Resonancia en serie. Fundamento

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Resonancia en serie. Fundamento"

Transcripción

1 Resonancia en serie Fundamento En un circuito de corriente alterna están situados en serie: una resistencia, un condensador y una autoinducción (cuya resistencia óhmica resulta despreciable, frente a los valores de los demás parámetros resistivos del circuito). Designamos como: R, a la resistencia óhmica. X L = L = L 2 f, a la reactancia inductiva. X C 1 1 C C 2 f, a la reactancia capacitiva. Debido a que las caídas de tensión en cada elemento no están en fase, las impedancias del circuito se pueden representar mediante el diagrama de la fig.1a. La impedancia total del circuito Z, se calcula sumando geométricamente estas tres magnitudes. R es independiente de la frecuencia de la corriente alterna, pero tanto, X L como X C dependen de ella. Fig.1a De la observación del diagrama y de las fórmulas se puede concluir, que existe un valor de la frecuencia que iguala la reactancia inductiva con la reactancia capacitiva, ésta se conoce como la frecuencia de resonancia del circuito f r. Su valor se obtiene de igualar. 1 1 L 2 fr fr C 2 f 2 L C r Teniendo en cuenta la situación en el diagrama de X L y X C, se deduce que para la frecuencia de resonancia la impedancia del circuito es igual a la resistencia óhmica, y en consecuencia, la intensidad debe ser máxima para cada valor de la tensión alterna aplicada. En nuestro experimento montamos un circuito serie como indica la fig.1b. En éste, mediremos la frecuencia, la intensidad de la corriente y el voltaje. A partir de estos valores calcularemos la frecuencia de resonancia y el valor del coeficiente de autoinducción de la bobina. Fig.1b

2 La fotografía 1, es una vista del dispositivo de la fig.1b, señalando los nombres de los aparatos. La fotografía 2 es una vista superior del montaje eléctrico y se ha hecho así para que puedan verse claramente, la disposición de los componentes del circuito y además pueda leerse con facilidad las lecturas de los aparatos. Las medidas son: frecuencia leída en el dial 80*10=800 Hz, 21,3 ma y 3,00 V. Estas tres medidas, junto con otras que se han realizado están en la sección Conjunto de fotografías de diversas medidas. Fotografía 1 del montaje del circuito, señalando el nombre de cada uno de sus componentes En la sección designada como Conjunto de fotografías de diversas medidas se leerá: En el dial del generador de frecuencias, la frecuencia en Hz, La intensidad de la corriente en el amperímetro, en miliamperios. El voltaje en el voltímetro, en voltios.

3 Observe que a la derecha del dial circular del generador de frecuencias existe una pequeña palanca que tiene tres posiciones que indican: x1, x10, x100, lo que significa que la lectura del dial grande se multiplica por el valor que indique la posición de la palanca. Los valores leídos de la frecuencia deben ser corregidos de acuerdo con los datos del experimento titulado calibrado del generador de frecuencias. Si este experimento no lo ha realizado, en él se determina que la relación entre las frecuencias leídas en el dial y las frecuencias reales (o corregidas), se encuentran relacionadas mediante las ecuaciones Con la palanca en x1, f 0,9339 f 14,3 real leída Con la palanca en x10 f 0,9947 f 145,8 real leída Con la palanca en x100 f 0,9426 f 1654 real leída Fotografía 2 para la lectura de los instrumentos de medida

4 Conjunto de fotografías de diversas medidas Medidas Lectura en el dial del generador de frecuencias/hz I / ma V/V 1ª Medida 2ª Medida 3ª Medida 4ª Medida

5 Conjunto de fotografías de diversas medidas Medidas Lectura en el dial del generador de frecuencias/hz I / ma V/V 5ª Medida 6ª Medida 7ª Medida 8ª Medida 9ª Medida

6 Tabla 1 Frecuencia, leída en el dial f/hz Frecuencia corregida f/khz Intensidad eficaz I/mA Voltaje eficaz V efz /V Intensidad eficaz I/A Impedancia total del circuito V( voltios ) Z( ohmios ) I( amperios ) Gráficas a) Represente en el eje de abscisas la frecuencia real (corregida) y en el eje de ordenadas la impedancia total del circuito. Observe la situación de los puntos de la gráfica y estime la frecuencia de resonancia. b) Represente en el eje de abscisas la frecuencia real (corregida) y en el eje de ordenadas la intensidad de la corriente en el circuito. Observe la situación de los puntos de la gráfica y estime la frecuencia de resonancia. c) Teniendo en cuenta que la capacidad del condensador, según el fabricante es de 1 F, y la frecuencia de resonancia obtenida, deduzca el coeficiente de autoinducción de la bobina. d) Considerando que el potencial aplicado es 3,0 V, la resistencia óhmica del circuito 100, la capacidad del condensador 1F y el coeficiente de autoinducción de la bobina L = 0,015 H. Aplique la ecuación de la intensidad. I V V ZT 2 1 R Lω Cω 2 (1)

7 y con la hoja de cálculo dibuje la curva intensidad del circuito (Eje Y) frente a frecuencia de la corriente en el intervalo de 200 Hz a 3400 Hz. Suponga ahora que la resistencia óhmica fuese 25, conservándose el potencial aplicado y siendo el mismo condensador y la misma bobina. Dibuje en el mismo gráfico anterior la nueva curva intensidad-frecuencia. e) Utilice la ecuación (1) para representar, en un mismo gráfico, la intensidad frente a la frecuencia para distintos voltajes aplicados (V = 1, 3, 5 y 7 voltios ). En todos los casos se utiliza la bobina y el condensador del apartado c). Utilice el mismo intervalo de frecuencias que en el apartado c), esto es, entre 200 Hz y 3400 Hz.. Deduzca para qué valor de la frecuencia de resonancia, la intensidad es máxima en todos los casos.

CIRCUITO DE CORRIENTE ALTERNA EN PARALELO RC

CIRCUITO DE CORRIENTE ALTERNA EN PARALELO RC CIRCUITO DE CORRIENTE ALTERNA EN PARALELO RC Fundamento En este circuito de corriente alterna, se sitúan una resistencia y un condensador en paralelo y se colocan tres amperímetros como indica la fig..

