Gases. Dra. Patricia Satti, UNRN

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Gases. Dra. Patricia Satti, UNRN"

Transcripción

1 Gases Dra. Patricia Satti, UNRN GASES

2 Las propiedades químicas de un gas dependen de su naturaleza (elementos que lo forman y composición), sin embargo todos los gases tienen propiedades físicas marcadamente similares.

3 Compuestos comunes que son gases a temperatura ambiente Fórmula Nombre Características HCN Cianuro de hidrógeno Muy tóxico, tenue olor a almendras amargas H 2 S Sulfuro de hidrógeno Muy tóxico, olor a huevos podridos CO Monóxido de carbono Tóxico, incoloro, inodoro CO 2 Dióxido de carbono Incoloro, inodoro CH 4 Metano Incoloro, inodoro, inflamable C 2 H 4 Etileno Incoloro, ayuda a madurar la fruta C 3 H 8 Propano Incoloro, gas de venta en tubos N 2 O Óxido nitroso Incoloro, olor dulce, gas hilarante NO 2 Dióxido de nitrógeno Tóxico, pardo rojizo, olor irritante NH 3 Amoníaco Incoloro, olor penetrante SO 2 Dióxido de azufre Incoloro, olor irritante

4 Gases - propiedades macroscópicas altamente compresibles térmicamente expandibles (del orden de 50 a 100 veces mayor) baja viscosidad (baja resistencia a fluir) infinitamente miscibles (se mezclan entre sí en cualquier proporción) baja densidad (del orden de 1000 veces menor)

5 La estructura de los gases es interpretada por la teoría cinético-molecular La sustancia, en estado gaseoso, está constituida por moléculas muy separadas entre sí, y tiene baja densidad. Las moléculas están animadas de movimiento perpetuo, trasladándose, dentro del volumen ocupado, en línea recta en todas las direcciones y sentidos. Hay choques de las moléculas contra las paredes del recipiente y también entre sí (choques intermoleculares). Las leyes de los gases ideales se dedujeron de la teoría cinética en base a los dos primeros supuestos.

6 Los gases ideales (o perfectos o hipotéticos) cumplen con los siguientes postulados: Se componen de moléculas cuyo tamaño es despreciable comparado con la distancia media entre ellas. Las fuerzas intermoleculares son débiles ó despreciables, salvo en el momento de la colisión. Cumplen con las leyes generales de los gases

7 Variables para describir gases: P, T, V, m (ó n) V: volumen t: temperatura P: presión m: masa n: número de moles Ecuación de estado: F (V, n, T, P) = 0

8 Magnitudes para describir el estado gaseoso Magnitudes Temperatura (T) Presión (P) Volumen (V) Unidades En los cálculos no se pueden utilizar escalas como Celsius (centigrados) o Farenheit. Se deben emplear escalas de temperaturas absolutas (escala Kelvin) temp en grados centigrados) = T en Kelvin Las unidades de presión más utilizadas y sus equivalencias son 1 atm = 760 mm Hg = 760 Torr = 1013,25 HPa Si bien en SIMELA la unidad de volumen es el m 3, los volúmenes gaseosos se expresan en unidades de L o ml Cantidad de sustancia (n) La unidad de cantidad es el mol

9 Temperatura Se utilizan mediciones en grados Kelvin (o absolutos)

10 Presión Se define como fuerza por unidad de área. P = F A

11 Presión F mg δ Vg P = = = = δ gh A A A Unidades: SI : Pascal (N / m2) cgs: bar ó baria (dyna / cm2)

12 Presión atmosférica Barómetro Teniendo en cuenta que g = 9,8 m/s 2, que la δ del mercurio es 13,6 g/cm3, si h = 760 mm 1 atmósfera = 760 torr (o mmhg) = 1,013x10 5 Pa = 1,013x10 5 baria

13

14 Manómetros de mercurio Rama cerrada Rama abierta Pgas= Pcol Pgas= Patm Pcol Pgas= Patm+Pcol

15 Leyes de los gases Fundamento experimental Dra. Patricia Satti, UNRN GASES

16 Leyes de los gases ideales Se midieron propiedades físicas de gases en diferentes condiciones cuidando siempre que el gas se encontrara a: temperaturas altas (muy por sobre la temperatura de condensación del gas) presiones bajas (muy por debajo de la presión de condensación del gas)

17 Leyes de los gases ideales Estas condiciones ( T altas y P bajas ) se conocen como condiciones ideales. Las leyes de los gases se obtuvieron a partir de los valores experimentales de las propiedades medidas bajo las condiciones señaladas. Por esta razón se las denomina leyes para gases ideales.

18 Leyes de los gases ideales Las propiedades físicas directamente medidas fueron: Los experimentos se diseñaron de tal manera que se obtuviera información sobre la influencia de una sola propiedad, manteniendo fijos (durante el experimento) los valores de las otras propiedades.

19 Experimento de Boyle- Mariotte (1662 y 1676) Estudia la relación entre la presión y el volumen de una cantidad de gas a temperatura fija. El experimento consiste en mantener una masa del gas a temperatura constante y medir el volumen que ocupa el gas cuando se ejercen distintas presiones o viceversa.

20 Relación entre P y V, a t y n ctes

21 Ley de Boyle-Mariotte t y n constantes Si un gas se mantiene a temperatura constante, su volumen es inversamente proporcional a su presión P V = constante P = constante / V P 1 V 1 = P 2 V 2 = constante

22 Ley de Boyle-Mariotte t y n constantes P = constante/ V y = k /z (ecuación de una hipérbola) P 1 V 1 = P 2 V 2 = constante

23 Ley de Boyle-Mariotte t y n constantes P = constante. 1/ V y = k. X Ecuación de una recta

24

25 Ley de Boyle-Mariotte t y n constantes Los resultados del experimento de Boyle indicaron que: Cuando m y t se mantienen constantes al aumentar la presión del gas su volumen disminuye (y viceversa) Por estar a t constante, los valores de P y V medidos dan origen a ISOTERMAS

26 Ley de Boyle-Mariotte t y n constantes P = constante / V isotermas

27 Y si los gases no son ideales?

28 Experimentos de Charles y Gay-Lussac ( ) Estudian la relación entre la temperatura y el volumen de una cantidad de gas a presión fija. El experimento consiste en mantener una masa del gas a presión constante y medir el volumen que ocupa el gas cuando se somete a diferentes temperaturas o viceversa. Gay-Lussac estudió a posteriori la relación entre la presión y la temperatura a volumen fijo

29 Relación entre T y V, a P y n ctes V = f (T)

30 Ley de Charles y Gay-Lussac P y n ctes W. Thompson o Lord Kelvin Hay alguna temperatura donde V es 0?

31 Escala absoluta de temperaturas Las curvas deberían cortarse en el mismo punto a -273,15 o C

32 Ley de Charles y Gay-Lussac P y n ctes Los resultados del experimento de Charles indican que: Si un gas se mantiene a presión constante, su volumen es directamente proporcional a la temperatura absoluta

33 Ley de Charles y Gay-Lussac P y n ctes V = constante. T y = k. X (ecuación de una recta) isobaras V /T = constante V T 1 1 = V T 2 2 = cte T en K

34 Ley de Charles P y n ctes V = k. T Ecuación de una recta V = V o + (α v V o ) T = V o (1 + α v T) α v = coeficiente de dilatación a presión constante

35 Y si los gases no son ideales?

36 2 da Ley de Charles y Gay-Lussac o Ley de Amontons V y n ctes

37 2 da Ley de Charles y Gay-Lussac o Ley de Amontons V y n ctes V = constante. T isocoras

