TESIS DE MAESTRIA EN ESTADISTICA APLICADA

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TESIS DE MAESTRIA EN ESTADISTICA APLICADA"

Transcripción

1 TESIS DE MAESTRIA EN ESTADISTICA APLICADA INDICADORES MULTIDIMENSIONALES DE CAPACIDAD DE PROCESOS REGIONES DE CONFIANZA MEDIANTE BOOTSTRAP 1 Noemí María Ferreri Facultad de Ciencias Exactas, Ingeniería y Agrimensura, Universidad Nacional de Rosario Directora: Dra. Marta B. Quaglino Co-director: MSc Gonzalo Marí La evaluación de la capacidad de un proceso constituye el tema central de esta tesis. En ella, la capacidad se presenta como un concepto multidimensional, por lo cual un único número resulta insuficiente para reflejar todos los aspectos presentes. Se propone un vector de tres componentes asociados a variabilidad, centrado y proporción de producción no conforme, lo que constituye una instancia superadora de los tradicionales indicadores unidimensionales. Los dos primeros componentes están implícitamente asociados a una única variable de calidad cuantitativa continua, no así el tercero, que puede aplicarse para una o más variables cualitativas o cuantitativas. Los objetivos que se plantearon en esta tesis fueron llevar adelante un exhaustivo relevamiento bibliográfico para encontrar, las expresiones más apropiadas para cada componente y elegir un estimador a partir de la consideración de sus propiedades estudiadas por simulación. Finalmente, dado que no puede asumirse un modelo para la distribución conjunta del estimador del Indicador Multivariado, se propone construir una región de confianza mediante Bootstrap, la cual se presenta a través de una herramienta gráfica denominada cuadrantes de capacidad para facilitar la interpretación al usuario. Para llegar a la expresión más apropiada para cada componente del vector y a la definición de un estimador con propiedades estadísticas adecuadas, se efectuó un estudio sistemático que consideró en primer lugar un conjunto de expresiones tomadas del relevamiento bibliográfico, estudió su sensibilidad y especificidad para señalar la capacidad de 1 Defendida en Rosario el 9/5/2012

2 los procesos frente a diferentes especificaciones (bilaterales simétricas y asimétricas) y distintas distribuciones de probabilidad de la variable de calidad (normal, normal contaminada en diferentes proporciones, lognormal con diferentes coeficientes de asimetría). Luego planteó estimadores, estudiando sus propiedades por simulación. La metodología empleada se aplicó en forma independiente para cada componente del vector. Del análisis conjunto de las conclusiones de estas dos etapas surgió, para cada componente, la expresión que resultaba más apropiada para la variedad de situaciones considerada y para la cual, además, se podía plantear un estimador con buenas propiedades. Para los indicadores en la población, las dos propiedades requeridas se refieren a la posibilidad de que ellos adviertan sobre la falta de capacidad de los procesos cuando esta se produce (sensibilidad) y a la de no dar falsas alarmas, advirtiendo falta de capacidad, cuando el proceso realmente es capaz (especificidad). El cumplimiento de ambas propiedades depende tanto de la expresión matemática del indicador como de la propia definición adoptada para identificar a un proceso como capaz o no capaz en cada dimensión considerada. Para evaluar la bondad de los estimadores de cada expresión las propiedades analizadas son el error cuadrático medio, el sesgo relativo y la cobertura. Propuesta una expresión para cada componente del vector y su estimador correspondiente se consideró la incertidumbre a la hora de estimar los parámetros de interés y se propuso la construcción de una región de confianza para el vector de capacidad de proceso. La obtención de una expresión analítica para dicha región es un problema complejo: por un lado, la variable de calidad puede ser modelada por diferentes distribuciones de probabilidad y por el otro, las componentes del vector propuesto son funciones de la media, la variancia y la proporción de producción no conforme del proceso y no existe una manera simple de obtener su distribución muestral conjunta, ni siquiera suponiendo normalidad. Para la construcción de la región de confianza se consideró la propuesta de varios autores de aplicar el método Bootstrap para obtener una nube de puntos y ajustar a estos una función de densidad bivariada por el método Kernel. Para esta función de densidad se buscó un contorno que abarque un cierto porcentaje de los puntos obtenidos, el cual constituye el borde de la región multiparámetro. Dado que los gráficos en dos dimensiones son más fáciles de interpretar que los tridimensionales, se propuso un gráfico denominado cuadrantes de capacidad para los dos primeros componentes del vector: el asociado a problemas en la variabilidad del proceso y el

3 asociado a problemas en el centrado. En dicho gráfico se considera un sistema cartesiano para el cual la ecuación correspondiente al eje de las abscisas es y = b, siendo b el mínimo definido para considerar a un proceso capaz en relación al centrado, y la correspondiente al eje de las ordenadas es x = a, siendo a el mínimo definido para considerar a un proceso capaz en relación a la variabilidad. Ambos ejes se cortan en el punto O, de coordenadas (a,b). La región de confianza Bootstrap construida para los dos componentes mencionados se ubica en el gráfico y según su localización en alguno de los cuadrantes se concluye sobre la capacidad del proceso: si se ubica en el primer cuadrante se dice que el proceso resulta capaz tanto en relación al centrado como a la variabilidad, si lo hace en el segundo cuadrante, el proceso resulta capaz en relación al centrado pero no a la variabilidad y lo contrario ocurre en el tercer cuadrante; si se ubica en el cuarto cuadrante, el proceso no resulta capaz ni en relación al centrado ni a la variabilidad. La información sobre el tercer componente, asociado a la proporción de producción no conforme del proceso, se presenta al pie del gráfico a través de un intervalo de confianza Bootstrap. En la Figura 1 se muestra, a modo de ejemplo, un gráfico de cuadrantes de capacidad que permite concluir que el proceso no es capaz en relación al centrado; pero sí en relación a la variabilidad. Respecto de la proporción de proporción no conforme, los intervalos no son informativos puesto que el valor de referencia (1, en este caso) pertenece a cada uno de los intervalos obtenidos. Niveles de confianza.. 50 % % 99 % Intervalos de confianza (Bootstrap Percentile) para la Componente 3 50% (0.9813, ) 95% (0.9713, ) 99% (0.9613, ) Figura 1 Capacidad de un proceso a partir de una muestra de n = 100

4 Esta herramienta gráfica permite superar el mero uso de estimaciones puntuales para tomar decisiones sobre la capacidad de un proceso y lo hace de una manera sencilla para el usuario: este sólo debe observar la localización de las regiones de confianza en relación a los cuadrantes y concluir. Además permite incorporar información propia del proceso y de los objetivos de la empresa en relación a dicho proceso, ya que los valores a y b, que delimitan a los cuadrantes, deben ser definidos por el usuario en función de dicha información. Los resultados obtenidos permiten contar con un indicador de capacidad de proceso que no sólo indica si el proceso es capaz o no, sino que informa en qué aspectos se detecta la falta de capacidad. Las expresiones utilizadas amplían el campo de aplicación de estos indicadores a una gran variedad de situaciones como procesos no normales y especificaciones unilaterales o asimétricas. El uso de la región de confianza, permite considerar la incertidumbre propia de la información muestral, lo cual no siempre es tenido en cuenta en la práctica en las industrias y, además, la localización de la región en el cuadrante de capacidad facilita la interpretación para el usuario no experto. La forma de construcción de las regiones no es única. Se presentan otras alternativas, no exploradas en esta tesis, como líneas futuras de investigación; sin embargo, se encuentra que el mecanismo Bootstrap, tal y como está presentado en los programas que se aplican, constituye una aproximación valiosa y adecuada que supera ampliamente a la práctica usual. REFERENCIAS Davison, A. and Hinkley, D. (1997) Bootstrap Methods and their Application, Estados Unidos: Cambridge University Press. Efron, B. and Tibshirani, R. (1993) An Introduction to the Bootstrap, New York: Chapman & Hall. Forester, J. D. (2008, Marzo, 17), Plotting contours, [Mensaje de blog] Recuperado de Gunter, B. H. (1989), The Use and Abuse of Cpk, Parts 1-4, Quality Progress, 22, 72-73, 79-80, 86-87,

