en los siguientes casos: i) A = { }, B = {{ }} ii) A = {, { }}, B = {, {, { }}} iii) A = {{ }, {, { }}}, B = {{ }} Ejercicio 1.2. Dar

Más detalles

Conjuntos. Relaciones. Aplicaciones

Conjuntos. Relaciones. Aplicaciones Conjuntos. Relaciones. Aplicaciones Conjuntos 1. Considera el subconjunto A de números naturales formado por los múltiplos de 4 y el conjunto B N de los números que terminan en 4. Comprueba que A B y B

Más detalles

Permutaciones. 5.1 Introducción. Capítulo

Permutaciones. 5.1 Introducción. Capítulo Capítulo 5 Permutaciones 5.1 Introducción Las permutaciones son el ejemplo de grupo finito que más se utiliza dentro de la teoría de grupos. Su importancia se debe a que todo grupo es isomorfo a un grupo

Más detalles

y exámenes. Temas 3 y 4

y exámenes. Temas 3 y 4 U N I V E R S I D A D D E M U R C I A Ejercicios DEPARTAMENTO DE MATEMÁTICAS CONJUNTOS Y NÚMEROS 2016/2017. de talleres y exámenes. Temas 3 y 4 Se recuerda que la resolución de algunos de estos ejercicios

Más detalles

0.1. Homomorfismos de Grupos

0.1. Homomorfismos de Grupos 0.1. HOMOMORFISMOS DE GRUPOS 1 0.1. Homomorfismos de Grupos Definición 1 Sean (G, ) y (H, ) dos grupos. Una función f de G a H f : G H se dice ser a) Un homomorfismo si f(x y) = f(x) f(y), x, y (G, ),

Más detalles

Tema 2: Teorema de estructura de los grupos abelianos finitamente generados.

Tema 2: Teorema de estructura de los grupos abelianos finitamente generados. ESTRUCTURAS ALGEBRAICAS GRADO EN MATEMÁTICAS. CURSO 215/216 Tema 2: Teorema de estructura de los grupos abelianos finitamente generados. 1.1. Grupo abeliano libre. Bases. Definición 1.1. El grupo Z n con

Más detalles

Álgebra II Primer Cuatrimestre 2016

Álgebra II Primer Cuatrimestre 2016 Álgebra II Primer Cuatrimestre 2016 Práctica 1: Grupos - Primera parte Notaciones usuales Z n D n H = {±1, ±i, ±j, ±k} Enteros módulo n Grupo diedral de orden 2n Grupo de cuaterniones Definiciones y ejemplos

Más detalles

Algebra Abstracta. 28 de diciembre de 2007

Algebra Abstracta. 28 de diciembre de 2007 Álgebra Abstracta. 28 de diciembre de 2007 2 Índice general 1. Grupos. 5 1.1. Semigrupos, monoides y grupos.......................... 5 1.1.1. Ejemplos de grupos............................. 7 1.2. Subgrupos......................................

Más detalles

COMPLEMENTO DEL TEÓRICO

COMPLEMENTO DEL TEÓRICO ÁLGEBRA I PRIMER CUATRIMESTRE - AÑO 2016 COMPLEMENTO DEL TEÓRICO El material de estas notas fue dictado en las clases teóricas pero no se encuentra en el texto que seguimos en las mismas ( Álgebra I -

Más detalles

Grupos libres. Presentaciones.

Grupos libres. Presentaciones. S _ Tema 12.- Grupos libres. Presentaciones. 12.1 Grupos libres. En el grupo Z de los enteros vimos una propiedad (cf. ejemplos.5), que lo caracteriza como grupo libre. Lo enunciamos al modo de una Propiedad

Más detalles

k, k 0, H G subgrupo X H

k, k 0, H G subgrupo X H Capítulo 6 Generadores En este capítulo veremos más ejemplos concretos de grupos y subgrupos Un caso muy importante es el subgrupo generado por una colección de elementos Cuando un grupo puede ser generado

