LABORATORIO DE QUÍMICA ORGÁNICA APLICADA MANUAL DE PRÁCTICAS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "LABORATORIO DE QUÍMICA ORGÁNICA APLICADA MANUAL DE PRÁCTICAS"

Transcripción

1 1 INSTITUTO POLITÉCNICO NACIONAL UNIDAD PROFESIONAL INTERDISCIPLINARIA DE BIOTECNOLOGÍA LABORATORIO DE QUÍMICA ORGÁNICA APLICADA MANUAL DE PRÁCTICAS Elaborado por: María del Socorro Camargo Sánchez Luis Francisco Esquivel Ruiz Efrén V. García-Báez Benito Rizo Zúñiga Revisado por: La Academia de Química General y Orgánica México D.F., 2008.

2 2 PRÓLOGO Los autores hemos tratado de incluir en este manual un conjunto de prácticas que permita a los alumnos adentrarse en el maravilloso mundo de la química orgánica, ya que esta comprende un sin número de reacciones químicas las cuales dan sustento a la vida misma. La selección y el diseño de los experimentos se realizaron basándose en los contenidos del programa de estudios con el objetivo de que al finalizar el curso el alumno genere su conocimiento en la materia, con lo aprendido en la parte teórica y la parte experimental del curso. La química orgánica se puede enseñar y aprender en el laboratorio. El alumno al momento de la realización de los procedimientos más comunes para sintetizar, identificar y purificar un compuesto dentro del laboratorio, aprenderá los fundamentos y las técnicas y a la vez adquirirá habilidades manuales y concientizará la importancia de trabajar con seguridad en el laboratorio para el bien propio y del medio que lo rodea. Las prácticas están divididas en tres bloques, el primero (prácticas 1 3) hace énfasis a la seguridad en el laboratorio, a la caracterización física y a los métodos de purificación de los compuestos orgánicos. En el segundo bloque de prácticas se estudian las reacciones características de los hidrocarburos (saturados, insaturados y aromáticos), los halogenuros de alquilo y alcoholes. En esta parte, la intención es mostrar las propiedades químicas y físicas que son consecuencia de la composición y estructura de cada grupo funcional. También se incluyen algunas síntesis sencillas de compuestos con los grupos funcionales estudiados, por mencionar algunas la síntesis de ciclohexeno y cloruro de ter-butilo. El último bloque de prácticas (prácticas 10-14) incluye las reacciones características de los grupos funcionales involucrados en las biomoléculas: carbonilos, aminas y los ácidos carboxílicos junto con sus derivados. Las prácticas se presentan con instrucciones explícitas, de tal forma que el alumno será capaz de proceder por sí sólo, aunque el profesor proporcionará mayor información y lo asesorará, para la exitosa realización de los experimentos. Este manual de laboratorio, apoya y complementa el programa teórico que se imparte en la asignatura de Química Orgánica Aplicada en la UPIBI-IPN a los alumnos de las carreras de Ingeniería Ambiental, Ingeniería Biomédica e Ingeniería en Alimentos.

3 3 ÍNDICE DE PRÁCTICAS NOMBRE Práctica No. 1 Introducción al trabajo experimental del laboratorio de química 4 orgánica Práctica No. 2 Separación y purificación de compuestos orgánicos 8 Práctica No. 3 Punto de fusión, cristalización 14 Práctica No. 4 Extracción 20 Práctica No. 5 Cromatografía 24 Práctica No. 6 Destilación 29 Práctica No. 7 Hidrocarburos 33 Práctica No. 8 Halogenuros de alquilo 38 Práctica No. 9 Alcoholes 42 Práctica No. 10 Aldehidos y cetonas 46 Práctica No. 11 Ácidos carboxílicos y sus derivados 53 Práctica No. 12 Aminas 58 Práctica No. 13 Síntesis de azocompuestos 61 Práctica No. 14 Biomoléculas 65 PAGINA

4 4 PRÁCTICA No. 1 INTRODUCCIÓN AL TRABAJO EXPERIMENTAL DEL LABORATORIO DE QUÍMICA ORGÁNICA 1. OBJETIVOS 1.1 El alumno conocerá el reglamento de Laboratorio de Química Orgánica y comprenderá la importancia de respetarlo para optimizar el trabajo experimental así como minimizar las posibilidades de sufrir u ocasionar accidentes. 1.2 El alumno revisará las medidas de seguridad más importantes que se utilizan en un laboratorio de química orgánica para minimizar la posibilidad de accidentes. 1.3 El alumno realizará algunos cálculos químicos de los más utilizados en el laboratorio de química orgánica, para preparar soluciones porcentuales, molares, normales, y cálculos de rendimientos. 2. INTRODUCCIÓN Prácticamente todos los laboratorios de química orgánica, donde el trabajo de laboratorio es frecuente han sido escenarios de accidentes, la mayoría de poca importancia, pero algunos de graves consecuencias. Estos, así llamados accidentes no suceden, sino que son causados por descuidos o faltas de atención en el trabajo. Una observancia rigurosa de las precauciones que se indican a continuación prevendrá directamente la mayoría de dichos accidentes y ayudará indirectamente a los alumnos a adquirir aquellos hábitos de seguridad que les serán de inestimable valor no sólo en el laboratorio, sino en cualquier sitio donde se desarrolle como profesionista o en la vida cotidiana. 2.1 Reglamento del laboratorio. 1. Usar siempre bata de algodón, manga larga, abotonada, de preferencia blanca. 2. Usar siempre dentro del laboratorio lentes de seguridad. 3. Usar guantes de látex cuando se usen reactivos tóxicos, corrosivos y cuando se lave el material. 4. No fumar, no consumir alimentos ni bebidas en el laboratorio. 5. No jugar, ni correr en el laboratorio. 6. No utilizar equipos de sonido ni celulares. 7. La salida del laboratorio debe ser autorizada por el profesor. 8. No se admitirán visitas durante la sesión de laboratorio. 9. Nunca pipetear con la boca ningún líquido (sin exceptuar el agua), usar propipeta.

5 5 10. Realizar exclusivamente los experimentos que indique el profesor. 11. Cuando se trabaje con líquidos flamables evitar tener mecheros encendidos cerca. 12. No verter a la tarja residuos sólidos o reactivos corrosivos. 13. Identifique recipientes de desechos ácidos, básicos, orgánicos o inorgánicos. 14. Al final de la práctica dejar limpio el material y la mesa de trabajo. 2.2 Medidas de seguridad. 1. Manipular las sustancias volátiles, inflamables y explosivas en la campana de extracción o en su defecto en un lugar ventilado. 2. Evitar encender mecheros o generar calor cerca de lugares donde se manipulen disolventes orgánicos. 3. Etiquetar los recipientes de reactivos y disolventes que se tengan en uso; aquellos que se encuentran sin identificación y se ignore el contenido, desecharlo en un lugar adecuado. 4. Rotular siempre el material con el que se esta trabajando. 5. Investigar la peligrosidad de cada uno de los reactivos a utilizar en cada práctica para minimizar los riesgos. 6. En caso de tener algún accidente en el laboratorio avisar rápidamente a su profesor. 7. Si trabaja con dispositivos de reflujo o destilación verifique que las piezas estén correctamente colocadas, pinzas perfectamente cerradas, para así evitar perdida de material por ruptura. 8. Cuando este trabajando con la parrilla de calentamiento nunca trabaje con temperaturas muy altas. 9. En caso de romper algún material no recoger los restos con las manos. 2.3 Breve recordatorio de algunos conceptos utilizados en el curso de química orgánica Soluciones porcentuales. Aunque se maneja las diferentes modalidades de expresar la concentración en forma porcentual (%v/v, % p/p y % p/v), en el laboratorio de química orgánica las soluciones más utilizadas son las % p/v, por lo que solo nos referiremos a estas, la concentración en estas unidades se refiere al numero de gramos de soluto contenidos en 100 ml de solución. Por ejemplo una solución al 7 % p/v de hidróxido de sodio contendrá 7 g de NaOH en 100 ml de solución, 3.5 g en 50 ml y así respectivamente. Generalmente las soluciones porcentuales se usan para fines cualitativos, y por lo tanto para prepararlas no se requiere tener mucho cuidado, se preparan normalmente utilizando vasos de precipitados y balanza granataria.

6 Soluciones Molares. Las soluciones molares son aquellas que tienen una relación de moles de soluto sobre volumen de solución. Una solución 1 M es aquella que tiene un mol de soluto por litro de solución. Estas soluciones se usan principalmente para fines cuantitativos, por lo tanto para su preparación se deben usar matraces volumétricos y balanza analítica Rendimiento de Reacción. Para determinar el rendimiento de una reacción especifica, se utiliza el término porcentaje de rendimiento, que describe la proporción del rendimiento real con respecto al rendimiento teórico. Se calcula como sigue: % de rendimiento = rendimiento real X 100 rendimiento teórico El intervalo del porcentaje de rendimiento puede variar desde 1% hasta 100 %. Los químicos siempre buscan aumentar el porcentaje de rendimiento. Entre los factores que se pueden modificar para aumentar el rendimiento están principalmente la temperatura y la presión. 3. ACTIVIDADES PREVIAS. 3.1 Buscar en la literatura apropiada y de ser posible complemente las medidas de seguridad que se dan en la introducción. 3.2 Buscar y copiar en su bitácora las fórmulas que se utilizan para realizar cálculos para preparar soluciones. 4. SECCIÓN EXPERIMENTAL. 4.1 Por equipos analizar y discutir, El reglamento de laboratorio y las medidas de seguridad. Criticarlas y considerar su pertinencia e importancia. 4.2 Después de un tiempo razonable determinado de común acuerdo entre profesores y alumnos, discutir en forma grupal EL reglamento y Las medidas de seguridad. 4.3 Realizar los siguientes cálculos por equipo, y después los profesores seleccionarán a diferentes equipos para que pasen al pizarrón a resolver los ejercicios y a explicarlos Cómo prepararía 500 ml de una solución de hidróxido de sodio al 7 % p/v a partir de reactivo de hidróxido de sodio que tiene una pureza del 95 % en masa? Cómo prepararía 250 ml de solución de HCl 3 M, a partir de ácido clorhídrico concentrado que tiene una pureza del 37 % en masa y una densidad de 1.2 g/ml? Cómo prepararían 100 ml de solución de ácido sulfúrico 0.5 N, a partir de ácido sulfúrico concentrado que tiene una pureza del 98 % en masa y una d= 1.84 g/ml?

7 Cuál es el rendimiento de una reacción en la que se hicieron reaccionar 10 ml de solución al 7 % p/v de hidróxido de sodio con 10 ml de ácido sulfúrico 1 N, si se obtuvieron 0.5 g de sulfato de sodio? 5. RESULTADOS. 5.1 Indicar los resultados de los análisis y discusiones de las Reglas de laboratorio y de Las medidas de seguridad realizadas en su equipo y en el grupo. 5.1 Indicar los cálculos realizados para hacer las soluciones indicadas. 6. ANÁLISIS DE RESULTADOS 6.1 Discutir e indicar la importancia de respetar el Reglamento de Laboratorio. 6.2 Discutir e indicar la importancia de respetar las medidas de seguridad. 6.3 Por qué es importante saber realizar cálculos para preparar soluciones? 7. CONCLUSIONES 7.1 Realice sus conclusiones indicando la importancia que tiene el hecho de conocer y respetar el reglamento de laboratorio, así como también tener conocimiento de las medidas de seguridad más importantes que se tienen que observar en un laboratorio de química orgánica. 8. BIBLIOGRAFÍA 8.1 Brewster, R.Q., Curso Práctico de Química Orgánica, 2ª edición, editorial Alhambra, España, Domínguez X, Experimentos de Química orgánica, editorial Limusa, México 1987.

