DIFRACCIÓN DE RAYOS X

Tamaño: px
Comenzar la demostración a partir de la página:

Download "DIFRACCIÓN DE RAYOS X"

Transcripción

1 Física del Estado Sólido DIFRACCIÓN DE RAYOS X Dr. Andrés Ozols n n k k d cosθ =d.n Θ d Θ k k d cos θ = d.n Facultad de Ingeniería Universidad de Buenos Aires 2009

2 TEMARIO Objetivo Naturaleza de los rayos X Generación de los rayos X Interacción con la materia Difracción de rayos X Equipo experimental Factor de estructura y funciones de distribución Estructura de los materiales: orden de corto rango, de rango intermedio y de largo rango

3 OBJETIVO Determinación de la Estructura Cristalina por Difracción de Rayos X Longitud de onda distancia inter-atómica

4 NATURALEZA DE LOS RAYOS X Å

5 Tubo de GENERACIÓN RAYOS X Rayos X Agua de refrigeración Anticá todo Fe, Mo, Cu Ha z de Ele c trone s - Filamento Colimador de haz Ventana de Berilio Rayos X

6 EQUIPO de DIFRACCIÓN de RAYOS X

7 DIFRACTOMETRO de RAYOS X Goniómetro tipo Θ Θ Radiación Molibdeno ( línea Kα )

8 GENERACIÓN RAYOS X Energía cinética de los electrones Ec = e V KeV los electrones frenados generan Disipación de energía en el frenado transiciones electrónicas en los átomos CALOR E0 Ef e- h ν RAYOS X

9 Intensidad de la radiación Intensidad de la radiación ESPECTRO DE RAYOS X Espectro continuo + Espectro característico K α K β Longitud de onda Es función del potencial V Cuando este supera un valor Vc (dependiente del material) aparece el espectro característico Longitud de onda líneas de series K, L, M, N

10 Intensida d de la radiación ESPECTRO DE RAYOS X K α K β Longitud de onda

11 LONGITUDES DE ONDA CARACTERÍSTICAS Elemento Ca Ti V Cr Mn Fe Co Ni Cu Zn λ α λ β

12 FILTRADO de Líneas de RAYOS X Radiación XK α K β, Filtros + monocromador Intensidad de la radiación K α Intensidad de la radiación K α Radiación Cu Filtro Ni Mo Zr K β Co Fe Longitud de onda Longitud de onda Línea K α filtrada

13 DIFRACCION de RAYOS X en CRISTALES caminos ópticos = 2d sin θ θ Si hay interferencia constructiva d dsenθ θ Ley de Bragg 2d sin θ = λ d 1 d2 Familias de planos con separaciones d y d 1 2 cada familia (d, d 1, d 2 ) de planos tiene un ángulo θ que satisface esta ley

14 DIFRACTOGRAMAS de RAYOS X Intensidad Si O 2 Cuarzo policristalino (en polvo) Radiación Kα del Cu θ

15 POSICIONES de las REFLEXIONES en DISTINTOS PLANOS

16 IDENTIFICACION de COMPUESTOS Base de compuestos inorgánicos y orgánicos) Tarjeta del Joint Committee of Powder Diffraction Files (JCPDF)

17 TARJETA de IDENTIFICACIÓN de COMPUESTO Joint Committee of Powder Diffraction Files (JCPDF)

18 APLICACIONES de la DIFRACCION de RAYOS X La difracción de rayos X es una técnica versátil, no-destructiva y analítica para la determinación de: Fases Estructura Textura Tensiones Que pudieran estar presentes en materiales sólidos, polvos, y líquidos

19 APLICACIONES a MATERIA CONDENSADA

20 Temario Bases de la teoría de difracción de rayos X Aplicación de la teoría de difracción de rayos X Aberraciones geométricas Tamaño de cristalito Imperfecciones de la red Medidas del ancho de línea Formulación de Von Laue de la difracción de rayos x por un cristal Equivalencia de las formulaciones de Bragg y Von Laue Difracción por una red con una base monatómica Factor de estructura geométrico Difracción por un cristal poliatómico El factor atómico de forma

21 INTENSIDAD I(θ) DISPERSADA I ( θ ) = I ( ) ( ) ( ) ( ) sen 1 sen 2 sen 3 ( ) ( ) sen Nψ θ, λ sen N ψ θ, λ sen Nψ θ, λ ψ θ, λ ψ θ, λ ψ θ, λ 1,2 y 3 a las direcciones de vectores base de la red de Bravais θ es la mitad del ángulo de dispersión, entre direcciones de los haces incidente y el dispersado. λ es la longitud de onda del haz de rayos X incidente. N l, N 2 y N 3 representan la cantidad total de nodos en cada direcciones

22 Difractograma característico (intensidad relativa en función de 2θ) Intensidad Si O 2 Cuarzo policristalino (en polvo) Radiación Kα del Cu θ

23 INTENSIDAD I(θ) DISPERSADA f ( θ ) = ( ) ( ) sen N ψ θ sen ψ θ máximos de intensidad están dados por la ley de Bragg 2 hkl d senθ = nλ d hkl es la distancia o espaciado reticular de familia de planos (h k l) d dsenθ θ θ n = 1,2,3,... es orden de la difracción d 1 d2 Familias de planos con separaciones d y d 1 2

24 Aplicación de la teoría de difracción de rayos X i) Aberraciones geométricas Función de las características del equipo de difracción y los parámetros de control del goniómetro: Rango de barrido 2θ 0-2θ f de barrido (2-100º) Velocidad de barrido 2θ/min (0.1-2º/min) Resolución angular o paso (0.01-1º) Tensión de la fuente (20-60 KV) Corriente de filamento Combinación de rendijas para colimación y filtrado de RX Goniómetro tipo θ θ

25 CONFIGURACION del EQUIPO de DIFRACCIÓN de RAYOS X

26 ii) Tamaño de cristalito Estructura policristalina granos granos con orientaciones cristalográficas diferentes

27 iii) Imperfecciones de la red Macla Dislocación de borde Dislocación helicoidal

