Física atómica y nuclear

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Física atómica y nuclear"

Transcripción

1 Física atómica y nuclear Física de rayos X Física de las capas atómicas LD Hojas de Física Estudio de los espectros de energía de un tubo de rayos X en función de la alta tensión y de la corriente de emisión Objetivos del experimento g Registro de los espectros de energía de un tubo de rayos X con ánodo de Mo por medio de la reflexión de Bragg de la radiación X en un cristal de NaCl en el primer orden de difracción. g Comprensión de los espectros de energía como una superposición de los espectros continuos de radiación de frenado y las líneas de la radiación característica de rayos X para el material del ánodo. g Estudio de cómo la radiación de frenado y la radiación característica dependen de la alta tensión y la corriente de emisión. Principios Los rayos X se generan cuando electrones que se mueven a gran velocidad son desacelerados rápidamente en la materia. Según las leyes de la electrodinámica clásica, esta desaceleración genera una radiación electromagnética que es irradiada mayormente en forma perpendicular a la dirección de aceleración para energías por debajo de los 50 kev, es decir, en este caso perpendicular a la dirección de los electrones que llegan al ánodo. Por razones históricas, este componente de los rayos X recibe el nombre de bremsstrahlung, por la palabra alemana del proceso de desaceleración que le da lugar. La radiación de bremsstrahlung (radiación de frenado) tiene un espectro continuo que se extiende a una frecuencia máxima determinada ν max o una longitud de onda mínima λ min. Si la energía de los electrones excede un valor crítico, se genera la radiación X característica, la que aparece en el espectro en forma de líneas individuales, además del espectro continuo de la radiación de frenado. Estas líneas se generan cuando los electrones de alta energía penetran las capas atómicas más profundas del material del ánodo Fig. 1 Diagrama simplificado de un átomo y definición de las series K, L y M de la radiación de rayos X característica y expulsan electrones de los orbitales más internos por colisión. Los huecos generados en este proceso son rellenados por electrones de los orbitales externos bajo la emisión de rayos X. La radiación X resultante es la característica para ese material del ánodo y es más o menos comparable con el espectro óptico de líneas de un material en estado gaseoso o vaporoso. Los cuerpos sólidos también emiten líneas individuales, muy definidas en el rango de los rayos X; al contrario de lo que ocurre con la luz visible excitada en los orbitales exteriores de la capa de electrones, su posición es prácticamente independiente de la situación química de los átomos emisores o el estado consolidado del material. La Fig. 1 muestra la nomenclatura adoptada para el modelo orbital de la capa atómica para las líneas de la radiación X característica: cada orbital está caracterizado por una energía de enlace particular y son designados de los más internos a los más externos, con las letras K, L, M, N, etc. Los electrones se pueden mover de un orbital a otro según las leyes de la mecánica cuántica; estas transiciones conllevan la absorción o la emisión de radiación, según la dirección. Por ejemplo, la radiación proveniente de las transiciones del orbital K se lleva a cabo como una serie de líneas secuenciales denominadas K α, K β, K γ, etc. Comenzando por K α, la energía de las transiciones aumenta y la longitud de onda correspondiente disminuye. Este experimento registra el espectro de energía de un tubo de rayos X con ánodo de molibdeno. El espectrómetro está compuesto por un goniómetro con un cristal de NaCl y un tubo contador de Geiger-Müller dispuestos según la configuración de Bragg. El cristal y el tubo contador son girados con respecto al haz de rayos X incidente en acoplamiento 2ϑ (cf. Fig. 2). 1

2 LD Hojas de Física Materiales 1 aparato de rayos X tubo contador con ventanilla para rayos α, β, γ y X materiales adicionales: 1 PC con Windows 9x/NT Según la Ley de reflexión de Bragg, el ángulo de dispersión ϑ en el primer orden de difracción corresponde a la longitud de onda λ = 2 d sin ϑ (I) d = 282,01 : distancia reticular interplanar del NaCl Junto con las relaciones válidas para la radiación electromagnética c ν = (II) λ ν: frecuencia, c: velocidad de la luz y E = h ν (III) E: energía, h: constante de Planck Notas de seguridad El aparato de rayos X cumple con todas las normas vigentes para equipos de rayos X; es un dispositivo totalmente protegido para usos educativos, y es del tipo cuyo uso en escuelas está permitido en Alemania (NW 807 / 97 Rö). La protección integrada y las medidas del blindaje reducen la intensidad de dosis local en el exterior del aparato de rayos X a menos de 1 µsv/h. Este valor se encuentra en el orden de magnitud de la radiación de fondo natural. g Antes de comenzar a utilizar el aparato de rayos X, verifique que no se encuentre dañado y asegúrese de que la alta tensión se interrumpa cuando se abren las puertas corredizas (ver Hoja de Instrucciones para el aparato de rayos X). g No permita el acceso de personas no autorizadas al aparato de rayos X. Evite el sobrecalentamiento del ánodo del tubo de rayos X de Mo. g Al encender el aparato de rayos X, asegúrese de que el ventilador en la cámara del tubo esté girando. El goniómetro es posicionado exclusivamente mediante motores eléctricos paso a paso. g No bloquee el brazo para el objetivo y el brazo para el sensor del goniómetro y no utilice la fuerza para moverlos. Fig. 2 Diagrama esquemático de la difracción de rayos X en un monocristal y acoplamiento 2ϑ entre el ángulo del tubo contador y el ángulo de dispersión (ángulo rasante) 1 colimador, 2 monocristal, 3 tubo contador la ecuación (I) arroja la energía de la radiación X. De este modo, el espectrómetro proporciona la longitud de onda, frecuencia o espectro de energía de la radiación, dependiendo del modo de representación seleccionado. Este experimento analiza el efecto de la alta tensión del tubo U y de la corriente de emisión I sobre el espectro de energía del tubo de rayos X. La alta tensión U se aplica como tensión de aceleración para los electrones entre el cátodo y el ánodo (ver Fig. 3). La corriente de emisión I, esto es, la corriente que circula entre el ánodo y el cátodo, se puede controlar modificando la tensión de calentamiento U K del cátodo. Fig. 3 Diagrama esquemático de la estructura del tubo de rayos X 2