5 Kane, V. E. (1986), Process Capability Indices, Journal of Quality Technology, 18, Kotz, S. and Johnson, N. L. (2002), Process Capability Indices- A Review, , (with discussion), Journal of Quality Technology, 34, Pearn, W. L. and Kotz, S. (2006), Encyclopedia and Handbook of Process Capability Indices. A Comprehensive Exposition of Quality Control Measures. (Series on Quality, Reliability and Engineering Statistics. Vol 12), Singapur: World Scientific. Perakis, M. and Xekalaki, E. (2001), On an Improvement in Confidence Limits for the Proportion of Conformance, Technical Report Nº 128, Athens University of Economics and Business, Department of Statistics. Shahriari, H. and Abdollahzadeh, M. (2009), A new multivariate process capability vector, Quality Engineering, 21, Shore, H. (1998), A new approach to analyzing non-normal quality data with applications to process capability analysis, International Journal of Production Research, 36, Wang, F. K., Hubele, N. F., Lawrence, F. P., Miskulin, J. D. and Shahriari, H. (2000), Comparison of Three Multivariate Process Capability Indices, Journal of Quality Technology, 32,

INDICADORES MULTIVARIADOS DE CAPACIDAD DE PROCESOS. SU EFICIENCIA BAJO DISTRIBUCIONES NORMALES.

INDICADORES MULTIVARIADOS DE CAPACIDAD DE PROCESOS. SU EFICIENCIA BAJO DISTRIBUCIONES NORMALES. Dianda, Daniela Hernández, Lucia Quaglino, Marta Pagura, José Alberto Instituto de Investigaciones Teóricas y Aplicadas de la Escuela de Estadística INDICADORES MULTIVARIADOS DE CAPACIDAD DE PROCESOS.

Más detalles

INDICES MULTIVARIADOS DE CAPACIDAD DE PROCESOS.

INDICES MULTIVARIADOS DE CAPACIDAD DE PROCESOS. Quaglino, Marta Pagura, José Alberto Dianda, Daniela Hernandez, Lucia Puigsubira, Cristina Instituto de Investigaciones Teóricas y Aplicadas de la Escuela de Estadística INDICES MULTIVARIADOS DE CAPACIDAD

Más detalles

Intervalos de confianza para los índices de capacidad C pm y C pmk en procesos estacionarios gaussianos

Intervalos de confianza para los índices de capacidad C pm y C pmk en procesos estacionarios gaussianos Revista Colombiana de Estadística Volumen 29 N o 2. pp. 153 a 162. Diciembre 2006 Intervalos de confianza para los índices de capacidad C pm y C pmk en procesos estacionarios gaussianos Confidence Intervals

Más detalles

ESTIMACIÓN Y PRUEBA DE HIPÓTESIS INTERVALOS DE CONFIANZA

ESTIMACIÓN Y PRUEBA DE HIPÓTESIS INTERVALOS DE CONFIANZA www.jmontenegro.wordpress.com UNI ESTIMACIÓN Y PRUEBA DE HIPÓTESIS INTERVALOS DE CONFIANZA PROF. JOHNNY MONTENEGRO MOLINA Objetivos Desarrollar el concepto de estimación de parámetros Explicar qué es una

Más detalles

ANÁLISIS DE FRECUENCIAS

ANÁLISIS DE FRECUENCIAS ANÁLISIS DE FRECUENCIAS EXPRESIONES PARA EL CÁLCULO DE LOS EVENTOS PARA EL PERÍODO DE RETORNO T Y DE LOS RESPECTIVOS ERRORES ESTÁNDAR DE ESTIMACIÓN REQUERIDOS PARA LA DETERMINACIÓN DE LOS INTERVALOS DE

Más detalles

UN TAMAÑO DE MUESTRA PRELIMINAR EN LA ESTIMACION DE LA MEDIA, EN POBLACIONES CON DISTRIBUCIONES UNIFORMES Y TRIANGULARES

UN TAMAÑO DE MUESTRA PRELIMINAR EN LA ESTIMACION DE LA MEDIA, EN POBLACIONES CON DISTRIBUCIONES UNIFORMES Y TRIANGULARES Revista Colombiana de Estadística Volumen 24 (2001) N o 1, páginas 27 a 32 UN TAMAÑO DE MUESTRA PRELIMINAR EN LA ESTIMACION DE LA MEDIA, EN POBLACIONES CON DISTRIBUCIONES UNIFORMES Y TRIANGULARES CARLOS

Más detalles

PROGRAMA DE CURSO. Código Nombre MA3402 Estadística Nombre en Inglés Statistics SCT Requisitos. DIM Resultados de Aprendizaje

PROGRAMA DE CURSO. Código Nombre MA3402 Estadística Nombre en Inglés Statistics SCT Requisitos. DIM Resultados de Aprendizaje > < ; U Q R ;?C: VT 2 +D :?CB J B > > ; S6D :? < ;? ; C?C : >? ; W( U C > X?2 > R+DE?C : < > ; ; 9 : : R > ; Y < > < ; U Q R ;?C: VT 2 +D :?C B J B > > ; S6D :? < ;? ; C?C : >? ; W( U C > X?2 > R+DE?C

Más detalles

UNIVERSIDAD AUTONOMA DE SANTO DOMINGO

UNIVERSIDAD AUTONOMA DE SANTO DOMINGO UNIVERSIDAD AUTONOMA DE SANTO DOMINGO FACULTAD DE CIENCIAS ECONOMICAS Y SOCIALES DEPARTAMENTO DE ESTADISITICA CATEDRA Estadística Especializada ASIGNATURA Estadística Descriptiva Para Psicólogos (EST-225)

Más detalles

07 Estimación puntual e introducción a la estadística inferencial

07 Estimación puntual e introducción a la estadística inferencial 07 Estimación puntual e introducción a la estadística inferencial Diego Andrés Alvarez Marín Profesor Asistente Universidad Nacional de Colombia Sede Manizales 1 Contenido Qué es la estadística inferencial?