8 8 PRÁCTICA No. 2 SEPARACIÓN Y PURIFICACIÓN DE COMPUESTOS ORGÁNICOS 1. OBJETIVOS 1.1 El alumno conocerá y aplicará las técnicas de separación y purificación más importantes que se utilizan en un laboratorio de química orgánica. 1.2 Durante el transcurso de la experimentación el alumno identificará cada una de las técnicas de separación y purificación de compuestos orgánicos. 2. INTRODUCCIÓN. El trabajo en el laboratorio de Química orgánica no solo se limita a la síntesis de compuestos orgánicos, también se busca optimizar las condiciones de reacción en busca de un rendimiento alto, para lo cual se han diseñado y controlado los procesos de separación para lograr una recuperación máxima del producto puro; dentro de estos métodos se encuentran: la extracción, la sublimación, la filtración, la destilación, la cromatografía y la cristalización. Extracción La extracción es una técnica de separación de compuestos ya sean sólidos, líquidos o gaseosos en la que se aprovecha las diferencias de solubilidad de los componentes de una mezcla en un disolvente adecuado. La forma mas simple de realizar una extracción consiste en tratar la mezcla de compuestos con un disolvente de manera que uno de los componentes se disuelva y los demás no. A continuación se procede a la adición de un segundo disolvente, no miscible con el primero, de manera que los componentes de la mezcla se distribuyan entre los dos disolventes según su coeficiente de reparto, que está directamente relacionado con la solubilidad de cada compuesto. También existe lo que se llama extracción selectiva la cual se emplea para separar mezclas de compuestos orgánicos, en función de la acidez, de la basicidad o de la neutralidad de éstos. Sublimación La sublimación es el paso de una sustancia del estado sólido al gaseoso, sin pasar por el estado líquido. El punto de sublimación o temperatura de sublimación, es aquella en la cual la presión de vapor sobre el sólido es igual a la presión externa. La capacidad de una sustancia dependerá por tanto de la presión de vapor a una temperatura determinada y será inversamente proporcional a la presión externa. Cuanto menor sea la diferencia entre la presión externa y la presión de vapor de una sustancia más fácilmente sublimará.

9 Generalmente, para que una sustancia sublime, debe tener una elevada presión de vapor, es decir, las atracciones intermoleculares en estado sólido deben ser débiles. Así, los compuestos que subliman fácilmente tienen una forma esférica o cilíndrica que no favorece unas fuerzas intermoleculares fuertes. Cristalización El proceso de cristalización es el más utilizado como técnica de purificación de sustancias sólidas. Se basa en el hecho de que la mayoría de los sólidos son más solubles en un determinado disolvente en caliente que en frío. Consiste en la disolución de un sólido impuro en la menor cantidad posible del disolvente adecuado en caliente. En estas condiciones se genera una disolución saturada que al enfriar se sobresatura produciéndose la cristalización. Es conveniente que el proceso de enfriamiento se produzca lentamente de forma que los cristales se formen poco a poco y el lento crecimiento de la red cristalina excluya las impurezas. Si el enfriamiento de la disolución es muy rápido las impurezas pueden quedar atrapadas en la red cristalina. Es muy importante la elección del disolvente adecuado ya que los compuestos no iónicos no se disuelven apreciablemente en agua salvo si sus moléculas se ionizan en disolución acuosa o si se asocian con las moléculas del agua a través de puentes de hidrógeno. Un disolvente ideal es aquel que: -No sea muy volátil. -No sea inflamable. -Sea barato. -No reaccione con el soluto. -Disuelva gran cantidad de sustancia a purificar a alta temperatura y poca a temperatura ambiente. No disuelva ni en frío ni en caliente las impurezas 9 Destilación La destilación constituye una de las principales técnicas para separar y purificar líquidos volátiles. Este método se emplea para separar dos o más líquidos miscibles de una mezcla, o para eliminar el disolvente de sustancias disueltas. La destilación se lleva a cabo en dos etapas, la transformación del líquido en vapor y la condensación de este vapor. Existen varios tipos de destilación tales como la simple, la fraccionada, al vacío y por arrastre de vapor. Destilación simple: Se usa cuando la diferencia entre los puntos de ebullición de los componentes es grande, mayor de 80ºC, o cuando las impurezas son sólidos disueltos en el líquido a purificar. En este tipo de destilación el líquido se calienta, a presión atmosférica, en un recipiente cerrado que contiene una salida hacia un tubo refrigerado donde se condensan los vapores. Con esta sencilla operación podemos purificar un disolvente, pero no podemos separar completamente dos o más líquidos volátiles.

10 Destilación fraccionada: Si la diferencia que hay entre los puntos de ebullición es demasiado pequeña para que una destilación simple resulte eficiente, es necesario recurrir a destilaciones repetidas. En la práctica se emplea una columna fraccionada, a través de la cual la fase de vapor y la fase condensada fluyen en direcciones opuestas. De tal manera que el vapor a medida que asciende por la columna es cada vez más rico en el componente más volátil. Cromatografía La técnica cromatográfica consiste en separar mezclas de compuestos mediante la exposición de dicha mezcla a un sistema bifásico equilibrado. Estas técnicas dependen de la distribución de los componentes de la mezcla entre dos fases inmiscibles: una fase móvil que transporta las sustancias que se separan y que progresa en relación con a otra denominada fase estacionaria. La fase móvil puede ser un líquido o un gas y a estacionaria puede ser un sólido o un líquido. Las combinaciones de estos componentes dan lugar a los distintos tipos de técnicas cromatográficas como cromatografía de gases, de adsorción, de líquido-líquido. 10 Filtración Consiste en hacer pasar la mezcla heterogénea sólido-líquido a través de un embudo provisto de un material filtrante (papel filtro), con lo que el sólido queda retenido por el papel, por ser los poros de éste de un diámetro menor al de las partículas del sólido. La filtración se puede llevar a cabo de manera normal (por gravedad) la cual se realiza utilizando un embudo cónico de vidrio o de plástico y papel filtro liso o con pliegues; o bien filtración al vacío: para ello se necesita un embudo Büchner, un matraz kitasato y una bomba de vacío que va a reducir la presión en el kitasato lo que va a inducir una rápida filtración. Desecación Una técnica muy útil para la purificación de compuestos orgánicos es la desecación. Los líquidos orgánicos, que han estado en contacto con disoluciones acuosas, retienen humedad. Esa humedad interfiere en los procesos que se van a seguir posteriormente, por lo que su eliminación es necesaria. Para su eliminación total se añade, sobre el líquido orgánico, un agente desecante sólido adecuado. La mayoría de los agentes desecantes químicos actúan combinándose con el agua para formar hidratos. Son, generalmente, sales anhidras neutras, como sulfato de sodio o sulfato de magnesio, inerte e insoluble en los líquidos orgánicos por lo que se pueden usar para "secar" cualquier disolución orgánica. Posteriormente se separan por filtración o por decantación.

11 11 3. ACTIVIDADES PREVIAS 3.1 Define: separación, purificación, decantación, punto de ebullición, presión de vapor. 3.2 En que consiste la destilación por arrastre de vapor y la destilación al vacío. 3.3 Menciona en que consiste la cromatografía de capa fina 3.4 Da ejemplos de fases móviles y fases estacionarias que pueden ser utilizadas en la cromatografía. 3.5 Reporta el punto de ebullición de la anilina, del nitrobenceno y del diclorometano (cloruro de metileno). 3.6 Reporta las características físicas, químicas y toxicológicas del cloruro de metileno, nitrobenceno, anilina, ácido clorhídrico del hidróxido de sodio. 3.6 Elabora un diagrama de bloques de la técnica experimental. 4. SECCIÓN EXPERIMENTAL. 4.1 Material y equipo: 4 vasos de precipitado de 100 ml 2 Soportes universales Probeta 50 ml Pipeta graduada de 2 ml Embudo de separación 1 Refrigerante (19/22) Agitador de vidrio Perlas de ebullición Embudo de tallo largo Bomba para agua con 2 mangueras Papel filtro 2 matraces redondos de 100 ml (19/22) 2 matraces erlenmeyer Uniones de vidrio Matraz Kitasato Embudo Büchner Bomba de vacío Espátula metálica Mangueras de látex. 4.2 Reactivos: Ácido benzoico Solución de ácido clorhídrico 2 M Anilina Ácido clorhídrico concentrado. Nitrobenceno Diclorobenceno Solución acuosa de hidróxido de sodio 2 M 4.3 Procedimiento experimental Mezcla y separación -En un vaso de precipitados adicionar 15 ml de diclorometano agregar 2 g de ácido benzoico, 2 ml de anilina (d= 1.02 g/ml) y 2 ml de nitrobenceno. Mezclar suavemente y adicionar 15 ml más de diclorometano.

12 -Colocar la solución en un embudo de separación (verificar que este cerrada la llave) y adicionar con cuidado 30 ml de una solución de ácido clorhídrico 2M, agitar el embudo durante 3 minutos, asegurándose de liberar presión constantemente. -Dejar reposar el embudo hasta la aparición de dos fases, separar la fase acuosa depositándola en un vaso de precipitados (recipiente A).NO desechar -A la fase orgánica contenida en el embudo agregar 30 ml de una solución de hidróxido de sodio 2 M, agitar durante 3 minutos liberando presión constantemente. -Dejar reposar el embudo hasta la aparición de dos fases, separar la fase acuosa depositándola en un vaso de precipitados (recipiente B). NO desechar -Colocar la fase orgánica en un matraz redondo (recipiente C) y arme un dispositivo de destilación Aislamiento y purificación de los tres componentes -Al recipiente C colocarlo en el sistema de destilación y destilar hasta que se mantenga la temperatura constante (aproximadamente en 40 C), el residuo es nitrobenceno recuperado, medir volumen. Depositarlo en un frasco etiquetado como nitrobenceno recuperado y la fracción destilada en otro frasco etiquetado como diclorometano recuperado. -Al recipiente A adicionar solución de hidróxido de sodio 2 M gota a gota y agitando lentamente hasta neutralizar o hasta la aparición de un líquido amarillo inmiscible con el agua. -Depositar la mezcla anterior al embudo de separación, adicionar 15 ml de diclorometano, agitar el embudo durante 3 minutos, asegurándose de liberar presión constantemente. -Dejar reposar el embudo hasta la aparición de dos fases, separar la fase acuosa depositándola en un vaso de precipitados. -Recuperar la fase orgánica en un matraz erlenmeyer seco y adicionar una pequeña cantidad de sulfato de sodio anhidro, agitar ligeramente y decantar. -El residuo orgánico depositarlo en el matraz redondo y destilar. El residuo líquido corresponde a la anilina recuperada. La fracción destilada es diclorometano, medir volumen y posteriormente incluirla en el frasco correspondiente. -Al (recipiente B) adicionar con precaución gota a gota y con agitación constante ácido clorhídrico concentrado hasta la aparición de un precipitado blanco. -Dejar enfriar a temperatura ambiente y filtrar al vacío. Pesar previamente el papel - Dejar secar y pesar. 5. RESULTADOS 5.1 Reportar sus resultados: características físicas de los compuestos recuperados. 5.2 Reportar el peso del ácido benzoico después de la separación. 12

13 6. ANÁLISIS DE RESULTADOS Cabe aclarar que las siguientes preguntas son una guía para que elabores tus análisis de resultados, pero no te limites a ellas. Tus propias aportaciones serán valiosas para tu aprendizaje. 6.1 Las características físicas de los compuestos son iguales antes y después del proceso de separación y purificación? 6.2 Para qué se adiciona al recipiente A la solución de hidróxido de sodio y que compuesto se forma? 6.3 Para qué se adiciona al recipiente B ácido clorhídrico y que compuesto se forma? 6.4 El peso de ácido benzoico es igual antes y después del experimento? 7 CONCLUSIONES Cabe aclarar que las siguientes preguntas son una guía para que elabores tus conclusiones, pero no te limites a ellas. Tus propias aportaciones serán valiosas para tu aprendizaje. 7.1 Cuál es la importancia de las técnicas de separación y purificación para compuestos orgánicos? 7.2 Qué tipo de destilación y extracción se utilizaron en esta práctica? 7.3 Cuántas y cuáles técnicas de separación y purificación se utilizaron en el experimento? BIBLIOGRAFÍA 8.1 Brewster, R.Q., Curso Práctico de Química Orgánica, 2ª edición, editorial Alhambra, España, Hess G, Química general experimental, 4 a edición, editorial C.E.C.S.A, México Domínguez X, Experimentos de Química orgánica, editorial Limusa, México 1987.