3 LD Hojas de Física Preparación de la medición con PC: - Conecte la salida RS-232 y el puerto serie de la PC (generalmente COM1 o COM2) con el cable de 9 pines V.24 (provisto con el aparato de rayos X). - De ser necesario, instale el software Aparato de rayos X en Windows 9x/NT (ver la Hoja de instrucciones del aparato de rayos X) y seleccione el idioma deseado. Fig. 4 Montaje experimental para estudiar el espectro de energía de un tubo de rayos X Montaje Montaje según la configuración de Bragg: La Fig. 4 muestra algunos detalles importantes del montaje del experimento. Realice el montaje de la siguiente manera (ver también la Hoja de instrucciones del aparato de rayos X): - Coloque el colimador en la montura correspondiente (a) (preste atención al surco guía). - Sujete el goniómetro a las barras de guía (d) de modo que la distancia s 1 entre el diafragma de ranura del colimador y el brazo para el objetivo sea de aproximadamente 5 cm. Conecte el cable de cinta (c) para controlar el goniómetro. - Retire la cubierta protectora del tubo contador con ventanilla, coloque el contador en el asiento del sensor (e) y conecte el cable del tubo contador en el enchufe hembra denominado GM TUBE. - Mueva el soporte del sensor (b) de modo que la distancia s 2 entre el brazo para el objetivo y el diafragma de ranura del receptor del sensor sea de aproximadamente 6 cm. - Monte el soporte para objetivo (f) con plataforma para objetivo. - Afloje el tornillo de cabeza moleteada (g), coloque la lámina de cristal de NaCl en la plataforma para objetivo, eleve cuidadosamente la plataforma con el cristal hasta el tope y ajuste cuidadosamente el tornillo de cabeza moleteada (inmovilice el cristal ejerciendo una presión suave). - De ser necesario, ajuste la posición cero del goniómetro (ver Hoja de instrucciones del aparato de rayos X). Notas: Los cristales de NaCl son higroscópicos y extremadamente frágiles. Guarde los cristales en un lugar seco; evite someterlos a esfuerzos mecánicos, manipúlelos sólo por las caras cortas. Si la tasa de conteo es muy baja, se puede reducir un poco la distancia s 2 entre el objetivo y el sensor. Sin embargo, la distancia no debe ser muy pequeña, dado que de lo contrario la resolución angular del goniómetro ya no será suficiente para separar las líneas K α y K β características. Realización del experimento - Ejecute el software Aparato de rayos X. Asegúrese de que el aparato está conectado correctamente y borre cualquier información de mediciones anteriores con el botón o la tecla F4. - Fije la corriente de emisión I = 1,00 ma, el tiempo de medición por paso angular t = 10 s y el ancho del paso angular β = 0,1. - Presione el botón COUPLED para activar el acoplamiento 2ϑ del objetivo y el sensor y fije el límite inferior del ángulo del objetivo en 2,5 y el límite superior en 12,5. - Fije la alta tensión del tubo U = 15 kv y comience las mediciones y la transmisión de datos a la PC presionando el botón SCAN. - Realice otras series de mediciones con valores de alta tensión del tubo U = 20 kv, 25 kv, 30 kv y 35 kv. Para demostrar la dependencia respecto de la longitud de onda, abra el diálogo Ajustes con el botón o F5 e ingrese la distancia reticular interplanar para el NaCl. Guarde las series de mediciones con un nombre adecuado presionando el botón o la tecla F2. - Borre la información de mediciones anteriores con el botón o la tecla F4 y ajuste la alta tensión del tubo U = 35 kv. - Fije la corriente de emisión I = 0,40 ma y comience las mediciones y la transmisión de datos a la PC presionando el botón SCAN. - Registre otras series de mediciones con los valores de corriente de emisión I = 0,60 ma, 0,80 ma y 1,00 ma. - Para demostrar la dependencia respecto de la longitud de onda, abra el diálogo Ajustes con el botón o F5 e ingrese la distancia reticular interplanar para el NaCl. - Guarde las series de mediciones con un nombre adecuado presionando el botón o la tecla F2. 3

4 LD Hojas de Física Ejemplo de medición Fig. 5 Espectros del tubo de rayos X con ánodo de Mo para los valores de alta tensión del tubo U = 15 kv (base), 20 kv, 25 kv, 30 kv, 35 kv (techo); corriente de emisión I =1,00 ma. Fig. 6 Espectros del tubo de rayos X con ánodo de Mo para los valores de corriente de emisión I = 0,4 ma (base), 0,6 ma, 0,8 ma, 1,00 ma (techo); alta tensión del tubo de rayos X U = 35 kv. 4

5 LD Hojas de Física Evaluación - Cargue las series de mediciones guardadas. - Coloque el cursor en cada uno de los diagramas, haga clic con el botón derecho del mouse para acceder a las funciones de evaluación del software Aparato de rayos X y, para cada curva, seleccione Calcular centro de pico y marque el ancho completo del pico con el botón izquierdo del mouse. - Tome nota de los centros de pico en una tabla de mediciones (ver tabla 1) y calcule los valores medios. Tabla 1: Longitudes de onda de la radiación característica del molibdeno determinada a partir de los espectros para valores variables de alta tensión del tubo U U kv ( K α ) λ λ( K β ) 25 71,04 62, ,09 63, ,04 63,10 Valores medios: λ(k α ) = 71,06, λ(k β ) = 63,12 Valores de bibliografía [1] a modo de comparación: λ(k α ) = 71,080, λ(k β ) = 63,095 - Cargue las series de mediciones guardadas. - Coloque el cursor en cada uno de los diagramas, haga clic con el botón derecho del mouse para acceder a las funciones de evaluación del software Aparato de rayos X y, para cada curva, seleccione Calcular centro de pico y marque el ancho completo del pico con el botón izquierdo del mouse. - Tome nota de los centros de pico en una tabla de mediciones (ver tabla 2) y calcule los valores medios. - Ahora seleccione la opción de menú Visualizar coordenadas, localice los máximos R(K α ) y R(K β ) de las líneas características, y determine el máximo del espectro continuo de la radiación de frenado R C ; anótelo (ver tabla 3), y luego visualícelo en el gráfico (ver Fig. 7). Fig. 7 Tasas de conteo en función de la corriente de emisión Círculos: línea K α Cuadrados: línea K β Triángulos: espectro continuo de la radiación de frenado Líneas: líneas rectas a través del origen Tabla 2: Longitudes de onda de la radiación característica del molibdeno determinadas a partir de los espectros para valores variables de la corriente de emisión I I ma ( K ) λ α ( K β ) λ 0,4 71,09 63,15 0,6 71,05 63,15 0,8 71,08 63,15 1,0 71,04 63,10 Valores medios: λ(k α ) = 71,07, λ(k β ) = 63,14 Tabla 3: Máximos de la tasa de conteo de las líneas características y espectro continuo de la radiación de frenado en función de la corriente de emisión I I ma R( K ) α R( K ) s -1 β R C s -1-1 s 0, , , , Resultados La Fig. 5 muestra claramente cómo el espectro continuo de la radiación de frenado va cambiando a medida que la alta tensión del tubo U aumenta. La intensidad de la radiación aumenta, dado que los electrones generan más cuantos de rayos X al desacelerar a medida que la energía aumenta. La longitud de onda límite λ min es desplazada a valores menores, esto es, a mayor energía se genera radiación más fuerte. Para un estudio cuantitativo de la relación entre la longitud de onda límite y la tensión del tubo, ver el experimento P Se necesita una cantidad mínima de energía de los electrones para excitar la energía característica. Por lo tanto, las líneas K α y K β sólo se vuelven evidentes por encima de U = 20 kv. Su intensidad aumenta junto con la alta tensión del tubo. Sin embargo, la alta tensión del tubo no produce efecto alguno sobre las posiciones de las líneas características (ver tabla 1). Tal como se desprende de la Fig. 6, la corriente de emisión I no tiene ningún efecto sobre la forma del espectro de rayos X. Las posiciones de las líneas características no se modifican (ver tabla 2). Sin embargo, la intensidad del espectro de la radiación de frenado y las líneas características disminuye en forma proporcional a la corriente de emisión (ver tabla 3 y Fig. 7). Las desviaciones en esta relación de proporcionalidad a tasas de conteo superiores a 1000 s -1 se deben a los efectos de tiempo muerto en mediciones de tasas de conteo. Bibliografía [1] C. M. Lederer y V. S. Shirley, Table of Isotopes, 7º Edición, 1978, John Wiley & Sons, Inc., New York, USA. LD Didactic GmbH Leyboldstrasse 1 D Huerth / Alemania Teléfono: (02233) Fax: (02233) info@ld-didactic.de por LD Didactic GmbH Impreso en la República Federal de Alemania Se reservan las alteraciones técnicas