Más detalles

Circuito de corriente alterna con autoinducción Fundamento

Circuito de corriente alterna con autoinducción Fundamento Circuito de corriente alterna con autoinducción Fundamento En un circuito de corriente continua, el cociente entre la caída de tensión en una autoinducción (bobina) y la intensidad que circula por ella

Más detalles

La fuente de corriente continua variable nos permite cambiar las magnitudes anteriores.

La fuente de corriente continua variable nos permite cambiar las magnitudes anteriores. CIRCUITO ELÉCTRICO 1 (R constante) Fundamento Un circuito eléctrico sencillo consta de una fuente de corriente continua variable (F), un interruptor (I), un amperímetro (A) una resistencia (R) y un voltímetro

Más detalles

COLECCIÓN DE PROBLEMAS IV REPASO

COLECCIÓN DE PROBLEMAS IV REPASO COLECCIÓN DE PROBLEMAS I REPASO 1. Una tensión alterna de 100Hz tiene un valor eficaz de 10. Deducir la expresión de la corriente instantánea que circularía por una bobina de L=3H si se le aplica dicha

Más detalles

C.A. : Circuito con Resistencia R

C.A. : Circuito con Resistencia R Teoría sobre c.a obtenida de la página web - 1 - C.A. : Circuito con Resistencia R Intensidad Instantánea i(t) e Intensidad Eficaz I v(t) = V sen t) V I = ----- R V = R I i(t) = I sen t) V R = ----- I

Más detalles

Ejercicios corriente alterna

Ejercicios corriente alterna Ejercicios corriente alterna 1. EJERCICIO 2. (2.5 puntos) A una resistencia de 15Ω en serie con una bobina de 200 mh y un condensador de 100µF se aplica una tensión alterna de 127 V, 50 Hz. Hallar: a)

Más detalles

CIRCUITO DE CORRIENTE ALTERNA CON RESISTENCIA Fundamento

CIRCUITO DE CORRIENTE ALTERNA CON RESISTENCIA Fundamento CIRCUIO DE CORRIENE ALERNA CON RESISENCIA Fundamento En un circuito de corriente continua, el cociente entre la caída de tensión en una resistencia pura y la intensidad que circula por ella es constante

Más detalles

MEDICIONES ELÉCTRICAS I

MEDICIONES ELÉCTRICAS I 1- Para medir la impedancia de entrada de un circuito lineal se realiza el montaje de la Fig. 1. El generador de funciones se ajusta para que entregue en vacío una señal sinusoidal de 2 V. de tensión pico.

Más detalles

Universidad Nacional Autónoma de Honduras. Escuela de Física. Electricidad y magnetismo II Fs-415. Filtros Eléctricos y sus aplicaciones

Universidad Nacional Autónoma de Honduras. Escuela de Física. Electricidad y magnetismo II Fs-415. Filtros Eléctricos y sus aplicaciones Universidad Nacional Autónoma de Honduras Escuela de Física Electricidad y magnetismo II Fs-415 Filtros Eléctricos y sus aplicaciones Introducción: Todo circuito eléctrico que tenga incluidas capacitancias

Más detalles

CIRCUITOS DE CORRIENTE ALTERNA EN SERIE

CIRCUITOS DE CORRIENTE ALTERNA EN SERIE CIRCUITOS DE CORRIENTE ALTERNA EN SERIE I. OBJETIVOS: Estudiar las relaciones entre el voltaje y la corriente en circuitos de c.a. en serie de R, X L y X C. Analizar en forma experimental las características

Más detalles

1º- CORRIENTE ALTERNA

1º- CORRIENTE ALTERNA º- CORRIENTE ALTERNA Se denomina corriente alterna a toda corriente eléctrica que cambia de polaridad periódicamente, pero en la práctica toma este nombre la corriente alterna de tipo senoidal: e Voltaje

Más detalles

BLOQUE III CIRCUITOS ELÉCTRICOS EN CA

BLOQUE III CIRCUITOS ELÉCTRICOS EN CA 1.- Una tensión viene dada por la expresión es de: v(t)=240 sen( t+30). Si se aplica la tensión v(t) a un receptor puramente inductivo cuya impedancia es de j2 2 Ω, hallar el valor de la intensidad instantánea

Más detalles

CAMPOS ELECTROMAGNÉTICOS DEPENDIENTES DEL TIEMPO

CAMPOS ELECTROMAGNÉTICOS DEPENDIENTES DEL TIEMPO CAMPOS ELECTROMAGNÉTICOS DEPENDIENTES DEL TIEMPO PROBLEMAS PROPUESTOS 1:.Se coloca una bobina de 200 vueltas y 0,1 m de radio perpendicular a un campo magnético uniforme de 0,2 T. Encontrar la fem inducida

Más detalles

Corriente y Circuitos Eléctricos

Corriente y Circuitos Eléctricos Módulo: Medición y Análisis de Circuitos Eléctricos Unidad 1 Unidades y Mediciones Eléctricas Responda en su cuaderno las siguientes preguntas: Cuestionario 1 1.- Defina los siguientes conceptos, indicando

Más detalles

LEY DE OHM EN CORRIENTE CONTINUA

LEY DE OHM EN CORRIENTE CONTINUA LEY DE OHM EN CORRIENTE CONTINA "La intensidad de corriente que circula por un circuito de C. C. es directamente proporcional a la tensión aplicada, e inversamente proporcional a la Resistencia R del circuito."

Más detalles

PRÁCTICA NÚMERO 6. ESTUDIO DE UN CIRCUITO RLC EN CORRIENTE ALTERNA.