28 Medidas del ancho de línea ( ) I( 2θ 2) I( 2θ 1) Semi-ancho B 1/2 = 2 I p I/2 p I p B 1/2 AREA 2θ 1 2θ 2 2θ 3 B 1/2 AREA I p 2θ 4 1 Bi = I d I P ( 2θ ) ( 2θ ) Ancho integral Bi Varianza o desviación cuadrática Standard W 2θ 2 ( 2θ 2θ ) I( 2θ) d( 2θ) = I( 2θ) d( 2θ)

29 n FORMULACIÓN de VON LAUE de la DIFRACCIÓN n d cosθ =d.n Θ k d Θ d cos θ = d.n k k k Diferencia de caminos de los rayos dispersados dcosθ + dcos θ = d. n n ( ˆ ˆ ) interferencia constructiva d. n n = mλ ( ˆ ˆ ) Multiplicando x 2π/λ d. k k = 2π m ( ) R. k k = 2π m d = R es vector de la red de Bravais ( )

30 FORMULACIÓN de VON LAUE de la DIFRACCIÓN R. k k = 2π m ( ) e i( k k). R = 1 R red de Bravais K/2 plano de Bragg K red de Recíproca condición de Laue ik. R e = 1 K= k -k k k K/2 K k. k. Kˆ 1 K K = = 2 k = K k

31 EQUIVALENCIA de las FORMULACIONES de BRAGG y VON LAUE K = k k red de Recíproca k y k con el mismo θ y perpendicular al plano de K K = n K 0 K 0 vector de la red recíproca de longitud mínima = 2π/d k K= k -k θ K = 2k senθ k senθ k senθ θ -k θ θ k k = 2π/λ K = 2π n d 2d senθ = nλ reflexión de Bragg

32 DIFRACCIÓN por una RED con una BASE MONATÓMICA Red de Bravais cristal n- átomos de una base + = d1 d2 d3 d4 d5

33 FACTOR de ESTRUCTURA GEOMÉTRICO K.( di d j) K = k k pico de Bragg e ik.( d d ) i j diferencia de la fase diferencia de amplitudes d j d i amplitudes de los rayos dispersados en d 1,.., d n, ik. d 1 e e ik d. n S n ik. d = e j 2 Amplitud total K j= 1 I Intensidad total S K

34 DISPERSION por un ATOMO Dispersión incoherente λ dimensiones atómicas + CB-AD diferencia de camino de Z repecto Z interferencia destructiva Dispersión coherente Factor de dispersión o forma atómica

35 DIFRACCIÓN por un CRISTAL POLIATÓMICO S = f K e n Si iones de base K j ( ) j= 1 ik. d j f j factor de forma o dispersión atómico ( ) 1 ik. r f j K = e ρ j( r) dr e Depende de la estructura del ión ρ j distribución de carga electrónica del ión número de electrones que rodean un átomo 0 ( ) sen kr f0 = ρ ( r) dr kr

Caracterización Estructural de Materiales por Difracción de Rayos X

Caracterización Estructural de Materiales por Difracción de Rayos X Grado C. Físicas SÍNTESIS Y DETERMINACIÓN ESTRUCTURAL DE LOS MATERIALES Caracterización Estructural de Materiales por Difracción de Rayos X J. Medina UNIVERSIDAD DE VALLADOLID Departamento de Física de

Más detalles

Caracterización Estructural de Minerales por Difracción de Rayos X

Caracterización Estructural de Minerales por Difracción de Rayos X Máster Universitario en Profesor de Enseñanza Secundaria Obligatoria, Bachillerato, Formación Profesional y Enseñanza de Idiomas Caracterización Estructural de Minerales por Difracción de Rayos X J. Medina

Más detalles

Básicamente, el fenómeno de la difracción de rayos X (y. formulaciones equivalentes: La formulación de Bragg y la formulación de Laue (Von Laue).

Básicamente, el fenómeno de la difracción de rayos X (y. formulaciones equivalentes: La formulación de Bragg y la formulación de Laue (Von Laue). Determinación de estructuras cristalinas mediante difracción de Rayos X Para que la difracción de Rayos X sea observable, la longitud de onda de la radiación debe ser menor o del orden de las distancias

Más detalles

Difracción de rayos X. Química Analítica Inorgánica Tecnólogo Minero

Difracción de rayos X. Química Analítica Inorgánica Tecnólogo Minero Difracción de rayos X Química Analítica Inorgánica Tecnólogo Minero Por qué estudiar difracción de rayos X? Composición Difracción üfenómeno característico de las ondas üdesviación de éstas al encontrar

Más detalles

DIFRACCIÓN DE RAYOS X

DIFRACCIÓN DE RAYOS X DIFRACCIÓN DE RAYOS X Difracción La difracción es el resultado de la dispersión de la radiación producida por una disposición regular de los centros de dispersión, cuyo espaciado es aproximadamente igual

Más detalles

DIFRACCIÓN DE RAYOS X: APLICACIONES a MATERIA CONDENSADA Parte II

DIFRACCIÓN DE RAYOS X: APLICACIONES a MATERIA CONDENSADA Parte II Física del Estado Sólido DIFRACCIÓN DE RAYOS X: APLICACIONES a MATERIA CONDENSADA Parte II Dr. Andrés Ozols Dr. Marcelo Fontana Facultad de Ingeniería Universidad de Buenos Aires Septiembre 009 Fontana-Ozols

Más detalles

Materia de Postgrado Intensiva INVIERNO 2018 Teórica II Dr. Sebastián Suarez

Materia de Postgrado Intensiva INVIERNO 2018 Teórica II Dr. Sebastián Suarez Materia de Postgrado Intensiva INVIERNO 2018 Teórica II Dr. Sebastián Suarez seba@qi.fcen.uba.ar Cristalografía, fundamentos y aplicaciones Análisis Morfológico Cristales Postulados sobre simetría en solidos

Más detalles

red directa y red recíproca

red directa y red recíproca Más sobre redes: red directa y red recíproca Cualquier plano puede caracterizarse por un vector perpendicular a él ( hkl ) Familia de planos hkl con distancia interplanar d hkl Tomemos hkl = 1/ d hkl hkl