Física del estado sólido

Física del estado sólido Física del estado sólido Propiedades de cristales Análisis estructural mediante rayos X LD Hojas de Física Reflexión de Bragg: determinación de constantes de red de monocristales Objetivos del experimento

Más detalles

Física del estado sólido

Física del estado sólido Física del estado sólido Propiedades de cristales nálisis estructural mediante rayos X LD ojas de Física P7... Método de Laue: estudio de la estructura cristalina de los monocristales Objetivos del experimento

Más detalles

DIFRACCIÓN DE RAYOS X

DIFRACCIÓN DE RAYOS X Física del Estado Sólido DIFRACCIÓN DE RAYOS X Dr. Andrés Ozols n n k k d cosθ =d.n Θ d Θ k k d cos θ = d.n Facultad de Ingeniería Universidad de Buenos Aires 2009 TEMARIO Objetivo Naturaleza de los rayos

Más detalles

PROPIEDADES DE LOS RAYOS X I

PROPIEDADES DE LOS RAYOS X I CAPÍTULO.. RADIACIÓN ELECTROMAGNÉTICA Los rayos X son radiación electromagnética de la misma aturaleza que la luz pero de longitud de onda mucho más corta. La unidad de medida en la región de los rayos

Más detalles

Teoría de la electricidad

Teoría de la electricidad Teoría de la electricidad Magnetismo Ley de Biot-Savart LD Hojas de Física Medición del campo magnético en conductores rectilíneos y y espiras conductoras circulares Objetivos del experimento Medición

Más detalles

TRABAJO PRÁCTICO N 14 ESPECTROMETRÍA REDES DE DIFRACCIÓN

TRABAJO PRÁCTICO N 14 ESPECTROMETRÍA REDES DE DIFRACCIÓN TRABAJO PRÁCTICO N 14 Introducción La luz blanca ordinaria (luz del sol, luz de lámparas incandescentes, etc.) es una superposición de ondas cuyas longitudes de onda cubren, en forma continua, todo el

Más detalles

Laboratorio 1. Efecto fotoeléctrico

Laboratorio 1. Efecto fotoeléctrico Laboratorio 1 Efecto fotoeléctrico 1.1 Objetivos 1. Determinar la constante de Planck h 2. Determinar la dependencia del potencial de frenado respecto de la intensidad de la radiación incidente. 1.2 Preinforme

Más detalles

Práctica 6: Redes de difracción F2 ByG 2º Cuat 2005

Práctica 6: Redes de difracción F2 ByG 2º Cuat 2005 Práctica 6: Redes de difracción F2 ByG 2º Cuat 2005 Objetivos: Se propone medir el espectro de una lámpara de sodio utilizando redes de difracción. Se propone determinar los límites del espectro visible

Más detalles

Espectroscopía de Absorción Molecular

Espectroscopía de Absorción Molecular Espectroscopía de Absorción Molecular La espectroscopía consiste en el estudio cualitativo y cuantitativo de la estructura de los átomos o moléculas o de distintos procesos físicos y químicos mediante

Más detalles

COMO USAR EL APARATO DE RAYOS X

COMO USAR EL APARATO DE RAYOS X COMO USAR EL APARATO DE RAYOS X INTRODUCCIÓN Software propio para el Aparato de rayos X El aparato de rayos X registra tasas de impulsos en función de los ajustes angulares del blanco y del sensor. El

Más detalles

Física atómica y nuclear

Física atómica y nuclear Fíica atómica y nuclear Fíica de rayo X Atenuación de rayo X LD Hoja de Fíica Etudio de la atenuación de rayo X en función del material y el epeor del aborbente Objetivo del experimento g Etudio de la

Más detalles

La ley de desplazamiento de Wien (Premio Nobel 1911):

La ley de desplazamiento de Wien (Premio Nobel 1911): Trabajo de laboratorio Nro 1: Verificación de la ley de Stefan Boltzmann y determinación de la constante de Planck mediante el análisis de la radiación del cuerpo negro Introducción Toda superficie cuya

Más detalles

Física atómica y nuclear

Física atómica y nuclear Física atómica y nuclear Experimentos introductorios ualismo onda-partícula L Hojas de Física P6.1.5.1 ifracción de electrones en una red policristalina (ifracción de ebye-scherrer) Objetivos del experimento

Más detalles

Tema 14 11/02/2005. Tema 8. Mecánica Cuántica. 8.1 Fundamentos de la mecánica cuántica

Tema 14 11/02/2005. Tema 8. Mecánica Cuántica. 8.1 Fundamentos de la mecánica cuántica Tema 14 11/0/005 Tema 8 Mecánica Cuántica 8.1 Fundamentos de la mecánica cuántica 8. La ecuación de Schrödinger 8.3 Significado físico de la función de onda 8.4 Soluciones de la ecuación de Schrödinger

Más detalles

La Teoría Cuántica Preguntas de Multiopcion

La Teoría Cuántica Preguntas de Multiopcion Slide 1 / 71 La Teoría Cuántica Preguntas de Multiopcion Slide 2 / 71 1 El experimento de "rayos catódicos" se asocia con: A B C D E Millikan Thomson Townsend Plank Compton Slide 3 / 71 2 La carga del

Más detalles

Experiencia N 8: Espectro Visible del Hidrógeno

Experiencia N 8: Espectro Visible del Hidrógeno 1 Experiencia N 8: Espectro Visible del Hidrógeno OBJETIVOS 1.- Calcular experimentalmente la constante de Rydberg. 2.- Calcular experimentalmente las líneas espectrales visibles del hidrógeno utilizando

Más detalles

Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física Practica de FS-321 Espectroscopia

Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física Practica de FS-321 Espectroscopia Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física Practica de FS-321 Espectroscopia Elaborada por: Mario Coto y Luis Alcerro I. Objetivos 1. Calibrar correctamente un espectroscopio

Más detalles

DETECTORES DE RADIACIÓN

DETECTORES DE RADIACIÓN DETECTORES DE RADIACIÓN ( I ) - INTERACCIÓN RADIACIÓN-MATERIA CURSO 2012 2013 INTRODUCCIÓN La mayoría de los detectores de radiación presentan un comportamiento similar: 1. La radiación entra en el detector

Más detalles

Mecánica. Tercer axioma de Newton y leyes de choque. LD Hojas de Física P Sel/Wei

Mecánica. Tercer axioma de Newton y leyes de choque. LD Hojas de Física P Sel/Wei Mecánica Movimientos de traslación de la masa puntual Conservación del impulso LD Hojas de Física Tercer axioma de Newton y leyes de choque P1.3.4.4 Trazado y análisis con VideoCom Objetivos del experimento