PRÁCTICA NÚMERO 6. ESTUDIO DE UN CIRCUITO RLC EN CORRIENTE ALTERNA. PRÁCTCA NÚMERO 6. ESTUDO DE UN CRCUTO RLC EN CORRENTE ALTERNA. 6.. Análisis Teórico del Circuito. En las prácticas anteriores se ha analizado el comportamiento del circuito RLC cuando este es alimentado

Más detalles

Voltaje máximo en un circuito de corriente alterna. Montaje

Voltaje máximo en un circuito de corriente alterna. Montaje Voltaje máximo en un circuito de corriente alterna Chinchetas Hilo de cobre Dos polímetros digitales s comerciales de 100 Ω, 470 Ω, 1000 Ω, 3300 Ω y 8700 Ω Tres condensadores de 1µ F Fuente de alimentación

Más detalles

LA CORRIENTE ALTERNA

LA CORRIENTE ALTERNA LA CORRIENTE ALTERNA Índice INTRODUCCIÓN VENTAJAS DE LA C.A. PRODUCCIÓN DE UNA C.A. VALORES CARACTERÍSTICOS DE C.A. REPRESENTACIÓN DE UNA MAGNITUD ALTERNA SENOIDAL DESFASE ENTRE MAGNITUDES ALTERNAS RECEPTORES

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS MATERIA: ELECTROTECNIA OFICIALES DE GRADO (MODELO DE EXAMEN) Curso 2013-2014 INSTRUCCIONES GENERALES Y

Más detalles

FISICA GENERAL III 2012 Guía de Trabajo Practico No 9 ANÁLISIS DE CIRCUITOS RL, RC Y RCL SERIE Y PARALELO. R. Comes y R. Bürgesser

FISICA GENERAL III 2012 Guía de Trabajo Practico No 9 ANÁLISIS DE CIRCUITOS RL, RC Y RCL SERIE Y PARALELO. R. Comes y R. Bürgesser FISICA GENERAL III 2012 Guía de Trabajo Practico No 9 ANÁLISIS DE CIRCUITOS RL, RC Y RCL SERIE Y PARALELO. R. Comes y R. Bürgesser Objetivos: Estudiar el comportamiento de distintos elementos (resistores,

Más detalles

Resonancia en Circuito RLC en Serie AC

Resonancia en Circuito RLC en Serie AC Laboratorio 5 Resonancia en Circuito RLC en Serie AC 5.1 Objetivos 1. Determinar las caracteristicas de un circuito resonante RLC en serie. 2. Construir las curvas de corriente, voltaje capacitivo e inductivo

Más detalles

Práctica E1: Características de un circuito serie RLC

Práctica E1: Características de un circuito serie RLC aracterísticas de un circuito serie : Práctica E1 Práctica E1: aracterísticas de un circuito serie 1. Objetivos os objetivos de la práctica son: 1.- Medida del coeficiente de autoinducción de una bobina..-

Más detalles

Cálculo aproximado de la carga específica del electrón Fundamento

Cálculo aproximado de la carga específica del electrón Fundamento Cálculo aproximado de la carga específica del electrón Fundamento La medida de la carga específica del electrón, esto es, la relación entre su carga y su masa, se realizó por vez primera en los años ochenta

Más detalles

ALTERNA (III) TRIFÁSICA: Problemas de aplicación

ALTERNA (III) TRIFÁSICA: Problemas de aplicación ALTERNA (III) TRIFÁSICA: Problemas de aplicación 1º.- Determinar la tensión compuesta que corresponde a un sistema trifásico que posee una tensión simple de 127 V. Solución: 220 V 2º.- Si la tensión de

Más detalles

TEMA 6 ELECTROACÚSTICA. Sonorización industrial y de espectáculos

TEMA 6 ELECTROACÚSTICA. Sonorización industrial y de espectáculos TEMA 6 ELECTROACÚSTICA Sonorización industrial y de espectáculos Ley de Ohm La intensidad de corriente que circula en un circuito es directamente proporcional al voltaje aplicado e inversamente proporcional

Más detalles

En un circuito de CA los generadores suministran energía que es absorbida por los elementos pasivos (R, L y C). Esta energía absorbida puede:

En un circuito de CA los generadores suministran energía que es absorbida por los elementos pasivos (R, L y C). Esta energía absorbida puede: www.clasesalacarta.com 1 Elementos Lineales Tema 7.- CA Elementos Lineales Cuando se aplica una tensión alterna con forma de onda senoidal a los bornes de un receptor eléctrico, circula por él una corriente

Más detalles

APELLIDOS: NOMBRE: TEORÍA (Responder Razonadamente)

APELLIDOS: NOMBRE: TEORÍA (Responder Razonadamente) CURSO 12-13. 2º PARCIAL, 22 de Enero de 2.013. Curso de Adaptación al Grado en Tecnologías Industriales. Asignatura: MAQUINAS Y ACCIONAMIENTOS ELECTRICOS TEORÍA (Responder Razonadamente) 1.- La máquina

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBS DE CCESO L UNIERSIDD L.O.G.S.E CURSO 2004-2005 - CONOCTORI: ELECTROTECNI EL LUMNO ELEGIRÁ UNO DE LOS DOS MODELOS Criterios de calificación.- Expresión clara y precisa dentro del lenguaje técnico

Más detalles

9 José Fco. Gómez Glez., Benjamín Glez. Díaz, María de la Peña Fabiani, Ernesto Pereda de Pablo

9 José Fco. Gómez Glez., Benjamín Glez. Díaz, María de la Peña Fabiani, Ernesto Pereda de Pablo PROBLEMAS DE CIRCUITOS EN CORRIENTE ALTERNA 25. Una fuente de voltaje senoidal, de amplitud Vm = 200 V y frecuencia f=500 Hz toma el valor v(t)=100 V para t=0. Determinar la dependencia del voltaje en

Más detalles

CORRIENTE CONTINUA II : CURVA CARACTERÍSTICA DE UNA LÁMPARA

CORRIENTE CONTINUA II : CURVA CARACTERÍSTICA DE UNA LÁMPARA eman ta zabal zazu Departamento de Física de la Materia Condensada universidad del país vasco euskal herriko unibertsitatea FACULTAD DE CIENCIA Y TECNOLOGÍA UNIVERSIDAD DEL PAÍS VASCO DEPARTAMENTO de FÍSICA

Más detalles

CIRCUITOS DE CORRIENTE ALTERNA EN PARALELO

CIRCUITOS DE CORRIENTE ALTERNA EN PARALELO CIRCUITOS DE CORRIENTE ALTERNA EN PARALELO I. OBJETIVOS: Estudiar el comportamiento de un circuito en paralelo R, X L Y X C para determinar la relación de la corriente. Tener en consideración los valores

Más detalles

III. Aparatos de medición

III. Aparatos de medición III. Aparatos de medición Voltímetro - Amperímetro - Ohmímetro Objetivos Conocer y manejar el multímetro digital para hacer mediciones de voltaje, corriente y resistencia en un circuito eléctrico que contiene

Más detalles

y e 2 conectadas a los anillos metálicos, como muestra la figura Φ 1

y e 2 conectadas a los anillos metálicos, como muestra la figura Φ 1 5.7- Producción de corriente alterna Para que circule permanentemente una corriente eléctrica en el seno de un conductor metálico es necesario mantener un campo eléctrico en su interior, lo cual requiere

Más detalles

Analizar las características de un circuito en serie y paralelo. Hacer una buena conexión y el uso correcto del vatímetro.