Más detalles

Física del Estado Sólido Práctico 2 Red Recíproca y Difracción de Rayos X

Física del Estado Sólido Práctico 2 Red Recíproca y Difracción de Rayos X Física del Estado Sólido Práctico Red Recíproca y Difracción de Rayos X 1. Considere una red de Bravais con los tres vectores primitivos { a 1, a, a 3 } (figura 1). Un plano de una red cristalina queda

Más detalles

Interpretación de Diagramas de Difracción

Interpretación de Diagramas de Difracción Interpretación de Diagramas de Difracción Teoría: Ley de Bragg Para interpretar los diagramas de difracción se requiere una teoría. W.H. Bragg y su hijo fueron pioneros en el tema y desarrollaron una sencilla

Más detalles

Capítulo 25. Rayos X

Capítulo 25. Rayos X Capítulo 25 Rayos X 1 Generación y absorción de rayos X La frecuencia máxima de rayos X producidos por una diferencia de potencial V vale: ν max = e V h Para que un fotón de rayos X se pueda desintegrar

Más detalles

Fenómenos de difracción

Fenómenos de difracción Fenómenos de difracción Información General de un Experimento DRX Tubo de Rayos X filtrado Detector Capillary Detector specimen Naturaleza de un sólido cristalino Estructura que guarda orden a largo alcance.

Más detalles

Permite establecer la ordenación y el espaciado de los átomos en los compuestos o materiales cristalinos.

Permite establecer la ordenación y el espaciado de los átomos en los compuestos o materiales cristalinos. INTRODUCCIÓN A DRX - Permite establecer la ordenación y el espaciado de los átomos en los compuestos o materiales cristalinos. Primordial en la elucidación de estructuras químicas inorgánicas y orgánicas,

Más detalles

Estructura cristalina. Materiales para ingeniería en energía

Estructura cristalina. Materiales para ingeniería en energía Estructura cristalina Materiales para ingeniería en energía Definiciones Además de la composición, otro aspecto fundamental que gobierna las propiedades físicas y químicas de los sólidos es la organización

Más detalles

Problema Interferencia de N ranuras.

Problema Interferencia de N ranuras. Problema 9. 4. Interferencia de N ranuras. Considere un obstáculo con tres ranuras separadas por una distancia d e iluminado con una onda plana de longitud de onda λ. Emplee el método de los fasores para

Más detalles

Master en Análisis Forense

Master en Análisis Forense Master en Análisis Forense Evidencias físicas Métodos Cristalográficos de Caracterización en AF Tema 3.- Difracción de Rayos X Dr. José Luis Pizarro Dpto. Mineralogía y Petrología Fac. Ciencia y Tecnología

Más detalles

Interferencias y difracción. Propiedades ondulatorias de la luz

Interferencias y difracción. Propiedades ondulatorias de la luz Interferencias y difracción Propiedades ondulatorias de la luz Naturaleza ondulatoria de la luz Interferencias: al combinarse dos ondas hay máximos y mínimos Difracción: debido a la existencia de varias

Más detalles

DRX - Método de Rietveld para el Estudio de Estructuras Cristalinas

DRX - Método de Rietveld para el Estudio de Estructuras Cristalinas DRX - Método de Rietveld para el Estudio de Estructuras Cristalinas Presentado por: Heiddy Paola Quiroz Gaitán Grupo de Materiales Nanoestructurados y sus Aplicaciones 2016 Contenido 1. Refinamiento Rietveld:

Más detalles

Tema 13. Métodos Difractométricos.

Tema 13. Métodos Difractométricos. Tema 13. Métodos Difractométricos. 13.1. Estructura cristalina y fundamentos de la difracción. 13.2. Difracción de rayos-x de monocristal. 13.3. Difracción de rayos-x de muestras policristalinas. 13.4.

Más detalles

Contenido. 5. Estructura cristalina. Omar De la Peña-Seaman IFUAP Física del Estado Sólido Maestría (Física) 1/51 51

Contenido. 5. Estructura cristalina. Omar De la Peña-Seaman IFUAP Física del Estado Sólido Maestría (Física) 1/51 51 Contenido 5. Estructura cristalina 1 / Omar De la Peña-Seaman IFUAP Física del Estado Sólido Maestría (Física) 1/51 51 Contenido: Tema 05 5. Estructura cristalina 5.1 Arreglo periódico de átomos: bases,

Más detalles

07/05/2017. ÓPTICA FÍSICA: difracción. Introducción a los patrones de difracción

07/05/2017. ÓPTICA FÍSICA: difracción. Introducción a los patrones de difracción ÓPTICA FÍSICA: difracción Dispositivo Delfina Fernandez y Damián Pontet, 2015 Introducción a los patrones de difracción Difracción es la desviación que sufren las ondas alrededor de los bordes y esquinas

Más detalles

Técnicas Experimentales en Metalurgia (Área Ingeniería de Materiales) Unidad Temática Nº 9 TÉCNICAS EXPERIMENTALES EN METALURGIA

Técnicas Experimentales en Metalurgia (Área Ingeniería de Materiales) Unidad Temática Nº 9 TÉCNICAS EXPERIMENTALES EN METALURGIA TÉCNICAS EXPERIMENTALES EN METALURGIA Unidad temática nº 9: Microscopía electrónica de barrido y Difracción de rayos X. 9.1.: Difracción de Rayos X La aplicación de los rayos X a la investigación de la

Más detalles

Difracción de la luz

Difracción de la luz Difracción de la luz Óptica Física Óptica Geométrica d ~ d >> Difracción de la luz 1. Difracción (cercana) de Fresnel (en honor a: Augustin Jean Fresnel, 1788-1827) 2. Difracción (lejana) de Fraunhofer

Más detalles

Diagrama de correlación de enlaces moleculares Antienlace : rojo 1s similar a 2s

Diagrama de correlación de enlaces moleculares Antienlace : rojo 1s similar a 2s Redes Cristalinas Ciencia de Materiales Ing. en Mecatrónica Otoño 2009 Lilia Meza Montes-IFUAP Diagrama de correlación de enlaces moleculares Antienlace : rojo 1s similar a 2s Sólidos cristalinos y amorfos