Más detalles

EFECTO FOTOELÉCTRICO MODELO ONDULATORIO DE LA LUZ VS EL MODELO CUÁNTICO

EFECTO FOTOELÉCTRICO MODELO ONDULATORIO DE LA LUZ VS EL MODELO CUÁNTICO 16 EFECTO FOTOELÉCTRICO MODELO ONDULATORIO DE LA LUZ VS EL MODELO CUÁNTICO OBJETIVOS Investigar el efecto fotoeléctrico externo utilizando un fotodiodo de vacío. Hallar la energía máxima de los fotoelectrones

Más detalles

Caracterización Estructural de Minerales por Difracción de Rayos X

Caracterización Estructural de Minerales por Difracción de Rayos X Máster Universitario en Profesor de Enseñanza Secundaria Obligatoria, Bachillerato, Formación Profesional y Enseñanza de Idiomas Caracterización Estructural de Minerales por Difracción de Rayos X J. Medina

Más detalles

Física Cuántica Problemas de Practica AP Física B de PSI

Física Cuántica Problemas de Practica AP Física B de PSI Física Cuántica Problemas de Practica AP Física B de PSI Nombre 1. El experimento de "rayos catódicos" se asocia con: (A) R. A. Millikan (B) J. J. Thomson (C) J. S. Townsend (D) M. Plank (E) A. H. Compton

Más detalles

Caracterización Estructural de Materiales por Difracción de Rayos X

Caracterización Estructural de Materiales por Difracción de Rayos X Grado C. Físicas SÍNTESIS Y DETERMINACIÓN ESTRUCTURAL DE LOS MATERIALES Caracterización Estructural de Materiales por Difracción de Rayos X J. Medina UNIVERSIDAD DE VALLADOLID Departamento de Física de

Más detalles

Problema Interferencia de N ranuras.

Problema Interferencia de N ranuras. Problema 9. 4. Interferencia de N ranuras. Considere un obstáculo con tres ranuras separadas por una distancia d e iluminado con una onda plana de longitud de onda λ. Emplee el método de los fasores para

Más detalles

02/06/2014. Química Plan Común

02/06/2014. Química Plan Común Química Plan Común Limitaciones del Modelo Atómico de Rutherford Según el modelo atómico de Rutherford, los electrones se mueven en órbitas circulares y tienen una aceleración normal. Pero según los principios

Más detalles

INTERFERENCIA Y DIFRACCIÓN DE ONDAS SONORAS (ULTRASONIDOS) Esta práctica pretende alcanzar dos objetivos fundamentales:

INTERFERENCIA Y DIFRACCIÓN DE ONDAS SONORAS (ULTRASONIDOS) Esta práctica pretende alcanzar dos objetivos fundamentales: INTERFERENCIA Y DIFRACCIÓN DE ONDAS SONORAS (ULTRASONIDOS) 1.- OBJETIVOS Esta práctica pretende alcanzar dos objetivos fundamentales: a) El manejo de una serie de instrumentos como son el Goniómetro y

Más detalles

Colisiones de fotones y electrones

Colisiones de fotones y electrones Colisiones de fotones y electrones. Kropff, J. von Stecher. Universidad de Buenos Aires, Argentina. Se estudian espectros de radiación gama para distintas muestras de materiales radiactivos. A partir del

Más detalles

Efecto fotoeléctrico:

Efecto fotoeléctrico: ELECTRONES Y CUANTOS. EFECTO FOTOELÉCTRICO - EFECTO COMPTON - NATURALEZA DUAL DE LA LUZ En el siglo XIX ya era conocido el electrón. En 1897 Thomson midió la relación carga a masa: e m = 5.27 1017 u.e.s./g

Más detalles

MATERIA MOLÉCULAS ÁTOMOS PARTÍCULAS SUBATÓMICAS. Partícula Masa (g) Carga (Coulombs) Carga unitaria. Electrón

MATERIA MOLÉCULAS ÁTOMOS PARTÍCULAS SUBATÓMICAS. Partícula Masa (g) Carga (Coulombs) Carga unitaria. Electrón MATERIA MOLÉCULAS ÁTOMOS PARTÍCULAS SUBATÓMICAS Partícula Masa (g) Carga (Coulombs) Carga unitaria Electrón 9.10939 10-28 -1.6022 10-19 -1 Protón 1.67262 10-24 +1.6022 10-19 +1 Neutrón 1.67493 10-24 0

Más detalles

Interacción de la radiación con la materia

Interacción de la radiación con la materia Interacción de la radiación con la materia Fernando Mata Colodro Servicio de Radiofísica y Protección Radiológica. Hospital General Universitario Santa Lucía. Cartagena. RADIACION PARTICULAS FOTONES Colisiones

Más detalles

INTERACCION DE LAS RADIACIONES ELECTROMAGNETICAS CON LA MATERIA

INTERACCION DE LAS RADIACIONES ELECTROMAGNETICAS CON LA MATERIA NTERACCON DE LAS RADACONES ELECTROMAGNETCAS CON LA MATERA B.C. Paola Audicio Asistente de Radiofarmacia, CN Radiación ionizante: ionización del material atravesado M M + + e - excitación de las estructuras

Más detalles

Medida del campo magnético terrestre

Medida del campo magnético terrestre Práctica 8 Medida del campo magnético terrestre 8.1 Objetivo El objetivo de esta práctica es medir el valor del campo magnético terrestre. Para ello se emplea un campo magnético de magnitud y dirección

Más detalles

Prueba experimental. Absorción de luz por un filtro neutro.

Prueba experimental. Absorción de luz por un filtro neutro. Prueba experimental. Absorción de luz por un filtro neutro. Objetivo Cuando un haz de luz de intensidad I 0 incide sobre una de las caras planas de un medio parcialmente transparente, como un filtro de

Más detalles

ÁREA 2 INTERACCION DE LOS ELECTRONES CON LA MATERIA

ÁREA 2 INTERACCION DE LOS ELECTRONES CON LA MATERIA ÁREA 2 INTERACCION DE LOS ELECTRONES CON LA MATERIA 2.1 INTERACCION DE RADIACIONES DIRECTAMENTE IONIZANTES CON LA MATERIA. Las radiaciones constituidas por partículas cargadas se suelen denominar directamente

Más detalles

Pasaje de partículas cargadas por la materia. Efecto Cherenkov. Bremsstrahlung Laura C. Damonte 2014

Pasaje de partículas cargadas por la materia. Efecto Cherenkov. Bremsstrahlung Laura C. Damonte 2014 Pasaje de partículas cargadas por la materia. Efecto Cherenkov. Bremsstrahlung Laura C. Damonte 014 Pasaje de partículas cargadas por la materia Cuando una partícula cargada atraviesa materia, alguno o

Más detalles

Preguntas del capítulo Ondas electromagnéticas

Preguntas del capítulo Ondas electromagnéticas Preguntas del capítulo Ondas electromagnéticas 1. Isaac Newton fue uno de los primeros físicos en estudiar la luz. Qué propiedades de la luz explicó usando el modelo de partícula? 2. Quién fue la primer