Analizar las características de un circuito en serie y paralelo. Hacer una buena conexión y el uso correcto del vatímetro. CIRCUITO SERIE - PARALELO Y MEDIDA DE LA POTENCIA OBJETIVOS: Analizar las características de un circuito en serie y paralelo. Hacer una buena conexión y el uso correcto del vatímetro. FUNDAMENTO TEORICO:

Más detalles

EL CIRCUITO ELÉCTRICO

EL CIRCUITO ELÉCTRICO EL CIRCUITO ELÉCTRICO -ELEMENTOS DE UN CIRCUITO -MAGNITUDES ELÉCTRICAS -LEY DE OHM -ASOCIACIÓN DE ELEMENTOS -TIPOS DE CORRIENTE -ENERGÍA ELÉCTRICA. POTENCIA -EFECTOS DE LA CORRIENTE ELÉCTRICA 1. EL CIRCUITO

Más detalles

1º. CIRCUITO CON R: Empezaremos con un circuito formado por una resistencia alimentada por una fuente de tensión alterna senoidal:

1º. CIRCUITO CON R: Empezaremos con un circuito formado por una resistencia alimentada por una fuente de tensión alterna senoidal: CIRCUITOS EN CORRIENTE ALTERNA. Estudiaremos los circuitos básicos, formados por resistencias (R), condensadores (C) y bobinas (L), cuando se alimentan por una fuente de tensión alterna senoidal. En corriente

Más detalles

9. En la siguiente conexión: a) V L = V f b) V f = V L / 3 c) I L = I f / 3 d) ninguna de las anteriores es cierta. b) V f 3= V L c) I f = I L / 3

9. En la siguiente conexión: a) V L = V f b) V f = V L / 3 c) I L = I f / 3 d) ninguna de las anteriores es cierta. b) V f 3= V L c) I f = I L / 3 1. Un alternador a) es una maquina rotativa de corriente continua b) es una máquina estática de corriente alterna c) es una máquina rotativa de corriente alterna d) ninguna de las anteriores es correcta

Más detalles

Ejercicios Resueltos de Circuitos de Corriente Alterna

Ejercicios Resueltos de Circuitos de Corriente Alterna Ejercicios Resueltos de Circuitos de Corriente Alterna Ejemplo resuelto nº 1 Cuál ha de ser la frecuencia de una corriente alterna para que una autoinducción, cuyo coeficiente es de 8 henrios, presente

Más detalles

6. CORRIENTES ALTERNAS

6. CORRIENTES ALTERNAS 6. CORRIENTES ALTERNAS FORMULARIO 6.1) El devanado de una bobina tiene 500 epira de alambre de cobre cuya ección tranveral tiene 1 mm 2 de área. La longitud de la bobina e de 50 cm y u diámetro 5 cm. Qué

Más detalles

LABORATORIO DE ELECTRICIDAD Y MAGNETISMO LEY DE OHM

LABORATORIO DE ELECTRICIDAD Y MAGNETISMO LEY DE OHM LABORATORIO DE ELECTRICIDAD Y MAGNETISMO LEY DE OHM OBJETIVO Estudiar empíricamente la relación existente entre el voltaje aplicado a un conductor y la corriente eléctrica que genera. EQUIPAMIENTO 1. Circuito

Más detalles

INFORMACIÓN SOBRE LA PRUEBA DE ACCESO (PAU) A LA UNIVERSIDAD DE OVIEDO. CURSO 2015 / Materia: ELECTROTECNIA

INFORMACIÓN SOBRE LA PRUEBA DE ACCESO (PAU) A LA UNIVERSIDAD DE OVIEDO. CURSO 2015 / Materia: ELECTROTECNIA INFORMACIÓN SOBRE LA PRUEBA DE ACCESO (PAU) A LA UNIVERSIDAD DE OVIEDO. CURSO 2015 / 2016 Materia: ELECTROTECNIA 1. COMENTARIOS Y/O ACOTACIONES RESPECTO AL TEMARIO EN RELACIÓN CON LA PAU: Indicaciones

Más detalles

Unidad 3. Análisis de circuitos en corriente continua

Unidad 3. Análisis de circuitos en corriente continua Unidad 3. Análisis de circuitos en corriente continua Actividades 1. Explica cómo conectarías un polímetro, en el esquema de la Figura 3.6, para medir la tensión en R 2 y cómo medirías la intensidad que

Más detalles

Laboratorio de Fundamentos Físicos de la Ingeniería LEY DE OHM

Laboratorio de Fundamentos Físicos de la Ingeniería LEY DE OHM Departamento de Física Aplicada E.T.S. Ingeniería Industrial U.C.L.M. Laboratorio de Fundamentos Físicos de la Ingeniería LEY DE OHM El objetivo fundamental de esta práctica es el conocimiento experimental

Más detalles

Consulte y explique los conceptos de energía potencial gravitacional; energía potencial eléctrica, y explicar su analogía.

Consulte y explique los conceptos de energía potencial gravitacional; energía potencial eléctrica, y explicar su analogía. :: OBJETIVOS [2.1] Comprobar experimentalmente la ley de Ohm. Analizar las diferencias existentes entre elementos lineales (óhmicos) y no lineales (no óhmicos). Aplicar técnicas de análisis gráfico y ajuste

Más detalles

CURSO VIII CICLO SISTEMAS ELECTRICOS DE POTENCIA SEMANA 4. Análisis de Sistemas de Potencia Grainger-Stevenson. Capítulo 1

CURSO VIII CICLO SISTEMAS ELECTRICOS DE POTENCIA SEMANA 4. Análisis de Sistemas de Potencia Grainger-Stevenson. Capítulo 1 UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA EN ENERGIA CURSO VIII CICLO SISTEMAS ELECTRICOS DE POTENCIA SEMANA 4 OBJETIVO Representar y analizar un SEP BIBLIOGRAFIA Análisis de Sistemas de Potencia

Más detalles

Componentes Electrónicos. Prácticas - Laboratorio. Práctica 2: Diodos

Componentes Electrónicos. Prácticas - Laboratorio. Práctica 2: Diodos Prácticas Laboratorio Práctica 2: Diodos Ernesto Ávila Navarro Práctica 2: Diodos (Montaje y medida en laboratorio) Índice: 1. Material de prácticas 2. Medida de las características del diodo 2.2. Diodo

Más detalles

Pregunta: Por qué necesita que el bombillo esté conectado a ambos terminales de la batería?