38 Combinación de las leyes de los gases

39 Experimento de Avogadro P y T ctes El experimento consiste en mantener la presión y temperatura fijas y medir el volumen que ocupan,en esas condiciones, ciertas cantidades de gas. A presión y temperatura constantes, volúmenes iguales de gases diferentes contienen igual número de moléculas

40 Experimento de Avogadro P y T ctes A presión y temperatura constantes volúmenes iguales de gases diferentes contienen igual número de moléculas V = cte x n V = V m x n V m = volumen molar

41 Hipótesis de Avogadro (1822) En las mismas condiciones de presión y temperatura, volúmenes iguales de distintos gases tienen igual número de partículas (moléculas). Volumen molar de un gas Es el volumen que ocupa un mol de moléculas de cualquier gas (ideal) en Condiciones Normales de presión y temperatura (CNPT, 1 atm y 0ºC). 22,4 L/mol (el número exacto es 22,414 L/mol) Dra. Patricia Satti, UNRN 2017, GENERALIDADES

42 Gas ideal Es aquel gas que cumple con las leyes de los gases en todo intervalo de presión y temperatura.

43 Ecuación de estado del gas ideal n cte P 1, V 1, T 1 P 2, V 2, T 2 P 1, V 1, T 1 P 1 V 1 =P 2 V * V*=P 1 V 1 /P 2 isotérmico P 2, V 2, T 1 isobárico P 2, V 2, T 2

44 Combinación de las leyes de los gases (n constante)

45 Ecuación de estado del gas ideal

46 Ecuación de estado de gas ideal Permite calcular: directamente cualquiera de las propiedades del gas: n, T, P ó V, siempre que se conozcan las otras tres indirectamente cualquiera otra propiedad del gas que se relacione con las anteriores.

47 1) Determinación de la masa molecular de un gas 2) Determinación de la densidad de un gas Al calentar el aire la densidad es menor y el globo se eleva

48 Ecuación de estado de gas ideal para mezcla de gases Si se aplica a una mezcla de gases, el significado de las propiedades es: P = presión de la mezcla T = temperatura de la mezcla V = volumen de la mezcla (V del recipiente) n = moles totales de gas en la mezcla δ = densidad de la mezcla M = masa molar de la mezcla

49 Mezcla de Gases Como ejemplo, considérese una mezcla de tres gases: gas A; gas B y gas C suponiendo que la mezcla de estos tres gases contiene: n A moles de gas A n B moles de gas B n C moles de gas C La ecuación de estado para la mezcla es P V = n t R T Donde: P es la presión de la mezcla (presión total que ejercen los gases que forman la mezcla) n t es el número total de molesde gas en la mezcla: n t = n A + n B + n C

50 Mezcla de Gases La ecuación de estado de gas ideal se puede aplicar a cada gas en forma individual. Para gas A: P A V = n A R T Para gas B: P B V = n B R T Para gas C: P C V = n C R T ya que cada gas ocupa todo el volumen V a T y considerando que : P A es la presión que ejerce únicamente el gas A P B es la presión que ejerce únicamente el gas B P C es la presión que ejerce únicamente el gas C

51 Mezcla de Gases Sumando las ecuaciones ecuaciones anteriores para los gases por separado se obtiene: (P A + P B + P C ) V = (n A + n B + n C ) R T P A = Presión parcial del gas A: presión que ejercería el gas A si ocupara él solo el volumen del recipiente Reemplazando n t = n A + n B + n C se obtiene: (P A + P B + P C ) V = n t R T Comparando con la ecuación de estado para la mezcla: Se concluye que P V = n t RT P = P A + P B + P C

52 Mezcla de Gases Ley de Dalton de las presiones parciales La presión total de una mezcla de gases que no reaccionan entre sí es la suma de las presiones parciales de los diferentes gases. Pt = P A + P B Cada gas y la mezcla ocupan el mismo V y están a la misma T

53 Mezcla de Gases Si la fracción molar de A es: X A = Dadas las ecuaciones P A V = n A R T y P V = n t RT Podemos concluir que n n A t P A = P t x A

54 Mezcla de Gases o, lo que es lo mismo La presión parcial de un gas en una mezcla es igual al producto de su fracción molar y la presión total de la mezcla P = x A A * P t

55 Gases Reales Los gases reales no cumplen con los siguientes postulados Los gases se componen de moléculas cuyo tamaño es despreciable comparado con la distancia media entre ellas Las fuerzas intermoleculares son débiles o despreciables salvo en el momento de la colisión

56 Ecuación de Van der Waals La ecuación de van der Waals fue presentada en 1873 como un perfeccionamiento semiteórico de la ecuación de gas ideal 2 ( 2 n a)( ) P + V nb = V nrt La constante b es la corrección por el volumen ocupado por las moléculas, y el término a/v 2 es una corrección que toma en cuenta las fuerzas de atracción intermolecular

57 Los valores de a y b generalmente aumentan al aumentar la masa molecular y la complejidad de la estructura de la molécula. Las moléculas más grandes y masivas no sólo ocupan un volumen mayor, sino que también suelen tener fuerzas de atracción intermoleculares más grandes.

58 Licuación o licuefacción de los gases Ningún gas puede ser licuado sin que se lo enfríe primero por debajo de su temperatura crítica. La presión necesaria para licuarlo será menor, cuanto más se haya descendido la temperatura del gas. Al enfriar una muestra de gas baja la energía ligada al movimiento de las moléculas (energía cinética) de modo que las moléculas se agregan y forman pequeñas gotas de líquido. De manera alternativa se puede aplicar presión al gas y la compresión, al reducir el volumen, reduce la distancia promedio entre las moléculas de tal forma que se mantienen unidas por atracción mutua

59 Los gases cumplen la ley de Boyle-Mariotte a presiones bajas. Al ir aumentando la presión se nota una desviación progresivamente creciente hasta que empieza a aparecer líquido condensado (punto A). A partir de este momento la disminución de volumen apenas produce variación de presión, simplemente aumenta la cantidad de líquido condensado. Cuando todo el gas sea líquido (punto B) para disminuir algo su volumen es necesario un gran aumento de presión ya que la compresibilidad de los líquidos es muy pequeña.

60 Si repetimos a temperaturas cada vez mayores el tramo recto y horizontal de la curva que corresponde a presión cte se hace cada vez más corto hasta que llega una temperatura para la cual el trazo recto se reduce a un punto. Este punto se conoce como punto crítico, y su isoterma es la temperatura critica. Las coordenadas en el diagrama se denominan presión y volumen crítico. En el punto crítico las fases líquida y gaseosa son indistinguibles pudiendo pasar de una a otra solo modificando ligeramente la presión o la temperatura.

61 La temperatura crítica, es aquella por encima de la cual es imposible licuar un gas independientemente de la presión a la que se encuentre. Los gases que se hallan a temperatura menor que la crítica suelen licuarse por compresión y se los suele denominar vapores A medida que se aumenta la temperatura el líquido se convierte en vapor hasta llegar a gas La curva punteada es la curva de coexistencia líquidovapor

62 Por encima de la isoterma de la temperatura crítica, la sustancia solo existe como fluido supercrítico Líquido Gas Líquido y Vapor Fluido supercrítico

63 Teoría cinético- molecular de los gases Dra. Patricia Satti, UNRN GASES

64 Teoría cinético-molecular de los gases Trata de establecer relaciones entre las propiedades de las partículas que forman el gas (átomos, moléculas,.. ) y las propiedades macroscópicas que ya se conocían La Teoría Cinético-Molecular de los gases fue desarrollada a fines del siglo XIX, ppalmente por Maxwell y Boltzmann

65 Teoría cinético-molecular de los gases La Teoría cinético-molecular fue capaz de explicar las leyes de los gases a las que habían llegado Boyle, Avogadro, Charles y Gay-Lussac y Dalton empíricamente casi 100 años atrás Además permitió entender el origen de la presión y de la temperatura y otros fenómenos que presentan los gases como son la efusión y la difusión.