Más detalles

Capítulo 1. Antecedentes de la Química Cuántica y primeras Teorías Atómicas

Capítulo 1. Antecedentes de la Química Cuántica y primeras Teorías Atómicas Capítulo 1. Antecedentes de la Química Cuántica y primeras Teorías Atómicas Objetivos: Recordar y actualizar los conocimientos sobre las características de electrones, protones y neutrones Describir la

Más detalles

Para la realización de esta práctica utilizaremos el siguiente instrumental:

Para la realización de esta práctica utilizaremos el siguiente instrumental: c Rafael R. Boix, Alberto Pérez Izquierdo y Francisco Medina 1 PRÁCTICA 10 ONDAS ELECTROMAGNÉTICAS II: POLARIZACIÓN, INTERFERENCIAS Y DIFRACCIÓN DE BRAGG 1. Objetivos En esta práctica estudiaremos en primer

Más detalles

Física P.A.U. FÍSICA MODERNA 1 FÍSICA MODERNA

Física P.A.U. FÍSICA MODERNA 1 FÍSICA MODERNA Física P.A.U. FÍSICA MODERNA FÍSICA MODERNA PROBLEMAS MECÁNICA CUÁNTICA.. En una célula fotoeléctrica, el cátodo metálico se ilumina con una radiación de λ = 5 nm, el potencial de frenado para los electrones

Más detalles

POLARIZACIÓN CON LÁMINAS DE CUARTO DE ONDA (λ/4)

POLARIZACIÓN CON LÁMINAS DE CUARTO DE ONDA (λ/4) POLARIZACIÓN CON LÁMINAS DE CUARTO DE ONDA (λ/4) 1. OBJETIVO - Estudiar cómo varía la intensidad de la luz, al atravesar dos polarizadores, en función del ángulo existente entre sus ejes de transmisión.

Más detalles

red directa y red recíproca

red directa y red recíproca Más sobre redes: red directa y red recíproca Cualquier plano puede caracterizarse por un vector perpendicular a él ( hkl ) Familia de planos hkl con distancia interplanar d hkl Tomemos hkl = 1/ d hkl hkl

Más detalles

Práctica Nº8. REFLEXIÓN Y REFRACCIÓN DE LA LUZ. Aplicación: índice de refracción del prisma.

Práctica Nº8. REFLEXIÓN Y REFRACCIÓN DE LA LUZ. Aplicación: índice de refracción del prisma. Práctica Nº8 REFLEXIÓN Y REFRACCIÓN DE LA LUZ. Aplicación: índice de refracción del prisma. 1 Introducción. En esta práctica estudiaremos un elemento óptico: el prisma, que nos permitirá analizar los fenómenos

Más detalles

Guía rápida Cámaras IP TBK VISION PLUS TBK-MD7536EIR, TBK-MD7544EIR, TBK-MD7545EIR

Guía rápida Cámaras IP TBK VISION PLUS TBK-MD7536EIR, TBK-MD7544EIR, TBK-MD7545EIR Guía rápida Cámaras IP TBK VISION PLUS TBK-MD7536EIR, TBK-MD7544EIR, TBK-MD7545EIR 1. Contenido Compruebe que su equipo incluye los siguientes accesorios. Las imágenes se deben tomar como referencia. 2.

Más detalles

GUÍA DE INSTALACIÓN DEL MÓDULO DE DIFRACCIÓN DE LA LUZ

GUÍA DE INSTALACIÓN DEL MÓDULO DE DIFRACCIÓN DE LA LUZ GUÍA DE INSTALACIÓN DEL MÓDULO DE DIFRACCIÓN DE LA LUZ TABLA DE CONTENIDO Pag. EXPERIMENTO DE DIFRACCIÓN DE LA LUZ... 3 1. INTRODUCCIÓN... 3 2. EQUIPOS... 3 3. MONTAJE GENERAL DEL EXPERIMENTO... 5 3.1

Más detalles

Instrucciones de instalación del bastidor

Instrucciones de instalación del bastidor Instrucciones de instalación del bastidor Para el sistema de alimentación ininterrumpible 11000 VA 5U y el módulo de batería ampliado 11000 VA 3U Utilice las instrucciones de este documento para instalar

Más detalles

Guía del usuario. Modelo Medidor digital de fuerza

Guía del usuario. Modelo Medidor digital de fuerza Guía del usuario Modelo 475055 Medidor digital de fuerza Introducción Agradecemos su compra del Medidor digital de fuerza modelo 475055 de Extech para medir tensión o compresión (tirón/empuje) hasta 220

Más detalles

Unidad 1 Estructura atómica de la materia. Teoría cuántica

Unidad 1 Estructura atómica de la materia. Teoría cuántica Unidad 1 Estructura atómica de la materia. Teoría cuántica 1.El átomo y la constitución de la materia DALTON NO ACEPTADO POR LOS FÍSICOS que creían en la idea de que los átomos se encontraban como disueltos

Más detalles

Las Ondas y la Luz. Las Ondas

Las Ondas y la Luz. Las Ondas Las Ondas Una onda consiste en la propagación de una perturbación física en un medio que puede ser material (aire, agua, tierra, etc) o inmaterial (vacío), según la cual existe transporte de energía, pero

Más detalles

P8. ESPECTROSCOPÍA ATÓMICA DE EMISIÓN

P8. ESPECTROSCOPÍA ATÓMICA DE EMISIÓN UCLM F. C. M. Amb. 0. OBJETIVOS. P8. ESPECTROSCOPÍA ATÓMICA DE EMISIÓN ) Visualizar líneas espectrales con el espectroscopio. 2) Determinar la constante de una red de difracción y realizar su calibración.

Más detalles

LA ENERGIA. superior de

LA ENERGIA. superior de 1. Tema: Característica estática y operación de un sensor ultrasónico. 2. Objetivos: a. Ensamblar el sensor ultrasónico. b. Realizar las conexiones eléctricas necesarias. c. Tomar datos para determinar

Más detalles

EL MODELO ATOMICO DE BOHR

EL MODELO ATOMICO DE BOHR EL MODELO ATOMICO DE BOHR En 1913, Niels Bohr ideó un modelo atómico que explica perfectamente los espectros determinados experimentalmente para átomos hidrogenoides. Estos son sistemas formados solamente

Más detalles

LOGGER DE TEMPERATURA Y HUMEDAD H Manual del usuario

LOGGER DE TEMPERATURA Y HUMEDAD H Manual del usuario Fecha edición 10/2013 N Versión 01 LOGGER DE TEMPERATURA Y HUMEDAD H4036403 Manual del usuario INSTRUCCIONES DE FUNCIONAMIENTO DE REGISTRADOR DE TEMPERATURA Y HUMEDAD MINI H4036403 I. VISIÓN GENERAL DEL

Más detalles

Difracción de rayos X. Química Analítica Inorgánica Tecnólogo Minero

Difracción de rayos X. Química Analítica Inorgánica Tecnólogo Minero Difracción de rayos X Química Analítica Inorgánica Tecnólogo Minero Por qué estudiar difracción de rayos X? Composición Difracción üfenómeno característico de las ondas üdesviación de éstas al encontrar