Pregunta: Por qué necesita que el bombillo esté conectado a ambos terminales de la batería? José hizo este dibujo de una batería y un bombillo para la clase de ciencias. Si él hubiera armado ese experimento en la realidad, el bombillo no funcionaría. El problema es el cable suelto de la izquierda,

Más detalles

V cos(wt) = V + V. = L. Sustituyendo, se obtiene la ecuación del dt circuito RL: di L + Ri = Vmcos(wt) dt

V cos(wt) = V + V. = L. Sustituyendo, se obtiene la ecuación del dt circuito RL: di L + Ri = Vmcos(wt) dt ircuitos y en estado estable ircuito Supongamos un circuito como el mostrado en la figura. Suponga que se desea calcular la corriente i(t) que circula por el circuito. De acuerdo con la ey de Kirchoff

Más detalles

PRÁCTICA 1: MEDIDAS ELÉCTRICAS. LEY DE OHM.

PRÁCTICA 1: MEDIDAS ELÉCTRICAS. LEY DE OHM. PRÁCTICA 1: MEDIDAS ELÉCTRICAS. LEY DE OHM. Objetivos: Aprender a utilizar un polímetro para realizar medidas de diversas magnitudes eléctricas. Comprobar la ley de Ohm y la ley de la asociación de resistencias

Más detalles

RESOLUCIÓN DE CIRCUITOS CON IMPEDANCIAS EN SERIE

RESOLUCIÓN DE CIRCUITOS CON IMPEDANCIAS EN SERIE 6.5.3.- RESOLCÓN DE CRCTOS CON MPEDNCS EN SERE Supongamos un circuito con tres elementos pasivos en serie, al cual le aplicamos una intensidad alterna senoidal, vamos a calcular la tensión en los bornes

Más detalles

POTENCIA EN CIRCUITOS DE CORRIENTE ALTERNA. Mg. Amancio R. Rojas Flores

POTENCIA EN CIRCUITOS DE CORRIENTE ALTERNA. Mg. Amancio R. Rojas Flores POTENCIA EN CIRCUITOS DE CORRIENTE ALTERNA Mg. Amancio R. Rojas Flores Introducción En algún instante dado, la potencia en una carga es igual al producto y la corriente Ahora consideremos el caso de C.

Más detalles

Si el circuito es ohmnico, se produce en él una corriente eléctrica de intensidad:

Si el circuito es ohmnico, se produce en él una corriente eléctrica de intensidad: CORRIENTE ALTERNA OBJETIVO En esta práctica vamos a estudiar el comportamiento de la corriente alterna, con circuitos donde aparecen resistencias, condensadores y bobinas. También comprobaremos algunas

Más detalles

APLICACIÓN DE LA LEY DE OHM (II)

APLICACIÓN DE LA LEY DE OHM (II) APLICACIÓN DE LA LEY DE OHM (II) MEDIDA DE RESISTENCIAS / PUENTE DE WHEATSTONE / MEDIDA DE LA RESISTIVIDAD 1. OBJETIVO Comprobación experimental de las leyes de Kirchhoff. Estudio experimental de la resistividad

Más detalles

POTENCIA ACTIVA EN C.A. Y MEDICIÓN DE FACTOR DE POTENCIA

POTENCIA ACTIVA EN C.A. Y MEDICIÓN DE FACTOR DE POTENCIA POTENCIA ACTIVA EN C.A. Y MEDICIÓN DE FACTOR DE POTENCIA OBJETIVOS: Determinar la potencia activa, aparente y el factor de potencia en circuitos monofásicos. Observe las normas de seguridad al realizar

Más detalles

APLICACIÓN DE LA LEY DE OHM (I) Comprobación experimental de las leyes de Kirchhoff. Estudio experimental de la resistividad de conductores metálicos.

APLICACIÓN DE LA LEY DE OHM (I) Comprobación experimental de las leyes de Kirchhoff. Estudio experimental de la resistividad de conductores metálicos. APLICACIÓN DE LA LEY DE OHM (I) MEDIDA DE ESISTENCIAS / PUENTE DE WHEATSTONE / MEDIDA DE LA ESISTIVIDAD 1. OBJETIVO Comprobación experimental de las leyes de Kirchhoff. Estudio experimental de la resistividad

Más detalles

MEDIDA DE RESISTENCIAS Puente de Wheatstone

MEDIDA DE RESISTENCIAS Puente de Wheatstone MEDIDA DE ESISTENCIAS Puente de Wheatstone. OBJETIVO Comprobación experimental de las leyes de Kirchhoff. 2. DESAOLLO TEÓICO Leyes de Kirchhoff La primera ley de Kirchhoff, también conocida como ley de

Más detalles

Práctica de Inducción electromagnética.

Práctica de Inducción electromagnética. Práctica Práctica de Inducción electromagnética. Luis Íñiguez de Onzoño Sanz 1. Introducción Teórica II. Materiales III 3. Descripción de la práctica IV 4. Procedimiento IV 5. Resultados V 6. Errores IX

Más detalles

A. R D. 4R/5 B. 2R E. R/2 C. 5R/4 F. Diferente

A. R D. 4R/5 B. 2R E. R/2 C. 5R/4 F. Diferente TEST 1ª PREGUNT RESPUEST El circuito de la figura está formado por 10 varillas conductoras de igual material y sección, con resistencia R. La resistencia equivalente entre los terminales y B será igual

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE GENERAL: MATERIAS DE MODALIDAD

PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE GENERAL: MATERIAS DE MODALIDAD PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE GENERAL: MATERIAS DE MODALIDAD CURSO 009-010 CONVOCATORIA: JUNIO MATERIA: ELECTROTECNIA EL ALUMNO ELEGIRÁ UNO DE LOS DOS MODELOS Criterios de calificación.- Expresión

Más detalles

Tema 3: Criterios serie paralelo y mixto. Resolución de problemas.