Más detalles

6.1 Teorema de estructura de los módulos finitamente generados

6.1 Teorema de estructura de los módulos finitamente generados Tema 6.- Teorema de estructura de los módulos finitamente generados sobre un D.I.P.. Aplicaciones: ecuaciones lineales con coeficientes enteros, formas canónicas de Jordan 6.1 Teorema de estructura de

Más detalles

MatemáticaDiscreta&Lógica 1. Funciones. Aylen Ricca. Tecnólogo en Informática San José

MatemáticaDiscreta&Lógica 1. Funciones. Aylen Ricca. Tecnólogo en Informática San José MatemáticaDiscreta&Lógica 1 Funciones Aylen Ricca Tecnólogo en Informática San José 2014 http://www.fing.edu.uy/tecnoinf/sanjose/index.html FUNCIÓN.::. Definición. Sean A y B conjuntos no vacíos, una funciónf

Más detalles

Notas sobre funciones

Notas sobre funciones Notas sobre funciones Manuel Bello Sean X e Y dos conjuntos. Una función f : X Y es una correspondencia entre los conjuntos X e Y, la cual asocia a cada elemento de X un único elemento de Y. El conjunto

Más detalles

ÁLGEBRA Algunas soluciones a la Práctica 1

ÁLGEBRA Algunas soluciones a la Práctica 1 ÁLGEBRA Algunas soluciones a la Práctica 1 Correspondencias y aplicaciones (Curso 2004 2005) 1. Dadas las siguientes correspondencias, determinar sus conjuntos origen, imagen, decidir si no son aplicaciones

Más detalles

ÁLGEBRA I. Curso Grado en Matemáticas

ÁLGEBRA I. Curso Grado en Matemáticas ÁLGEBRA I. Curso 2012-13 Grado en Matemáticas Relación 1: Lógica Proposicional y Teoría de Conjuntos 1. Establecer las siguientes tautologías: (a) A A A (b) A A A (c) A B B A (d) A B B A (e) (A B) C A

Más detalles

Espacios vectoriales y aplicaciones lineales

Espacios vectoriales y aplicaciones lineales CAPíTULO 5 Espacios vectoriales y aplicaciones lineales 1 Espacios y subespacios Sea K un cuerpo Diremos que un conjunto V tiene estructura de espacio vectorial sobre K si 1) en V hay una operación + de

Más detalles

Con esta definición de grupo, es directo que el neutro es único, al igual que el inverso de. , donde es conmutativo, se denomina Abeliano.

Con esta definición de grupo, es directo que el neutro es único, al igual que el inverso de. , donde es conmutativo, se denomina Abeliano. Teoría de Grupos Definiciones Básicas Definición 5 (Grupo) Sea una estructura algebraica con una ley de composición interna. Decimos que es un grupo si: 1. es asociativa. 2. tiene neutro. 3. toda tiene

Más detalles

Definición 1.1 Sea G un conjunto. Una operación binaria en G es una aplicación m: G G G.

Definición 1.1 Sea G un conjunto. Una operación binaria en G es una aplicación m: G G G. 1 Definición y propiedades Definición 1.1 Sea G un conjunto. Una operación binaria en G es una aplicación m: G G G. Definición 1.2 Sea G un conjunto i) Si G tiene una operación binaria definida en G, se

Más detalles

MÉTODOS MATEMÁTICOS DE LA FÍSICA I

MÉTODOS MATEMÁTICOS DE LA FÍSICA I MÉTODOS MATEMÁTICOS DE LA FÍSICA I Ignacio Sánchez Rodríguez Curso 2006-07 TEMA PRELIMINAR ÍNDICE 1. Lenguaje matemático 2 2. Conjuntos 6 3. Aplicaciones 10 4. Relaciones 12 5. Estructuras algebraicas

Más detalles

Universidad Autónoma de Madrid Martes 19 de junio de Examen final: Álgebra II

Universidad Autónoma de Madrid Martes 19 de junio de Examen final: Álgebra II Universidad Autónoma de Madrid Martes 19 de junio de 2007 Examen final: Álgebra II Apellidos: D.N.I.: Nombre: Grupo: IMPORTANTE: Justifica todas tus respuestas. 1. Decide razonadamente si las siguientes