Más detalles

Conceptos básicos sobre interacción de la radiación ionizante con la materia

Conceptos básicos sobre interacción de la radiación ionizante con la materia Conceptos básicos sobre interacción de la radiación ionizante con la materia Martín Gascón Introducción al laboratorio de Física Nuclear Técnicas experimentales avanzadas Departamento de Física de Partículas

Más detalles

Modelo de Thomson Modelo de Rutherford. Estructura atómica. José Mariano Lucena Cruz 10 de mayo de 2010

Modelo de Thomson Modelo de Rutherford. Estructura atómica. José Mariano Lucena Cruz 10 de mayo de 2010 José Mariano Lucena Cruz chenalc@gmail.com 10 de mayo de 2010 Propiedades periódicas Aquellas cuyo valor se puede estimar según la posición que ocupen los elementos en la tabla periódica. Estas son: Tamaño

Más detalles

Guía rápida Cámaras IP TBK VISION PLUS TBK-BUL7436EIR, TBK-BUL7444EIR, TBK-BUL7445EIR

Guía rápida Cámaras IP TBK VISION PLUS TBK-BUL7436EIR, TBK-BUL7444EIR, TBK-BUL7445EIR Guía rápida Cámaras IP TBK VISION PLUS TBK-BUL7436EIR, TBK-BUL7444EIR, TBK-BUL7445EIR 1. Contenido Compruebe que su equipo incluye los siguientes accesorios. Las imágenes se deben tomar como referencia.

Más detalles

Práctica de Óptica Física

Práctica de Óptica Física Práctica de Estudio de fenómenos de interferencia difracción 2 Pre - requisitos para realizar la práctica...2 Bibliografía recomendada en referencia la modelo teórico...2 Competencias a desarrollar por

Más detalles

GUÍA DETALLADA DE LA DEMOSTRACIÓN

GUÍA DETALLADA DE LA DEMOSTRACIÓN DEMO 6 Difracción de electrones GUÍA DETALLADA DE LA DEMOSTRACIÓN Introducción La naturaleza cuántica de los sistemas físicos, descritos por ondas de probabilidad, implica una relación entre su longitud

Más detalles

Interpretación de Diagramas de Difracción

Interpretación de Diagramas de Difracción Interpretación de Diagramas de Difracción Teoría: Ley de Bragg Para interpretar los diagramas de difracción se requiere una teoría. W.H. Bragg y su hijo fueron pioneros en el tema y desarrollaron una sencilla

Más detalles

XIII OLIMPIADA CHILENA DE FISICA 2005 Sociedad Chilena de Física

XIII OLIMPIADA CHILENA DE FISICA 2005 Sociedad Chilena de Física XIII OLIMPIADA CHILENA DE FISICA 2005 Sociedad Chilena de Física PRUEBA EXPERIMENTAL A NOMBRE: RUT: CURSO: NUMERO TOTAL DE PAGINAS ESCRITAS: PUNTAJE TOTAL La constante de Planck de la física cuántica y

Más detalles

Bienvenido al módulo de formación sobre la instalación de los convertidores de frecuencia ABB para maquinaria general ACS355.

Bienvenido al módulo de formación sobre la instalación de los convertidores de frecuencia ABB para maquinaria general ACS355. Bienvenido al módulo de formación sobre la instalación de los convertidores de frecuencia ABB para maquinaria general ACS355. 1 Tras completar este módulo, podrá Describir los distintos métodos de instalación

Más detalles

REFLEXIÓN, REFRACCIÓN Y POLARIZACIÓN CON MICROONDAS

REFLEXIÓN, REFRACCIÓN Y POLARIZACIÓN CON MICROONDAS REFLEXIÓN, REFRACCIÓN Y POLARIZACIÓN CON MICROONDAS 1. OBJETIVO - Estudiar el cumplimiento de las leyes de la reflexión y de la ley de Snell en ondas electromagnéticas - Estudiar cómo varía la intensidad

Más detalles

FÍSICA MODERNA PREGUNTAS PROBLEMAS

FÍSICA MODERNA PREGUNTAS PROBLEMAS FÍSICA MODERNA PREGUNTAS 1. En que se parecen los fotones a otras partículas, como electrones? En que difieren? 2. La piel humana es relativamente insensible a la luz visible, pero la radiación Ultravioleta

Más detalles

LOGGER DE TEMPERATURA AMBIENTAL H Manual del usuario

LOGGER DE TEMPERATURA AMBIENTAL H Manual del usuario Fecha edición 10/2013 N Versión 01 LOGGER DE TEMPERATURA AMBIENTAL H4036306 Manual del usuario INSTRUCCIONES DE FUNCIONAMIENTO DE REGISTRADOR DE TEMPERATURA MINI H4036306 I. VISIÓN GENERAL DEL PRODUCTO:

Más detalles

CARACTERIZACIÓN DE LÁSERES DE DIODO

CARACTERIZACIÓN DE LÁSERES DE DIODO Física del láser CARACTERIZACIÓN DE LÁSERES DE DIODO OBJETIVOS A Estudio de la potencia de salida en función del bombeo. B Estudio del estrechamiento espectral. C Estudio de la coherencia temporal. MATERIAL

Más detalles

Capítulo 25. Rayos X

Capítulo 25. Rayos X Capítulo 25 Rayos X 1 Generación y absorción de rayos X La frecuencia máxima de rayos X producidos por una diferencia de potencial V vale: ν max = e V h Para que un fotón de rayos X se pueda desintegrar

Más detalles

1) Rellene la tabla siguiente y escriba los cuatro números cuánticos del electrón diferenciador (el más externo) de los siguientes elementos:

1) Rellene la tabla siguiente y escriba los cuatro números cuánticos del electrón diferenciador (el más externo) de los siguientes elementos: 1 Ejercicios resueltos 1) Rellene la tabla siguiente y escriba los cuatro números cuánticos del electrón diferenciador (el más externo) de los siguientes elementos: Nº atómico Z Nº másico A Protones Neutrones

Más detalles

2 La carga del electrón fue determinada por primera vez en: D Difracción de electrones a partir del papel de aluminio.

2 La carga del electrón fue determinada por primera vez en: D Difracción de electrones a partir del papel de aluminio. Slide 1 / 32 1 Un Tubo de Crooke (un tubo que contiene gas rarificado a través del cual se hace pasar una corriente entre un cátodo y un ánodo) fue utilizado en el descubrimiento del electrón por: A R.