Tema 3: Criterios serie paralelo y mixto. Resolución de problemas. Tema 3. Circuitos serie paralelo y mixto. Resolución de problemas En el tema anterior viste como se comportaban las resistencias, bobinas y condensadores cuando se conectaban a un circuito de corriente

Más detalles

ELECTRICIDAD. (Ejercicios resueltos) Alumno: Curso: Año:

ELECTRICIDAD. (Ejercicios resueltos) Alumno: Curso: Año: (Ejercicios resueltos) Alumno: Curso: Año: Magnitudes eléctricas básicas. La Ley de Ohm Las magnitudes fundamentales de los circuitos eléctricos son: Tensión o voltaje: Indica la diferencia de energía

Más detalles

Departamento de Física Aplicada III

Departamento de Física Aplicada III Departamento de Física Aplicada III Escuela Superior de Ingenieros Camino de los Descubrimientos s/n 41092 Sevilla Práctica 5. Construcción de un voltímetro y un óhmetro 5.1. Objeto de la práctica El objeto

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. PRUES DE ESO UNIVERSIDD.O.G.S.E. URSO 2005-2006 ONVOTORI JUNIO EETROTENI E UMNO EEGIRÁ UNO DE OS DOS MODEOS riterios de calificación.- Expresión clara y precisa dentro del lenguaje técnico y gráfico si

Más detalles

LÍNEAS DE TRANSMISIÓN

LÍNEAS DE TRANSMISIÓN LÍNEAS DE TRANSMISIÓN CÁLCULO ELÉCTRICO Ing. Carlos Huayllasco Montalva CONSTANTES FÍSICAS RESISTENCIA Los Fabricantes la especifican para corriente continua o frecuencia de 60 Hz En conductores no magnéticos

Más detalles

POTENCIA EN CIRCUITOS DE CORRIENTE ALTERNA. Mg. Amancio R. Rojas Flores

POTENCIA EN CIRCUITOS DE CORRIENTE ALTERNA. Mg. Amancio R. Rojas Flores POTENCIA EN CIRCUITOS DE CORRIENTE ALTERNA Mg. Amancio R. Rojas Flores El análisis de potencia es de suma importancia. La potencia es la cantidad más relevante en sistemas de suministro de electricidad,

Más detalles

CONFIGURACIONES BÁSICAS DE CIRCUITOS

CONFIGURACIONES BÁSICAS DE CIRCUITOS INSTITUCIÓN EDUCATIVA JOSÉ EUSEBIO CARO ÁREA DE TECNOLOGÍA E INFORMÁTICA 2016 DOCENTE JESÚS EDUARDO MADROÑERO RUALES CORREO jesus.madronero@hotmail.com GRADO ONCE FECHA 02 DE MAYO DE 2016 CONFIGURACIONES

Más detalles

UNIDAD DE TRABAJO Nº2. INSTALACIONES DE MEGAFONÍA. UNIDAD DE TRABAJO Nº2.1. Descripción de Componentes. Simbología FILTROS

UNIDAD DE TRABAJO Nº2. INSTALACIONES DE MEGAFONÍA. UNIDAD DE TRABAJO Nº2.1. Descripción de Componentes. Simbología FILTROS UNIDAD DE TRABAJO Nº2. INSTALACIONES DE MEGAFONÍA UNIDAD DE TRABAJO Nº2.1. Descripción de Componentes. Simbología Introducción. FILTROS En el tema de ALTAVOCES, el apartado 2.4 hacia referencia a los tipos

Más detalles

Ajustes lineales por aproximación manual. Reglas para una correcta representación gráfica

Ajustes lineales por aproximación manual. Reglas para una correcta representación gráfica Ajustes lineales por aproximación manual. Reglas para una correcta representación gráfica Para las representaciones gráficas manuales sobre papel deben tenerse en cuenta los siguientes criterios (se presenta

Más detalles

EJERCICIOS DE ELECTRICIDAD ELEMENTOS ELÉCTRICOS

EJERCICIOS DE ELECTRICIDAD ELEMENTOS ELÉCTRICOS ELEMENTOS ELÉCTRICOS EJERCICIOS DE ELECTRICIDAD ELEMENTOS ELÉCTRICOS 1. Contesta los siguientes apartados: a) Cuánta energía consume una lámpara de 200 W en dos horas?, y cuánta potencia? b) Qué potencia

Más detalles

Tema 2. Elementos lineales

Tema 2. Elementos lineales Tema 2. Elementos lineales Elementos lineales Si observas cualquier aparato electrónico que tengas por casa y la curiosidad te lleva a ver como es por dentro, verás que existen infinidad de componentes

Más detalles

1 Leyes y magnitudes fundamentales de los circuitos eléctricos

1 Leyes y magnitudes fundamentales de los circuitos eléctricos 1 Leyes y magnitudes fundamentales de los circuitos eléctricos 1.1 Tensión Se denomina tensión eléctrica a la diferencia de potencial existente entre dos puntos de un circuito eléctrico. Su unidad de medida

Más detalles

Prueba experimental. Constante de Planck y comportamiento de un LED

Prueba experimental. Constante de Planck y comportamiento de un LED Prueba experimental. Constante de Planck y comportamiento de un LED Objetivo. Se va a construir un circuito eléctrico para alimentar LEDs de diferentes colores y obtener un valor aproximado de la constante

Más detalles

intensidad de carga. c) v 1 = 10 V, v 2 = 5 V. d) v 1 = 5 V, v 2 = 5 V.

intensidad de carga. c) v 1 = 10 V, v 2 = 5 V. d) v 1 = 5 V, v 2 = 5 V. 1. En el circuito regulador de tensión de la figura: a) La tensión de alimentación es de 300V y la tensión del diodo de avalancha de 200V. La corriente que pasa por el diodo es de 10 ma y por la carga