66 Postulados principales 1. Volumen de las partículas: Un gas está compuesto por un número muy grande de partículas (moléculas o átomos) de tamaño despreciable comparado con la distancia media entre partículas. 2. Movimiento de las partículas: Las partículas se mueven con trayectoria rectilínea y en forma aleatoria a través del espacio, con choques elásticos entre ellas y con las paredes del recipiente que las contiene.

67 Postulados principales 3. Colisiones de partículas: Las colisiones son elásticas, o sea, las partículas que colisionan intercambian energía pero no la pierden por la fricción (la energía cinética total de las partículas es constante). 4. Las partículas no interaccionan entre sí, no se influencian y cada una actúa independiente de las demás (no hay fuerzas de atracción ni de repulsión), o sea LAS FUERZAS INTERMOLECULARES SON DÉBILES O DESPRECIABLES. 5. La energía cinética promedio de una molécula es proporcional a la temperatura absoluta

68

69 Función de distribución de Maxwell-Botzmann Efecto de temperatura en la distribución de velocidades. a m = cte Velocidad más probable

70 Función de distribución de Maxwell-Botzmann Efecto de masa molecular en la distribución de velocidades a T constante Las moléculas más livianas se mueven a velocidades más altas que las más pesadas

71 Temperatura y energía cinética El movimiento de traslación de las partículas les confiere energía de tipo cinética, la que en términos de velocidad y masa se expresa por la relación Siendo: Ec = m u m = masa de la patícula (átomo o molécula) 2 u Ec = promedio de los cuadrados de las velocidades de las partículas = energía cinética promedio de las partículas

72 Temperatura y energía cinética La dependencia de la función de distribución de velocidades con respecto de la temperatura muestra que la energía de las partículas también depende de la temperatura. donde k constante de Boltzmann y 3 representa la constante de los gases ec = kt 2 expresada por partícula (1, J K -1 ) A la misma T, la energía cinética media de las partículas de diferentes gases será la misma. Para un mol de partículas Ec RT La temperatura es una medida de la energía cinética de las partículas de gas = 3 2

73 Presión La presión, como propiedad macroscópica de un gas, es el resultado de las colisiones de las partículas con las paredes del recipiente. Mientras más partículas haya en el recipiente, más colisones y por lo tanto mayor presión ejerce el gas.

74 Presión Para una misma cantidad de gas, mientras menor es el volumen del recipiente, mayor es la frecuencia de colisión En consecuencia, la presión del gas aumenta.

75 Relación entre la teoría cinéticomolecular y las leyes de los gases OPC.

76 Relación entre la teoría cinético-molecular y las leyes de los gases OPC.

77 Cálculo de la presión de un gas Consideremos una partícula de masa m que se mueve a una velocidad v x, dentro de un cubo cantidad de movimiento p = m v x Cuando la partícula choca con la pared (choque elástico): Δp = p f p i = m v x En cada choque se transfiere una cantidad de movimiento igual a Δp = 2 m v x La 2da Ley de Newton establece que la fuerza ejercida por la partícula sobre la pared es F = Δp / Δt F Δt = 2 m v x OPC.

78 Cálculo de la presión de un gas Todas las partículas en un volumen ΔV = Δp x Δt pueden chocar contra la pared en un tiempo Δt Si hay N partículas en un recipiente de volumen V: Número de partículas en ΔV = N A vx Δ t V Pero como la mitad de las partículas van hacia un lado y la mitad hacia el otro, entonces el número promedio de colisiones con cada pared es: NA vx Δ t ΔV = 2 V OPC.

79 Cálculo de la presión de un gas OPC.

80 Cálculo de la presión de un gas OPC.

Compuestos comunes que son gses a temperatura ambiente. Gases - propiedades macroscópicas

Compuestos comunes que son gses a temperatura ambiente. Gases - propiedades macroscópicas Las propiedades químicas de un gas dependen de su naturaleza (elementos que lo forman y composición), sin embargo todos los gases tienen propiedades físicas marcadamente similares. Compuestos comunes que

Más detalles

Tema 12. Gases. Química General e Inorgánica A ESTADOS DE AGREGACION DE LA MATERIA

Tema 12. Gases. Química General e Inorgánica A ESTADOS DE AGREGACION DE LA MATERIA Tema 12 Gases Química General e Inorgánica A ESTADOS DE AGREGACION DE LA MATERIA 2.1 2.1 Variables que determinan el estado de agregación Tipo de material o materia Temperatura Presión 2.2 Elementos que

Más detalles

Algunas sustancias gaseosas a T y P ambiente

Algunas sustancias gaseosas a T y P ambiente LOS GASES Algunas sustancias gaseosas a T y P ambiente Fórmula Nombre Características O2 Oxígeno Incoloro,inodoro e insípido H 2 Hidrógeno Inflamable, más ligero que el aire. He Helio Incoloro, inerte,

Más detalles

Gases. Compuestos comunes que son gses a temperatura ambiente. Gases - propiedades macroscópicas

Gases. Compuestos comunes que son gses a temperatura ambiente. Gases - propiedades macroscópicas Gases Las propiedades químicas de un gas dependen de su naturaleza (elementos que lo forman y composición), sin embargo todos los gases tienen propiedades físicas marcadamente similares. Dra. Patricia

Más detalles

LEYES DE LOS GASES. Leyes de los gases. Leyes de los gases

LEYES DE LOS GASES. Leyes de los gases. Leyes de los gases LEYES DE LOS GASES Estado gaseoso Medidas en gases Ley de Avogadro Ley de Boyle y Mariotte Ley de Charles y Gay-Lussac (1ª) Ley de Charles y Gay-Lussac (2ª) Ecuación n general de los gases ideales Teoría

Más detalles

P V = n R T LEYES DE LOS GASES

P V = n R T LEYES DE LOS GASES P V = n R T LEYES DE LOS GASES Estado gaseoso Medidas en gases Leyes de los gases Ley de Avogadro Leyes de los gases Ley de Boyle y Mariotte Ley de Charles y Gay-Lussac (1ª) Ley de Charles y Gay-Lussac

Más detalles

BLOQUE 1: ASPECTOS CUANTATIVOS DE LA QUÍMICA

BLOQUE 1: ASPECTOS CUANTATIVOS DE LA QUÍMICA BLOQUE 1: ASPECTOS CUANTATIVOS DE LA QUÍMICA Unidad 2: Los gases ideales Teresa Esparza araña 1 Índice 1. Los estados de agregación de la materia a. Los estados de la materia b. Explicación según la teoría

Más detalles

ESTADO GASEOSO LEYES PARA GASES IDEALES

ESTADO GASEOSO LEYES PARA GASES IDEALES ESTADO GASEOSO LEYES PARA GASES IDEALES Estados de agregación COMPORTAMIENTO DE LOS GASES No tienen forma definida ni volumen propio Sus moléculas se mueven libremente y al azar ocupando todo el volumen

Más detalles

GASES. Contenidos. Leyes de los gases y su aplicación en la resolución de problemas numéricos.

GASES. Contenidos. Leyes de los gases y su aplicación en la resolución de problemas numéricos. GASES Contenidos Postulados de la teoría cinética de los gases y su relación con las características (expansión, comprensión y difusión) y las propiedades ( presión, volumen y temperatura) que los definen.