Más detalles

Clase 4:Radiación del cuerpo, efecto fotoeléctrico y modelos atómicos

Clase 4:Radiación del cuerpo, efecto fotoeléctrico y modelos atómicos Clase 4:Radiación del cuerpo, efecto fotoeléctrico y modelos atómicos El experimento de Millikan Determina la carga del electrón 1.602 x 10-19 C Atomizador de gotas de aceite Fuente de Rayos X (ioniza

Más detalles

Universidad Nacional de La Plata Facultad de Ciencias Astronómicas y Geofísicas. INTRODUCCIÓN a las CIENCIAS de la ATMÓSFERA

Universidad Nacional de La Plata Facultad de Ciencias Astronómicas y Geofísicas. INTRODUCCIÓN a las CIENCIAS de la ATMÓSFERA Universidad Nacional de La Plata Facultad de Ciencias Astronómicas y Geofísicas INTRODUCCIÓN a las CIENCIAS de la ATMÓSFERA Práctica 2 : ENERGÍA, CALOR, RADIACIÓN SOLAR Y TERRESTRE. Definiciones, ecuaciones

Más detalles

1.1. OBJETIVO GENERAL: Estudiar el movimiento de electrones en un campo eléctrico uniforme

1.1. OBJETIVO GENERAL: Estudiar el movimiento de electrones en un campo eléctrico uniforme 1 PRÁCTICA DE LABORATORIO: MOVIMIENTO DE ELCTRONES EN UN CAMPO ELÉCTRICO UNIFORME 1.1. OBJETIVO GENERAL: Estudiar el movimiento de electrones en un campo eléctrico uniforme 1.2. OBJETIVOS ESPECÍFICOS -

Más detalles

Clase Nº 4 PSU Ciencias: Física. Ondas III Luz. Profesor: Cristian Orcaistegui.

Clase Nº 4 PSU Ciencias: Física. Ondas III Luz. Profesor: Cristian Orcaistegui. Clase Nº 4 PSU Ciencias: Física Ondas III Luz Profesor: Cristian Orcaistegui. c.orcaisteguiv@gmail.com La óptica estudia la naturaleza de la luz, sus fuentes de producción, su propagación y los fenómenos

Más detalles

RADIACIÓN DE CUERPO NEGRO

RADIACIÓN DE CUERPO NEGRO RADIACIÓN DE CUERPO NEGRO OBJETIVOS a) Obtener las curvas características para la Radiación de Cuerpo Negro correspondientes a una fuente de luz incandescente (Filamento de Tugsteno). b) Verificar la variación

Más detalles

100 Å y al igual que la luz ordinaria, se manifiesta en forma de energía radiante,

100 Å y al igual que la luz ordinaria, se manifiesta en forma de energía radiante, 36 II. MÉTODOS DE CARACTERIZACIÓN 1.Difracción de Rayos-X Los rayos X, son radiaciones cuya longitud de onda oscila entre 0.02 Å a 100 Å y al igual que la luz ordinaria, se manifiesta en forma de energía

Más detalles

Radiaciones Ionizantes: Utilización y Riesgos RIUR. Guía de estudio

Radiaciones Ionizantes: Utilización y Riesgos RIUR. Guía de estudio Radiaciones Ionizantes: Utilización y Riesgos RIUR . Estructura y radiaciones atómicas Esta guía describe el conjunto de actividades que forman el tema 2 del módulo 1: " Estructura y radiaciones atómicas"

Más detalles

Calibración de un espectrómetro y medición de longitudes de onda de las líneas de un espectro.

Calibración de un espectrómetro y medición de longitudes de onda de las líneas de un espectro. Calibración de un espectrómetro y medición de longitudes de onda de las líneas de un espectro. Objetivo Obtener la curva de calibración de un espectrómetro de red de difracción. Determinar la longitud

Más detalles

FÍSICA MODERNA. a) Explique las transformaciones energéticas en el proceso de fotoemisión y calcule la

FÍSICA MODERNA. a) Explique las transformaciones energéticas en el proceso de fotoemisión y calcule la FÍSICA MODERNA 2001 1. Un haz de luz de longitud de onda 546 10-9 m incide en una célula fotoeléctrica de cátodo de cesio, cuyo trabajo de extracción es de 2 ev: a) Explique las transformaciones energéticas

Más detalles

MAGNETISMO. MsC Alexander Pérez García Video 1

MAGNETISMO. MsC Alexander Pérez García Video 1 MAGNETISMO MsC Alexander Pérez García Video 1 http://www.dailymotion.com/video/xqqir9_campomagnetico-terrestre-inversion-de-los-polos_school FUERZA MAGNÉTICA SOBRE UNA CARGA EN MOVIMIENTO LA SEGUNDA

Más detalles

EXPERIENCIAS CON MICROONDAS

EXPERIENCIAS CON MICROONDAS EXPERIENCIAS CON MICROONDAS OBJETIVOS 1)Generales 1 1) Comprender en la práctica, algunas de las propiedades generales de las ondas electromagnéticas. 1 2) Estudiar las propiedades y fenómenos relacionados

Más detalles

Prueba experimental. Constante de Planck y comportamiento de un LED

Prueba experimental. Constante de Planck y comportamiento de un LED Prueba experimental. Constante de Planck y comportamiento de un LED Objetivo. Se va a construir un circuito eléctrico para alimentar LEDs de diferentes colores y obtener un valor aproximado de la constante

Más detalles

LOS RAYOS X FUNDAMENTOS FÍSICOS DE IMÁGENES DIAGNÓSTICAS - PILAR INFANTE L - FIACIBI

LOS RAYOS X FUNDAMENTOS FÍSICOS DE IMÁGENES DIAGNÓSTICAS - PILAR INFANTE L - FIACIBI LOS RAYOS X FUNDAMENTOS FÍSICOS DE IMÁGENES DIAGNÓSTICAS - PILAR INFANTE L - FIACIBI FUNDAMENTOS FÍSICOS DE IMÁGENES DIAGNÓSTICAS - PILAR INFANTE L - FIACIBI -Se propagan en línea recta. -Ionizan el aire.

Más detalles

Guia de practica de calentadores infrarrojos hálogenos y de fibra de carbón.

Guia de practica de calentadores infrarrojos hálogenos y de fibra de carbón. Guia de practica de calentadores infrarrojos hálogenos y de fibra de carbón. Emisores de infrarrojos de cristal de cuarzo con frecuencia resultan superiores a fuentes de calor convencionales, tales como

Más detalles

RADIACIÓN ELECTROMAGNÉTICA Y TÉCNICAS DE OBSERVACIÓN. Curso Introducción a la Astronomía 1

RADIACIÓN ELECTROMAGNÉTICA Y TÉCNICAS DE OBSERVACIÓN. Curso Introducción a la Astronomía 1 RADIACIÓN ELECTROMAGNÉTICA Y TÉCNICAS DE OBSERVACIÓN Curso 2011-12 Introducción a la Astronomía 1 Brillo Magnitud aparente El ojo detecta la luz de forma logarítmica, es decir, detecta cambios no de manera

Más detalles

FUNDAMENTOS FÍSICOS DE LA INGENIERÍA PROPAGACIÓN DE ONDAS DE AGUA

FUNDAMENTOS FÍSICOS DE LA INGENIERÍA PROPAGACIÓN DE ONDAS DE AGUA UNIVERSIDAD DE LA LAGUNA FACULTAD DE MATEMÁTICAS INGENIERÍA TÉCNICA DE OBRAS HIDRÁULICAS FUNDAMENTOS FÍSICOS DE LA INGENIERÍA PROPAGACIÓN DE ONDAS DE AGUA OBJETIVO GENERAL: ESTUDIO DE LAS ONDAS - Emplear

Más detalles

Laboratorio 5 - Dpto. de Física - FCEyN - UBA Diciembre 2000

Laboratorio 5 - Dpto. de Física - FCEyN - UBA Diciembre 2000 Medición del ancho de banda en Si y Ge mediante un método óptico Martín G. Bellino E-mail : colquide@starmedia.com.ar y bellino@cnea.gov.ar Práctica especial Laboratorio 5 - Dpto. de Física - FCEyN - UBA