14 14 PRÁCTICA No. 3 PUNTO DE FUSIÓN Y CRISTALIZACIÓN. 1. OBJETIVOS. El alumno: 1.1. Conocerá las ventajas y limitantes de utilizar el punto de fusión como criterio de identidad y pureza. 1.2 Determinará las temperaturas de fusión de algunos compuestos orgánicos y mezclas de estos Utilizando la técnica de cristalización realizará la purificación de una sustancia. 2. INTRODUCCIÓN. Punto de fusión El punto de fusión de un sólido cristalino se puede definir como la temperatura a la cual la sustancia pasa del estado sólido al estado líquido, en una sustancia pura, el cambio de estado es generalmente muy rápido y la temperatura es característica. Por esto el punto de fusión es una constante muy utilizada en la identificación de sólidos. Una sustancia cristalina pura presenta generalmente un punto de fusión característico y un rango de las temperaturas de fusión muy pequeño, aproximadamente de 0.5 a 1.0 C. La presencia de impurezas producen generalmente una disminución de la temperatura de fusión, es decir, el compuesto empieza a fundir a temperatura inferior a la esperada, esto trae como consecuencia que el rango de fusión se incremente, mientras mayor es la cantidad de impurezas mayor es la depresión del punto de fusión y por tanto mayor también el intervalo de fusión. La depresión en el punto de fusión producida por las impurezas es una consecuencia de los efectos que estos compuestos producen en la presión de vapor de la mezcla sólida, la presencia de contaminantes solubles produce una disminución en la presión de vapor de la mezcla y simultáneamente un descenso en la temperatura de fusión. Tomando como base este fenómeno, la determinación de esta constante física se usa frecuentemente como criterio de identidad y de pureza. Cristalización La cristalización es un proceso típico de laboratorio en el que un sólido cristalino en solución se separa de una mezcla a través de cambios en su solubilidad la disminución en este parámetro conlleva a la producción de soluciones saturadas y sobresaturadas que resultan en la formación de cristales a partir de la solución. El proceso de cristalización

15 depende del grado de sobresaturación que se logre en la solución, formación de núcleos y el crecimiento de cristales o partículas amorfas. La sobresaturación se puede alcanzar por: evaporación del disolvente de la solución, por el enfriamiento de la solución por la adición de otros solutos, o por el cambio de los disolventes. Dependiendo de las condiciones de la cristalización, es posible controlar o modificar la naturaleza de los cristales obtenidos. Una variante a la cristalización simple es el proceso fraccionado que también es muy útil. La disolución de sólidos similares puede evaporarse hasta que empieza la cristalización. Los cristales serán más ricos en un sólido que en otro. Cristalizaciones repetidas (recristalización) conducen a la preparación de cristales más puros del componente menos soluble y a una disolución que contiene solamente disolvente con el componente más soluble. Frecuentemente el uso de una mezcla de dos disolventes en el proceso de cristalización es más satisfactorio que un solo disolvente, esta mezcla debe ser homogénea totalmente, es decir, los componentes deben ser miscibles y uno de los disolventes debe disolver fácilmente al compuesto a separar, mientras que el otro sólo debe disolverlo ligeramente. Es conveniente que el proceso de enfriamiento se produzca lentamente de forma que los cristales se formen poco a poco y el lento crecimiento excluya las impurezas que pudieran estar presentes. El proceso de cristalización consta de los siguientes pasos: * Disolver la sustancia en el disolvente a una temperatura elevada. * Adicionar máximo 0.5 gramos de carbón activado para eliminar las impurezas coloridas * Filtrar la solución caliente para remover las impurezas insolubles y el carbón activado adicionado anteriormente * Dejar enfriar la solución para que se depositen los cristales de la sustancia. * Filtrar la solución fría para separar los cristales de la solución sobrenadante (conocida como licor o líquido madre). * Lavar los cristales para remover el licor madre adherido. * Secar los cristales para remover las trazas del disolvente. Las impurezas pueden colocarse en las siguientes categorías: impurezas mecánicas (partículas insolubles en la mayoría de los disolventes comunes, se pueden eliminar filtrando la solución caliente), impurezas coloridas (el color puede eliminarse por la adición de algún adsorbente como el carbón activado y filtrando la solución en caliente) y las impurezas solubles (compuestos que se remueven por cristalización, dado que al ser altamente solubles en el disolvente se retienen en el licor o líquido madre). 15

16 16 3. ACTIVIDADES PREVIAS 3.1 Dar las definiciones de: punto de fusión, presión de vapor y temperatura de fusión. 3.2 Reportar los puntos de fusión de los siguientes compuestos: ácido benzoico, acetanilida, urea y β naftol. 3.3 Reportar las características físicas, químicas y toxicológicas del ácido benzoico, acetanilida, urea y β naftol. 3.4 Señalar cual es la diferencia entre cristalización y recristalización. 3.5 Enlistar las características que debe de tener un disolvente para llevar a cabo la cristalización. 3.6 Cuáles son los métodos que se emplean para inducir la cristalización? 3.7 Elaborar un diagrama de bloques del desarrollo experimental 4. SECCIÓN EXPERIMENTAL Material y equipo 4 vasos de precipitados de 250 ml 1 agitador 1 embudos de filtración de vidrio cubreobjetos 1 soporte universal 1 probeta de 25 ml 1 pinza de tres dedos 1 determinador de punto de fusión 1 anillo 1 parrilla de calentamiento 6 tubos capilares 1 termómetro Tubo de Thiele 4.2. Reactivos Ácido benzoico Acetanilida Urea Aceite comestible Carbón activado β-naftol Agua destilada 4.3 Procedimiento experimental Determinación del punto de fusión INDICACIONES PARTÍCULARES: -El punto de fusión se puede determinar con dos sistemas diferentes, uno es la platina (aparato de Fisher- Johns) y el otro el baño de aceite. Por disponibilidad de materiales algunos equipos harán sus determinaciones en platina y los demás con el baño de aceite. Este último se puede hacer en un vaso de precipitados o en un tubo de Thiele. -Cada equipo hará la determinación de cuatro sustancias etiquetadas como A, B, C y D, las cuales pueden ser: β-naftol, acetanilida, ácido benzoico y urea, se deben buscar los

17 puntos de fusión reportados en la bibliografía para estos compuestos (estos datos serán útiles para identificación de dichas sustancias). -Dos de estos compuestos tienen el mismo punto de fusión, seleccionar uno de estos dos y preparar las siguientes mezclas: Mezcla 1. Tomar una pequeña cantidad de la muestra seleccionada y mezclarla con una pequeña cantidad de β-naftol (mezclar cantidades iguales) Mezcla 2. Tomar una pequeña cantidad de la muestra seleccionada y mezclarla con una pequeña cantidad ácido benzoico (mezclar cantidades iguales) -Determinar el punto de fusión a cada una de estas mezclas, para así poder determinar la identidad de la sustancia seleccionada Determinación del punto de fusión con la platina (Fisher-Johns) -Limpiar perfectamente la platina metálica del aparato para determinar puntos de fusión. -Colocar unos cristales de la sustancia a probar en un cubreobjetos limpio y seco, colocarlo en el espacio destinado para la muestra en la platina. -Verificar que el bulbo del termómetro este bien pegado a la platina. -Ajustar la lupa a la altura de los ojos para observar los cristales -Iniciar el calentamiento, ajustar la velocidad de calentamiento entre 3 y 5 o C por minuto con la perilla de ajuste de voltaje. -Tomar la lectura de las temperaturas en el termómetro del aparato (cuando inicia la fusión y cuando finalice la fusión del compuesto) -Para poder hacer una nueva determinación es necesario esperar a que la temperatura de la platina baje. -Determinar la temperatura y rango de fusión de las muestras problemas A, B, C y D y de las mezclas preparadas por el equipo Determinación del punto de fusión con el baño de aceite. -Introducir una pequeña cantidad de muestra en diferentes tubos capilares, que previamente se han cerrado por uno de sus extremos. - Cerrar el otro extremo del tubo capilar -Unir con una liga o con un pedazo de manguera el capilar con muestra a un termómetro de tal forma que la muestra quede a la altura del bulbo del termómetro. -Introducir el termómetro con la muestra en el baño de aceite (en el vaso de precipitados o en el tubo de Thiele) PRECAUCIÓN: Verificar que el tubo Thiele o el vaso donde se va a depositar el aceite estén completamente secos para evitar quemaduras por proyecciones del aceite.

18 -Calentar en una parrilla de calentamiento o directamente con un mechero de tal forma que la temperatura vaya subiendo alrededor de 3 a 5 C por minuto. -Determinar la temperatura cuando se inicie y termine la fusión. -Para hacer una nueva determinación dejar que se enfrié el baño de aceite alrededor de 20 C por debajo de la temperatura que se espera funda la siguiente muestra Cristalización de acetanilida Tomar una pequeña cantidad de acetanilida contaminada con algún tipo de impurezas, observar su color y aspecto, y determinar su punto de fusión. -Pesar en balanza analítica 0.5 g de muestra de acetanilida contaminada en un vaso de precipitados de 100 ml. Adicionar aproximadamente 10 ml de agua y calentar en la parilla la mezcla hasta ebullición con agitación constante. Retirar de la parilla y adicionar con mucho cuidado una pequeña cantidad de carbón activado, la necesaria para eliminar el color. Sin dejar de agitar poner a calentar durante 5 minutos para facilitar la eliminación de impurezas coloridas. Filtrar la solución en caliente y recibir el filtrado en otro vaso de precipitados de 100 ml. Si en el transcurso de la filtración se cristaliza el compuesto sobre el papel filtro agregar un poco de agua caliente (aproximadamente 5 ml). El filtrado se deja enfriar a temperatura ambiente para que cristalice la acetanilida y se coloca en un baño de hielo. - Filtrar para recuperar los cristales en un papel filtro previamente pesado. Lavar los cristales dos veces con un pequeño volumen de agua fría (no mas de 5 ml), ya que la acetanilida es soluble aún en agua fría (0.5 g /100 ml). -Dejar secar, pesar y realizar el cálculo de rendimiento. 5. RESULTADOS. 5.1 Reportar los resultados: características físicas de los compuestos, puntos de fusión tanto los reportados en la literatura como los experimentales e indicar la identidad de cada muestra problema. 5.2 Reportar la cantidad de acetanilida recristalizada y hacer el cálculo de rendimiento.

19 19 6. ANÁLISIS DE RESULTADOS Cabe aclarar que las siguientes preguntas son una guía para que elabores tus análisis de resultados, pero no te limites a ellas. Tus propias aportaciones serán valiosas para tu aprendizaje. 6.1 Hubo cambios en el punto de fusión para la acetanilida antes y después de la cristalización? 6.2 Discutir a que se debe la variación del punto de fusión de la acetanilida antes y después de la cristalización. 6.3 Consideras adecuado el rendimiento obtenido en la cristalización de acetanilida? Justifica tu respuesta. 6.3 Cuál es el objetivo de realizar las mezclas en el punto 4.3.1? 7 CONCLUSIONES Cabe aclarar que las siguientes preguntas son una guía para que elabores tus conclusiones, pero no te limites a ellas. Tus propias aportaciones serán valiosas para tu aprendizaje. 7.1 Cuál es el razonamiento a seguir para la identificación de las muestras en el punto con respecto al punto de fusión y la identificación de las sustancias problema? 7.2 La cristalización es una buena técnica de purificación? Si, no y porqué? 7.3 Por qué es importante realizar el cálculo de rendimiento? 8. REFERENCIAS BIBLIOGRÁFICAS McKay, D.C., Dale G. H., and Weedman J. A., Ind. Eng.Chem. 52, (1960) Vogel, A. I., Elementary Practical Organic Chemistry Part I, Small Scale Preparations, Longmans, (1978) Wilcox, C.F., Experimental Organic Chemistry. A Small Scale Approach, Mc Millan Jr, (1988) Domínguez X, Experimentos de Química orgánica, editorial Limusa, México Pomilio, A. y Vitale, A. Métodos Experimentales de Laboratorios en Química Orgánica Serie de Química Monografía No. 33. OEA. 8.6 Guzmán D, et al Introducción a la técnica instrumental, IPN, México 2005.