Más detalles

Qué es la textura de un policristal? Introducción a la textura: Conceptos básicos

Qué es la textura de un policristal? Introducción a la textura: Conceptos básicos Qué es la textura de un policristal? Introducción a la textura: Conceptos básicos (la textura cristaloráfica, como yo lo entiendo) Gaspar Gónzález-Doncel CENIM, C.S.I.C. ggd@cenim.csic.es Esquema a seguir

Más detalles

Unidad 2: Estado Sólido

Unidad 2: Estado Sólido Unidad 2: Estado Sólido Redes de Bravais P = primitiva (sólo hay un punto de red dentro la celdilla, uno por vértice repartido en ocho vértices, 8/8=1) C = centrada en las caras perpendiculares al eje

Más detalles

Electron Probe Techniques Interacción de electrones (alg. ev hasta 1000 kev!!!) con (átomos) materia: Diferentes técnicas de análisis de superficies

Electron Probe Techniques Interacción de electrones (alg. ev hasta 1000 kev!!!) con (átomos) materia: Diferentes técnicas de análisis de superficies Electron Probe Techniques Interacción de electrones (alg. ev hasta 1000 kev!!!) con (átomos) materia: Diferentes técnicas de análisis de superficies e interfaces. * Algunas técnicas (AES, LEED, RHEED,

Más detalles

Objetivos. Introducción. β α

Objetivos. Introducción. β α Objetivos Medir el espectro emitido por una lámpara de sodio utilizando redes de difracción. Determinar los límites del espectro visible usando una fuente de luz blanca. Introducción Una red de difracción

Más detalles

Anexo a Ud los resultados de dos muestras enviadas a nuestro laboratorio para su posterior caracterización.

Anexo a Ud los resultados de dos muestras enviadas a nuestro laboratorio para su posterior caracterización. Ing Rodolfo García Sánchez Minerales y Servicios Presente Anexo a Ud los resultados de dos muestras enviadas a nuestro laboratorio para su posterior caracterización. Se solicitaron análisis de Difracción

Más detalles

TEMA 18 LOS CRISTALES, LOS MINERALES Y LOS RAYOS X. Aplicaciones de la difracción de rayos X en Cristalografía y en Mineralogía

TEMA 18 LOS CRISTALES, LOS MINERALES Y LOS RAYOS X. Aplicaciones de la difracción de rayos X en Cristalografía y en Mineralogía TEMA 18 LOS CRISTALES, LOS MINERALES Y LOS RAYOS X Aplicaciones de la difracción de rayos X en Cristalografía y en Mineralogía ÍNDICE 18.1 La naturaleza de los rayos X 18.2 Producción de los rayos X. Tubo

Más detalles

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS. Determinación del tamaño de grano cristalino por difracción de rayos-x de polvo

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS. Determinación del tamaño de grano cristalino por difracción de rayos-x de polvo UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS FACULTAD DE CIENCIAS FÍSICAS EAP. DE FÍSICA Determinación del tamaño de grano cristalino por difracción de rayos-x de polvo MONOGRAFÍA Para optar el Título de Licenciado

Más detalles

Determinación de los índices de Miller de planos en cristales de Cu y GaP

Determinación de los índices de Miller de planos en cristales de Cu y GaP Determinación de los índices de Miller de planos en cristales de Cu y GaP Grupo 2 Franchino Viñas, S. A. Hernández Maiztegui, F. f ranchsebs@yahoo.com.ar f ranx22182@hotmail.com Muglia, J. Panelo, M. Salazar

Más detalles

Series espectrales del hidrógeno

Series espectrales del hidrógeno Hidrógeno Series espectrales del hidrógeno Lyman Balmer Pfund Paschen 1 2 3 4 5 6 n=7 Brackett Lyman Balmer Paschen Brackett Pfund 1000 2000 5000 10000 UV Visible IR Transiciones electrónicas atomo ionizado

Más detalles

Práctica 6: Redes de difracción F2 ByG 2º Cuat 2005

Práctica 6: Redes de difracción F2 ByG 2º Cuat 2005 Práctica 6: Redes de difracción F2 ByG 2º Cuat 2005 Objetivos: Se propone medir el espectro de una lámpara de sodio utilizando redes de difracción. Se propone determinar los límites del espectro visible

Más detalles

Tutoría 2: Experimentos de difracción

Tutoría 2: Experimentos de difracción Tutoría 2: Experimentos de difracción T2.1 Introducción En esta tutoría trataremos la cuestión fundamental de cómo conocemos donde se sitúan los átomos en un sólido. La demostración realizada se basa en

Más detalles

Práctica Nº 7: Red de difracción

Práctica Nº 7: Red de difracción Práctica Nº 7: Red de difracción 1.- INTRODUCCIÓN. INTERFERENCIA o DIFRACCIÓN? Desde el punto de vista físico ambos fenómenos son equivalentes. En general se utiliza el término INTERFERENCIA, para designar

Más detalles

Tema 9. Tema 9: Estados de agregación de la materia. 9.1 Características generales de los estados de agregación LARGO ALCANCE ORDEN ALCANCE

Tema 9. Tema 9: Estados de agregación de la materia. 9.1 Características generales de los estados de agregación LARGO ALCANCE ORDEN ALCANCE Tema 9: Estados de agregación de la materia 9.1 Características generales de los estados de agregación Desde el punto de vista microscópico: 9.1 Características generales 9.2 Sólidos: estructura cristalina

Más detalles

Capítulo 1. Antecedentes de la Química Cuántica y primeras Teorías Atómicas

Capítulo 1. Antecedentes de la Química Cuántica y primeras Teorías Atómicas Capítulo 1. Antecedentes de la Química Cuántica y primeras Teorías Atómicas Objetivos: Recordar y actualizar los conocimientos sobre las características de electrones, protones y neutrones Describir la

Más detalles

PROPIEDADES DE LOS RAYOS X I

PROPIEDADES DE LOS RAYOS X I CAPÍTULO.. RADIACIÓN ELECTROMAGNÉTICA Los rayos X son radiación electromagnética de la misma aturaleza que la luz pero de longitud de onda mucho más corta. La unidad de medida en la región de los rayos