Más detalles

Modelo Atómico. Thompson (1898): Esfera uniforme de materia con carga (+) en la cual se encuentran embebidos los electrones con carga (-)

Modelo Atómico. Thompson (1898): Esfera uniforme de materia con carga (+) en la cual se encuentran embebidos los electrones con carga (-) Modelo Atómico 1 Thompson (1898): Esfera uniforme de materia con carga (+) en la cual se encuentran embebidos los electrones con carga () Electrón Conceptos:» Neutralidad eléctrica» Carga elemental del

Más detalles

(( )) Tema 5: Técnicas espectroscópicas: Espectrofotometría. visible Infrarrojo. Ultravioleta. Espectro de emisión de los cuerpos en equilibrio

(( )) Tema 5: Técnicas espectroscópicas: Espectrofotometría. visible Infrarrojo. Ultravioleta. Espectro de emisión de los cuerpos en equilibrio Tema 5: Técnicas espectroscópicas: Espectrofotometría 0 22 Hz Frecuencia 0 4 Hz 0 3 Hz γ X UV IR micro radio Rayos γ (gamma) λ < pm Rayos X pm-0nm Visible 400-800nm Ultravioleta 0-400 nm Longitud de onda

Más detalles

RELACIÓN CARGA - MASA DEL ELECTRÓN

RELACIÓN CARGA - MASA DEL ELECTRÓN Práctica 5 RELACIÓN CARGA - MASA DEL ELECTRÓN OBJETIVO Determinar la relación carga-masa del electrón (e/m e ), a partir de las trayectorias observadas de un haz de electrones que cruza una región en la

Más detalles

ÓPTICA FÍSICA. (luz) Física 2º bachillerato Óptica física (luz) 1

ÓPTICA FÍSICA. (luz) Física 2º bachillerato Óptica física (luz) 1 ÓPTICA FÍSICA (luz) 1. Ondas electromagnéticas. 2. Espectro electromagnético 3. Naturaleza de la luz. 4. Propagación de la luz. 5. Fenómenos ondulatorios. 6. Fenómenos corpusculares. Física 2º bachillerato

Más detalles

MANUAL DE INSTRUCCIONES CERTIFICADO DE GARANTIA

MANUAL DE INSTRUCCIONES CERTIFICADO DE GARANTIA MANUAL DE INSTRUCCIONES CERTIFICADO DE GARANTIA Este producto esta protegido por la Federal de los Estados Unidos y/o del Estado de Derecho, incluyendo patentes, marcas y/o leyes de derecho de autor. Diseno

Más detalles

FÍSICA CUÁNTICA. Física de 2º de Bachillerato

FÍSICA CUÁNTICA. Física de 2º de Bachillerato FÍSICA CUÁNTICA Física de º de Bachillerato Física Cuántica Insuficiencia de la Física Clásica Teoría de la Radiación Térmica Radiación del Cuerpo Negro Efecto fotoeléctrico Teoría de Einstein Los espectros

Más detalles

QUÍMICA de 2º de BACHILLERATO ESTRUCTURA DE LA MATERIA

QUÍMICA de 2º de BACHILLERATO ESTRUCTURA DE LA MATERIA QUÍMICA de 2º de BACHILLERATO ESTRUCTURA DE LA MATERIA PROBLEMAS RESUELTOS QUE HAN SIDO PROPUESTOS EN LOS EXÁMENES DE LAS PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS EN LA COMUNIDAD DE MADRID (1996 2010)

Más detalles

INTRODUCCIÓN A LA TELEDETECCIÓN CUANTITATIVA

INTRODUCCIÓN A LA TELEDETECCIÓN CUANTITATIVA INTRODUCCIÓN A LA TELEDETECCIÓN CUANTITATIVA Haydee Karszenbaum Veronica Barrazza haydeek@iafe.uba.ar vbarraza@iafe.uba.ar Clase 1.2: ondas y leyes de la radiación Teledetección cuantitativa 1 Características

Más detalles

PRÁCTICA 15 El espectrómetro de difracción

PRÁCTICA 15 El espectrómetro de difracción PRÁCTICA 15 El espectrómetro de difracción Laboratorio de Física General Objetivos Generales 1. Medir el rango de longitudes que detecta el ojo humano. 2. Analizar el espectro de emisión de un gas. Equipo

Más detalles

Problemas de Ondas Electromagnéticas

Problemas de Ondas Electromagnéticas Problemas de Ondas Electromagnéticas AP Física B de PSI Nombre Multiopción 1. Cuál de las siguientes teorías puede explicar la curvatura de las ondas detrás de los obstáculos en la "región de sombra"?

Más detalles

Contador Electrónico de Pulsos Dispositivo Combinado

Contador Electrónico de Pulsos Dispositivo Combinado Contador Electrónico de Pulsos Dispositivo Combinado Medir Controlar Analizar Entrada: contador de pulsos, medidor de tiempo Indicador: LED de 6-dígitos Altura de los dígitos: 14/8 mm Operación con botones

Más detalles

EL ÁTOMO CONTENIDOS. ANTECEDENTES HISTÓRICOS. ( ) MODELOS ATÓMICOS. RAYOS CATÓDICOS. MODELO DE THOMSON.

EL ÁTOMO CONTENIDOS. ANTECEDENTES HISTÓRICOS. ( ) MODELOS ATÓMICOS. RAYOS CATÓDICOS. MODELO DE THOMSON. EL ÁTOMO CONTENIDOS. 1.- Antecedentes históricos.( ) 2.- Partículas subatómicas. ( ) 3.- Modelo atómico de Thomsom. 4.- Los rayos X. 5.- La radiactividad. 6.- Modelo atómico de Rutherford. 7.- Radiación

Más detalles

Teoría Cuántica y la Estructura Electrónica de los Atomos

Teoría Cuántica y la Estructura Electrónica de los Atomos Teoría Cuántica y la Estructura Electrónica de los Atomos Capítulo 7 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Propiedades de la ondas Largo de onda (λ)

Más detalles

Reductores de fracción de vuelta GS 50.3 GS con base y palanca

Reductores de fracción de vuelta GS 50.3 GS con base y palanca Reductores de fracción de vuelta GS 50.3 GS 250.3 con base y palanca Para utilizar sólo en combinación con las instrucciones de servicio. Estas instrucciones breves NO sustituyen a las instrucciones de

Más detalles

Máster Universitario en Ingeniería de Telecomunicación Tecnología Fotónica Curso Académico 2014/2015 Curso 1º Cuatrimestre 2º

Máster Universitario en Ingeniería de Telecomunicación Tecnología Fotónica Curso Académico 2014/2015 Curso 1º Cuatrimestre 2º Máster Universitario en Ingeniería de Telecomunicación Tecnología Fotónica Curso Académico 2014/2015 Curso 1º Cuatrimestre 2º PRÁCTICA 1. 2 Contenido 1 OBJETIVOS... 4 2 CONCEPTOS TEÓRICOS... 4 2.1 Propiedades

Más detalles