Más detalles

Tutoría Bailable by Robert & Yuyin Preparación C6 DIM 23 de Junio de 2017

Tutoría Bailable by Robert & Yuyin Preparación C6 DIM 23 de Junio de 2017 Facultad de Ciencias Físicas y Matemáticas Universidad de Chile MA00-Introducción al Cálculo MA0-Introducción al Álgebra Semestre Otoño 07 Tutoría Bailable by Robert & Yuyin Preparación C6 DIM 3 de Junio

Más detalles

a los anillos no conmutativos

a los anillos no conmutativos Tema 7.- Representaciones de grupos finitos. Introducción a los anillos no conmutativos 7.1 Nociones básicas En lo que sigue, k denotará un cuerpo arbitrario y los espacios vectoriales lo serán sobre k.

Más detalles

LA ESTRUCTURA DE GRUPOS Rodrigo Vargas

LA ESTRUCTURA DE GRUPOS Rodrigo Vargas CAPITULO II LA ESTRUCTURA DE GRUPOS Rodrigo Vargas 4. LA ACCION DE UN GRUPO SOBRE UN CONJUNTO 1. Sea G un grupo y A subgrupo normal abeliano. Demuestre que G/A actua sobre A por conjugación y obtenga un

Más detalles

Continuidad y monotonía

Continuidad y monotonía Tema 14 Continuidad y monotonía Generalizando lo que se hizo en su momento para sucesiones, definiremos la monotonía de una función, en forma bien fácil de adivinar. Probaremos entonces dos resultados

Más detalles

Álgebra Básica 11/01/2017 Grado en Matemáticas. Grupo C. Curso 2016/2017

Álgebra Básica 11/01/2017 Grado en Matemáticas. Grupo C. Curso 2016/2017 Álgebra Básica 11/01/2017 Grado en Matemáticas. Grupo C. Curso 2016/2017 SOLUCIONES Ejercicio 1 (5 puntos). Sea A un anillo conmutativo y K un cuerpo. a) Definir: i) Unidad en A. ii) Elemento irreducible

Más detalles

Es claro que es una relación de equivalencia. Para ver que tener la misma cardinalidad y la cardinalidad están bien definidas queremos ver que

Es claro que es una relación de equivalencia. Para ver que tener la misma cardinalidad y la cardinalidad están bien definidas queremos ver que Capítulo II Cardinalidad Finita II.1. Cardinalidad Definimos I n para n N como I n = {k N : 1 k n}. En particular I 0 =, puesto que 0 < 1. Esto es equivalente a la definición recursiva { si n = 0 I n =

Más detalles

P(f) : P(B) P(A) (A.2)

P(f) : P(B) P(A) (A.2) TEMA 2. APLICACIONES 227 Tema 2. Aplicaciones Definición A.2.1. Una correspondencia entre dos conjuntos A y B es un subconjunto del producto cartesiano A B. Una aplicación f entre dos conjuntos A y B es

Más detalles

LEYES, ESTRUCTURAS BÁSICAS Y COCIENTES CONJUNTOS Y GRUPOS

LEYES, ESTRUCTURAS BÁSICAS Y COCIENTES CONJUNTOS Y GRUPOS Todos los derechos de propiedad intelectual de esta obra pertenecen en exclusiva a la Universidad Europea de Madrid, S.L.U. Queda terminantemente prohibida la reproducción, puesta a disposición del público

Más detalles

(n, a)(m, b) = (nm, ma + nb) (a, b) + (c, d) = (a + c, b + d) y (a, b)(c, d) = (ac, bd)

(n, a)(m, b) = (nm, ma + nb) (a, b) + (c, d) = (a + c, b + d) y (a, b)(c, d) = (ac, bd) TEMA 3 Anillos. Dominios euclídeos. Ejercicio 3.1. Sea X un conjunto no vacío y R = P(X), el conjunto de partes de X. Si se consideran en R las operaciones: A + B = (A B) (A B) A B = A B demostrar que