Más detalles

ALUMNO-A: CURSO: 2º ESO

ALUMNO-A: CURSO: 2º ESO UNIDAD: ELECTRICIDAD. CONOCIENDO LA ELECTRICIDAD ALUMNO-A: CURSO: 2º ESO 1.- INTRODUCCIÓN Hoy en día la energía eléctrica es imprescindible, gracias a ella funcionan infinidad de aparatos, máquinas, fábricas,

Más detalles

LABORATORIO NO. 3 CONEXIÓN TRIÁNGULO DE CARGAS EQUILIBRADAS

LABORATORIO NO. 3 CONEXIÓN TRIÁNGULO DE CARGAS EQUILIBRADAS LABORATORIO NO. 3 CONEXIÓN TRIÁNGULO DE CARGAS EQUILIBRADAS 1.1. OBJETIVO DEL LABORATORIO. 1.1.1. OBJETIVO GENERAL. Conocer las características de operación de la Conexión Triángulo y la derivada Delta

Más detalles

Determinación de la característica voltaje - corriente de un conductor metálico - Ley de Ohm

Determinación de la característica voltaje - corriente de un conductor metálico - Ley de Ohm Determinación de la característica voltaje - corriente de un conductor metálico - Ley de Ohm Autores Frigerio, Paz La Bruna,Gimena Larreguy, María Romani, Julieta mapaz@vlb.com.ar labrugi@yahoo.com merigl@yahoo.com

Más detalles

CIRCUITOS DE CORRIENTE ALTERNA CON NUMEROS COMPLEJOS

CIRCUITOS DE CORRIENTE ALTERNA CON NUMEROS COMPLEJOS CIRCUITOS DE CORRIENTE ALTERNA CON NUMEROS COMPLEJOS CIRCUITO R-L-C CONECTADO EN SERIE. Debido a que la impedancia (Z) es un termino general que se puede referir a una resistencia, una reactancia o combinación

Más detalles

Distancia focal de una lente convergente (método del desplazamiento) Fundamento

Distancia focal de una lente convergente (método del desplazamiento) Fundamento Distancia focal de una lente convergente (método del desplazamiento) Fundamento En una lente convergente delgada se considera el eje principal como la recta perpendicular a la lente y que pasa por su centro.

Más detalles

TEMA 1 Nociones básicas de Teoría de Circuitos

TEMA 1 Nociones básicas de Teoría de Circuitos TEMA 1 Nociones básicas de Teoría de Circuitos http://www.el.uma.es/marin/ ÍNDICE 1.1. MAGNITUDES ELÉCTRICAS Y CONCEPTOS FUNDAMENTALES: Conceptos básicos de circuitos. Leyes de Kirchoff. Potencia Eléctrica.

Más detalles

CIRCUITOS DE CORRIENTE ALTERNA CON ELEMENTOS PASIVOS

CIRCUITOS DE CORRIENTE ALTERNA CON ELEMENTOS PASIVOS CIRCUITOS DE CORRIENTE ALTERNA CON ELEMENTOS PASIVOS En este apartado analizaremos circuitos alimentados con generadores de ca, donde intervienen resistencias, bobinas y condensadores por separado y después,

Más detalles

UNIDAD TEMÁTICA 3: ELECTRÓNICA. 10. Dibuja los esquemas simbólicos de los siguientes circuitos.

UNIDAD TEMÁTICA 3: ELECTRÓNICA. 10. Dibuja los esquemas simbólicos de los siguientes circuitos. 10. Dibuja los esquemas simbólicos de los siguientes circuitos. 11. Sobre los esquemas dibujados en el ejercicio anterior indica mediante flechas el sentido de la corriente eléctrica: (considera que los

Más detalles

Determinación de la Secuencia de Fases en un Sistema Trifásico

Determinación de la Secuencia de Fases en un Sistema Trifásico Determinación de la Secuencia de Fases en un Sistema Trifásico En algunos casos es necesario conocer la secuencia de fases de un sistema trifilar antes de conectar una carga, condición a veces necesaria

Más detalles

CORRIENTE CONTINUA. 1. Calcular el valor de R X para que, conocido el valor de R, la resistencia total entre los bornes. R 1 R x. R x (R x R) 2R x R E

CORRIENTE CONTINUA. 1. Calcular el valor de R X para que, conocido el valor de R, la resistencia total entre los bornes. R 1 R x. R x (R x R) 2R x R E Corriente contínua - CORRIENTE CONTINUA. Calcular el valor de R X para que, conocido el valor de R, la resistencia total entre los bornes A y B sea, precisamente, igual a R. Calcularemos, paso a paso,

Más detalles

Fecha: Alumno: PRACTICA 1: INTRODUCCIÓN AL PROGRAMA COCODRILE. Curso:

Fecha: Alumno: PRACTICA 1: INTRODUCCIÓN AL PROGRAMA COCODRILE. Curso: PRACTICA 1: INTRODUCCIÓN AL PROGRAMA COCODRILE Alumno: Monta los siguientes circuitos utilizando el programa Cocodrile y anota al lado de cada uno de ellos la que sucede al pulsar el elemento de maniobra.

Más detalles

FISICA II Escuela Politécnica de Ingeniería de Minas y Energía PRÁCTICA Nº 7

FISICA II Escuela Politécnica de Ingeniería de Minas y Energía PRÁCTICA Nº 7 PRÁCTICA Nº 7 Ley de Ohm, resistencias en serie y en derivación A.- Ley de Ohm A.1.- Objetivo.- Comprobar la ley de Ohm en un circuito sencillo de corriente continua. A.2.- Descripción.- Cuando en un circuito

Más detalles

LEY DE RADIACIÓN DE STEFAN-BOLTZMANN OBJETIVO Comprobación de la ley de radiación de Stefan-Boltzmann. MATERIAL Termómetro, 2 polímetros, amperímetro, termopila, bombilla con filamento de tungsteno, generador

Más detalles

LABORATORIO DE MAQUINAS ELECTRICAS. Guía de Practica N 02: MEDICION DE TENSION Y CORRIENTES EN TRANSFORMADORES MONOFASICOS