Más detalles

Velocidad de la Luz. c = (2,9979 ± 0,0001) x 10 8 m/s

Velocidad de la Luz. c = (2,9979 ± 0,0001) x 10 8 m/s Velocidad de la Luz Métodos fallidos, como el de Galileo Galilei en 1667. Método astronómico de Olaf Roemer en 1675, concluye que c > 2 x 10 8 m/s (periodo de eclipse de satélites de Jupiter). Método de

Más detalles

1. Efecto fotoeléctrico 2. Física de Rayos X, Efecto Compton. efecto fotoeléctrico)

1. Efecto fotoeléctrico 2. Física de Rayos X, Efecto Compton. efecto fotoeléctrico) Prácticas de Física Cuántica I (2014-15) 1. Efecto fotoeléctrico 2. Física de Rayos X, Efecto Compton Espectros atómicos (incluido en la práctica de efecto fotoeléctrico) 3. Difracción ió de electrones

Más detalles

Capítulo 4 Difracción

Capítulo 4 Difracción Capítulo 4 Difracción 4.1 Difracción de la luz 4.2 Difracción de Fraunhofer Posición del 1er mínimo Posición del 2do mínimo Separación de los mínimos Posición de los máximos La difracción en el experimento

Más detalles

PLIEGO DE PRESCRIPCIONES TÉCNICAS PARA EL SUMINISTRO DE UN EQUIPO DE DIFRACCIÓN DE RAYOS-X DE POLVO PARA LA FUNDACIÓN IMDEA ENERGÍA

PLIEGO DE PRESCRIPCIONES TÉCNICAS PARA EL SUMINISTRO DE UN EQUIPO DE DIFRACCIÓN DE RAYOS-X DE POLVO PARA LA FUNDACIÓN IMDEA ENERGÍA PLIEGO DE PRESCRIPCIONES TÉCNICAS PARA EL SUMINISTRO DE UN EQUIPO DE DIFRACCIÓN DE RAYOS-X DE POLVO PARA LA FUNDACIÓN IMDEA ENERGÍA 1. PRESCRIPCIONES GENERALES. El presente pliego describe las características

Más detalles

La interacción materia-radiación representa, por mucho, la más importante contribución al entendimiento de las propiedades de los sólidos

La interacción materia-radiación representa, por mucho, la más importante contribución al entendimiento de las propiedades de los sólidos La interacción materia-radiación representa, por mucho, la más importante contribución al entendimiento de las propiedades de los sólidos Difracción de rayos X Los patrones de difracción de rayos X y su

Más detalles

ORIENTACIÓN DE MONOCRISTALES

ORIENTACIÓN DE MONOCRISTALES CAPÍTULO 2 ORIENTACIÓN DE MONOCRISTALES 2.1. INTRODUCCIÓN Mucho de nuestro conocimiento de las propiedades de los materiales policristalinos ha sido obtenido a partir del estudio de monocristales aislados,

Más detalles

El ÁTOMO de HIDRÓGENO

El ÁTOMO de HIDRÓGENO El ÁTOMO de HIDRÓGENO Dr. Andres Ozols Dra. María Rebollo FIUBA 006 Dr. A. Ozols 1 ESPECTROS DE HIDROGENO espectros de emisión espectro de absorción Dr. A. Ozols ESPECTROS DE HIDROGENO Secuencias de las

Más detalles

Seminario 5: Interferencia

Seminario 5: Interferencia Seminario 5: Interferencia Fabián Andrés Torres Ruiz Departamento de Física,, Chile 18 de Abril de 2007. Problemas 1. (Problema 3, capitulo 37,Física, Raymond A. Serway, V2, cuarta edición) Un experimento

Más detalles

Problemas de Ondas Electromagnéticas

Problemas de Ondas Electromagnéticas Problemas de Ondas Electromagnéticas AP Física B de PSI Nombre Multiopción 1. Cuál de las siguientes teorías puede explicar la curvatura de las ondas detrás de los obstáculos en la "región de sombra"?

Más detalles

Tema 6. Interferencia y difracción de ondas

Tema 6. Interferencia y difracción de ondas Tema 6. Interferencia y difracción de ondas Superposición de ondas Ondas coherentes Dispositivos de ondas coherentes. Interferencias debidas a dos fuentes sincrónicas Interferencias debidas a varias fuentes

Más detalles

La interacción materia-radiación representa, por mucho, la más importante contribución al entendimiento de las propiedades de los sólidos

La interacción materia-radiación representa, por mucho, la más importante contribución al entendimiento de las propiedades de los sólidos La interacción materia-radiación representa, por mucho, la más importante contribución al entendimiento de las propiedades de los sólidos Difracción de rayos X Los patrones de difracción de rayos X y su

Más detalles

ÓPTICA STRI 2014 TRABAJO PRÁCTICO 1 - UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL LA PLATA CARRERA DE GRADO

ÓPTICA STRI 2014 TRABAJO PRÁCTICO 1 - UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL LA PLATA CARRERA DE GRADO CARRERA DE GRADO -INGENIERÍA EN SISTEMAS DE INFORMACIÓN- ÓPTICA UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL LA PLATA STRI 2014 TRABAJO PRÁCTICO 1 - Página 1 de 5 1) Dado el siguiente gráfico: ÓPTICA

Más detalles

Capítulo 6. Estudio analítico de cristalización mediante difracción de rayos X

Capítulo 6. Estudio analítico de cristalización mediante difracción de rayos X Estudio analítico de cristalización mediante difracción de rayos X Estudio analítico de cristalización mediante difracción de rayos X 6.1. Difractogramas teóricos de los compuestos Sb 2 Se 3 y GeSe 2 Como