Más detalles

Estructuras algebraicas Grado en Matemáticas. Curso 2013/2014. Apuntes de teoría. Departamento de Álgebra Universidad de Sevilla

Estructuras algebraicas Grado en Matemáticas. Curso 2013/2014. Apuntes de teoría. Departamento de Álgebra Universidad de Sevilla Estructuras algebraicas Grado en Matemáticas. Curso 2013/2014 Apuntes de teoría Departamento de Álgebra Universidad de Sevilla Tema 1: Grupos y subgrupos. Teorema de estructura. 1.1. Introducción Definición

Más detalles

Los isomorfismos básicos de la teoría de cuerpos algebraicos.

Los isomorfismos básicos de la teoría de cuerpos algebraicos. 4. AUTOMORFISMOS DE CUERPOS. En este tema probaremos que dos elementos α y β, conjugados sobre un cuerpo F, determinan un isomorfismo entre los cuerpos F (α) y F (β). También cierto recíproco será válido.

Más detalles

9 Grupos abelianos libres

9 Grupos abelianos libres 42 TEORIA DE GRUPOS 9 Grupos abelianos libres En Álgebra Lineal es clásica la estructura de espacio vectorial V sobre un cuerpo K. Esta sección trata de estudiar el caso análogo de un grupo abeliano sobre

Más detalles

Conjuntos, Aplicaciones y Relaciones

Conjuntos, Aplicaciones y Relaciones Conjuntos, Aplicaciones y Relaciones Curso 2017-2018 1. Conjuntos Un conjunto será una colección de objetos; a cada uno de estos objetos lo llamaremos elemento del conjunto. Si x es un elemento del conjunto

Más detalles

Aplicaciones Lineales (Curso )

Aplicaciones Lineales (Curso ) ÁLGEBRA Práctica 6 Aplicaciones Lineales (Curso 2010 2011) 1. De las siguientes aplicaciones definidas entre espacios vectoriales reales determinar cuáles son homomorfismos monomorfismos epimorfismos o

Más detalles

ELEMENTOS DE TEORÍA DE GRUPOS

ELEMENTOS DE TEORÍA DE GRUPOS ELEMENTOS DE TEORÍA DE GRUPOS CÉSAR ROSALES. TOPOLOGÍA II El objetivo de estas notas es recoger una serie de herramientas algebraicas que se utilizarán a lo largo de la asignatura. Expondremos las diferentes

Más detalles

Clases laterales. Capítulo Clases laterales

Clases laterales. Capítulo Clases laterales Capítulo 7 Clases laterales En este capítulo vamos a investigar la noción del subgrupo normal, que es fundamental para la teoría. Recordemos que hemos definido el anillo Z/nZ considerando la relación de

Más detalles

AMPLIACIÓN DE MATEMÁTICAS

AMPLIACIÓN DE MATEMÁTICAS AMPLIACIÓN DE MATEMÁTICAS GRUPOS: DEFINICIÓN Y EJEMPLOS. La Teoría de Grupos tiene muchas aplicaciones desde Cristalografía hasta Criptografía, pasando por la resolución de ecuaciones. Nosotros vamos a

Más detalles

Preliminares. 1. Notación simbólica. Conjuntos. También se da en el curso de Conjuntos y Numeros.

Preliminares. 1. Notación simbólica. Conjuntos. También se da en el curso de Conjuntos y Numeros. CAPíTULO 1 Preliminares 1. Notación simbólica. Conjuntos. También se da en el curso de Conjuntos y Numeros. El método matemático es axiomático y deductivo: a partir de unos principios aceptados inicialmente

Más detalles

Determinantes. σ(1)... σ(n) l i nl 1 +1 if s = n l

Determinantes. σ(1)... σ(n) l i nl 1 +1 if s = n l CAPíTULO 5 Determinantes 1 El grupo simétrico Sea n N Denotemos por Σ n el conjunto: Σ n = {f : {1,,n} {1,,n} f es aplicación biyectiva} Si f,g Σ n, la aplicación compuesta g f también es un elemento de