Más detalles

P/T = k V y n ctes. P y T ctes. P y n ctes. T y n ctes. presión. temperatura. escala. absoluta. empírica. absoluta atmosférica manométrica

P/T = k V y n ctes. P y T ctes. P y n ctes. T y n ctes. presión. temperatura. escala. absoluta. empírica. absoluta atmosférica manométrica presión volumen mol temperatura escala absoluta atmosférica manométrica absoluta empírica Boyle Charles Gay Lussac Avogadro PV = k T y n ctes V/T = k P y n ctes P/T = k V y n ctes V/n = Vm P y T ctes PV

Más detalles

F A P = F A ESTADOS DE LA MATERIA ESTADO GASEOSO PROPIEDADES DE LOS GASES

F A P = F A ESTADOS DE LA MATERIA ESTADO GASEOSO PROPIEDADES DE LOS GASES ESTADO GASEOSO ROIEDADES DE LOS GASES ESTADOS DE LA MATERIA Estados de la materia Sólido Líquido Gaseoso Bibliografía: Química la Ciencia Central - T.Brown, H.Lemay y B. Bursten. Química General - McMurry-Fay

Más detalles

QUÍMICA GENERAL GASES IDEALES

QUÍMICA GENERAL GASES IDEALES QUÍMICA GENERAL GASES IDEALES INTRODUCCIÓN TEORÍA CINÉTICA DE LOS GASES LEYES DE LOS GASES IDEALES TEORÍA CINÉTICA DE LOS GASES DEFINICIÓN Entre 1850 y 1880 Clausius y Boltzmann desarrollaron esta teoría,

Más detalles

GASES 09/06/2011. La Tierra está rodeada por una mezcla de gases que se denomina atmósfera, cuya composición es la siguiente: La atmósfera

GASES 09/06/2011. La Tierra está rodeada por una mezcla de gases que se denomina atmósfera, cuya composición es la siguiente: La atmósfera La Tierra está rodeada por una mezcla de gases que se denomina atmósfera, cuya composición es la siguiente: GASES Nitrógeno 78% Oxígeno 21% Otros gases 1% La atmósfera también almacena otros gases Vapor

Más detalles

Profesora: Teresa Esparza Araña ASPECTOS CUANTITATIVOS DE LA QUÍMICA. UNIDAD 2: Los gases ideales

Profesora: Teresa Esparza Araña ASPECTOS CUANTITATIVOS DE LA QUÍMICA. UNIDAD 2: Los gases ideales Departamento de Física y Química Profesora: Teresa Esparza Araña CEAD P. Félix Pérez Parrilla ASPECTOS CUANTITATIVOS DE LA QUÍMICA UNIDAD 2: Los gases ideales ÍNDICE 1. LOS GASES SEGÚN LA TEORÍA CINÉTICA

Más detalles

EPO 11 ESCUELA PREPARATORIA OFICIAL NÚM. 11 FUENTE: VALORACIONES: FECHA: CUAUTITLAN IZCALLI, MEX. MATERIA: QUÍMICA II

EPO 11 ESCUELA PREPARATORIA OFICIAL NÚM. 11 FUENTE: VALORACIONES: FECHA: CUAUTITLAN IZCALLI, MEX. MATERIA: QUÍMICA II Diagnóstico 1PTO: NO ENTREGADA EN TIEMPO Y FORMA. 2PTS: ACTIVIDAD INCOMPLETA. 3PTS: ACTIVIDA COMPLETA. 1 TEMÁTICA INTEGRADORA ESCENARIO DIDÁCTICO PREGUNTA GENERADORA 2 Desarrolla, analiza e interpreta

Más detalles

Electricidad y calor. Dr. Roberto Pedro Duarte Zamorano. Departamento de Física

Electricidad y calor. Dr. Roberto Pedro Duarte Zamorano. Departamento de Física Electricidad y calor Dr. Roberto Pedro Duarte Zamorano Departamento de Física 2011 A. Termodinámica Temario 1. Temperatura y Ley Cero. (3horas) 2. Calor y transferencia de calor. (5horas) 3. Gases ideales

Más detalles

Unidad 4: Estado Gaseoso Introducción Teórica

Unidad 4: Estado Gaseoso Introducción Teórica Unidad 4: Estado Gaseoso Introducción Teórica En esta unidad vamos a ampliar y explicar algunas de las características del estado gaseoso que ya han sido tratadas en la Unidad 1, como por ejemplo la de

Más detalles

Teoría Mol Nº Avogadro Gases perfectos Física y Química. 1º bachiller CONCEPTOS PREVIOS

Teoría Mol Nº Avogadro Gases perfectos Física y Química. 1º bachiller CONCEPTOS PREVIOS CONCEPTOS PREVIOS Masa atómica: Es la masa de un átomo en reposo. En cursos anteriores denominábamos número atómico a la masa de un átomo (protones + neutrones). Pero los elementos tienen átomos con diferente

Más detalles

Profesora: Teresa Esparza Araña LA CANTIDAD DE SUSTANCIA EN QUÍMICA. UNIDAD 6: Los gases ideales

Profesora: Teresa Esparza Araña LA CANTIDAD DE SUSTANCIA EN QUÍMICA. UNIDAD 6: Los gases ideales Departamento de Física y Química Profesora: Teresa Esparza Araña CEAD P. Félix Pérez Parrilla LA CANTIDAD DE SUSTANCIA EN QUÍMICA UNIDAD 6: Los gases ideales 1. LOS GASES SEGÚN LA TEORÍA CINÉTICA DE LA

Más detalles

TEMA 2: LEYES Y CONCEPTOS BÁSICOS EN QUÍMICA

TEMA 2: LEYES Y CONCEPTOS BÁSICOS EN QUÍMICA 1. SUSTANCIAS PURAS Y MEZCLAS 2. LEYES PONDERALES DE LAS COMBINACIONES QUÍMICAS 2.1. LEY DE CONSERVACIÓN DE LA MATERIA Enunciada en 1783 por Lavoisier: La materia ni se crea ni se destruye, únicamente

Más detalles

Gases...1. Características: Volumen:...1. Temperatura:

Gases...1. Características: Volumen:...1. Temperatura: Índice de contenido Gases......1 Características:......1 Volumen:......1 Temperatura:......1 Presión:......2 Medición de presiones:......2 Ley de Boyle (relación presión volumen):......2 Ley de Charles

Más detalles

Electricidad y calor. Gases. Temas. 3. Gases ideales y estados termodinámicos. Webpage:

Electricidad y calor. Gases. Temas. 3. Gases ideales y estados termodinámicos. Webpage: Electricidad y calor Webpage: http://paginas.fisica.uson.mx/qb 2007 Departamento de Física Universidad de Sonora Temas 3. Gases ideales y estados termodinámicos. i. Concepto y características del gas ideal.

Más detalles

TEORICO-PRÁCTICO N 5: LEYES DE LOS GASES IDEALES

TEORICO-PRÁCTICO N 5: LEYES DE LOS GASES IDEALES TEORICO-PRÁCTICO N 5: LEYES DE LOS GASES IDEALES FUNDAMENTO TEÓRICO: La materia puede estar en tres estados: sólido, líquido y gaseoso. Los gases, no tienen forma ni volumen fijo, las fuerzas que mantienen

Más detalles

Director de Curso Francisco J. Giraldo R.