Más detalles

EXTINCIÓN DE LA DIFRACCIÓN DE RAYOS X EN UNA MUESTRA DE COBRE CON TEXTURA DE RECOCIDO

EXTINCIÓN DE LA DIFRACCIÓN DE RAYOS X EN UNA MUESTRA DE COBRE CON TEXTURA DE RECOCIDO INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE FÍSICA Y MATEMÁTICAS EXTINCIÓN DE LA DIFRACCIÓN DE RAYOS X EN UNA MUESTRA DE COBRE CON TEXTURA DE RECOCIDO TESIS QUE PARA OBTENER EL GRADO DE LICENCIADO

Más detalles

Optica de Fourier y filtrado espacial

Optica de Fourier y filtrado espacial Optica de Fourier y filtrado espacial Objetivo Estudiar la óptica de Fourier y la formación de imágenes con luz coherente. Difracción de Fraunhofer Sea una onda plana de luz coherente que incide sobre

Más detalles

INTERFERENCIA Y DIFRACCIÓN DE ONDAS SONORAS (ULTRASONIDOS) Esta práctica pretende alcanzar dos objetivos fundamentales:

INTERFERENCIA Y DIFRACCIÓN DE ONDAS SONORAS (ULTRASONIDOS) Esta práctica pretende alcanzar dos objetivos fundamentales: INTERFERENCIA Y DIFRACCIÓN DE ONDAS SONORAS (ULTRASONIDOS) 1.- OBJETIVOS Esta práctica pretende alcanzar dos objetivos fundamentales: a) El manejo de una serie de instrumentos como son el Goniómetro y

Más detalles

SERVICIO DE APOYO A LA INVESTIGACIÓN (SAI) SECCIÓN UNIVERSITARIA DE INSTRUMENTACIÓN CIENTÍFICA (SUIC)

SERVICIO DE APOYO A LA INVESTIGACIÓN (SAI) SECCIÓN UNIVERSITARIA DE INSTRUMENTACIÓN CIENTÍFICA (SUIC) SERVICIO DE APOYO A LA INVESTIGACIÓN (SAI) SECCIÓN UNIVERSITARIA DE INSTRUMENTACIÓN CIENTÍFICA (SUIC) Murcia, 30 de Octubre de 2013 http://suicsaiumu.wordpress.com/ 1 Espectrometría emisión atómica-icp

Más detalles

Física atómica y nuclear

Física atómica y nuclear Física atómica y nuclear Física de rayos X Física de las capas atómicas LD Hojas de Física Estudio de los espectros de energía de un tubo de rayos X en función de la alta tensión y de la corriente de emisión

Más detalles

Practica nº n 5: Fenómenos de Difracción.

Practica nº n 5: Fenómenos de Difracción. Facultad de Farmacia Universidad de Granada Departamento de Química Física Practica nº n 5: Fenómenos de Difracción. OBJETIVOS 1.Observar los fenómenos de difracción Rendija simple Rendija doble 2.Calcular

Más detalles

En la Sección III Usted debe justificar todas sus respuestas con claridad en el espacio en blanco.

En la Sección III Usted debe justificar todas sus respuestas con claridad en el espacio en blanco. Diciembre 9, 2011 Instrucciones Nombre Este examen tiene 3 secciones: La Sección I consta de 10 preguntas en el formato de Falso-Verdadero y con un valor de 20 puntos. La Sección II es de selección múltiple

Más detalles

Física del estado sólido

Física del estado sólido Física del estado sólido Propiedades de cristales nálisis estructural mediante rayos X LD ojas de Física P7... Método de Laue: estudio de la estructura cristalina de los monocristales Objetivos del experimento

Más detalles

TEMA 1. Rayos X. Características. Producción. Colimación y monocromatización. Detección. Seguridad. Red cristalina. Celda unidad.

TEMA 1. Rayos X. Características. Producción. Colimación y monocromatización. Detección. Seguridad. Red cristalina. Celda unidad. TEMA 1. Rayos X. Características. Producción. Colimación y monocromatización. Detección. Seguridad. Red cristalina. Celda unidad. Sistemas cristalinos. Redes de Bravais. Dispersión y difracción de rayos

Más detalles

Generalidades del Estado Sólido

Generalidades del Estado Sólido Universidad de Antioquia Instituto de Física Primer Taller de Estado Sólido, CNF-422 Este taller tiene como objetivo que el estudiante haga un recorrido por los diferentes conceptos para preparar el primer

Más detalles

Espectroscopía óptica

Espectroscopía óptica El color del mundo CNyN-UNAM En esta práctica estudiaremos la razón de los colores que vemos. Esto tiene diferentes ángulos, fuente de luz, interacción luz materia, separación de los colores para mejor

Más detalles

ESTRUCTURA CRISTALINA

ESTRUCTURA CRISTALINA SOLIDOS ESTRUCTURA CRISTALINA Dr. Andres Ozols 2005 Dr. A. Ozols 1 ALCANCE del ORDEN ATOMICO Estructura de corto alcance Estructura de alcance intermedio Estructura de largo alcance Dr. A. Ozols 2 TIPOS

Más detalles

Webpage:

Webpage: Magnetismo y Óptica Dr. Roberto Pedro Duarte Zamorano E-mail: roberto.duarte@didactica.fisica.uson.mx Webpage: http://rpduarte.fisica.uson.mx 2016 Departamento de Física Universidad de Sonora A. Magnetismo

Más detalles

INTRODUCCIÓN A DRX HTTP://MATTER.ORG.UK/DIFFRACTION/DEFAULT.HTM HTTP://MATTER.ORG.UK/DIFFRACTION/X-RAY/DEFAULT.HTM Cuando una onda interacciona con una partícula aislada, el haz se dispersa uniformemente

Más detalles

Laboratorio de Física II (ByG) 1er cuat Guía 6: Fenómeno de Difracción. La Cristalografía de rayos X.