Más detalles

ÁLGEBRA Algunas Soluciones a la Práctica 6

ÁLGEBRA Algunas Soluciones a la Práctica 6 ÁLGEBRA Algunas Soluciones a la Práctica 6 Aplicaciones lineales (Curso 2006 2007) 3. Dada la matriz A = ( 1 0 ) 2 3 2 1 y las bases B 1 = {(2, 1), (1, 1)} en IR 2 y B 2 = {(0, 1, 1), (1, 1, 1), ( 1, 2,

Más detalles

Conjuntos relaciones y grupos

Conjuntos relaciones y grupos Matemáticas NS Conjuntos relaciones y grupos Tema opcional 2 Índice 1. Conjuntos y relaciones 5 1.1. Introducción.......................................... 5 1.2. Operaciones con conjuntos..................................

Más detalles

Transformaciones Lineales y Espacio Dual

Transformaciones Lineales y Espacio Dual Transformaciones Lineales y Espacio Dual Juan Pablo De Rasis 22 de abril de 2018 El presente artículo tiene como objetivo la exposición de soluciones a problemas de Álgebra Lineal concernientes a transformaciones

Más detalles

Capítulo 3: El anillo de los números enteros

Capítulo 3: El anillo de los números enteros Capítulo 3: El anillo de los números enteros Miguel Ángel Olalla Acosta miguelolalla@us.es Departamento de Álgebra Universidad de Sevilla Noviembre de 2016 Olalla (Universidad de Sevilla) El anillo de

Más detalles

ÁLGEBRA LINEAL I Soluciones a la Práctica 1

ÁLGEBRA LINEAL I Soluciones a la Práctica 1 ÁLGEBRA LINEAL I Soluciones a la Práctica 1 Conjuntos y aplicaciones (Curso 2015 2016) 1. Dados los siguientes conjuntos: A = {2, 3, 5, 7, 11} B = {x Z x 4} C = {x Z x < 5} D = {x N x es impar} Hallar:

Más detalles

ÁLGEBRA MODERNA. Índice 1. Los grupos A n y S n Cíclos. 3

ÁLGEBRA MODERNA. Índice 1. Los grupos A n y S n Cíclos. 3 ÁLGEBRA MODERNA DANIEL LABARDINI FRAGOSO TOMÓ ESTAS NOTAS: JAIME ALEJANDRO GARCÍA VILLEDA. FECHA: 8 DE MARZO DEL 2016. Índice 1. Los grupos A n y S n. 1 1.1. Cíclos. 3 1. Los grupos A n y S n. Fijemos

Más detalles

Anillos. a + (b + c) = (a + b) + c. 3) Existe un elemento 0 en R, el cual llamaremos cero, tal que. a + 0 = 0 + a = a para todo a en R.

Anillos. a + (b + c) = (a + b) + c. 3) Existe un elemento 0 en R, el cual llamaremos cero, tal que. a + 0 = 0 + a = a para todo a en R. Capítulo 7 Anillos 7.1 Definiciones Básicas El concepto de Anillo se obtiene como una generalización de los números enteros, en donde están definidas un par de operaciones, la suma y el producto, relacionadas

Más detalles

Estructuras Discretas. Conjuntos. Conjuntos & Funciones. Especificación de Conjuntos.

Estructuras Discretas. Conjuntos. Conjuntos & Funciones. Especificación de Conjuntos. Estructuras Discretas Conjuntos Conjuntos & Funciones Claudio Lobos clobos@inf.utfsm.cl niversidad Técnica Federico Santa María Estructuras Discretas INF 152 Definición: conjunto n conjunto es una colección

Más detalles

Conjuntos finitos y conjuntos numerables

Conjuntos finitos y conjuntos numerables Tema 3 Conjuntos finitos y conjuntos numerables En este tema vamos a usar los números naturales para contar los elementos de un conjunto, o dicho con mayor precisión, para definir los conjuntos finitos

Más detalles

Extensiones normales.