Director de Curso Francisco J. Giraldo R. Director de Curso Francisco J. Giraldo R. EL AIRE El aire seco es una mezcla de gases: El 78% es Nitrógeno. El 21% es Oxígeno. El 1% es Argón. El Dioxido de carbono (CO 2 ), Helio (He), Neón (Ne), Kripton

Más detalles

UNIDAD 3 ESTADO GASEOSO

UNIDAD 3 ESTADO GASEOSO UNIDAD DIDÁCTICA 3 UNIDAD 3 ESTADO GASEOSO En la naturaleza, las sustancias se puede presentar en tres diferentes estados de agregación: sólido, líquido y gaseoso, cada uno de los cuales se distingue por

Más detalles

Unidad III. Sistemas Monofásicos

Unidad III. Sistemas Monofásicos UNIVERSIDAD NACIONAL EXPERIMENTAL POLITECNICA ANTONIO JOSÉ DE SUCRE VICERRECTORADO BARQUISIMETO DEPARTAMENTO DE INGENIERÍA QUÍMICA Ingeniería Química Unidad III. Balance de materia Sistemas Monofásicos

Más detalles

PROPIEDADES DE LA MATERIA. Departamento de Física y Química 2º ESO

PROPIEDADES DE LA MATERIA. Departamento de Física y Química 2º ESO PROPIEDADES DE LA MATERIA Departamento de Física y Química 2º ESO 0. Mapa conceptual Estados de agregación Sólido Líquido Gaseoso Propiedades MATERIA Teoría cinética Generales Específicas Leyes de los

Más detalles

EJERCICIOS DE REFUERZO/AMPLIACIÓN Control 1

EJERCICIOS DE REFUERZO/AMPLIACIÓN Control 1 EJERCICIOS DE REFUERZO/AMPLIACIÓN Control 1 R-1 Explica qué le ocurre a la densidad de un gas cuando: se dilata se le aumenta la presión a temperatura constante Cuando una sustancia se dilata, su masa

Más detalles

UNIDAD DIDÁCTICA 2. EL MODELO DE PARTÍCULAS DE LA MATERIA PROPUESTA DIDÁCTICA. LA MATERIA Y EL MODELO DOCUMENTO PARA EL ALUMNO

UNIDAD DIDÁCTICA 2. EL MODELO DE PARTÍCULAS DE LA MATERIA PROPUESTA DIDÁCTICA. LA MATERIA Y EL MODELO DOCUMENTO PARA EL ALUMNO UNIDAD DIDÁCTICA 2. EL MODELO DE PARTÍCULAS DE LA MATERIA PROPUESTA DIDÁCTICA. LA MATERIA Y EL MODELO DOCUMENTO PARA EL ALUMNO 1. LOS ESTADOS DE AGREGACIÓN DE LA MATERIA. CAMBIOS DE ESTADO Una misma sustancia

Más detalles

Principios y conceptos básicos de Química

Principios y conceptos básicos de Química Principios y conceptos básicos de Química Se estudiarán durante las dos primeras quincenas, estos contenidos están en el tema 2 del libro de texto. Quincena 1ª - Repaso de conceptos estudiados en ESO (Densidad,

Más detalles

LA MATERIA 1. Teoría atómica de Dalton. 2. La materia. 3. Leyes químicas. 4. El mol. 5. Leyes de los gases ideales. 6. Símbolos y fórmulas.

LA MATERIA 1. Teoría atómica de Dalton. 2. La materia. 3. Leyes químicas. 4. El mol. 5. Leyes de los gases ideales. 6. Símbolos y fórmulas. LA MATERIA 1. Teoría atómica de Dalton. 2. La materia. 3. Leyes químicas. 4. El mol. 5. Leyes de los gases ideales. 6. Símbolos y fórmulas. Química 1º bachillerato La materia 1 1. TEORÍA ATÓMICA DE DALTON

Más detalles

GASES IDEALES. 1 atm = 760 mmhg = 760 Torr = 1013 hpa

GASES IDEALES. 1 atm = 760 mmhg = 760 Torr = 1013 hpa GASES IDEALES Para comprender los problemas de este capítulo es necesario leer previamente la Teoría Cinética de los Gases, el concepto de Variables de Estado y las Leyes de los Gases. Ecuación general

Más detalles

Actividad introductoria

Actividad introductoria Grado 10 Ciencias naturales Unidad 2 De qué está hecho todo lo que nos rodea? Tema Qué tan rápido viajan las moléculas de nitrógeno y oxígeno en el aire? Curso: Nombre: Actividad introductoria Lee con

Más detalles

TAREA 1. Nombre Núm. de lista Grupo Turno Núm. de Expediente Fecha

TAREA 1. Nombre Núm. de lista Grupo Turno Núm. de Expediente Fecha TAREA 1 Nombre Núm. de lista Grupo Turno Núm. de Expediente Fecha INSTRUCCIONES: Investiga como es el puente de Hidrógeno en las estructuras del H 2 O, NH 3 y HF. Dibuja los modelos resaltando con color

Más detalles

GUÍA DE EJERCICIOS GASES

GUÍA DE EJERCICIOS GASES GUÍA DE EJERCICIOS GASES Área Química Resultados de aprendizaje Aplicar conceptos básicos de gases en la resolución de ejercicios. Desarrollar pensamiento lógico y sistemático en la resolución de problemas.

Más detalles

Física y Química 1º Bach.

Física y Química 1º Bach. Física y Química 1º Bach. Leyes de los gases. Teoría cinético-molecular 05/11/10 DEPARTAMENTO FÍSICA E QUÍMICA Nombre: OPCIÓN 1 1. Observa el aparato de la Figura. Si la temperatura del aceite se eleva

Más detalles

GASES IDEALES. P. V = n. R. T

GASES IDEALES. P. V = n. R. T GASES IDEALES Lic. Lidia Iñigo A esta altura de tus estudios seguramente ya sabés que hay muchas sustancias formadas por moléculas, qué es una molécula, y que una sustancia determinada puede presentarse

Más detalles

UNIDAD Nº 2: GASES IDEALES Y CALORIMETRIA

UNIDAD Nº 2: GASES IDEALES Y CALORIMETRIA UNIDAD Nº 2: GASES IDEALES Y CALORIMETRIA UNIVERSIDAD CATÓLICA DE SALTA FAC. DE CS AGRARIAS Y VETERINARIAS AÑO 2008 Farm. Pablo F. Corregidor 1 TEMPERATURA 2 TEMPERATURA Termoreceptores: Externos (piel)

Más detalles

III. ESTADOS DE LA MATERIA

III. ESTADOS DE LA MATERIA III. ESTADOS DE LA MATERIA Fuerzas Intermoleculares Las fuerzas intermoleculares Son fuerzas de atracción entre las moléculas y son mas débiles que las fuerzas intramoleculares (enlaces químicos). Ejercen

Más detalles

LEYES DE LOS GASES. El volumen es directamente proporcional a la cantidad de gas:

LEYES DE LOS GASES. El volumen es directamente proporcional a la cantidad de gas: LEYES DE LOS GASES LEY DE AVOGADRO: Esta ley, descubierta por Avogadro a principios del siglo XIX, establece la relación entre la cantidad de gas y su volumen cuando se mantienen constantes la temperatura

Más detalles

CARÁCTERÍSTICAS DE LOS GASES

CARÁCTERÍSTICAS DE LOS GASES DILATACIÓN EN LOS GASES - CARACTERÍSTICAS DE LOS GASES - PRESIÓN EN LOS GASES: CAUSAS Y CARACTERÍSTICAS - MEDIDA DE LA PRESIÓN DE UN GAS: MANÓMETROS - GAS EN CONDICIONES NORMALES - DILATACIÓN DE LOS GASES

Más detalles

GASES IDEALES. mg A F A. Presión. Unidades: SI: Pascal (N / m 2 ) cgs: baria (dyna / cm 2 )

GASES IDEALES. mg A F A. Presión. Unidades: SI: Pascal (N / m 2 ) cgs: baria (dyna / cm 2 ) GASES IDEALES Presión P F A mg A δg A δgh Unidades: SI: Pascal (N / m ) cgs: baria (dyna / cm ) Presión atmosférica Barómetro E. Torricelli Presión atmosférica Altura proporcional a la presión atmosférica