20 20 PRÁCTICA No.4 1.-OBJETIVOS EXTRACCIÓN Que el alumno conozca las diferentes técnicas de extracción, y sea capaz de aplicarlas para separar una mezcla de compuestos orgánicos El alumno aplicará la técnica de extracción sólido-líquido y líquido-líquido. 2. -INTRODUCCIÓN La gran mayoría de los compuestos orgánicos, ya sean naturales o sintéticos no se encuentran puros, y para determinar sus propiedades físicas y químicas o poderlos usar como medicamentos, conservadores, edulcorantes, intermediarios de reacción, etc. es necesario que lo sean. La extracción y la cromatografía son técnicas muy importantes, ya que permiten separar y purificar sustancias químicas. La extracción es la técnica más empleada para separar un producto orgánico de su mezcla de reacción o aislarlo de sus fuentes naturales. Puede definirse como la separación de un componente de una mezcla por medio de un disolvente. Si el compuesto a separar se encuentra en una mezcla líquida, la extracción se llama líquido-líquido, si se encuentra en una mezcla sólida, la extracción se llama sólido-líquido. Se puede hablar de la extracción selectiva la cual se emplea para separar mezclas de compuestos orgánicos, en función de la acidez, de la basicidad o de la neutralidad de éstos. Un número muy elevado de compuestos orgánicos que poseen carácter ácido no son solubles en agua y sí en disolventes orgánicos; por el contrario, el comportamiento de sus sales metálicas es exactamente el inverso, son solubles en agua e insolubles en disolventes orgánicos. Bastará pues convertir un ácido en su sal sódica, por ejemplo, para hacerlo soluble en agua y extraerlo así del disolvente orgánico en el que se encuentra. El fundamento de la separación por esta técnica, es la diferencia de solubilidad del componente a separar en el disolvente de la mezcla y el disolvente extrayente. En la práctica es muy utilizada para separar compuestos orgánicos de raíces, semillas, hojas, etc. También se pueden obtener aceites y grasas a partir de muestras vegetales y animales utilizando técnicas de extracción sólido- líquido y líquido-líquido. 3.-ACTIVIDADES PREVIAS Por equipo llevar al laboratorio 100 g de espinacas Reportar el punto de fusión de: acetanilida y del ácido benzoico Reportar la densidad del tetracloruro de carbono así como las propiedades químicas y toxicológicas Reportar propiedades físicas químicas y toxicológicas de: acetanilida, ácido benzoico y cloruro de metileno.

21 3.5.- Si se tienen 0.5 g de una mezcla de ácido benzoico-acetanilida en una proporción 1:1 Calcular el volumen de solución de NaOH 0.1 N necesario para que reaccione completamente el ácido benzóico contenido en la mezcla anterior Elaborar un diagrama de bloques con la técnica experimental SECCIÓN EXPERIMENTAL Material y equipo 1 mortero Tiras de papel ph Balanza granataria Embudo de separación Balanza analítica 2 vasos de precipitados de 150 ml 1 matraz erlenmeyer de 125 ml Papel filtro 1 embudo de tallo largo 1 pipeta graduada de 10 ml 1 probeta de 25 ml Reactivos Ácido benzoico Cloruro de metileno Acetanilida Solución de yodo-yoduro al 0.3% Solución de NaOH 0.1 N Tetracloruro de carbono HCl concentrado Procedimiento experimental Separación de una mezcla de ácido benzóico-acetanilida (1:1) por extracción sólido-líquido -Agregar 0.5 g de la mezcla en un matraz erlenmeyer de 125 ml. -Adicionar el volumen calculado de NaOH 0.1 N al matraz erlenmeyer y agitar vigorosamente. -Filtrar con papel filtro para separar el sólido que no se disolvió. -Regresar el sólido retenido en el papel filtro al matraz y extraer una vez más con igual volumen de NaOH. -Filtrar, recibiendo el líquido en el mismo recipiente donde se tiene el primer filtrado. -Adicionar HCl concentrado al filtrado hasta llegar a ph=2. -Separar el sólido precipitado por filtración (en un papel previamente pesado). -Dejar secar el sólido obtenido. -Pesar el sólido, determinar su punto de fusión y calcular el porciento de rendimiento

22 Preparación de extracto de carotenos. -Pesar en balanza granataria 100 g espinacas. -Colocarlas en un mortero y adicionar 20 ml de cloruro de metileno. -Macerar (moler). -Filtrar el macerado. Si es necesario evaporar un poco el disolvente. (NOTA: la evaporación del disolvente debe ser en la campana) -Guardar la solución filtrada en un frasco con tapa, etiquetar adecuadamente y guardar para la práctica de cromatografía Extracción líquido-líquido -Colocar en un embudo de separación o decantación 10 ml de solución acuosa de yodo y lentamente adicionar 5 ml de tetracloruro de carbono (evitar que se forme turbulencia al adicionar el disolvente orgánico). -Tapar el embudo y agitar por 5 minutos. Tener la precaución de sujetar el tapón y liberar presión constantemente. (Seguir indicaciones del profesor). -Dejar reposar el embudo hasta la separación de dos fases. -Retirar la capa inferior y depositarla en un matraz erlenmeyer tapando la boca del mismo con papel aluminio. -A la capa superior adicionar nuevamente 5 ml de tetracloruro de carbono. Y repetir los tres puntos anteriores. -Al final colocar la capa superior en un recipiente etiquetado como tetracloruro de carbono recuperado. 5.-RESULTADOS Reportar las características físicas y la cantidad del compuesto sólido obtenido en el punto Hacer el cálculo y reportar el rendimiento en porcentaje del sólido Reportar el punto de fusión y el nombre del compuesto sólido obtenido en el punto Para el experimento reportar las características de cada una de las fases. 6.-ANÁLISIS DE RESULTADOS Cabe aclarar que las siguientes preguntas son una guía para que elabores tus análisis de resultados, pero no te limites a ellas. Tus propias aportaciones serán valiosas para tu aprendizaje.

23 6.1- Para que se adiciona la solución de hidróxido de sodio y posteriormente el ácido clorhídrico concentrado a la mezcla de ácido benzoico-acetanilida del experimento 4.3.1? Qué compuestos se forman? Cuáles son las sustancias presentes en la mezcla de solución acuosa de yodo? Por que se utilizó el tetracloruro de carbono para realizar la extracción? Será mejor realizar una extracción varias veces con volúmenes pequeños, que una extracción una sola vez con un volumen grande? Si, no y por qué? 7.-CONCLUSIONES Cabe aclarar que las siguientes preguntas son una guía para que elabores tus conclusiones, pero no te limites a ellas. Tus propias aportaciones serán valiosas para tu aprendizaje Cuál técnica de extracción consideras que es más efectiva y por qué? Cuál es la aplicación de la técnica de extracción en tu carrera? 7.3 Qué tipo de extracción se realizó en el punto 4.3.2? BIBLIOGRAFÍA Brewster, R.Q., Curso Práctico de Química Orgánica, 2ª edición, editorial Alhambra, España, Hess G, Química general experimental, 4 a edición, editorial C.E.C.S.A, México Domínguez X, Experimentos de Química orgánica, editorial Limusa, México Mc Murry J, Química orgánica, Internacional Thomsom editores, México, 2001

24 24 PRÁCTICA No.5 CROMATOGRAFIA 1. OBJETIVOS 1.1. Conozcer y comprender los fundamentos de la cromatografía Utilizar las diferentes técnicas cromatográficas para identificar y purificar compuestos orgánicos Conocer el procedimiento para elegir el eluyente más adecuado para separar una mezcla de carotenos por cromatografía en columna. 2. INTRODUCCIÓN La cromatografía comprende un grupo de métodos de purificación e identificación de compuestos que depende de las afinidades diferenciales de los compuestos entre dos fases inmiscibles. Una de las fases es fija con una gran área superficial y la otra es un fluido que se mueve a través o sobre la superficie de la fase fija. La fase fija se denomina fase estacionaria y la fase que fluye se llama fase móvil. La primera puede ser una sustancia porosa o un sólido finamente dividido o un líquido que se encuentra recubriendo un soporte inerte. La segunda puede ser un líquido puro, un gas o una mezcla de disolventes o de soluciones. Existen varias técnicas cromatográficas dependiendo del tipo de fase fija y fase móvil, como muestra la siguiente tabla: Fase móvil Fase estacionaria Técnica cromatográfica Vapor Sólida Cromatografía de gases Vapor Líquida Cromatografía de gases (CGL) Líquida Sólida Cromatografía de adsorción (CLS) Líquida Líquida Cromatografía líquido-líquido. Tanto la cromatografía en columna como la de papel y capa fina de manera general se clasifican como cromatografía de adsorción. Cromatografía en columna; La fase estacionaria se encierra en una columna de vidrio. Se utilizan muchos materiales de empaque que van desde tierra de diatomeas, resinas sintéticas, sustancias polisacáridas, alúmina o sílica gel. La fase móvil es por lo general un disolvente o una mezcla de disolventes, que se hacen pasar a través de la columna, y es seleccionada de acuerdo a la naturaleza de los componentes de la mezcla que se va a separar. Los líquidos eluidos son colectados en fracciones numeradas y cada una de las cuales es evaporada y analizada.

25 La cromatografía en capa fina utiliza sustancias pulverizadas que se adhieren a una placa de vidrio, plástico o aluminio, debido a que son inertes, resistentes y de fácil manipulación. Las sustancias que se emplean como fase estacionaria incluyen gel de sílice, alúmina, sulfato de calcio, polietileno o celulosa en polvo. Sin embargo, en los laboratorios de Química orgánica la más usada es la sílica gel. La elección del adsorbente dependerá de las características de las sustancias a separar, en general los compuestos lipofílicos se separan sobre óxido de aluminio (alúmina) o gel de sílice, y las sustancias hidrofílicas se separan sobre celulosa. En cromatografía en papel y en capa fina es importante medir la relación entre la distancia recorrida por el soluto y la distancia recorrida por el disolvente, denominada R f. Si dos compuestos tienen el mismo valor de R f y éste se obtuvo en condiciones experimentales similares, se puede considerar que los dos compuestos son iguales. No todos los compuestos orgánicos a separar por cromatografía de adsorción son coloridos por lo que para analizarlos es necesario utilizar medios físicos como la radiación UV o bien medios químicos (sustancias reveladoras) los cuales forman derivados coloreados o fluorescentes ACTIVIDADES PREVIAS 3.1.-Menciona las propiedades físicas, químicas y toxicológicas de: Hexano, cloroformo, cloruro de metileno, metanol y acetato de etilo Investiga la polaridad de cada uno de los disolventes mencionados anteriormente y ordénalos de mayor a menor polaridad. 3.3 Qué sustancias pueden utilizarse como reveladoras en la cromatografía de capa fina? 3.4. Cómo se calcula el valor de Rf? 3.5 Cuales son los carotenos se encuentran en las espinacas? escribe las fórmulas y estructuras Que precauciones se debe de tener al empacar una columna cromatográfica? 3.7 Elabora un diagrama de bloques del procedimiento experimental. 4. SECCION EXPERIMENTAL 4.1. Material y equipo Soporte universal Algodón Columna cromatográfica o bureta Tubos capilares 1 vaso de precipitados de 50 ml Propipeta o jeringa I vidrio de reloj 1 pinza de tres dedos Placas cromatográficas de aluminio

26 Reactivos Hexano Acetato de etilo Cloruro de metileno Metanol Alúmina o sílica gel Cloroformo Extracto de espinacas Procedimiento experimental Cromatografía en placa fina. -En la placa cromatográfica marcar ligeramente con lápiz de grafito una línea base, a una distancia de 0.3 a 0.5 cm de la base de la placa. -Preparar un tubo capiiar de manera tal que uno de sus extremos quede en punta, para esto auxiliarse de un mechero o la flama de un encendedor: NOTA: Realizarlo fuera del alcance de los disolventes. -Aplicar una muestra del extracto de espinacas con un capilar sobre la línea base de la placa cromatografica, procurando que la aplicación no se corra más de un milímetro de diámetro. -Dejar secar el disolvente de la muestra aplicada e introducir la placa en una cámara cromatográfica (o en sustitución de ésta usar un vaso de precipitados de 50 ml y taparlo con un vidrio de reloj) que contenga como eluyente cualquiera de los siguientes disolventes: cloruro de metileno, cloroformo, hexano, metanol o acetato de etilo (se sugiere que cada equipo de trabajo utilice un disolvente diferente). -Dejar subir o correr el disolvente hasta que llegue a 0.5 cm antes del extremo superior de la placa. Sacar la placa de la cámara, marcar ligeramente con lápiz de grafito la línea hasta la marca del disolvente en la placa y dejarla secar. -Marcar el contorno de las manchas y hacer un dibujo de la placa para presentar como resultados. -Determinar el Rf de cada mancha Cromatografía en columna: separación de una mezcla de carotenos. - Colocar en la parte inferior de la columna cromatográfica (se usará una bureta como columna cromatográfica) una capa delgada de algodón, de tal manera que permita la salida del disolvente pero no del relleno de la columna (sílica gel). -Pesar 6 gramos de silica gel y preparar una suspensión con 15 ml del disolvente elegido en el apartado (con esta suspensión se facilitará el empaquetamiento de la columna). -Empacar la columna. (Agitar la suspensión de la silica y disolvente e irla vaciando a la columna) -Abrir la llave de la columna y dejar fluir el disolvente (eluyente) hasta que el menisco quede sobre la superficie de la silica gel. (NO PERMITIR QUE LA COLUMNA SE SILICA SE QUEDE SIN DISOLVENTE) Cerrar la llave.