Extensiones normales. 10. TEORÍA DE GALOIS Este capítulo, donde se establece el Teorema Principal de la Teoría de Galois, puede ser considerado como la culminación de la asignatura. Aquí se relacionarán las Teorías de Grupos

Más detalles

XVIII Olimpiada Iberoamericana de Matemática Universitaria 2015 Soluciones y Criterios para calicar 24 de noviembre de 2015

XVIII Olimpiada Iberoamericana de Matemática Universitaria 2015 Soluciones y Criterios para calicar 24 de noviembre de 2015 XVIII Olimpiada Iberoamericana de Matemática Universitaria 05 Soluciones y Criterios para calicar 4 de noviembre de 05 Problema Sean a y b números reales tales que a < b y ab > 0. Sea f : [a, b] [a, b]

Más detalles

Algebra I (Doble Grado Matemáticas-Informática)

Algebra I (Doble Grado Matemáticas-Informática) Algebra I (Doble Grado Matemáticas-Informática) Relación 1 Curso 2017-2018 Conjuntos y aplicaciones. Ejercicio 1. Construir todas las aplicaciones del conjunto X = {a, b, c} en el conjunto Y = {1, 2} y

Más detalles

Transformaciones lineales

Transformaciones lineales CAPíTULO 4 Transformaciones lineales En este capítulo estudiamos las primeras propiedades de las transformaciones lineales entre espacios vectoriales. 1. Construcciones de transformaciones lineales Lema

Más detalles

Conjuntos finitos y conjuntos numerables

Conjuntos finitos y conjuntos numerables Tema 3 Conjuntos finitos y conjuntos numerables En este tema vamos a usar los números naturales para contar los elementos de un conjunto, o dicho con mayor precisión, para definir los conjuntos finitos

Más detalles

UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES CARRERA DE: Licenciado en Estadística PROGRAMA DE LA ASIGNATURA DE ÁLGEBRA SUPERIOR

UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES CARRERA DE: Licenciado en Estadística PROGRAMA DE LA ASIGNATURA DE ÁLGEBRA SUPERIOR UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES CARRERA DE: Licenciado en Estadística PROGRAMA DE LA ASIGNATURA DE ÁLGEBRA SUPERIOR DATOS GENERALES Departamento (División): División de Ciencias

Más detalles

AMPLIACIÓN DE MATEMÁTICAS

AMPLIACIÓN DE MATEMÁTICAS AMPLIACIÓN DE MATEMÁTICAS GRUPOS CÍCLICOS. Los grupos que pueden ser generados por un único elemento se llaman Grupos Cíclicos. Un único elemento como generador hace que sea fácil trabajar con ellos. Además,

Más detalles

Teoría de anillos. Dominios, cuerpos y cuerpos de fracciones.

Teoría de anillos. Dominios, cuerpos y cuerpos de fracciones. Tema 5.-. Teoría de anillos. Dominios, cuerpos y cuerpos de fracciones. 5.1. Anillos y cuerpos Definición 5.1.1. Un anillo es una terna (A, +, ) formada por un conjunto A y dos operaciones binarias +,

Más detalles

Teoría de anillos. Dominios, cuerpos y cuerpos de fracciones. Característica de un cuerpo.

Teoría de anillos. Dominios, cuerpos y cuerpos de fracciones. Característica de un cuerpo. 1 Tema 5.-. Teoría de anillos. Dominios, cuerpos y cuerpos de fracciones. Característica de un cuerpo. 5.1. Anillos y cuerpos Definición 5.1.1. Un anillo es una terna (A, +, ) formada por un conjunto A

Más detalles

Espacios topológicos y espacios métricos

Espacios topológicos y espacios métricos CAPíTULO 2 Espacios topológicos y espacios métricos Tema 1. Definición y primeros ejemplos Como queda anunciado al final del capítulo anterior ampliaremos la definición de abierto de un conjunto utilizando

Más detalles

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3 ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3 Matrices y determinantes (Curso 2011 2012) 2. Sea A una matriz diagonal n n y supongamos que todos los elementos de su diagonal son distintos entre sí.

Más detalles