Más detalles

UNIVERSIDAD DE LEÓN. ESyTIA y EIIIIyA. Prof. Dr. Miguel Celemín Matachana. Dilatación térmica de los gases

UNIVERSIDAD DE LEÓN. ESyTIA y EIIIIyA. Prof. Dr. Miguel Celemín Matachana. Dilatación térmica de los gases Cap. II: Termodinámica. Lección : Dilatación térmica de los gases Dilatación térmica de los gases La ecuación que proporciona la dilatación de un volumen no sirve para los gases si no se especifica la

Más detalles

DEPARTAMENTO DE FISICA UNIVERSIDAD DE SANTIAGO DE CHILE GASES IDEALES

DEPARTAMENTO DE FISICA UNIVERSIDAD DE SANTIAGO DE CHILE GASES IDEALES INTRODUCCIÓN GASES IDEALES Las dos primeras unidades del programa de cuarto medio estudian temas estrechamente ligados entre si como lo es la teoría cinética, temperatura, calor, termodinámica. Abordaremos

Más detalles

FÍSICA Y QUÍMICA TEMA 2: LA MATERIA Y SUS ESTADOS DE AGREGACIÓN

FÍSICA Y QUÍMICA TEMA 2: LA MATERIA Y SUS ESTADOS DE AGREGACIÓN 1 Física y Química 3º Curso Educación Secundaria Obligatoria Curso académico 2015/2016 FÍSICA Y QUÍMICA TEMA 2: LA MATERIA Y SUS ESTADOS DE AGREGACIÓN 2 Física y Química 3º Curso Educación Secundaria Obligatoria

Más detalles

1. Los estados de la materia

1. Los estados de la materia 1. Los estados de la materia Propiedades La materia que nos rodea aparece ante nosotros con muy diversos aspectos. Presenta distintas formas, colores, dureza, fluidez pero en general, consideramos que

Más detalles

T E O R Í A C I N É T I C A D E L O S G A S E S

T E O R Í A C I N É T I C A D E L O S G A S E S T E O R Í C I N É T I C D E L O S G S E S Entendemos por teoría cinética de la materia el intento mediante el cual se desean explicar las propiedades observables en escala gruesa o macroscópica de sistemas

Más detalles

Gases. Sustancias que existen como gases a 1.0 atm y 25 C. Características físicas de los gases

Gases. Sustancias que existen como gases a 1.0 atm y 25 C. Características físicas de los gases Sustancias que existen como gases a 1.0 atm y 25 C Gases Basado en Capítulo 5 de Química (Chang, 2007) Dr. Hernández-Castillo Características físicas de los gases Toman la forma y volumen de sus recipientes

Más detalles

Etapa 4 GASES SUS LEYES Y COMPORTAMIENTO. Nombre Grupo Matrícula PROPIEDAD DESCRIPCIÓN UNIDADES DE MEDICION PRESION (P)

Etapa 4 GASES SUS LEYES Y COMPORTAMIENTO. Nombre Grupo Matrícula PROPIEDAD DESCRIPCIÓN UNIDADES DE MEDICION PRESION (P) Etapa 4 GASES SUS LEYES Y COMPORTAMIENTO Nombre Grupo Matrícula PROPIEDADES DE LOS GASES: I. Completa correctamente la siguiente tabla. PROPIEDAD DESCRIPCIÓN UNIDADES DE MEDICION PRESION (P) VOLUMEN (V)

Más detalles

TEMA I: ESTADOS DE AGREGACION DE LA MATERIA. ESTADO GASEOSO

TEMA I: ESTADOS DE AGREGACION DE LA MATERIA. ESTADO GASEOSO TEMA I: ESTADOS DE AGREGACION DE LA MATERIA. ESTADO GASEOSO 1. Estados de agregación de la materia La materia esta constituida por moléculas y estas a su vez integradas por átomos. Las partículas constituyentes

Más detalles

INSTITUCION EDUCATIVA LA PRESENTACION

INSTITUCION EDUCATIVA LA PRESENTACION INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : CIENCIAS NATURALES Y EDUCACION AMBIENTAL ASIGNATURA: QUIMICA DOCENTE: OSCAR GIRALDO HERNANDEZ TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO

Más detalles

Ley de conservación de la masa o ley de Lavoisier Ley de las proporciones definidas o ley de Proust

Ley de conservación de la masa o ley de Lavoisier Ley de las proporciones definidas o ley de Proust REPASO DE QUÍMICA 1 Leyes ponderales-1 Ley de conservación de la masa o ley de Lavoisier: En toda reacción química, en un sistema cerrado, la masa de todas las sustancias existentes se conserva. Ley de

Más detalles

Los Gases y la teoría Cinético - Molecular

Los Gases y la teoría Cinético - Molecular Universidad de La Frontera Fac. Ing. Cs. y Adm. Dpto. Cs. Químicas Los Gases y la teoría Cinético - Molecular Prof. Josefina Canales Algunos gases industriales importantes Nombre - Fórmula Origen y uso

Más detalles

GASES - PREGUNTAS DE TEST (2016) En la última página se ofrecen las soluciones

GASES - PREGUNTAS DE TEST (2016) En la última página se ofrecen las soluciones GASES - PREGUNTAS DE TEST (2016) En la última página se ofrecen las soluciones Grupo A - CONCEPTOS GENERALES: CONCEPTO DE GAS Y VAPOR Grupo B - LEYES GENERALES DE LOS GASES IDEALES: Grupo C- LEY DE GRAHAM

Más detalles

ESTADOS DE AGREGACIÓN DE LA MATERIA

ESTADOS DE AGREGACIÓN DE LA MATERIA ESTADOS DE AGREGACIÓN DE LA MATERIA SÍNTESIS DE LA PRESENTACIÓN GASES, SÓLIDOS Y LÍQUIDOS Fuerzas intermoleculares. Fuerzas de interacción con iones. Fuerzas de Van der Waals. Puente de Hidrógeno. Estados

Más detalles

MOL. Nº AVOGADRO GASES. TEMA 4 Pág. 198 libro (Unidad 10)

MOL. Nº AVOGADRO GASES. TEMA 4 Pág. 198 libro (Unidad 10) MOL. Nº AVOGADRO GASES TEMA 4 Pág. 198 libro (Unidad 10) CONCEPTOS PREVIOS Supuestos de Dalton Teoría atómica de Dalton Elementos constituidos por átomos, partículas separadas e indivisibles Átomos de

Más detalles

a) Cuál será el volumen de una muestra de gas a 30 ºC, si inicialmente teníamos

a) Cuál será el volumen de una muestra de gas a 30 ºC, si inicialmente teníamos EJERCICIOS GASES 3ER CORTE I. Ejercicios integrales 1. Ley de Charles a) Cuál será el volumen de una muestra de gas a 30 ºC, si inicialmente teníamos 400 ml a 0 ºC, permaneciendo constante la presión?.