Más detalles

PONTIFICIA UNIVERSIDAD CATOLICA DEL ECUADOR FACULTAD DE CIENCIAS EXACTAS Y NATURALES ESCUELA DE CIENCIAS QUIMICAS

PONTIFICIA UNIVERSIDAD CATOLICA DEL ECUADOR FACULTAD DE CIENCIAS EXACTAS Y NATURALES ESCUELA DE CIENCIAS QUIMICAS 1. DATOS INFORMATIVOS: PONTIFICIA UNIVERSIDAD CATOLICA DEL ECUADOR FACULTAD DE CIENCIAS EXACTAS Y NATURALES ESCUELA DE CIENCIAS QUIMICAS MATERIA: ESTADISTICA II CODIGO: 12820 CARRERA: CIENCIAS QUIMICAS,

Más detalles

Índices robustos de calidad. Cómo medir la capacidad de un proceso.

Índices robustos de calidad. Cómo medir la capacidad de un proceso. Índices robustos de calidad. ómo medir la capacidad de un proceso. Introducción Salvador Naya Fernández Departamento de Matemáticas (Área de Estadística e Investigación Operativa). Universidad de A oruña.

Más detalles

Facultad de Ciencias Sociales - Universidad de la República

Facultad de Ciencias Sociales - Universidad de la República Facultad de Ciencias Sociales - Universidad de la República Estadística y sus aplicaciones en Ciencias Sociales Edición 2016 Ciclo Avanzado 3er. Semestre (Licenciatura en Ciencia Política/ Licenciatura

Más detalles

CALCULO DE INCERTIDUMBRE DE LAS MEDICIONES DE ENSAYOS

CALCULO DE INCERTIDUMBRE DE LAS MEDICIONES DE ENSAYOS Gestor de Calidad Página: 1 de 5 1. Propósito Establecer una guía para el cálculo de la incertidumbre asociada a las mediciones de los ensayos que se realizan en el. Este procedimiento ha sido preparado

Más detalles

Asignaturas antecedentes y subsecuentes Probabilidad y Estadística Matemática

Asignaturas antecedentes y subsecuentes Probabilidad y Estadística Matemática PROGRAMA DE ESTUDIOS MUESTREO Área a la que pertenece: ÁREA DE FORMACION INTEGRAL PROFESIONAL Horas teóricas: 3 Horas prácticas: 2 Créditos: 8 Clave: F0082 Asignaturas antecedentes y subsecuentes Probabilidad

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación. Facultad de Ciencias Sociales, UdelaR

Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación. Facultad de Ciencias Sociales, UdelaR Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación Facultad de Ciencias Sociales, UdelaR Índice 1. Repaso: estimadores y estimaciones. Propiedades de los estimadores. 2. Estimación puntual.

Más detalles

PROGRAMA ACADEMICO Ingeniería Industrial

PROGRAMA ACADEMICO Ingeniería Industrial 1. IDENTIFICACIÓN DIVISION ACADEMICA Ingenierías DEPARTAMENTO Ingeniería Industrial PROGRAMA ACADEMICO Ingeniería Industrial NOMBRE DEL CURSO Análisis de datos en Ingeniería COMPONENTE CURRICULAR Profesional

Más detalles

CM0244. Suficientable

CM0244. Suficientable IDENTIFICACIÓN NOMBRE ESCUELA ESCUELA DE CIENCIAS NOMBRE DEPARTAMENTO Ciencias Matemáticas ÁREA DE CONOCIMIENTO MATEMATICAS, ESTADISTICA Y AFINES NOMBRE ASIGNATURA EN ESPAÑOL ESTADÍSTICA GENERAL NOMBRE

Más detalles

ESTADISTICA APLICADA: PROGRAMA

ESTADISTICA APLICADA: PROGRAMA Pág. 1 de 5 ESTADISTICA APLICADA: PROGRAMA a) OBJETIVOS Y BLOQUE 1: Teoría de Probabilidades 1.1 Comprender la naturaleza de los experimentos aleatorios y la estructura de los espacios de probabilidades,

Más detalles

PROGRAMA ANALÍTICO DE ASIGNATURA

PROGRAMA ANALÍTICO DE ASIGNATURA UNIVERSIDAD AUTÓNOMA DEL ESTADO DE HIDALGO COORDINACIÓN DE DOCENCIA DIRECCIÓN DE PLANEACIÓN Y DESARROLLO EDUCATIVO PROGRAMA ANALÍTICO DE ASIGNATURA 1.- DATOS GENERALES 1.1 INSTITUTO: Instituto de Ciencias

Más detalles

PE - Probabilidad y Estadística

PE - Probabilidad y Estadística Unidad responsable: 230 - ETSETB - Escuela Técnica Superior de Ingeniería de Telecomunicación de Barcelona Unidad que imparte: 749 - MAT - Departamento de Matemáticas Curso: Titulación: 2016 GRADO EN INGENIERÍA

Más detalles

Ministerio de Educación Pública Dirección de Gestión y Evaluación de la Calidad Departamento de Evaluación Académica y Certificación.

Ministerio de Educación Pública Dirección de Gestión y Evaluación de la Calidad Departamento de Evaluación Académica y Certificación. Matemáticas Distribución de ítems para la prueba nacional Modalidad Académica (Diurnos Nocturnos) Convocatorias 016 ESTIMADO DOCENTE: En la modalidad de colegios académico, la Prueba de Bachillerato 016

Más detalles

PROGRAMA INSTRUCCIONAL ESTADÍSTICA

PROGRAMA INSTRUCCIONAL ESTADÍSTICA UNIVERSIDAD FERMIN TORO VICE RECTORADO ACADEMICO FACULTAD DE INGENIERIA ESCUELA DE MANTENIMIENTO MECÁNICO ESCUELA DE TELECOMUNICACIONES ESCUELA DE COMPUTACIÓN ESCUELA DE ELÉCTRICA PROGRAMA INSTRUCCIONAL

Más detalles

PROGRAMA DE ESTUDIO : UN SEMESTRE ACADÉMICO : TERCER AÑO, PRIMER SEMESTRE

PROGRAMA DE ESTUDIO : UN SEMESTRE ACADÉMICO : TERCER AÑO, PRIMER SEMESTRE PROGRAMA DE ESTUDIO A. Antecedentes Generales ASIGNATURA : Estadística CÓDIGO : IIM313A DURACIÓN : UN SEMESTRE ACADÉMICO PRE - REQUISITO : PROBABILIDADES CO REQUISITO : NO TIENE UBICACIÓN : TERCER AÑO,

Más detalles

Intervalos de Confianza

Intervalos de Confianza Intervalos de Confianza Álvaro José Flórez 1 Escuela de Ingeniería Industrial y Estadística Facultad de Ingenierías Febrero - Junio 2012 Intervalo de Confianza Se puede hacer una estimación puntual de

Más detalles

ESTADÍSTICA E INTRODUCCIÓN A LA ECONOMETRÍA

ESTADÍSTICA E INTRODUCCIÓN A LA ECONOMETRÍA GUÍA DOCENTE 2012-2013 ESTADÍSTICA E INTRODUCCIÓN A LA ECONOMETRÍA 1. Denominación de la asignatura: ESTADÍSTICA E INTRODUCCIÓN A LA ECONOMETRÍA Titulación GRADO EN FINANZAS Y CONTABILIDAD Código 5592

Más detalles

PROGRAMA DE CURSO. Horas de Trabajo Personal Horas de Cátedra. Básica. Resultados de Aprendizaje

PROGRAMA DE CURSO. Horas de Trabajo Personal Horas de Cátedra. Básica. Resultados de Aprendizaje Código Nombre MA3403 Probabilidades y Estadística Nombre en Inglés Probability and Statistics SCT es Docentes PROGRAMA DE CURSO Horas de Cátedra Horas Docencia Auxiliar Horas de Trabajo Personal 6 10 3

Más detalles

UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL ROSARIO DEPARTAMENTO CIENCIAS BÁSICAS

UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL ROSARIO DEPARTAMENTO CIENCIAS BÁSICAS UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL ROSARIO DEPARTAMENTO CIENCIAS BÁSICAS PROGRAMA ANALÍTICO DE LA ASIGNATURA: PROBABILIDAD Y ESTADISTICA RES. 251/96 F.R.R. COORDINADOR: RAÚL DAVID KATZ

Más detalles

Gobierno de La Rioja MATEMÁTICAS CONTENIDOS

Gobierno de La Rioja MATEMÁTICAS CONTENIDOS CONTENIDOS MATEMÁTICAS 1.- Números reales Distintas ampliaciones de los conjuntos numéricos: números enteros, números racionales y números reales. Representaciones de los números racionales. Forma fraccionaria.