27 -Con una pipeta adicionar la mezcla a separar, 0.3 ml del extracto, arriba del menisco en la bureta. NOTA: dejar caer el extracto gota a gota, procurando que no resbale por las paredes -Abrir la llave de la columna para que se vaya introduciendo el extracto a la fase estacionaria, adicionar poco a poco pequeñas cantidades de disolvente, para que no se seque la silica. -Ya que haya penetrado toda la mezcla a la silica, depositar en la columna aproximadamente 20 ml de disolvente y empezar a eluir recogiendo en tubos de ensayo las diferentes fracciones. -Por cromatografía en capa fina observe las diferentes fracciones del extracto de carotenos. 5. RESULTADOS 5.1. Reportar cual fue el disolvente más adecuado para separar los carotenos Reportar los resultados de las placas cromatográficas. 5.3 Dar los resultados del valor de Rf para los diferentes compuestos encontrados en las placas cromatográficas. (Incluir cálculos) 5.4 Mediante esquemas reportar los resultados de la cromatografía en columna. 5.5 Reportar los resultados de las placas cromatográficas de cada fracción recolectada en la cromatografía en columna ANÁLISIS DE RESULTADOS Cabe aclarar que las siguientes preguntas son una guía para que elabores tus análisis de resultados, pero no te limites a ellas. Tus aportaciones serán valiosas para tu aprendizaje. 6.1 Por qué fue necesario eluir las placas cromatográficas con los diferentes disolventes? 6.2. Cuál fue el disolvente más adecuado y por qué? 6.3. Qué puedes deducir de los valores de Rf calculados en las placas cromatográficas? 6.4. Qué factores influyeron al eluir la columna cromatográfica? 6.5 Cómo puedes identificar las sustancias separadas en la cromatografía de placa y de columna? 6.6. Por qué es necesario someter a una cromatografía en placa fina las diferentes fracciones recolectadas en la cromatografía de columna? 7. CONCLUSIONES Las siguientes preguntas son una guía para que elabores tus conclusiones, pero no te limites a ellas. Tus aportaciones serán valiosas para tu aprendizaje Es la cromatografía una buena técnica de separación y purificación de compuestos? 7.2. Tiene aplicación en tu carrera? justifica tus respuestas Diferencias entre la cromatografía de placa y la de columna Ventajas y desventajas de la cromatografía con respecto a las otras técnicas de separación y purificación conocidas en prácticas anteriores.

LABORATORIO DE QUÍMICA FACULTAD DE FARMACIA CRISTALIZACIÓN.

LABORATORIO DE QUÍMICA FACULTAD DE FARMACIA CRISTALIZACIÓN. CRISTALIZACIÓN. Un compuesto orgánico cristalino está constituido por un empaquetamiento tridimensional de moléculas unidas principalmente por fuerzas de Van der Waals, que originan atracciones intermoleculares

Más detalles

TEMA 11. MÉTODOS FÍSICOS DE SEPARACIÓN Y PURIFICACIÓN

TEMA 11. MÉTODOS FÍSICOS DE SEPARACIÓN Y PURIFICACIÓN TEMA 11. MÉTODOS FÍSICOS DE SEPARACIÓN Y PURIFICACIÓN 1. Destilación 2. Extracción 3. Sublimación 4. Cristalización 5. Cromatografía 6. Fórmulas empíricas y moleculares 2 Tema 11 TEMA 11. Métodos físicos

Más detalles

PRACTICA No. 9 PREPARACION DE DISOLUCIONES

PRACTICA No. 9 PREPARACION DE DISOLUCIONES 1 UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE CIENCIAS QUÍMICAS Y FARMACIA ESCUELA DE QUÍMICA DEPARTAMENTO DE QUÍMICA GENERAL QUÍMICA GENERAL II PRACTICA No. 9 PREPARACION DE DISOLUCIONES INTRODUCCION:

Más detalles

MANEJO DE REACTIVOS Y MEDICIONES DE MASA Y VOLUMEN

MANEJO DE REACTIVOS Y MEDICIONES DE MASA Y VOLUMEN Actividad Experimental 1 MANEJO DE REACTIVOS Y MEDICIONES DE MASA Y VOLUMEN Investigación previa 1. Investiga los siguientes aspectos de una balanza granataria y de una balanza digital: a. Características

Más detalles

CONTENIDO DE LA GUÍA OBJETIVO

CONTENIDO DE LA GUÍA OBJETIVO CONTENIDO DE LA GUÍA OBJETIVO Reconocer las características físicas y formas de emplear el material de laboratorio, con el cual se desarrollan diferentes actividades experimentales que permiten alcanzar

Más detalles

PIP 4º ESO IES SÉNECA TRABAJO EXPERIMENTAL EN FÍSICA Y QUÍMICA

PIP 4º ESO IES SÉNECA TRABAJO EXPERIMENTAL EN FÍSICA Y QUÍMICA MEZCLAS Las mezclas son agrupaciones de dos o más sustancias puras en proporciones variables. Si presentan un aspecto uniforme son homogéneas y también se denominan disoluciones, como la de azúcar en agua.

Más detalles

Dar a conocer la capacidad de disolución del agua frente a otras sustancias.

Dar a conocer la capacidad de disolución del agua frente a otras sustancias. MINISTERIO DE EDUCACION Actividad 1: Agua en la vida II. Laboratorio: Solubilidad del agua 1. Tema: AGUA DISOLVENTE UNIVERSAL 2. Objetivo: Dar a conocer la capacidad de disolución del agua frente a otras

Más detalles

MANUAL DE PROCEDIMIENTOS UNIDAD DE ADMINISTRACIÓN TALLERES Y LABORATORIOS PROGRAMA INDIVIDUAL DE PRÁCTICAS

MANUAL DE PROCEDIMIENTOS UNIDAD DE ADMINISTRACIÓN TALLERES Y LABORATORIOS PROGRAMA INDIVIDUAL DE PRÁCTICAS 1 de 5 CICLO ESCOLAR: 2013-2014P NOMBRE DEL DOCENTE: Filiberto Ortiz Chi CARRERA(S): IIAL SEMESTRE: 4 GRUPO(S): A ASIGNATURA: Flujo de fluidos PARCIAL: Primero NOMBRE DE LABORATORIO O DE LA INSTITUCIÓN

Más detalles

SEPARACIÓN DE ALUMINIO A PARTIR DE MATERIAL DE DESECHO

SEPARACIÓN DE ALUMINIO A PARTIR DE MATERIAL DE DESECHO Actividad Experimental SEPARACIÓN DE ALUMINIO A PARTIR DE MATERIAL DE DESECHO Investigación previa 1.- Investigar las medidas de seguridad que hay que mantener al manipular KOH y H SO, incluyendo que acciones

Más detalles

UNIVERSIDAD TECNOLOGICA NACIONAL FACULTAD REGIONAL ROSARIO DEPARTAMENTO DE INGENIERIA QUIMICA CATEDRA DE QUIMICA GENERAL

UNIVERSIDAD TECNOLOGICA NACIONAL FACULTAD REGIONAL ROSARIO DEPARTAMENTO DE INGENIERIA QUIMICA CATEDRA DE QUIMICA GENERAL UNIVERSIDAD TECNOLOGICA NACIONAL FACULTAD REGIONAL ROSARIO DEPARTAMENTO DE INGENIERIA QUIMICA CATEDRA DE QUIMICA GENERAL ESTUDIO DE LA SOLUBILIDAD Y LOS FACTORES QUE LA AFECTAN OBJETIVOS 1. Interpretar

Más detalles

MANUAL TEÓRICO-PRÁCTICO PARA EL LABORATORIO DE QUÍMICA ORGÁNICA EN PEQUEÑA ESCALA Biología, Medicina e Ingeniería

MANUAL TEÓRICO-PRÁCTICO PARA EL LABORATORIO DE QUÍMICA ORGÁNICA EN PEQUEÑA ESCALA Biología, Medicina e Ingeniería Facultad de Ciencias Departamento de Química MANUAL TEÓRICO-PRÁCTICO PARA EL LABORATORIO DE QUÍMICA ORGÁNICA EN PEQUEÑA ESCALA Biología, Medicina e Ingeniería Elaborado por: Jaime Antonio Portilla Salinas

Más detalles

2.3 SISTEMAS HOMOGÉNEOS.

2.3 SISTEMAS HOMOGÉNEOS. 2.3 SISTEMAS HOMOGÉNEOS. 2.3.1 DISOLUCIONES. Vemos que muchos cuerpos y sistemas materiales son heterogéneos y podemos observar que están formados por varias sustancias. En otros no podemos ver que haya

Más detalles

Cómo llevar a cabo una reacción química desde el punto de vista experimental

Cómo llevar a cabo una reacción química desde el punto de vista experimental Cómo llevar a cabo una reacción química desde el punto de vista experimental Para obtener un compuesto se pueden utilizar varias técnicas, que incluyen el aislamiento y la purificación del mismo. Pero

Más detalles

La separación de mezclas de las cuales existen dos tipos como son las homogéneas y heterogéneas

La separación de mezclas de las cuales existen dos tipos como son las homogéneas y heterogéneas Introducción En el tema operaciones fundamentales de laboratorio se dan una serie e pasos muy importantes para el desarrollo del programa de laboratorio por ejemplo podemos citar varios procedimientos

Más detalles

MANUAL DE PRÁCTICAS DE LABORATORIO

MANUAL DE PRÁCTICAS DE LABORATORIO MANUAL DE PRÁCTICAS DE LABORATORIO CARRERA Ingeniería en Biotecnología ASIGNATURA: Microbiología Gral. FICHA TECNICA Fecha: Nombre del catedrático: 13-SEPT-2012 FICHA TÉCNICA MICROBIOLOGÍA GENERAL Jesús

Más detalles

EXTRACCIÓN DE CAFEÍNA DEL CAFÉ

EXTRACCIÓN DE CAFEÍNA DEL CAFÉ 10-11-2010 EXTRACCIÓN DE CAFEÍNA DEL CAFÉ Colegio de San Francisco de Paula Enrique Jacobo Díaz Montaña José Antonio Vázquez de la Paz Enrique Gómez-Álvarez Hernández 1ºBACHILLERATO-B Índice: Objetivos

Más detalles

ASIGNATURA: QUIMICA AGROPECUARIA (RB8002) GUÍA N 1: DESTILACION DE DISOLUCIONES

ASIGNATURA: QUIMICA AGROPECUARIA (RB8002) GUÍA N 1: DESTILACION DE DISOLUCIONES I. Presentación de la guía: ASIGNATURA: QUIMICA AGROPECUARIA (RB8002) GUÍA N 1: DESTILACION DE DISOLUCIONES Competencia: El alumno será capaz de ejecutar una técnica de separación y purificación de soluciones

Más detalles

4.2. Limpieza del material de laboratorio.

4.2. Limpieza del material de laboratorio. Química 4 Tema 4. Material de laboratorio 4.1. Material de uso frecuente en el laboratorio. 4.2. Limpieza del material de laboratorio. Clasificación: i) según su función ii) según el material de que está

Más detalles

REACCIONES DE IONES METÁLICOS

REACCIONES DE IONES METÁLICOS Actividad Experimental 4 REACCIONES DE IONES METÁLICOS Investigación previa -Investigar las medidas de seguridad para trabajar con amoniaco -Investigar las reglas de solubilidad de las sustancias químicas.