Más detalles

LOS GASES Y LAS DISOLUCIONES. Departamento de Física y Química 3º ESO

LOS GASES Y LAS DISOLUCIONES. Departamento de Física y Química 3º ESO LOS GASES Y LAS DISOLUCIONES Departamento de Física y Química 3º ESO 0. Mapa conceptual SÓLIDO ESTADOS DE LA MATERIA LÍQUIDO Presión atmosférica GAS Solubilidad Disolución saturada Disoluciones Soluto

Más detalles

Ley de Boyle. A temperatura constante, el volumen de una muestra dada de gas es inversamente proporcional a su presión

Ley de Boyle. A temperatura constante, el volumen de una muestra dada de gas es inversamente proporcional a su presión LOS GASES Un gas es una porción de materia cuya forma y volumen son variables ya que se adaptan a la del recipiente que lo contiene, el cual ocupan totalmente. LEYES DE LOS GASES Ley de Boyle Robert Boyle,

Más detalles

ESTADOS DE LA MATERIA

ESTADOS DE LA MATERIA ESTADOS DE LA MATERIA M en C Alicia Cea Bonilla 1 Existen tres estados de la materia: sólido, líquido y gaseoso, dependiendo de la distancia entre sus partículas, de las fuerzas de atracción entre éstas

Más detalles

MOL. Nº AVOGADRO DISOLUCIONES. TEMA 4 Pág. 198 libro (Unidad 10)

MOL. Nº AVOGADRO DISOLUCIONES. TEMA 4 Pág. 198 libro (Unidad 10) MOL. Nº AVOGADRO DISOLUCIONES TEMA 4 Pág. 198 libro (Unidad 10) CONCEPTOS PREVIOS Supuestos de Dalton Teoría atómica de Dalton Elementos consitudios por átomos, partícuals separads e indivisibles Átomos

Más detalles

Los gases y la Teoría Cinética

Los gases y la Teoría Cinética Para practicar Utiliza tu cuaderno y trata de resolver los siguientes ejercicios: 1.-En una tabla similar a la siguiente, introduce las propiedades características de un SÓLIDO, un LÍQUDO o un GAS, como

Más detalles

Física y Química 1º Bachillerato LOMCE

Física y Química 1º Bachillerato LOMCE Física y Química 1º Bachillerato LOMCE FyQ 1 IES de Castuera Bloque 2 Aspectos Cuantitativos de la Química 201 2016 Unidad Didáctica 1 Rev 01 Las Leyes Ponderales y Las Leyes de los Gases Ideales 1.1 Las

Más detalles

GUÍA ACUMULATIVA/ 8º MEDIO ( Desarrollo de Ejercicios: Leyes de los Gases) Nombre del Alumno: Curso: Fecha:

GUÍA ACUMULATIVA/ 8º MEDIO ( Desarrollo de Ejercicios: Leyes de los Gases) Nombre del Alumno: Curso: Fecha: Sector: Naturaleza Nivel: 8 Básico Nombre Profesora: Nancy Erazo Rosa Unidad V : Leyes de los gases GUÍA ACUMULATIVA/ 8º MEDIO ( Desarrollo de Ejercicios: Leyes de los Gases) Nombre del Alumno: Curso:

Más detalles

Ejercicios. Ejercicios. 1. Cuántas moléculas de metano (CH 4) ) hay en 10 moles de dicho compuesto? 2. Calcula la masa de 10 moles de CO 2

Ejercicios. Ejercicios. 1. Cuántas moléculas de metano (CH 4) ) hay en 10 moles de dicho compuesto? 2. Calcula la masa de 10 moles de CO 2 TEMA 3: 3 : LOS GASES EL MOL Ya hemos visto que los átomos y las moléculas de los elementos y compuestos son extremadamente pequeños. En 1 gramo de H 2O hay 3,3. 10 22 moléculas. En cualquier muestra de

Más detalles

PRÁCTICA 4: DETERMINACIÓN DE LA CONSTANTE UNIVERSAL DE LOS GASES

PRÁCTICA 4: DETERMINACIÓN DE LA CONSTANTE UNIVERSAL DE LOS GASES PRÁCTICA 4: DETERMINACIÓN DE LA CONSTANTE UNIVERSAL DE LOS GASES Prof. Elizabeth K. Galván Miranda Prof. Ximena Villegas Pañeda Facultad de Química, UNAM Departamento de Fisicoquímica Laboratorio de Termodinámica

Más detalles

TEORÍA CINÉTICA DE LA MATERIA. ESCALA ABSOLUTA DE TEMPERATURAS. LEYES DE LOS GASES

TEORÍA CINÉTICA DE LA MATERIA. ESCALA ABSOLUTA DE TEMPERATURAS. LEYES DE LOS GASES EORÍA CINÉICA DE LA MAERIA. ESCALA ABSOLUA DE EMPERAURAS. LEYES DE LOS GASES IES La Magdalena. Avilés. Asturias Para poder explicar (ver preguntas) y entender el comportamiento de la materia existe un

Más detalles

UNIDAD IV GASES PROPIEDADES FISICAS DE LOS GASES

UNIDAD IV GASES PROPIEDADES FISICAS DE LOS GASES UNIDAD IV GASES PROPIEDADES FISICAS DE LOS GASES Muchas sustancias familiares para nosotros existen a temperatura y presión normal en forma gaseosa, éstas incluyen muchos sustancias elementales (H 2, N

Más detalles

Teoría cinética de los gases.

Teoría cinética de los gases. . Con la finalidad de interpretar las propiedades macroscópicas de los sistemas gaseosos en función del comportamiento microscópico de las partículas que los forman, los fisicoquímicos estudian detalladamente

Más detalles

- Leyes ponderales: Las leyes ponderales relacionan las masas de las sustancias que intervienen en una reacción química.

- Leyes ponderales: Las leyes ponderales relacionan las masas de las sustancias que intervienen en una reacción química. FÍSICA Y QUÍMICA 4ºESO COLEGIO GIBRALJAIRE CÁLCULOS QUÍMICOS 1.- LA REACCIÓN QUÍMICA. LEYES PONDERALES Una reacción química es el proceso en el que, mediante una reorganización de enlaces y átomos, una

Más detalles

Teoría cinética de los gases

Teoría cinética de los gases Teoría cinética de los gases Modelo Molecular El número de moléculas es grande, así como la separación promedio entre ellas comparadas con sus dimensiones. El volumen de las moléculas es despreciable cuando

Más detalles

Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP U. de Santiago. Química

Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP U. de Santiago. Química Gases RECUERDEN QUE: En los ejercicios de gases SIEMPRE deben trabajar con la temperatura en K ( C + 273). Además, por conveniencia, en esta unidad cuando hablemos de masa molar en gases, usaremos la sigla

Más detalles

En el siglo XVIII la química estableció las medidas precisas de masa y volúmenes que llevaron a enunciar las llamadas leyes ponderales.

En el siglo XVIII la química estableció las medidas precisas de masa y volúmenes que llevaron a enunciar las llamadas leyes ponderales. 1. LEYES PONDERALES En el siglo XVIII la química estableció las medidas precisas de masa y volúmenes que llevaron a enunciar las llamadas leyes ponderales. Ley de conservación de la masa de Lavoisier Lavosier

Más detalles

Tema 5 TEORÍA CINÉTICA DE LOS GASES POSTULADOS DE LA TEORÍA CINÉTICA DE LOS GASES POSTULADOS DE LA TEORÍA CINÉTICA DE LOS GASES

Tema 5 TEORÍA CINÉTICA DE LOS GASES POSTULADOS DE LA TEORÍA CINÉTICA DE LOS GASES POSTULADOS DE LA TEORÍA CINÉTICA DE LOS GASES TEORÍA CINÉTICA DE LOS GASES Tema Entre los siglos XVIII y XIX Bernoulli, Krönig, Clausius, Maxwell y Boltzmann desarrollaron la Teoría Cinética Molecular de los Gases para explicar el comportamiento de

Más detalles

Leyes clásicas de las reacciones químicas

Leyes clásicas de las reacciones químicas Leyes clásicas de las reacciones químicas Leyes ponderales Relativas a la masa de reactivos y productos en un reacción química. Instrumento de medida. La balanza - Ley de conservación de la masa. Lavoisier

Más detalles

Ecuación de estado del gas ideal

Ecuación de estado del gas ideal Prácticas de laboratorio de Física I Ecuación de estado del gas ideal Curso 2010/11 1 Objetivos Comprobación de la ecuación de estado del gas ideal experimentalmente Construcción de curvas a presión, temperatura