Más detalles

DISTRIBUCIÓN SEGÚN HABILIDADES GENERALES Y ESPECÍFICAS Prueba 2. El desarrollo de estos temas los puede encontrar oprimiendo el siguiente botón.

DISTRIBUCIÓN SEGÚN HABILIDADES GENERALES Y ESPECÍFICAS Prueba 2. El desarrollo de estos temas los puede encontrar oprimiendo el siguiente botón. DISTRIBUCIÓN SEGÚN HABILIDADES GENERALES Y ESPECÍFICAS Prueba 2 El desarrollo de estos temas los puede encontrar oprimiendo el siguiente botón. http://www.costarica.elmaestroencasa.com/e-books/elmec/bach-a-tu-medida-2/matematica-a-tu-medida-02-2017.pdf

Más detalles

GUIA DOCENTE. Curso Académico Licenciatura Administración y Dirección de Empresas

GUIA DOCENTE. Curso Académico Licenciatura Administración y Dirección de Empresas GUIA DOCENTE Curso Académico 2012-2013 1. ESTADÍSTICA E INTRODUCCIÓN A LA ECONOMETRÍA 1.1. Datos de la asignatura Tipo de estudios Licenciatura Titulación Administración y Dirección de Empresas Nombre

Más detalles

Carrera: EMM Participantes Representante de las academias de ingeniería Electromecánica de los Institutos Tecnológicos.

Carrera: EMM Participantes Representante de las academias de ingeniería Electromecánica de los Institutos Tecnológicos. 1. DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Probabilidad y Estadística Ingeniería Electromecánica EMM - 0528 3 2 8 2.- HISTORIA

Más detalles

TEMA 4: CONTROL POR VARIABLES Hoja de ejercicios (Entregar el 7 -problema de examen-)

TEMA 4: CONTROL POR VARIABLES Hoja de ejercicios (Entregar el 7 -problema de examen-) MÉTODOS ESTADÍSTICOS PARA LA MEJORA DE LA CALIDAD INGENIERIA DE TELECOMUNICACIONES TEMA 4: CONTROL POR VARIABLES Hoja de ejercicios (Entregar el 7 -problema de examen-) 1. Un proceso industrial fabrica

Más detalles

Programa Regular. Probabilidad y Estadística.

Programa Regular. Probabilidad y Estadística. Programa Regular Probabilidad y Estadística. Modalidad de la asignatura: teórico-práctica. Carga horaria: 5hs. Objetivos: Con relación a los conocimientos a impartir en el desarrollo de la materia, es

Más detalles

b. Universidad Nacional-Sede Medellín

b. Universidad Nacional-Sede Medellín Comparación de Intervalos de Confianza para el Coeficiente de Correlación Juan Carlos Correa a, Liliana Vanessa Pacheco b Email: jccorrea@unal.edu.co a. Universidad Nacional-Sede Medellín b. Universidad

Más detalles

LICENCIATURA EN ADMINISTRACIÓN PLANIFICACIÓN DE LA ASIGNATURA ESTADÍSTICA I

LICENCIATURA EN ADMINISTRACIÓN PLANIFICACIÓN DE LA ASIGNATURA ESTADÍSTICA I LICENCIATURA EN ADMINISTRACIÓN PLANIFICACIÓN DE LA ASIGNATURA ESTADÍSTICA I EQUIPO DOCENTE: PROFESORA RESPONSABLE: DRA: MARTA PECE PROFESOR ADJUNTO: ING. MARCELO DIAZ J.T.P.: LIC. SONIA SUAREZ AÑO 2007

Más detalles

ÍNDICE CAPÍTULO 1. INTRODUCCIÓN

ÍNDICE CAPÍTULO 1. INTRODUCCIÓN ÍNDICE CAPÍTULO 1. INTRODUCCIÓN 1.1. OBJETO DE LA ESTADÍSTICA... 17 1.2. POBLACIONES... 18 1.3. VARIABLES ALEATORIAS... 19 1.3.1. Concepto... 19 1.3.2. Variables discretas y variables continuas... 20 1.3.3.

Más detalles

INDICE 1. Qué es la Estadística? 2.Descripción de Datos: Distribuciones de Frecuencia y Presentación Gráfica

INDICE 1. Qué es la Estadística? 2.Descripción de Datos: Distribuciones de Frecuencia y Presentación Gráfica INDICE 1. Qué es la Estadística? 1 Introducción 2 Qué significa estadística? 2 Por qué se estudia la estadística? 4 Tipos de estadística 5 Estadística descriptiva 5 Estadística inferencial 6 Tipos de variables

Más detalles

TÉCNICO SUPERIOR UNIVERSITARIO EN PROCESOS INDUSTRIALES ÁREA SISTEMAS DE GESTIÓN DE LA CALIDAD EN COMPETENCIAS PROFESIONALES

TÉCNICO SUPERIOR UNIVERSITARIO EN PROCESOS INDUSTRIALES ÁREA SISTEMAS DE GESTIÓN DE LA CALIDAD EN COMPETENCIAS PROFESIONALES TÉCNICO SUPERIOR UNIVERSITARIO EN PROCESOS INDUSTRIALES ÁREA SISTEMAS DE GESTIÓN DE LA CALIDAD EN COMPETENCIAS PROFESIONALES ASIGNATURA DE PROBABILIDAD Y ESTADÍSTICA 1. Competencias Plantear y solucionar

Más detalles

Diplomado en Econometría Coordinadora académica: M.F. Esperanza Sainz López

Diplomado en Econometría Coordinadora académica: M.F. Esperanza Sainz López Diplomado en Econometría Coordinadora académica: M.F. Esperanza Sainz López Brindar al alumno los conocimientos de los métodos econométricos fundamentales y de los conceptos estadísticos que éstos requieren,

Más detalles

PROBABILIDAD Y ESTADÍSTICA

PROBABILIDAD Y ESTADÍSTICA PROBABILIDAD Y ESTADÍSTICA I. DATOS GENERALES Unidad Académica: Departamento de Suelos Programa Educativo: Ingeniería en Recursos Naturales Renovables Nivel educativo: Licenciatura Eje curricular: Ingeniería