LABORATORIO DE MAQUINAS ELECTRICAS. Guía de Practica N 02: MEDICION DE TENSION Y CORRIENTES EN TRANSFORMADORES MONOFASICOS Universidad Nacional del Santa Facultad de Ingeniería E.A.P. Ingeniería En Energía Departamento Académico de Energía y Física LABORATORIO DE MAQUINAS ELECTRICAS Guía de Practica N 02: MEDICION DE TENSION

Más detalles

PRÁCTICA 6. AMPLIFICADOR OPERACIONAL: INVERSOR, INTEGRADOR y SUMADOR

PRÁCTICA 6. AMPLIFICADOR OPERACIONAL: INVERSOR, INTEGRADOR y SUMADOR PRÁCTICA 6. AMPLIFICADOR OPERACIONAL: INVERSOR, INTEGRADOR y SUMADOR 1. Objetivo El objetivo de esta práctica es el estudio del funcionamiento del amplificador operacional, en particular de tres de sus

Más detalles

= CBD

= CBD ANCHO DE BANDA Cuando el valor máximo de la corriente a la derecha o a la izquierda de, desciende hasta á (se toma por dos razones). 1. Se tiene el valor absoluto de. Son los puntos de potencia media (±5

Más detalles

CORRIENTE INDUCIDA EN UN SOLENOIDE. EL TRANSFORMADOR.

CORRIENTE INDUCIDA EN UN SOLENOIDE. EL TRANSFORMADOR. eman ta zabal zazu Departamento de Física de la Materia Condensada universidad del país vasco euskal herriko unibertsitatea FACULTAD DE CIENCIA Y TECNOLOGÍA UNIVERSIDAD DEL PAÍS VASCO DEPARTAMENTO de FÍSICA

Más detalles

Objetivos. Equipo y materiales

Objetivos. Equipo y materiales Laboratorio Circuitos DC Experimento 3: Fuentes de Voltaje Objetivos Conectar fuentes de voltaje fotovoltaicas en serie, paralelo y serie paralelo Medir corriente de carga en circuitos con fuentes de voltaje

Más detalles

CAPITULO XII PUENTES DE CORRIENTE ALTERNA

CAPITULO XII PUENTES DE CORRIENTE ALTERNA CAPITULO XII PUENTES DE CORRIENTE ALTERNA 2. INTRODUCCION. En el Capítulo IX estudiamos el puente de Wheatstone como instrumento de medición de resistencias por el método de detección de cero. En este

Más detalles

CAMPO MAGNÉTICO 3. FENÓMENOS DE INDUCCIÓN

CAMPO MAGNÉTICO 3. FENÓMENOS DE INDUCCIÓN CAMPO MAGNÉTICO 3. FENÓMENOS DE INDUCCIÓN RESUMEN 1. LEY DE FARADAY 2. LEY DE LENZ 3. INDUCTANCIA 4. ENERGÍA DEL CAMPO MAGNÉTICO 5. CIRCUITOS RL 6. OSCILACIONES. CIRCUITO LC 7. CORRIENTE ALTERNA. RESONANCIA

Más detalles

Equipos de medida. - Multímetro Digital (DMM) - Medidor vectorial de impedancias

Equipos de medida. - Multímetro Digital (DMM) - Medidor vectorial de impedancias - Multímetro Digital (DMM) - Medidor vectorial de impedancias Equipo para medida digital de magnitudes típicas de: Tensión continua: 1 mv a 1000V Tensión alterna: 10mV a 1000V (10 Hz a 1 Mhz) Intensidad

Más detalles

ELECTRICIDAD Y ELECTRÓNICA: MONTAJES PRÁCTICOS

ELECTRICIDAD Y ELECTRÓNICA: MONTAJES PRÁCTICOS ELECTRICIDAD Y ELECTRÓNICA: MONTAJES PRÁCTICOS Monta los siguientes circuitos, calcula y mide las magnitudes que se piden: 1) Con el Voltímetro, mide la tensión de una pila y la de la fuente de tensión

Más detalles

3º ESO TECNOLOGÍA, PROGRAMACIÓN Y ROBÓTICA TEMA ELECTRICIDAD

3º ESO TECNOLOGÍA, PROGRAMACIÓN Y ROBÓTICA TEMA ELECTRICIDAD 3º ESO Tecnología, programación y robótica Tema Electricidad página 1 de 12 3º ESO TECNOLOGÍA, PROGRAMACIÓN Y ROBÓTICA TEMA ELECTRICIDAD 1.Circuito eléctrico...2 2.MAGNITUDES ELÉCTRICAS...2 3.LEY de OHM...3

Más detalles

MÓDULOS PARA EXPERIMENTOS DE ELECTRICIDAD BÁSICA

MÓDULOS PARA EXPERIMENTOS DE ELECTRICIDAD BÁSICA MÓDULOS PARA EXPERIMENTOS DE ELECTRICIDAD BÁSICA CIRCUITOS Y SISTEMAS EN CORRIENTE CONTINUA MOD. MCM1/EV EB 15 CIRCUITOS Y SISTEMAS EN CORRIENTE ALTERNADA MOD. MCM2/EV EB 16 CIRCUITOS Y SISTEMAS TRIFASICOS

Más detalles

REPASO EJERCICIOS ELECTRICIDAD DE 3º ESO

REPASO EJERCICIOS ELECTRICIDAD DE 3º ESO REPASO EJERCICIOS ELECTRICIDAD DE 3º ESO 1. Calcula la intensidad de una corriente eléctrica si por un conductor pasaron 180 C en 30 segundos. Solución: 6A 2. Qué intensidad tiene una corriente si por

Más detalles

Medida de magnitudes mecánicas

Medida de magnitudes mecánicas Medida de magnitudes mecánicas Introducción Sensores potenciométricos Galgas extensiométricas Sensores piezoeléctricos Sensores capacitivos Sensores inductivos Sensores basados en efecto Hall Sensores

Más detalles

Práctica 4. Fenómenos transitorios: carga y descarga de un condensador. 4.1 Objetivo. 4.2 Material. 4.3 Fundamento

Práctica 4. Fenómenos transitorios: carga y descarga de un condensador. 4.1 Objetivo. 4.2 Material. 4.3 Fundamento Práctica 4 Fenómenos transitorios: carga y descarga de un condensador 4.1 Objetivo Existen numerosos fenómenos en los que el valor de la magnitud física que los caracteriza evoluciona en régimen transitorio,

Más detalles