Más detalles

Extracción sólido-líquido

Extracción sólido-líquido Extracción sólido-líquido Objetivos de la práctica! Determinar la concentración de saturación del soluto en el disolvente en un sistema ternario arena-azúcar-agua, estableciendo la zona operativa del diagrama

Más detalles

Destilación. Producto 1 más volátil que Producto 2 (P 0 1 > P0 2 ) Figura 1

Destilación. Producto 1 más volátil que Producto 2 (P 0 1 > P0 2 ) Figura 1 Destilación La destilación es una técnica que nos permite separar mezclas, comúnmente líquidas, de sustancias que tienen distintos puntos de ebullición. Cuanto mayor sea la diferencia entre los puntos

Más detalles

PRÁCTICA 7 MÉTODOS DE SEPARACIÓN I : EXTRACCIÓN

PRÁCTICA 7 MÉTODOS DE SEPARACIÓN I : EXTRACCIÓN PRÁCTICA 7 MÉTODOS DE SEPARACIÓN I : EXTRACCIÓN OBJETIVOS Ensayar la metodología de la extracción, con el fin de aislar el ácido benzoico, aprovechando sus propiedades ácidas, de una disolución orgánica

Más detalles

DESTILACIÓN POR ARRASTRE CON VAPOR Y OTROS MÉTODOS DE AISLAMIENTO

DESTILACIÓN POR ARRASTRE CON VAPOR Y OTROS MÉTODOS DE AISLAMIENTO I. OBJETIVOS II. MATERIAL DESTILACIÓN POR ARRASTRE CON VAPOR Y OTROS MÉTODOS DE AISLAMIENTO a) Aislar el aceite esencial de un producto natural utilizando las siguientes técnicas de laboratorio: -Destilación

Más detalles

4. Materiales y Métodos. Los equipos que a continuación se mencionan se encuentran en el laboratorio de

4. Materiales y Métodos. Los equipos que a continuación se mencionan se encuentran en el laboratorio de 39 4. Materiales y Métodos 4.1 Equipos Los equipos que a continuación se mencionan se encuentran en el laboratorio de Ingeniería Ambiental de la Universidad de las Américas Puebla y en el Laboratorio de

Más detalles

LABORATORIO DE QUÍMICA ANALÍTICA E INSTRUMENTAL 502503. GUÍA No 2.3- METODOS DE SEPARACIÓN POR DESTILACIÓN

LABORATORIO DE QUÍMICA ANALÍTICA E INSTRUMENTAL 502503. GUÍA No 2.3- METODOS DE SEPARACIÓN POR DESTILACIÓN LABORATORIO DE QUÍMICA ANALÍTICA E INSTRUMENTAL 502503 GUÍA No 2.3- METODOS DE SEPARACIÓN POR DESTILACIÓN I. EL PROBLEMA Dos líquidos completamente miscibles se pueden separar por métodos físicos llamados

Más detalles

LABORATORIO DE QUÍMICA ANALÍTICA E INSTRUMENTAL 502503. GUÍA No 2.1: Métodos de separación por extracción con solventes

LABORATORIO DE QUÍMICA ANALÍTICA E INSTRUMENTAL 502503. GUÍA No 2.1: Métodos de separación por extracción con solventes LABORATORIO DE QUÍMICA ANALÍTICA E INSTRUMENTAL 502503 GUÍA No 2.1: Métodos de separación por extracción con solventes I. EL PROBLEMA La extracción con solventes es una técnica de tratamiento que consiste

Más detalles

sirve para medir volumen de líquidos y también para calentar y mezclar sustancias. es útil para medir volúmenes más pequeños de líquidos.

sirve para medir volumen de líquidos y también para calentar y mezclar sustancias. es útil para medir volúmenes más pequeños de líquidos. NOMBRE USOS MEDIDAS ML O CM DIBUJO 2000, 1000 Vaso precipitado sirve para medir volumen de líquidos y también para calentar y mezclar sustancias. 900, 500 300, 200 150, 140 100, 80 2000, 1000 Probeta es

Más detalles

PRÁCTICA N 3 SOLUBILIDAD (CURVA DE SOLUBILIDAD Y CRISTALIZACIÓN FRACCIONADA)

PRÁCTICA N 3 SOLUBILIDAD (CURVA DE SOLUBILIDAD Y CRISTALIZACIÓN FRACCIONADA) PRÁCTICA N 3 SOLUBILIDAD (CURVA DE SOLUBILIDAD Y CRISTALIZACIÓN FRACCIONADA) I. OBJETIVO GENERAL Establecer de forma experimental, la dependencia de la solubilidad con la temperatura. Utilizar la variación

Más detalles

Estudio de la evaporación

Estudio de la evaporación Estudio de la evaporación Volumen del líquido Tipo de líquido Superficie del recipiente Altura del recipiente Forma del recipiente Presencia de una sal disuelta Introducción Todos hemos observado que una

Más detalles

SÍNTESIS DEL ÁCIDO ACETIL SALICÍLICO

SÍNTESIS DEL ÁCIDO ACETIL SALICÍLICO PRÁCTICA 10: SÍNTESIS DEL ÁCIDO ACETIL SALICÍLICO 1. INTRODUCCIÓN En esta práctica llevaremos a cabo un proceso sencillo de síntesis de un fármaco: la síntesis del ácido acetilsalicílico. El extracto de

Más detalles

QUIMICA GENERAL I. Grado en Química 1 er Curso ÚTILES A TRAER POR EL ALUMNO NORMAS DE TRABAJO

QUIMICA GENERAL I. Grado en Química 1 er Curso ÚTILES A TRAER POR EL ALUMNO NORMAS DE TRABAJO QUIMICA GENERAL I Grado en Química 1 er Curso ÚTILES A TRAER POR EL ALUMNO Bata Gafas de Seguridad Cuaderno de Laboratorio Calculadora NORMAS DE TRABAJO Antes de empezar Antes de empezar cada práctica,

Más detalles

Métodos de separación en mezclas

Métodos de separación en mezclas Los métodos de separación están basados en las diferentes propiedades físicas (como la densidad, la temperatura de ebullición, la solubilidad, el estado de agregación, etc.) de las sustancias que componen

Más detalles

10B Reacciones de Esterificación de Ácidos Carboxílicos. Obtención de Acetato de Isoamilo (Aceite de Plátano).

10B Reacciones de Esterificación de Ácidos Carboxílicos. Obtención de Acetato de Isoamilo (Aceite de Plátano). PRÁCTICA 10B Reacciones de Esterificación de Ácidos Carboxílicos. Obtención de Acetato de Isoamilo (Aceite de Plátano). I. OBJETIVOS. a) Preparar un éster a partir de un alcohol y un ácido carboxílico.

Más detalles

Proyecto Newton Sustancias puras y mezclas Unidad Didáctica 3º E.S.O. Objetivos

Proyecto Newton Sustancias puras y mezclas Unidad Didáctica 3º E.S.O. Objetivos Objetivos En esta unidad aprenderás a: Diferenciar entre sustancia pura y mezcla. Saber identificar una sustancia pura a partir de alguna de sus propiedades características. Distinguir entre elementos

Más detalles

Normalización de soluciones de NaOH 0,1N y HCl 0,1N.

Normalización de soluciones de NaOH 0,1N y HCl 0,1N. Laboratorio N 1: Normalización de soluciones de NaOH 0,1N y HCl 0,1N. Objetivos: - Determinar la normalidad exacta de una solución de hidróxido de sodio aproximadamente 0,1 N, utilizando biftalato de potasio

Más detalles

PRACTICA N 13 ANÁLISIS DE GRASAS Y ACEITES: INDICE DE REFRACCIÓN, YODO, SAPONIFICACIÓN Y PERÓXIDO.

PRACTICA N 13 ANÁLISIS DE GRASAS Y ACEITES: INDICE DE REFRACCIÓN, YODO, SAPONIFICACIÓN Y PERÓXIDO. PRACTICA N 13 ANÁLISIS DE GRASAS Y ACEITES: INDICE DE REFRACCIÓN, YODO, SAPONIFICACIÓN Y PERÓXIDO. I. INTRODUCCIÓN: El análisis de algunas de las características físicas y químicas de las grasas y aceites

Más detalles

ACTIVIDAD EXPERIMENTAL No. 2 TÉCNICAS COMUNES DEL LABORATORIO DE QUÍMICA.

ACTIVIDAD EXPERIMENTAL No. 2 TÉCNICAS COMUNES DEL LABORATORIO DE QUÍMICA. ACTIVIDAD EXPERIMENTAL No. 2 TÉCNICAS COMUNES DEL LABORATORIO DE QUÍMICA. Introducción: Cuando se inicia un curso en el que por primera vez se trabaja en un laboratorio escolar, es necesario que el alumno

Más detalles

PRÁCTICA 5. CALORIMETRÍA

PRÁCTICA 5. CALORIMETRÍA PRÁCTICA 5. CALORIMETRÍA INTRODUCCIÓN Al mezclar dos cantidades de líquidos a distinta temperatura se genera una transferencia de energía en forma de calor desde el más caliente al más frío. Dicho tránsito

Más detalles

IES Menéndez Tolosa 3º ESO (Física y Química)

IES Menéndez Tolosa 3º ESO (Física y Química) IES Menéndez Tolosa 3º ESO (Física y Química) 1 De las siguientes mezclas, cuál no es heterogénea? a) azúcar y serrín. b) agua y aceite. c) agua y vino d) arena y grava. La c) es una mezcla homogénea.

Más detalles

APÉNDICE II DESECACIÓN Y AGENTES DESECANTES DESECACIÓN

APÉNDICE II DESECACIÓN Y AGENTES DESECANTES DESECACIÓN 259 APÉNDICE II DESECACIÓN Y AGENTES DESECANTES DESECACIÓN La desecación se emplea para extraer la humedad de los líquidos, soluciones y sustancias sólidas. El grado de desecación de una sustancia depende

Más detalles

PRACTICA 3 SULFONACIÓN DE DODECILBENCENO PREPARACIÓN DE UN DETERGENTE

PRACTICA 3 SULFONACIÓN DE DODECILBENCENO PREPARACIÓN DE UN DETERGENTE PRATIA 3 SULFONAIÓN DE DODEILBENENO PREPARAIÓN DE UN DETERGENTE OBJETIVOS. Efectuar una sulfonación como ejemplo de sustitución electrofílica aromática y obtener un ácido sulfónico arílico. Observar el

Más detalles

Informe del trabajo práctico nº7

Informe del trabajo práctico nº7 Informe del trabajo práctico nº7 Profesora : Lic. Graciela. Lic. Mariana. Alumnas: Romina. María Luján. Graciela. Mariana. Curso: Química orgánica 63.14 turno 1 OBJETIVOS Mostrar las propiedades que presentan

Más detalles

PRÁCTICA 4 DETERMINACIÓN DE LA CONCENTRACIÓN IÓNICA TOTAL DEL AGUA POTABLE, USANDO LA CROMATOGRAFÍA DE INTERCAMBIO IÓNICO

PRÁCTICA 4 DETERMINACIÓN DE LA CONCENTRACIÓN IÓNICA TOTAL DEL AGUA POTABLE, USANDO LA CROMATOGRAFÍA DE INTERCAMBIO IÓNICO PRÁCTICA 4 DETERMINACIÓN DE LA CONCENTRACIÓN IÓNICA TOTAL DEL AGUA POTABLE, USANDO LA CROMATOGRAFÍA DE INTERCAMBIO IÓNICO 1.- FUNDAMENTO TEÓRICO. 1.1.- Materiales de intercambio iónico. El intercambio

Más detalles

Sistema formado por varias substancias en el que a simple vista se distinguen los diferentes componentes.

Sistema formado por varias substancias en el que a simple vista se distinguen los diferentes componentes. PRINCIPIOS BASICOS Sistema homogéneo : ( DISOLUCIONES ) Sistema integrado por varias substancias no distinguibles a simple vista, pero que se pueden separar por procedimientos físicos. por Ejem. : cambios

Más detalles

Manejo e identificación de material básico de laboratorio

Manejo e identificación de material básico de laboratorio Manejo e identificación de material básico de laboratorio Probeta MEDIDA VOLUMEN Probeta Pipeta Bureta Matraz aforado FUENTES CALOR Instrumento, que permite medir volúmenes superiores y más rápidamente

Más detalles

Completar: Un sistema material homogéneo constituido por un solo componente se llama.