Laboratorio de Física II (ByG) 1er cuat Guía 6: Fenómeno de Difracción. La Cristalografía de rayos X. Laboratorio de Física II (ByG) 1er cuat. 2015 Guía 6:. La Cristalografía de rayos X. Objetivos Estudiar la figura de difracción (también llamada patrón de difracción) producida por diferentes obstáculos

Más detalles

INTERFERENCIA DE LA LUZ

INTERFERENCIA DE LA LUZ INTERFERENCIA DE A UZ 1. OBJETIVO Interferencia de la luz Determinar la longitud de onda de la luz emitida por un láser, a partir del patrón de interferencias que se obtiene al incidir un haz de luz: a)

Más detalles

100 Å y al igual que la luz ordinaria, se manifiesta en forma de energía radiante,

100 Å y al igual que la luz ordinaria, se manifiesta en forma de energía radiante, 36 II. MÉTODOS DE CARACTERIZACIÓN 1.Difracción de Rayos-X Los rayos X, son radiaciones cuya longitud de onda oscila entre 0.02 Å a 100 Å y al igual que la luz ordinaria, se manifiesta en forma de energía

Más detalles

Teoría corpuscular: considera la luz como un conjunto de partículas Naturaleza de la luz

Teoría corpuscular: considera la luz como un conjunto de partículas Naturaleza de la luz 9. La luz (I) Teoría corpuscular: considera la luz como un conjunto de partículas Naturaleza de la luz Teoría ondulatoria: considera la luz como una onda Dualidad onda-corpúsculo: la luz tiene doble naturaleza,

Más detalles

Slide 1 / 52. Las Ondas Electromagnéticas Problemas de Práctica

Slide 1 / 52. Las Ondas Electromagnéticas Problemas de Práctica Slide 1 / 52 Las Ondas Electromagnéticas Problemas de Práctica Slide 2 / 52 Multiopcion Slide 3 / 52 1 Cuál de las siguientes teorías puede explicar la curvatura de las ondas detrás de los obstáculos en

Más detalles

TEMA 8: SÓLIDOS INORGÁNICOS. 2.- Redes bidimensionales y tridimensionales

TEMA 8: SÓLIDOS INORGÁNICOS. 2.- Redes bidimensionales y tridimensionales TEMA 8: SÓLIDOS INORGÁNICOS 1.- Tipos de sólidos 2.- Redes bidimensionales y tridimensionales 3.- Celda unidad y sus parámetros: - nº de átomos / celda - nº de coordinación (NC) - fracción de volumen ocupado

Más detalles

Práctica de Óptica Física

Práctica de Óptica Física Práctica de Estudio de fenómenos de interferencia difracción 2 Pre - requisitos para realizar la práctica...2 Bibliografía recomendada en referencia la modelo teórico...2 Competencias a desarrollar por

Más detalles

Física del Estado Sólido REDES CRISTALINAS. Dr. Andrés Ozols. Facultad de Ingeniería Universidad de Buenos Aires. Dr. A. Ozols 1

Física del Estado Sólido REDES CRISTALINAS. Dr. Andrés Ozols. Facultad de Ingeniería Universidad de Buenos Aires. Dr. A. Ozols 1 Física del Estado Sólido REDES CRISTALINAS Dr. Andrés Ozols Facultad de Ingeniería Universidad de Buenos Aires 2009 Dr. A. Ozols 1 ÁTOMOS EN SÓLIDOS Dr. A. Ozols 2 ORDEN CRISTALINO y FORMA René Just Hauy

Más detalles

Guía de Problemas N 2 Difracción y Generación de rayos X

Guía de Problemas N 2 Difracción y Generación de rayos X Guía de Problemas N 2 Difracción y Generación de rayos X 1) El Pb metálico cristaliza en una estructura cúbica. Los cuatro primeros picos que aparecen en el difractograma corresponden a los planos (111),

Más detalles

CARACTERIZACIÓN DE PELÍCULAS DELGADAS

CARACTERIZACIÓN DE PELÍCULAS DELGADAS CAPÍTULO 3 CARACTERIZACIÓN DE PELÍCULAS DELGADAS 3.1. Introducción La medida de las propiedades de las películas delgadas es indispensable para el estudio de las películas delgadas de materiales y dispositivos,

Más detalles

En la Sección III Usted debe justificar todas sus respuestas con claridad en el espacio en blanco.

En la Sección III Usted debe justificar todas sus respuestas con claridad en el espacio en blanco. Mayo, 01 Instrucciones Nombre Este examen tiene 3 secciones: La Sección I consta de 10 preguntas en el formato de Falso-Verdadero y con un valor de 0 puntos. La Sección II es de selección múltiple y consta

Más detalles

Suponemos que la función de transmitancia del holograma modula únicamente la fase de la onda de lectura.

Suponemos que la función de transmitancia del holograma modula únicamente la fase de la onda de lectura. 5. Hologramas delgados Hologramas delgados de fase Suponemos que la función de transmitancia del holograma modula únicamente la fase de la onda de lectura. Función de transmitancia (registrada en plano

Más detalles

DETERMINACIÓN DE ESTRUCTURAS CRISTALINAS II 5.1. MÉTODO ANALÍTICO PARA EL INDEXADO DE PATRONES DE CRISTALES NO CÚBICOS

DETERMINACIÓN DE ESTRUCTURAS CRISTALINAS II 5.1. MÉTODO ANALÍTICO PARA EL INDEXADO DE PATRONES DE CRISTALES NO CÚBICOS CAPÍTULO 5 DETERMINACIÓN DE ESTRUCTURAS CRISTALINAS II 5.. MÉTODO ANALÍTICO PARA EL INDEXADO DE PATRONES DE CRISTALES NO CÚBICOS Los métodos analíticos de indexado requiere manipulaciones aritméticas de

Más detalles

DIFRACCIÓN DE CRISTALES 1. INTRODUCCIÓN

DIFRACCIÓN DE CRISTALES 1. INTRODUCCIÓN DIFRACCIÓN DE CRISTALES 1. INTRODUCCIÓN No es posible visualizar directamente los átomos, salvo en situaciones muy particulares, con alto costo y baja resolución. (No se puede hacer microscopía a nivel

Más detalles

FÍSICA MODERNA PREGUNTAS PROBLEMAS

FÍSICA MODERNA PREGUNTAS PROBLEMAS FÍSICA MODERNA PREGUNTAS 1. En que se parecen los fotones a otras partículas, como electrones? En que difieren? 2. La piel humana es relativamente insensible a la luz visible, pero la radiación Ultravioleta