Más detalles

ANÁLISIS MULTIVARIADO

ANÁLISIS MULTIVARIADO MISIÓN Formar profesionales altamente capacitados, desarrollar investigación y realizar actividades de extensión en matemáticas y computación, así como en sus diversas aplicaciones. ANÁLISIS MULTIVARIADO

Más detalles

Programa Analítico Plan de estudios Asignatura: Probabilidad y Estadística

Programa Analítico Plan de estudios Asignatura: Probabilidad y Estadística Programa Analítico Plan de estudios 2011 Asignatura: Probabilidad y Estadística CARRERA: LICENCIATURA LIC. CIENCIAS EN DE CIENCIAS LA COMPUTACIÓN-LIC. DE LA COMPUTACIÓN EN SISTEMAS DE INFORMACIÓN AÑO:

Más detalles

CLASE X ANÁLISIS PROBABILISTICO DE LAS VARIABLES PRECIPITACIÓN TOTAL ANUAL Y CAUDAL MEDIO ANUAL

CLASE X ANÁLISIS PROBABILISTICO DE LAS VARIABLES PRECIPITACIÓN TOTAL ANUAL Y CAUDAL MEDIO ANUAL Universidad Nacional Agraria La Molina IA-406 Hidrología Aplicada CLASE X ANÁLISIS PROBABILISTICO DE LAS VARIABLES PRECIPITACIÓN TOTAL ANUAL Y CAUDAL MEDIO ANUAL 1. Longitud necesaria de registro Diversos

Más detalles

ESTIMACIÓN DE ÍNDICES DE CAPACIDAD DE PROCESOS USANDO LA DISTRIBUCIÓN GENERALIZADA DE PARETO

ESTIMACIÓN DE ÍNDICES DE CAPACIDAD DE PROCESOS USANDO LA DISTRIBUCIÓN GENERALIZADA DE PARETO ISSN 0717-9103 ISSN Online 0718-8307 Ingeniería Industrial - Año 9 Nº 2: 93-106, 2010 ESTIMACIÓN DE ÍNDICES DE CAPACIDAD DE PROCESOS USANDO LA DISTRIBUCIÓN GENERALIZADA DE PARETO ESTIMATION OF CAPABILITY

Más detalles

ESTADÍSTICA I PRESENTACIÓN DE LA ASIGNATURA

ESTADÍSTICA I PRESENTACIÓN DE LA ASIGNATURA ESTADÍSTICA I PRESENTACIÓN DE LA ASIGNATURA Descripción de la asignatura Estadística I El objetivo de la asignatura es proporcionar al estudiante conocimiento Departamento de Estadística y comprensión

Más detalles

Programa de Asignatura Estadística

Programa de Asignatura Estadística Programa de Asignatura Estadística 01 Carrera: Licenciatura en Tecnología Informática 02 Asignatura: Estadística 03 Año lectivo: 2013 04 Año de cursada: 2 05 Cuatrimestre: Segundo 06 Hs. Semanales: 5 07

Más detalles

PROBABILIDAD Y ESTADÍSTICA

PROBABILIDAD Y ESTADÍSTICA PROBABILIDAD Y ESTADÍSTICA 4 horas a la semana 8 créditos Semestre variable según la carrera Objetivo del curso: Analizar y resolver problemas de naturaleza aleatoria en la ingeniería, aplicando conceptos

Más detalles

SILABO POR ASIGNATURA 1. INFORMACION GENERAL. [AVILA LARREA JAVIER [INGENIERIA DE EMPRESAS]

SILABO POR ASIGNATURA 1. INFORMACION GENERAL. [AVILA LARREA JAVIER [INGENIERIA DE EMPRESAS] SILABO POR ASIGNATURA 1. INFORMACION GENERAL Coordinador: AVILA LARREA JAVIER ALEJANDRO(javier.avila@ucuenca.edu.ec) Facultad(es): [FACULTAD DE CIENCIAS ECONÓMICAS Y ADMINISTRATIVAS] Escuela: [PROGRAMA

Más detalles

UNIDAD CURRICULAR: TEORÍA DE ONDAS VII Prof. Juan Hernández Octubre Eje de Formación Prelación HAD HTIE

UNIDAD CURRICULAR: TEORÍA DE ONDAS VII Prof. Juan Hernández Octubre Eje de Formación Prelación HAD HTIE PROGRAMA ANALÌTICO FACULTAD: INGENIERÌA ESCUELA: INGENIERÍA ELECTRÓNICA UNIDAD CURRICULAR: TEORÍA DE ONDAS Código de la Escuela Código Período Elaborado por Fecha Elaboración Plan de Estudios 25 25-0927

Más detalles

Método bayesiano bootstrap y una aplicación en la estimación del percentil 85 en ingeniería de tránsito

Método bayesiano bootstrap y una aplicación en la estimación del percentil 85 en ingeniería de tránsito Revista Colombiana de Estadística Volumen 27 N o 2. Págs. 99 a 107. Diciembre 2004 Método bayesiano bootstrap y una aplicación en la estimación del percentil 85 en ingeniería de tránsito Juan Carlos Correa

Más detalles

MINISTERIO DE EDUCACIÓN. Educación Técnica y Profesional. Familia de especialidades: Economía. Programa: Estadística

MINISTERIO DE EDUCACIÓN. Educación Técnica y Profesional. Familia de especialidades: Economía. Programa: Estadística MINISTERIO DE EDUCACIÓN Educación Técnica y Profesional Familia de especialidades: Economía Programa: Estadística Nivel: Técnico Medio en Contabilidad. Escolaridad inicial: 12mo. Grado AUTORA MSc. Caridad

Más detalles

MÓDULO X. LA DINÁMICA DE LA ECONOMÍA MUNDIAL PROGRAMA OPERATIVO MATEMÁTICAS ECONOMETRÍA I. Profesor: Noé Becerra Rodríguez.

MÓDULO X. LA DINÁMICA DE LA ECONOMÍA MUNDIAL PROGRAMA OPERATIVO MATEMÁTICAS ECONOMETRÍA I. Profesor: Noé Becerra Rodríguez. MÓDULO X. LA DINÁMICA DE LA ECONOMÍA MUNDIAL PROGRAMA OPERATIVO MATEMÁTICAS ECONOMETRÍA I Profesor: Noé Becerra Rodríguez Objetivo general: Introducir los aspectos fundamentales del proceso de construcción

Más detalles

OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA. Tema 5 Simulación

OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA. Tema 5 Simulación OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA Tema 5 Simulación ORGANIZACIÓN DEL TEMA Sesiones: Introducción Ejemplos prácticos Procedimiento y evaluación de resultados INTRODUCCIÓN Simulación: Procedimiento

Más detalles

Teléfono:

Teléfono: Apartado postal 17-01-218 1. DATOS INFORMATIVOS: MATERIA O MÓDULO: ESTADISTICA II CÓDIGO: 15017 CARRERA: Economía NIVEL: Cuarto No. CRÉDITOS: SEMESTRE / AÑO ACADÉMICO: III semestre 2011-2012 PROFESOR:

Más detalles

Jesús Eduardo Pulido Guatire, marzo Diagrama de Dispersión y Correlación Lineal Simple

Jesús Eduardo Pulido Guatire, marzo Diagrama de Dispersión y Correlación Lineal Simple Jesús Eduardo Pulido Guatire, marzo 0 Diagrama de Dispersión y Correlación Lineal Simple Hasta el momento el trabajo lo hemos centrado en resumir las características de una variable mediante la organización