Completar: Un sistema material homogéneo constituido por un solo componente se llama. IES Menéndez Tolosa 3º ESO (Física y Química) 1 Completar: Un sistema material homogéneo constituido por un solo componente se llama. Un sistema material homogéneo formado por dos o más componentes se

Más detalles

INTRODUCCIÓN AL TRABAJO DE LABORATORIO

INTRODUCCIÓN AL TRABAJO DE LABORATORIO PRÁCTICA 1 INTRODUCCIÓN AL TRABAJO DE LABORATORIO OBJETIVOS 1. Manipular de manera adecuada el equipo de uso común en el laboratorio. 2. Ejecutar tareas básicas en la realización de experimentos. INTRODUCCIÓN

Más detalles

CROMATOGRAFÍA LÍQUIDA DE ADSORCIÓN EN COLUMNA (CC) Y CAPA FINA (TLC)

CROMATOGRAFÍA LÍQUIDA DE ADSORCIÓN EN COLUMNA (CC) Y CAPA FINA (TLC) PRÁCTICA 9: CROMATOGRAFÍA LÍQUIDA DE ADSORCIÓN EN COLUMNA (CC) Y CAPA FINA (TLC) 1. INTRODUCCIÓN La cromatografía es un método físico de separación basado en la diferencia de distribución de los componentes

Más detalles

PRACTICA N 2 SEPARACION DE MEZCLAS

PRACTICA N 2 SEPARACION DE MEZCLAS PRACTICA N 2 SEPARACION DE MEZCLAS I. OBJETIVO GENERAL Adquirir las destrezas necesaria en métodos de separación de mezclas. Específicamente los métodos de filtración, evaporación y sublimación. II. OBJETIVOS

Más detalles

Ciencias Naturales 5º Primaria Tema 7: La materia

Ciencias Naturales 5º Primaria Tema 7: La materia 1. La materia que nos rodea Propiedades generales de la materia Los objetos materiales tienes en común dos propiedades, que se llaman propiedades generales de la materia: Poseen masa. La masa es la cantidad

Más detalles

Práctica II: DENSIDAD Y HUMEDAD DEL AIRE

Práctica II: DENSIDAD Y HUMEDAD DEL AIRE Física Ambiental, I.T. Agrícola Práctica II: DENSIDAD Y HUMEDAD DEL AIRE Universidad de Huelva. Dpto. de Física Aplicada. Prácticas de Física Ambiental, I.T. Agrícola 1 3. Densidad y humedad del aire 3.1.

Más detalles

Actividad de Biología: Cromatografía de Pigmentos Vegetales Guía del Estudiante

Actividad de Biología: Cromatografía de Pigmentos Vegetales Guía del Estudiante Actividad de Biología: Cromatografía de Pigmentos Vegetales Guía del Estudiante Objetivos: Los estudiantes serán capaces de Explicar cuáles moléculas hacen que muchas de las plantas tengan hojas verdes

Más detalles

Se necesita un sistema de recogida y procesamiento. Volumétricos. Para otros usos

Se necesita un sistema de recogida y procesamiento. Volumétricos. Para otros usos Práctica 1.- Utillaje de laboratorio: El utillaje: Fungibles: materiales que no duran muchos tiempo. Ventajas Desventaja Desechable Menos riesgo de infección para el personal. Menos riesgo de contaminación

Más detalles

Soluto (g) Disolvente (g) Disolución (g) Concentración (% masa) Sal Agua Agua salada 10 100 110 9 09 5 20 25 20

Soluto (g) Disolvente (g) Disolución (g) Concentración (% masa) Sal Agua Agua salada 10 100 110 9 09 5 20 25 20 Soluciones de las actividades de la tercera unidad... 3º ESO 1.- Una vez vista la experiencia anterior de la fusión del chocolate, contesta a las siguientes cuestiones. Tiene el chocolate una temperatura

Más detalles

II. METODOLOGÍA. El proceso de elaboración del biodiesel se constituye de siete pasos fundamentales: 6.1. DETERMINACIÓN DE LOS GRAMOS DE CATALIZADOR

II. METODOLOGÍA. El proceso de elaboración del biodiesel se constituye de siete pasos fundamentales: 6.1. DETERMINACIÓN DE LOS GRAMOS DE CATALIZADOR II. METODOLOGÍA 6. PROCESO DE ELABORACIÓN El proceso de elaboración del biodiesel se constituye de siete pasos fundamentales: 1. Determinación de los gramos de catalizador 2. Preparación del Metóxido de

Más detalles

Anexo I. Instrucciones para la. realización de los experimentos. Experimento 1 PROPIEDADES FISICOQUÍMICAS DEL AGUA

Anexo I. Instrucciones para la. realización de los experimentos. Experimento 1 PROPIEDADES FISICOQUÍMICAS DEL AGUA Anexo I. Instrucciones para la realización de los experimentos Experimento 1 PROPIEDADES FISICOQUÍMICAS DEL AGUA EXPERIMENTO 1: SOLVENTE UNIVERSAL/TENSIÓN SUPERFICIAL OBJETIVO: Conseguir separar dos sustancias

Más detalles

TEMA 3. LA MATERIA: CÓMO SE PRESENTA

TEMA 3. LA MATERIA: CÓMO SE PRESENTA APUNTES FÍSICA Y QUÍMICA 3º ESO TEMA 3. LA MATERIA: CÓMO SE PRESENTA Completa el siguiente mapa conceptual MATERIA 1. Sustancias puras y mezclas. Elementos y compuestos Define: - Sustancia pura: - Elemento:

Más detalles

PURIFICACION DE LOS SÓLIDOS POR CRISTALIZACION

PURIFICACION DE LOS SÓLIDOS POR CRISTALIZACION PURIFICACION DE LOS SÓLIDOS POR CRISTALIZACION I. OBJETIVOS Poder lograr la purificación de la muestra experimentales. utilizada reconociendo procedimientos Obtener cristales de acetanilida. II. FUNDAMENTO

Más detalles

Biología. Guía de laboratorio. Primer año

Biología. Guía de laboratorio. Primer año Biología Guía de laboratorio Primer año Profesora: Marisa Travaglianti Trabajo práctico N o 1 Elementos de laboratorio: Objetivo: Reconocer los distintos materiales del laboratorio. Saber para que se utilizan

Más detalles

Ablandamiento de agua mediante el uso de resinas de intercambio iónico.

Ablandamiento de agua mediante el uso de resinas de intercambio iónico. Ablandamiento de agua por intercambio iónica página 1 Ablandamiento de agua mediante el uso de resinas de intercambio iónico. (Fuentes varias) Algunos conceptos previos: sales, iones y solubilidad. Que

Más detalles

NMX-F-070-1964. MÉTODO DE PRUEBA PARA LA DETERMINACIÓN DE TIAMINA. THIAMINE DETERMINATION. TEST METHOD. NORMAS MEXICANAS. DIRECCIÓN GENERAL DE NORMAS.

NMX-F-070-1964. MÉTODO DE PRUEBA PARA LA DETERMINACIÓN DE TIAMINA. THIAMINE DETERMINATION. TEST METHOD. NORMAS MEXICANAS. DIRECCIÓN GENERAL DE NORMAS. NMX-F-070-1964. MÉTODO DE PRUEBA PARA LA DETERMINACIÓN DE TIAMINA. THIAMINE DETERMINATION. TEST METHOD. NORMAS MEXICANAS. DIRECCIÓN GENERAL DE NORMAS. ASUNTO Con fundamento en lo dispuesto en los Artículos

Más detalles

MEZCLAS Y SUSTANCIAS PURAS

MEZCLAS Y SUSTANCIAS PURAS MEZCLAS Y SUSTANCIAS PURAS CLASIFICACIÓN DE LA MATERIA MEZCLA HETEROGÉNEA: Es aquella en la que se aprecia, a simple vista, que está formada por diferentes sustancias. Ej: Granito, Búho, conglomerado.

Más detalles

DETERMINACIÓN DE LA REACTIVIDAD AGREGADO / ALCALI (MÉTODO QUÍMICO) MTC E 217 2000

DETERMINACIÓN DE LA REACTIVIDAD AGREGADO / ALCALI (MÉTODO QUÍMICO) MTC E 217 2000 DETERMINACIÓN DE LA REACTIVIDAD AGREGADO / ALCALI (MÉTODO QUÍMICO) MTC E 217 2000 Este Modo Operativo está basado en la Norma ASTM C 289, la misma que se ha adaptado al nivel de implementación y a las

Más detalles

Estas propiedades toman el nombre de CONSTANTES FISICAS porque son prácticamente invariables características de la sustancia.

Estas propiedades toman el nombre de CONSTANTES FISICAS porque son prácticamente invariables características de la sustancia. DETERMINACION DE LAS CONSTANTES FISICAS I. OBJETIVOS - Determinar el punto de ebullición y el punto de fusión con la finalidad de identificar a un compuesto orgánico. II. MARCO TEORICO: CONSTANTES FISICAS:

Más detalles

ELECTROLISIS DE UNA DISOLUCIÓN DE YODURO DE POTASIO. PILA ELECTROLÍTICA

ELECTROLISIS DE UNA DISOLUCIÓN DE YODURO DE POTASIO. PILA ELECTROLÍTICA VIII 1 PRÁCTICA 8 ELECTROLISIS DE UNA DISOLUCIÓN DE YODURO DE POTASIO. PILA ELECTROLÍTICA En esta práctica estudiaremos algunos aspectos prácticos de las reacciones de oxidación reducción que no son espontáneas.

Más detalles

PRÁCTICA 1. PREPARACIÓN DE DISOLUCIONES.

PRÁCTICA 1. PREPARACIÓN DE DISOLUCIONES. PRÁCTICA 1. PREPARACIÓN DE DISOLUCIONES. OBJETIVOS 1.- Familiarizarse con el material de laboratorio. 2.- Aprender a preparar disoluciones de una concentración determinada. 3.- Manejar las distintas formas

Más detalles

MATERIALES DE LABORATORIO

MATERIALES DE LABORATORIO MATERIALES DE LABORATORIO 1. DESECADORA: Aparato que consta de un recipiente cerrado que contiene una sustancia deshidratante, quedando el aire interior totalmente seco. Sirve para dejar enfriar en atmósfera

Más detalles

Las técnicas para separar mezclas no pueden alterar la naturaleza de las sustancias que se desea separar.

Las técnicas para separar mezclas no pueden alterar la naturaleza de las sustancias que se desea separar. CONTENIDOS: Las técnicas para separar mezclas no pueden alterar la naturaleza de las sustancias que se desea separar. 1. Tamización 2. Filtración 3. Separación magnética 4. Decantación 5. Cristalización

Más detalles

EXTRACCIÓN CON DISOLVENTES ACTIVOS.

EXTRACCIÓN CON DISOLVENTES ACTIVOS. EXTRACCIÓN CON DISOLVENTES ACTIVOS. OBJETIVOS a) Conocer la técnica de extracción como método de separación y purificación de sustancias integrantes de una mezcla. b) Elegir los disolventes adecuados para

Más detalles

JULIO 2012. FASE ESPECÍFICA. QUÍMICA.

JULIO 2012. FASE ESPECÍFICA. QUÍMICA. JULIO 2012. FASE ESPECÍFICA. QUÍMICA. OPCIÓN A 1. (2,5 puntos) Se añaden 10 mg de carbonato de estroncio sólido, SrCO 3 (s), a 2 L de agua pura. Calcule la cantidad de SrCO 3 (s) que queda sin disolver.