Más detalles

Fundamentos de espectroscopia: aspectos de óptica

Fundamentos de espectroscopia: aspectos de óptica Fundamentos de espectroscopia: aspectos de óptica Jesús Hernández Trujillo Abril de 2015 Óptica/JHT 1 / 20 Óptica: Estudio del comportamiento de la luz y en general de la radiación electromagnética Óptica

Más detalles

OSCILADOR ARMONICO: partícula con M.A.S. ECUACION DEL M.A.S: x = A sen (ω t+ φ 0 )

OSCILADOR ARMONICO: partícula con M.A.S. ECUACION DEL M.A.S: x = A sen (ω t+ φ 0 ) ONDAS. M.A.S: Tipo de movimiento oscilatorio que tienen los cuerpos que se mueven por acción de una fuerza restauradora: F=-k x OSCILADOR ARMONICO: partícula con M.A.S ECUACION DEL M.A.S: x = A sen (ω

Más detalles

Ecuación de la onda estacionaria Para referirse a la amplitud de la onda electrónica, Schrödinger introdujo el empleo de la letra Ψ.

Ecuación de la onda estacionaria Para referirse a la amplitud de la onda electrónica, Schrödinger introdujo el empleo de la letra Ψ. Modelo Moderno Bases del modelo Ondas electrónicas La luz (ondas electromagnéticas) tiene no sólo un carácter ondulatorio sino que también corpuscular (ya sabido hacia 1920). Se aplica la ecuación de Plank

Más detalles

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display ESTRUCTURAS CRISTALINAS

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display ESTRUCTURAS CRISTALINAS ESTRUCTURAS CRISTALINAS PREGUNTAS SOBRE LA ESTRUCTURA DE MATERIALES SOLIDOS Cuál es la distribución de los átomos en los materiales sólidos? Qué es polimorfismo y alotropía en materiales? Cómo se describen

Más detalles

3. Cual es el marco conceptual y las teorías que se utilizan para el entendimiento de las propiedades y fenómenos físicos de los materiales?

3. Cual es el marco conceptual y las teorías que se utilizan para el entendimiento de las propiedades y fenómenos físicos de los materiales? Universidad de Antioquia Facultad de Ciencias Exactas y Naturales Instituto de Física Estado Sólido CNF-422 Primer Taller del Semestre 2010-1 Los talleres del curso de Estado Sólido tienen como objetivo

Más detalles

ESTRUCTURA CRISTALINA

ESTRUCTURA CRISTALINA ESTRUCTURA CRISTALINA Una completa caracterización de la superficie no implica conocer que átomos están presente en la superficie, sino también en donde están los átomos. Además, cual es la posición de

Más detalles

La Teoría Cuántica Preguntas de Multiopcion

La Teoría Cuántica Preguntas de Multiopcion Slide 1 / 71 La Teoría Cuántica Preguntas de Multiopcion Slide 2 / 71 1 El experimento de "rayos catódicos" se asocia con: A B C D E Millikan Thomson Townsend Plank Compton Slide 3 / 71 2 La carga del

Más detalles

Continuación. Interacción Fotón-Sólido

Continuación. Interacción Fotón-Sólido Continuación Interacción Fotón-Sólido Radiación Electromagnética ESPECTRO ELECTROMAGNÉTICO RADIO- FRECUENCIA MICRO- ONDAS IR UV RAYOS X RAYOS GAMMA ENERGÍA (ev) -5-3 3 5 10 10 1 10 10 LONGITUD DE ONDA

Más detalles

INTERFERENCIA 07/05/2017 ÓPTICA FÍSICA. ÓPTICA FÍSICA: interferencia y difracción

INTERFERENCIA 07/05/2017 ÓPTICA FÍSICA. ÓPTICA FÍSICA: interferencia y difracción ÓPTICA FÍSICA INTERFERENCIA Interferencia constructiva, dos ranuras TP Biprisma de Fresnel Perfil C (2º): S=12.6cm Interferencia destructiva, dos ranuras ÓPTICA FÍSICA: interferencia y difracción La interferencia

Más detalles

Física II. Dr. Mario Enrique Álvarez Ramos (Responsable)

Física II. Dr. Mario Enrique Álvarez Ramos (Responsable) Física II Dr. Mario Enrique Álvarez Ramos (Responsable) Dr. Roberto Pedro Duarte Zamorano (Colaborador) Dr. Ezequiel Rodríguez Jáuregui (Colaborador) Webpage: http://paginas.fisica.uson.mx/qb 2015 Departamento

Más detalles

Física cuántica I Grupo C 2015/16 Examen final 22 de junio de 2016

Física cuántica I Grupo C 2015/16 Examen final 22 de junio de 2016 UNIVERSIDAD COMPLUTENSE DE MADRID DEPARTAMENTO DE FÍSICA TEÓRICA I GRADO EN FÍSICA Física cuántica I Grupo C 15/1 Examen final de junio de 1 Nombre: Soluciones Firma: Problema 1 (1 punto). Un haz de radiación

Más detalles

Técnicas para la caracterización de materiales

Técnicas para la caracterización de materiales Técnicas para la caracterización de materiales Difracción de rayos X Ley de Bragg, Cálculo de parámetros de red Microscopía óptica Microestructura Tamaño de grano Microscopía electrónica SEM (Scanning

Más detalles

Fundamentos y Aplicaciones de la Difracción de Rayos X de Polvo

Fundamentos y Aplicaciones de la Difracción de Rayos X de Polvo Lunes 5 de Noviembre de 202 - Aula Leloir, Edificio Gollán FIQ 8:30-9:5 h Acreditación-Bienvenida 9:5-0:45 h Fabio Furlan Ferreira (Universidade Federal do ABC, Brasil) Clase teórica: Introducción a los

Más detalles

Física del Estado Sólido Práctico 5 Vibraciones de los Cristales

Física del Estado Sólido Práctico 5 Vibraciones de los Cristales Física del Estado Sólido Práctico 5 Vibraciones de los Cristales 1. Medición de las Constantes de Fuerza Considere una red lineal monoatómica, siendo M la masa de cada átomo y a la distancia entre ellos.

Más detalles