Más detalles

TÉCNICO SUPERIOR UNIVERSITARIO EN ENERGÍAS RENOVABLES ÁREA CALIDAD Y AHORRO DE ENERGÍA EN COMPETENCIAS PROFESIONALES

TÉCNICO SUPERIOR UNIVERSITARIO EN ENERGÍAS RENOVABLES ÁREA CALIDAD Y AHORRO DE ENERGÍA EN COMPETENCIAS PROFESIONALES TÉCNICO SUPERIOR UNIVERSITARIO EN ENERGÍAS RENOVABLES ÁREA CALIDAD Y AHORRO DE ENERGÍA EN COMPETENCIAS PROFESIONALES ASIGNATURA DE PROBABILIDAD Y ESTADÍSTICA 1. Competencias Plantear y solucionar problemas

Más detalles

EVALUACIÓN DEL MÉTODO DE MURPHY PARA LA INTERPRETACIÓN DE SEÑALES EN LA CARTA T 2 MULTIVARIADA

EVALUACIÓN DEL MÉTODO DE MURPHY PARA LA INTERPRETACIÓN DE SEÑALES EN LA CARTA T 2 MULTIVARIADA EVALUACIÓN DEL MÉTODO DE MURPHY PARA LA INTERPRETACIÓN DE SEÑALES EN LA CARTA T 2 MULTIVARIADA Hector Fabian Lopez Casas 1 hectorfl86@hotmail.com 1 Estudiante de Matematicas Con Enfasis en Estadistica,

Más detalles

UNIVERSIDAD DE GUADALAJARA Centro Universitario de la Costa Sur Maestría en Ciencias en Manejo de Recursos Naturales

UNIVERSIDAD DE GUADALAJARA Centro Universitario de la Costa Sur Maestría en Ciencias en Manejo de Recursos Naturales UNIVERSIDAD DE GUADALAJARA Centro Universitario de la Costa Sur Maestría en Ciencias en Manejo de Recursos Naturales DATOS DE LA ASIGNATURA Nombre ESTADÍSTICA APLICADA Clave F0383 Posgrado Maestría en

Más detalles

PROBABILIDAD Y ESTADISTICA

PROBABILIDAD Y ESTADISTICA PLAN DE ESTUDIOS 2008 LICENCIADO EN INFORMÁTICA FACULTAD DE CONTADURÍA, ADMINISTRACIÓN E INFORMÁTICA ASIGNATURA: PROBABILIDAD Y ESTADISTICA ÁREA DEL MATEMÁTICAS CLAVE: I2PE1 CONOCIMIENTO: ETAPA FORMATIVA:

Más detalles

El modelo de azar proporcional: la regresión de Cox

El modelo de azar proporcional: la regresión de Cox El modelo de azar proporcional: la regresión de Cox Alfonso Luis Palmer Pol y Jose Maria Losilla Vidal El Análisis de la Supervivencia (Palmer, 1988) engloba una variedad de técnicas estadísticas que permiten

Más detalles

Rige a partir de la convocatoria

Rige a partir de la convocatoria TABLA DE ESPECIFICACIONES DE HABILIDADES Y CONOCIMIENTOS QUE SE MEDIRÁN EN LAS PRUEBAS DE CERTIFICACIÓN DE LOS PROGRAMAS: BACHILLERATO POR MADUREZ SUFICIENTE BACHILLERATO DE EDUCACIÓN DIVERSIFICADA A DISTANCIA

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN PLAN DE ESTUDIOS DE LA LICENCIATURA EN QUÍMICA INDUSTRIAL

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN PLAN DE ESTUDIOS DE LA LICENCIATURA EN QUÍMICA INDUSTRIAL UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN PLAN DE ESTUDIOS DE LA LICENCIATURA EN QUÍMICA INDUSTRIAL PROGRAMA DE LA ASIGNATURA DE: IDENTIFICACIÓN DE LA ASIGNATURA

Más detalles

UNIVERSIDAD DE CIENCIAS EMPRESARIALES Y SOCIALES FACULTAD DE CIENCIAS ECONÓMICAS

UNIVERSIDAD DE CIENCIAS EMPRESARIALES Y SOCIALES FACULTAD DE CIENCIAS ECONÓMICAS UNIVERSIDAD DE CIENCIAS EMPRESARIALES Y SOCIALES FACULTAD DE CIENCIAS ECONÓMICAS Carreras: Licenciatura en Economía. Licenciatura en Administración de Empresas. Contador Público. Materia: Estadística Cursos:

Más detalles

ESTIMACIÓN DE LOS COMPONENTES DE LA VARIACIÓN DE UN SISTEMA DE MEDICIÓN, USANDO EL RANGO. Resumen

ESTIMACIÓN DE LOS COMPONENTES DE LA VARIACIÓN DE UN SISTEMA DE MEDICIÓN, USANDO EL RANGO. Resumen ESTIMACIÓN DE LOS COMPONENTES DE LA VARIACIÓN DE UN SISTEMA DE MEDICIÓN, USANDO EL RANGO RIVAS C., Gerardo A. Escuela de Ingeniería Industrial. Universidad de Carabobo. Bárbula. Valencia. Venezuela Jefe

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO. Facultad de Medicina Veterinaria y Zootecnia. Licenciatura en Medicina Veterinaria y Zootecnia

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO. Facultad de Medicina Veterinaria y Zootecnia. Licenciatura en Medicina Veterinaria y Zootecnia UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO Facultad de Medicina Veterinaria y Zootecnia Licenciatura en Medicina Veterinaria y Zootecnia Clave 1212 Modalidad del curso: Carácter Métodos estadísticos en medicina

Más detalles

Bloque 1. Contenidos comunes. (Total: 3 sesiones)

Bloque 1. Contenidos comunes. (Total: 3 sesiones) 4º E.S.O. OPCIÓN A 1.1.1 Contenidos 1.1.1.1 Bloque 1. Contenidos comunes. (Total: 3 sesiones) Planificación y utilización de procesos de razonamiento y estrategias de resolución de problemas, tales como

Más detalles

Conceptos Básicos de Inferencia

Conceptos Básicos de Inferencia Conceptos Básicos de Inferencia Álvaro José Flórez 1 Escuela de Ingeniería Industrial y Estadística Facultad de Ingenierías Febrero - Junio 2012 Inferencia Estadística Cuando obtenemos una muestra, conocemos

Más detalles

MODELOS DE REGRESIÓN

MODELOS DE REGRESIÓN MISIÓN Formar profesionales altamente capacitados, desarrollar investigación y realizar actividades de extensión en Matemáticas y Computación, así como en sus diversas aplicaciones. MODELOS DE REGRESIÓN

Más detalles

Fase 2. Estudio de mercado: ESTADÍSTICA

Fase 2. Estudio de mercado: ESTADÍSTICA 1. CONCEPTO DE ESTADÍSTICA. ESTADÍSTICA DESCRIPTIVA 2. 3. TABLA DE FRECUENCIAS 4. REPRESENTACIONES GRÁFICAS 5. TIPOS DE MEDIDAS: A. MEDIDAS DE POSICIÓN B. MEDIDAS DE DISPERSIÓN C. MEDIDAS DE FORMA 1 1.