Más detalles

Normas de seguridad Laboratorio de Química Física Universidad Pablo de Olavide NORMAS DE SEGURIDAD

Normas de seguridad Laboratorio de Química Física Universidad Pablo de Olavide NORMAS DE SEGURIDAD NORMAS DE SEGURIDAD El laboratorio debe ser un lugar seguro para trabajar donde no se deben permitir descuidos o bromas. Para ello se tendrán siempre presente los posibles peligros asociados al trabajo

Más detalles

Práctica 1A Ensayo de Granulometría Prácticas de Laboratorio

Práctica 1A Ensayo de Granulometría Prácticas de Laboratorio 1A ENSAYO DE GRANULOMETRÍA 1. TIPOS DE SUELO. RECONOCIMIENTO VISUAL Desde un punto de vista geotécnico, existen cuatro grandes tipos de suelos: gravas, arenas, limos y arcillas, caracterizados principalmente

Más detalles

PRÁCTICA 7. PREPARACION DEL TIOSULFATO DE SODIO (Na 2 S 2 O 3 )

PRÁCTICA 7. PREPARACION DEL TIOSULFATO DE SODIO (Na 2 S 2 O 3 ) 40 PRÁCTICA 7 PREPARACION DEL TIOSULFATO DE SODIO (Na 2 S 2 O 3 ) PROPÓSITO GENERAL Familiarizar al estudiante con la química de los elementos del grupo 16, específicamente a través de la síntesis y estudio

Más detalles

MMP. MÉTODOS DE MUESTREO Y PRUEBA DE MATERIALES

MMP. MÉTODOS DE MUESTREO Y PRUEBA DE MATERIALES LIBRO: PARTE: TÍTULO: CAPÍTULO: MMP. MÉTODOS DE MUESTREO Y PRUEBA DE MATERIALES 5. MATERIALES PARA SEÑALAMIENTO Y DISPOSITIVOS DE SEGURIDAD 01. Pinturas para Señalamiento 003. Contenido de Pigmento en

Más detalles

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA PROGRAMA DE INGENIERIA DE ALIMENTOS 211612 TRANSFERENCIA DE MASA ACTIVIDAD 11 RECONOCIMIENTO UNIDAD 3 BOGOTA D.C. Extracción líquido - líquido La extracción líquido-líquido,

Más detalles

Práctica No 1. Separación de Cationes por Cromatografía de Papel

Práctica No 1. Separación de Cationes por Cromatografía de Papel Práctica No 1 Separación de Cationes por Cromatografía de Papel La cromatografía es un técnica de separación basada en el principio de retención selectiva, que permite separar los distintos componentes

Más detalles

EXTRACCION CON SOLVENTES. Esp. Farm. María Alejandra

EXTRACCION CON SOLVENTES. Esp. Farm. María Alejandra EXTRACCION CON SOLVENTES Esp. Farm. María a Alejandra EXTRACCION CON SOLVENTES Se empezó a emplear durante la segunda guerra mundial. El motor de este cambio de procesos fue la obtención de metales nucleares

Más detalles

ESTADOS DE AGREGACIÓN DE LA MATERIA

ESTADOS DE AGREGACIÓN DE LA MATERIA ESADOS DE AGREGACIÓN DE LA MAERIA. Propiedades generales de la materia La materia es todo aquello que tiene masa y volumen. La masa se define como la cantidad de materia de un cuerpo. Se mide en kg. El

Más detalles

2.2 SISTEMAS HETEROGÉNEOS.

2.2 SISTEMAS HETEROGÉNEOS. 2.2 SISTEMAS HETEROGÉNEOS. 2.2.1 MEZCLAS. En algunos cuerpos y sistemas materiales podemos distinguir perfectamente que están compuestos por varias sustancias distintas. En el bolígrafo puedes distinguir

Más detalles

PRACTICA N 1 RECONOCIMIENTO DEL EQUIPO DE LABORATORIO

PRACTICA N 1 RECONOCIMIENTO DEL EQUIPO DE LABORATORIO PRACTICA N 1 RECONOCIMIENTO DEL EQUIPO DE LABORATORIO Objetivo: Conocer detalladamente cada instrumento utilizado en las prácticas de microbiología (forma, uso, material con el que está elaborado etc.).

Más detalles

PRACTICAS DE LABORATORIO PARA ALUMNADO DE SECUNDARIA

PRACTICAS DE LABORATORIO PARA ALUMNADO DE SECUNDARIA PRACTICAS DE LABORATORIO PARA ALUMNADO DE SECUNDARIA AUTORÍA ADELA CARRETERO LÓPEZ TEMÁTICA DENSIDAD DE LA MATERIA, TÉCNICAS DE SEPARACIÓN DE MEZCLAS ETAPA SECUNDARIA Resumen La realización de prácticas

Más detalles

Solubilidad. y se representa por.

Solubilidad. y se representa por. Solubilidad Solubilidad. La solubilidad mide la cantidad máxima de soluto capaz de disolverse en una cantidad definida de disolvente, a una temperatura determinada, y formar un sistema estable que se denomina

Más detalles

GUIA DE MANEJO DE RESIDUOS QUÍMICOS

GUIA DE MANEJO DE RESIDUOS QUÍMICOS La Universidad Autónoma de Occidente, mantendrá programas y operaciones para minimizar los efectos de las sustancias peligrosas y residuos peligrosos sobre el medio ambiente. Cuando se genere un residuo

Más detalles

UNIVERSIDAD TECNOLOGICA NACIONAL FACULTAD REGIONAL ROSARIO DEPARTAMENTO DE INGENIERIA QUIMICA CATEDRA DE QUIMICA GENERAL

UNIVERSIDAD TECNOLOGICA NACIONAL FACULTAD REGIONAL ROSARIO DEPARTAMENTO DE INGENIERIA QUIMICA CATEDRA DE QUIMICA GENERAL UNIVERSIDAD TECNOLOGICA NACIONAL FACULTAD REGIONAL ROSARIO DEPARTAMENTO DE INGENIERIA QUIMICA CATEDRA DE QUIMICA GENERAL TRABAJO PRACTICO - PUNTO DE FUSION OBJETIVO: Determinar el punto de fusión (o solidificación)

Más detalles

DISOLVENTE SOLUTO EJEMPLOS

DISOLVENTE SOLUTO EJEMPLOS SOLUCIONES Una solución es una mezcla homogénea de dos o más sustancias. Soluto solvente odisolvente. Las cantidades relativas de los componentes están determinadas por la concentración de una solución

Más detalles

PRÁCTICAS DE LABORATORIO QUÍMICA EN INGENIERÍA

PRÁCTICAS DE LABORATORIO QUÍMICA EN INGENIERÍA PRÁCTICAS DE LABORATORIO QUÍMICA EN INGENIERÍA DEPARTAMENTO DE QUÍMICA ORGÁNICA ESCUELA DE INGENIERÍAS INDUSTRIALES UNIVERSIDAD DE VALLADOLID CURSO 2014 2015 ÍNDICE Índice ii Introducción: Prácticas de

Más detalles

SEPARACIÓN DE SUSTANCIAS. Separación de una mezcla heterogénea mediante un imán

SEPARACIÓN DE SUSTANCIAS. Separación de una mezcla heterogénea mediante un imán PRÁCTICA II: SEPARACIÓN DE SUSTANCIAS Separación de una mezcla heterogénea mediante un imán conocer el concepto de magnetismo comprobar que cuando una mezcla contiene metales magnéticos, como el hierro,

Más detalles

LABORATORIO DE QUÍMIA FACULTAD DE FARMACIA DESTILACIÓN

LABORATORIO DE QUÍMIA FACULTAD DE FARMACIA DESTILACIÓN LABORATORIO DE QUÍMIA FACULTAD DE FARMACIA DESTILACIÓN 1. Introducción La destilación es un proceso mediante el cual un líquido se calienta hasta hacerlo pasar a estado gaseoso. A continuación, los vapores

Más detalles

PRÁCTICA Nº 5 REACCIONES DE POLIMERIZACIÓN. Objetivos

PRÁCTICA Nº 5 REACCIONES DE POLIMERIZACIÓN. Objetivos PRÁCTICA Nº 5 REACCINES DE PLIMERIZACIÓN bjetivos - Realizar un ejemplo práctico de reacción de polimerización por condensación: Preparación de un poliéster. Preparación de una poliamida. - Resaltar la

Más detalles

Condensación y ebullición ING Roxsana Romero Ariza Junio 2013

Condensación y ebullición ING Roxsana Romero Ariza Junio 2013 Condensación y ebullición ING Roxsana Romero Ariza Junio 2013 EBULLICIÓN La transferencia de calor a un líquido en ebullición es muy importante en la evaporación y destilación, así como en otros tipos

Más detalles

4027 Síntesis de 11-cloroundec-1-eno a partir de 10-undecen-1- ol

4027 Síntesis de 11-cloroundec-1-eno a partir de 10-undecen-1- ol 4027 Síntesis de 11-cloroundec-1-eno a partir de 10-undecen-1- ol OH SOCl 2 Cl + HCl + SO 2 C 11 H 22 O C 11 H 21 Cl (170.3) (119.0) (188.7) (36.5) (64.1) Clasificación Tipos de reacción y clases de productos

Más detalles

Instalaciones de tratamiento de agua de alimentación de caldera

Instalaciones de tratamiento de agua de alimentación de caldera Instalaciones de tratamiento de agua de alimentación de caldera Introducción La calidad del agua de alimentación a la caldera repercute directamente sobre el buen funcionamiento de la misma así como sobre

Más detalles

La Absorción del Agua

La Absorción del Agua La Absorción del Agua Importancia del Agua en las Plantas Es el cons5tuyente principal del protoplasma celular, en ocasiones representa hasta el 95% del peso total de la planta. Es el solvente en el que

Más detalles

Realizando una pequeña investigación

Realizando una pequeña investigación Realizando una pequeña investigación 1. Introducción: Investigación realizada 1.1 Objetivo El Objetivo de esta investigación ha sido estudiar de qué factores depende la corrosión del hierro. 1.2 Hipótesis

Más detalles

a) Los aldehídos y las cetonas con hidrógenos unidos al carbono & al carbonilo, sufren reacciones de condensación aldólica.

a) Los aldehídos y las cetonas con hidrógenos unidos al carbono & al carbonilo, sufren reacciones de condensación aldólica. PRACTICA VII CNDENSACIN DE CLAISEN-SCHMIDT BTENCIN DE DIBENZALACETNA I. BJETIVS a) Efectuar una condensación aldólica cruzada. b) Efectuar reacciones de formación de enlaces C-C. c) Estudiar reacciones

Más detalles

Densidad. Objetivos. Introducción. Equipo y Materiales. Laboratorio de Mecánica y fluidos Práctica 10

Densidad. Objetivos. Introducción. Equipo y Materiales. Laboratorio de Mecánica y fluidos Práctica 10 Densidad Objetivos Determinación de densidad de sustancias sólidas, liquidas y de soluciones. Determinar la densidad de un líquido y un sólido midiendo su masa y su volumen. Deteminar la la variación de

Más detalles

Leidy Diana Ardila Leal Docente. INTRODUCCIÓN

Leidy Diana Ardila Leal Docente. INTRODUCCIÓN GUIA DE LABORATORIO PRACTICA 1.1 RECONOCIMIENTO DE MATERIALES DE LABORATORIO Y TECNICAS DE MEDICIÓN PROGRAMA DE ENFERMERIA CURSO INTEGRADO DE PROCESOS BIOLOGICOS Leidy Diana Ardila Leal Docente. INTRODUCCIÓN

Más detalles

MEDICIÓN DE PRESIÓN Y TEMPERATURA DURANTE UN CAMBIO DE FASE

MEDICIÓN DE PRESIÓN Y TEMPERATURA DURANTE UN CAMBIO DE FASE MEDICIÓN DE PRESIÓN Y TEMPERATURA DURANTE UN CAMBIO DE FASE OBJETIVOS: Observar un cambio de fase líquido-vapor del etanol, y un cambio de fase vapor-líquido del etanol. Comprender experimentalmente el

Más detalles

CAPITULO 4 FLUIDIZACIÓN EMPLEANDO VAPOR SOBRECALENTADO. Potter [10], ha demostrado en una planta piloto que materiales sensibles a la

CAPITULO 4 FLUIDIZACIÓN EMPLEANDO VAPOR SOBRECALENTADO. Potter [10], ha demostrado en una planta piloto que materiales sensibles a la 34 CAPITULO 4 FLUIDIZACIÓN EMPLEANDO VAPOR SOBRECALENTADO 4.1 Lecho fluidizado con vapor sobrecalentado Potter [10], ha demostrado en una planta piloto que materiales sensibles a la temperatura pueden

Más detalles

UNIVERSIDAD AUTONOMA DE CHIHUAHUA

UNIVERSIDAD AUTONOMA DE CHIHUAHUA UNIVERSIDAD AUTONOMA DE CHIHUAHUA FACULTAD DE CIENCIAS QUIMICAS OPERACIONES UNITARIAS ll Ensayo Integrantes: Areli Prieto Velo 232644 Juan Carlos Calderón Villa 232654 Víctor Gutiérrez 245369 Fernando

Más detalles