Más detalles

PROCESOS ESTOCÁSTICOS

PROCESOS ESTOCÁSTICOS CURSO: PROCESOS ESTOCÁSTICOS 1 SEMESTRE: VIII 2 CODIGO: 602804 3 COMPONENTE: 4 CICLO: 5 AREA: Profesional 6 FECHA DE APROBACIÓN: 7 NATURALEZA: Teórica 8 CARÁCTER: Obligatorio 9 CREDITOS (RELACIÓN): 3 (1-1)

Más detalles

CAPÍTULO 4 CAPACIDAD DEL PROCESO

CAPÍTULO 4 CAPACIDAD DEL PROCESO APÍTULO 4 APAIDAD DEL PROESO APÍTULO 4 APAIDAD DEL PROESO En este capítulo se hace una evaluación de la situación actual de la producción de la tapa de las guanteras para el coche modelo Jetta A4. Para

Más detalles

LICENCIATURA EN ECONOMÍA Y LICENCIATURA EN ADMINISTRACIÓN DE EMPRESAS

LICENCIATURA EN ECONOMÍA Y LICENCIATURA EN ADMINISTRACIÓN DE EMPRESAS DEPARTAMENT D ECONOMIA APLICADA UNIVERSITAT DE VALENCIA LICENCIATURA EN ECONOMÍA Y LICENCIATURA EN ADMINISTRACIÓN DE EMPRESAS PROGRAMA DE ESTADÍSTICA E INTRODUCCIÓN A LA ECONOMETRÍA TEMA 1: INTRODUCCIÓN

Más detalles

Números reales. Valor absoluto. Desigualdades. Distancias entre la recta real. Intervalos y entornos.

Números reales. Valor absoluto. Desigualdades. Distancias entre la recta real. Intervalos y entornos. MATEMÁTICAS I Contenidos. Aritmética y álgebra: Números reales. Valor absoluto. Desigualdades. Distancias entre la recta real. Intervalos y entornos. Resolución e interpretación gráfica de ecuaciones e

Más detalles

Asignatura: ESTADISTICA I (1024) Programa aprobado por Resolución UNM-R Nº 285/11

Asignatura: ESTADISTICA I (1024) Programa aprobado por Resolución UNM-R Nº 285/11 Asignatura: ESTADISTICA I (1024) Programa aprobado por Resolución UNM-R Nº 285/11 Carrera: LICENCIATURA EN RELACIONES DEL TRABAJO (Plan de estudios aprobado por Resolución UNM-R Nº 21/10) 1 Carrera: LICENCIATURA

Más detalles

Intervalos de confianza con STATGRAPHICS

Intervalos de confianza con STATGRAPHICS Intervalos de confianza con STATGRAPHICS Ficheros empleados: TiempoaccesoWeb.sf3 ; TiempoBucle.sf3; 1. Ejemplo 1: Tiempo de acceso a una página Web Se desean construir intervalos de confianza para la media

Más detalles

Pruebas de hipótesis

Pruebas de hipótesis Pruebas de hipótesis Álvaro José Flórez 1 Escuela de Ingeniería Industrial y Estadística Facultad de Ingenierías Febrero - Junio 2012 Prueba de hipótesis Uno de los objetivos de la estadística es hacer

Más detalles

Guía docente MÉTODOS ESTADÍSTICOS PARA LA EMPRESA

Guía docente MÉTODOS ESTADÍSTICOS PARA LA EMPRESA 1. Introducción Guía docente MÉTODOS ESTADÍSTICOS PARA LA EMPRESA Los análisis económicos y empresariales se efectúan sobre la base de la toma de decisiones, las cuales se toman a partir de la información

Más detalles

Estadística para la toma de decisiones

Estadística para la toma de decisiones Estadística para la toma de decisiones S Y L L A B U S D E L C U R S O INFORMACIÓN DE LA ASIGNATURA 1 UNO Escuela o Facultad: Programa o Área: Curso: Código: Escuela de Administración Especialización en

Más detalles

Tema I. Introducción. Ciro el Grande ( A.C.)

Tema I. Introducción. Ciro el Grande ( A.C.) 1.1. La ciencia de la estadística:. El origen de la estadística:. Ciencia descriptiva. Evaluación de juegos de azar Ciro el Grande (560-530 A.C.) Si tengo 1 As y 2 reyes, que descarte es mas conveniente

Más detalles

7. ANÁLISIS DE VARIABLES CUANTITATIVAS: REGRESIÓN LINEAL SIMPLE

7. ANÁLISIS DE VARIABLES CUANTITATIVAS: REGRESIÓN LINEAL SIMPLE ESCUELA UNIVERSITARIA DE ENFERMERIA DE TERUEL 1 er CURSO DE GRADO DE ENFERMERIA Estadística en Ciencias de la Salud 7. ANÁLISIS DE VARIABLES CUANTITATIVAS: REGRESIÓN LINEAL SIMPLE PROFESOR Dr. Santiago

Más detalles

FACULTAD DE CIENCIAS ECONOMICAS LIC. EN ADMINISTRACION CONTADOR PUBLICO ESTADISTICA

FACULTAD DE CIENCIAS ECONOMICAS LIC. EN ADMINISTRACION CONTADOR PUBLICO ESTADISTICA FACULTAD DE CIENCIAS ECONOMICAS LIC. EN ADMINISTRACION CONTADOR PUBLICO Programa ESTADISTICA Profesores: Titular: DI BENEDETTO OSVALDO H Adjunto: DI LAUDO SERGIO H. 2016 FACULTAD DE CIENCIAS ECONOMICAS

Más detalles

UNIVERSIDAD MILITAR NUEVA GRANADA FACULTAD DE CIENCIAS BASICAS Y APLICADAS DEPARTAMENTO DE MATEMÁTICAS

UNIVERSIDAD MILITAR NUEVA GRANADA FACULTAD DE CIENCIAS BASICAS Y APLICADAS DEPARTAMENTO DE MATEMÁTICAS CONTENIDO PROGRAMÁTICO Fecha Emisión: 2011/09/15 AC-DO-F-8 Revisión No. 1 Página 1 de 6 ESTADÍSTICA II CÓDIGO 12251 PROGRAMA ADMINISTRACIÓN DE EMPRESAS Y CONTADURÍA PÚBLICA ÁREA DE FORMACIÓN CIENCIAS BÁSICAS

Más detalles

PROGRAMA DE ESTUDIOS. - Nombre de la asignatura : Taller de herramientas Estadísticas. - Pre requisitos : LCP 219 Estadística

PROGRAMA DE ESTUDIOS. - Nombre de la asignatura : Taller de herramientas Estadísticas. - Pre requisitos : LCP 219 Estadística PROGRAMA DE ESTUDIOS A. Antecedentes Generales. - Nombre de la asignatura : Taller de herramientas Estadísticas - Carácter de la asignatura (obligatoria/ electiva) : Obligatoria - Pre requisitos : LCP

Más detalles

UNIDAD 7: SISTEMAS DE ECUACIONES. CONTENIDOS

UNIDAD 7: SISTEMAS DE ECUACIONES. CONTENIDOS UNIDAD 7: SISTEMAS DE ECUACIONES. * Ecuaciones lineales con dos incógnitas. * Sistemas de 2 ecuaciones con 2 incógnitas. Resolución gráfica y analítica. * Sistemas equivalentes. * Tipos de sistemas de

Más detalles

Estadística Aplicada a la Toma de Decisiones

Estadística Aplicada a la Toma de Decisiones Unidad responsable: 310 - EPSEB - Escuela Politécnica Superior de Edificación de Barcelona Unidad que imparte: 732 - OE - Departamento de Organización de Empresas Curso: Titulación: 2016 MÁSTER UNIVERSITARIO

Más detalles

Análisis de la Capacidad o Aptitud de un proceso ( Capítulo 8 ) Control Estadístico de Calidad

Análisis de la Capacidad o Aptitud de un proceso ( Capítulo 8 ) Control Estadístico de Calidad Análisis de la Capacidad o Aptitud de un proceso ( Capítulo 8 ) Control Estadístico de Calidad Introducción Cuantificar la variabilidad de un proceso. Analizar esta variabilidad en relación con los requisitos

Más detalles

UNIVERSIDAD DE SONORA OBJETIVO GENERAL DE LA MATERIA OBJETIVOS ESPECIFICOS DE LA MATERIA

UNIVERSIDAD DE SONORA OBJETIVO GENERAL DE LA MATERIA OBJETIVOS ESPECIFICOS DE LA MATERIA UNIVERSIDAD DE SONORA UNIDAD: Regional Centro HORAS: 80 DIVISIÓN: Ciencias Económicas y Administrativas REQUISITO (S): Matemáticas MATERIA: Estadística Administrativa ESPACIO EDUCATIVO: Obligatorio CLAVE:

Más detalles

Guía docente 2007/2008

Guía docente 2007/2008 Guía docente 2007/2008 Plan 247 Lic.Investigación y Tec.Mercado Asignatura 43579 METODOS CUANTITATIVOS PARA LA INVESTIGACION DE MERCADOS Grupo 1 Presentación Métodos y técnicas cuantitativas de investigación

Más detalles

SE OFRECE A ESTUDIANTES DE GRADO: SI X. MÓDULO DEL PLAN 2013 EN QUE ACREDITA: Módulo Metodológico DESCRIPTORES: Probabilidad y Estadística

SE OFRECE A ESTUDIANTES DE GRADO: SI X. MÓDULO DEL PLAN 2013 EN QUE ACREDITA: Módulo Metodológico DESCRIPTORES: Probabilidad y Estadística Asignatura: Probabilidad y Estadistica para Investigadores en ciencias del comportamiento I Tipo: Optativa Créditos: 15 Fecha tentativa: de 12:30 a 17:00 hrs desde el 23/04/2014 Lugar: Salón 9 Cupos: 20

Más detalles

ESTADÍSTICA BAYESIANA Y TEORÍA DE DECISIONES

ESTADÍSTICA BAYESIANA Y TEORÍA DE DECISIONES MISIÓN Formar profesionales altamente capacitados, desarrollar investigación y realizar actividades de extensión en Matemáticas y Computación, así como en sus diversas aplicaciones. ESTADÍSTICA BAYESIANA

Más detalles

MINISTERIO DE EDUCACIÓN. Dirección de Educación Técnica y Profesional. Familia de especialidades:servicios. Programa: Estadística Matemática

MINISTERIO DE EDUCACIÓN. Dirección de Educación Técnica y Profesional. Familia de especialidades:servicios. Programa: Estadística Matemática MINISTERIO DE EDUCACIÓN Dirección de Educación Técnica y Profesional Familia de especialidades:servicios Programa: Estadística Matemática Nivel: Técnico Medio en Contabilidad. Escolaridad inicial: 9no.

Más detalles

viii CAPÍTULO 2 Métodos de muestreo CAPÍTULO 3 Análisis exploratorio de datos

viii CAPÍTULO 2 Métodos de muestreo CAPÍTULO 3 Análisis exploratorio de datos Contenido Acerca de los autores.............................. Prefacio.... xvii CAPÍTULO 1 Introducción... 1 Introducción.............................................. 1 1.1 Ideas de la estadística.........................................

Más detalles

Report 11. Universitat Politècnica de Catalunya. Centre de Política de Sòl i Valoracions

Report 11. Universitat Politècnica de Catalunya. Centre de Política de Sòl i Valoracions Interdependencia entre la localización de sectores intensivos en conocimiento con el resto de sectores económicos. Análisis para Catalunya a partir de las distancias del espacio Proxcal Report 11 Universitat

Más detalles

INDICE. Prólogo a la Segunda Edición

INDICE. Prólogo a la Segunda Edición INDICE Prólogo a la Segunda Edición XV Prefacio XVI Capitulo 1. Análisis de datos de Negocios 1 1.1. Definición de estadística de negocios 1 1.2. Estadística descriptiva r inferencia estadística 1 1.3.

Más detalles

PROPUESTA PARA EVALUAR LA CAPACIDAD DE PROCESOS DE MANUFACTURA MULTIVARIADOS

PROPUESTA PARA EVALUAR LA CAPACIDAD DE PROCESOS DE MANUFACTURA MULTIVARIADOS PROPUESTA PARA EVALUAR LA CAPACIDAD DE PROCESOS DE MANUFACTURA MULTIVARIADOS PROPOSAL FOR ASSESSING THE CAPABILTY OF MANUFACTURING PROCESSES MULTIVARIATE Guillermo Cuamea Cruz 1, Manuel Alberto Rodriguez

Más detalles

Intervalos de confianza Muestras grandes. Estadística Cátedra Prof. Tamara Burdisso

Intervalos de confianza Muestras grandes. Estadística Cátedra Prof. Tamara Burdisso Intervalos de confianza Muestras grandes Por qué un intervalo de confianza? En la Unidad 3 revisamos los conceptos de población y muestra. Los parámetros poblacionales son la media μy la varianza σ 2.

Más detalles

478 Índice alfabético

478 Índice alfabético Índice alfabético Símbolos A, suceso contrario de A, 187 A B, diferencia de los sucesos A y B, 188 A/B, suceso A condicionado por el suceso B, 194 A B, intersección de los sucesos A y B, 188 A B, unión

Más detalles

Carrera: Clave de la asignatura: INB Participantes Representante de las academias de ingeniería industrial de los Institutos Tecnológicos.

Carrera: Clave de la asignatura: INB Participantes Representante de las academias de ingeniería industrial de los Institutos Tecnológicos. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Estadística I Ingeniería Industrial INB - 0403 4 0 8 2.- HISTORIA DEL PROGRAMA

Más detalles

Intervalos de confianza para los coeficientes de una regresión lineal.

Intervalos de confianza para los coeficientes de una regresión lineal. Intervalos de confianza para los coeficientes de una regresión lineal. Asumiendo que los errores del modelo de regresión lineal se distribuye en forma normal con media cero y varianza constante σ 2 y que

Más detalles

PRÁCTICA 8: CONTRASTES DE HIPÓTESIS PARAMÉTRICOS

PRÁCTICA 8: CONTRASTES DE HIPÓTESIS PARAMÉTRICOS PRÁCTICA 8: CONTRASTES DE HIPÓTESIS PARAMÉTRICOS Objetivos Plantear y resolver problemas mediante la técnica de contraste de hipótesis. Asimilar los conceptos relativos a contrastes de hipótesis, tales

Más detalles