Más detalles

FÍSICA Y QUÍMICA 2º ESO TEMA V LA MATERIA Y SUS PROPIEDADES

FÍSICA Y QUÍMICA 2º ESO TEMA V LA MATERIA Y SUS PROPIEDADES FÍSICA Y QUÍMICA 2º ESO TEMA V LA MATERIA Y SUS PROPIEDADES 1. MASA Y VOLUMEN. La masa (m) es la cantidad de materia que tiene un cuerpo. Su unidad en el S.I. es el kg. Para medir la masa de un cuerpo

Más detalles

C: GASES Y PRESIÓN DE VAPOR DEL AGUA

C: GASES Y PRESIÓN DE VAPOR DEL AGUA hecho el vacío. Calcula a) Cantidad de gas que se tiene ; b) la presión en los dos recipientes después de abrir la llave de paso y fluir el gas de A a B, si no varía la temperatura. C) Qué cantidad de

Más detalles

SESIÓN 13 EQUILIBRIO QUÍMICO EN FASE GASEOSA

SESIÓN 13 EQUILIBRIO QUÍMICO EN FASE GASEOSA I. CONTENIDOS: 1. Leyes de los gases. 2. Presión y temperatura. 3. Principio de Le Chatelier. 4. Constante de equilibrio. SESIÓN 13 EQUILIBRIO QUÍMICO EN FASE GASEOSA II. OBJETIVOS: Al término de la Sesión,

Más detalles

La materia: estados físicos

La materia: estados físicos 2 La materia: estados físicos PARA EMPEZAR ESQUEMA INTERNET Esquema de contenidos Para empezar, experimenta y piensa Estados físicos de la materia Gases Estados de la materia y teoría cinética Cambios

Más detalles

Solución: Según Avogadro, 1 mol de cualquier gas, medido en condiciones normales ocupa 22,4 L. Así pues, manteniendo la relación: =1,34 mol CH 4

Solución: Según Avogadro, 1 mol de cualquier gas, medido en condiciones normales ocupa 22,4 L. Así pues, manteniendo la relación: =1,34 mol CH 4 Ejercicios Física y Química Primer Trimestre 1. Calcula los moles de gas metano CH 4 que habrá en 30 litros del mismo, medidos en condiciones normales. Según Avogadro, 1 mol de cualquier gas, medido en

Más detalles

TEMA 7: Problemas de Química

TEMA 7: Problemas de Química TEMA 7: Problemas de Química Tema 7: Problemas de Química 1 1.- REACCIONES QUÍMICAS Una reacción química es un proceso en el que se unen varias sustancias llamadas reactivos y se transforman en otras sustancias

Más detalles

RESUMEN TERMO 2A_1C 2016

RESUMEN TERMO 2A_1C 2016 RESUMEN TERMO 2A_1C 2016 entorno o exterior sistema Universo sistema abierto cerrado aislado materia y energía energía nada Olla con agua sobre una hornalla Agua en un termo perfecto Persona o cualquier

Más detalles

2003, Ernesto de Jesús Alcañiz

2003, Ernesto de Jesús Alcañiz 2003, Ernesto de Jesús Alcañiz 5 Gases y líquidos 5.1 La teoría cinético-molecular de los gases 5.2 Predicciones de la teoría cinético-molecular 5.3 Los gases reales: ecuación de Van der Waals 5.4 Propiedades

Más detalles

La materia. Los gases

La materia. Los gases 1 La materia. Los gases 1 La materia y sus estados de agregación Características de los estados de la materia La materia se puede presentar en varios estados de agregación: sólido, líquido y gas, que tienen

Más detalles

GUIA PRATICA TEMA: GASES IDEALES

GUIA PRATICA TEMA: GASES IDEALES UNIDAD 3: GASES (TEMA 2: GASES IDEALES) UNIVERSIDAD NACIONAL EXPERIMENTAL POLITECNICA ANTONIO JOSE DE SUCRE VICE RECTORADO PUERTO ORDAZ DEPARTAMENTO DE ESTUDIOS GENERALES SECCIÓN DE QUÍMICA Asignatura:

Más detalles

Unidad 0 CÁLCULOS QUÍMICOS. Unidad 0. Cálculos químicos

Unidad 0 CÁLCULOS QUÍMICOS. Unidad 0. Cálculos químicos Unidad 0 CÁLCULOS QUÍMICOS Unidad 0. Cálculos químicos 1 0. Leyes ponderales Leyes que rigen las combinaciones químicas. Se basan en la experimentación y miden cuantitativamente la cantidad de materia

Más detalles

FUNDAMENTOS DE TERMODINÁMICA PROBLEMAS

FUNDAMENTOS DE TERMODINÁMICA PROBLEMAS FUNDAMENOS DE ERMODINÁMICA ROBLEMAS 1.- Clasifique cada propiedad como extensiva o intensiva: a) temperatura, b) masa, c) densidad, d) intensidad del campo eléctrico, e) coeficiente de dilatación térmica,

Más detalles

3. Física del Buceo. Séptima Compañía de Bomberos Acción y Disciplina Tome Dichato Fundada el 24 de Octubre de 1975 GERSA

3. Física del Buceo. Séptima Compañía de Bomberos Acción y Disciplina Tome Dichato Fundada el 24 de Octubre de 1975 GERSA 3. Física del Buceo Séptima Compañía de Bomberos Acción y Disciplina Tome Dichato Fundada el 24 de Octubre de 1975 GERSA 1. Conceptos básicos y unidades de medida 1.1 Materia y sus estados Es todo aquello

Más detalles

INSTITUCIÓN EDUCATIVA FE Y ALEGRÍA NUEVA GENERACIÓN Formando para el amor y la vida - AREA CIENCIAS NATURALES: FISICA.

INSTITUCIÓN EDUCATIVA FE Y ALEGRÍA NUEVA GENERACIÓN Formando para el amor y la vida - AREA CIENCIAS NATURALES: FISICA. GUIA Nº 3 NOMBRE: GRADO: FECHA: El estado gaseoso La teoría cinética Comprensibilidad Expansibilidad Boyle Charles Gay-Lussac Dalton Graham V 1 V 2 = P 2 P 1 V 1 V 2 = T 1 T 2 P 1 P 2 = T 1 T 2 Mezclas

Más detalles

GUIA: GASES y LEYES QUE LOS RIGEN

GUIA: GASES y LEYES QUE LOS RIGEN DEPARTAMENTO DE CIENCIAS QUÍMICA Sèptimo Básico GUIA: GASES y LEYES QUE LOS RIGEN 1_ La ley de Gay-Lussac nos dice que, a volumen constante, la presión y la temperatura de un gas son directamente proporcionales

Más detalles

Pv = nrt P T P T. Ing. Magno Cuba Atahua

Pv = nrt P T P T. Ing. Magno Cuba Atahua TEORI CINÉTIC DE LOS GSES Un gas ideal es un gas cuyas moléculas están tan separadas que raramente chocan unas con otras. uesto que éste es el caso para cualquier gas real a baja ideales a baja densidad

Más detalles

Física y Química. 2º ESO. LA MATERIA Y SUS PROPIEDADES La materia. La materia es todo aquello que tiene masa y ocupa un espacio.

Física y Química. 2º ESO. LA MATERIA Y SUS PROPIEDADES La materia. La materia es todo aquello que tiene masa y ocupa un espacio. La materia es todo aquello que tiene masa y ocupa un espacio. Es materia por tanto el plástico, el carbón, la madera, el aire, el agua, el hierro, etc. y no lo es la alegría, la tristeza, la velocidad,

Más detalles

UNIVERSIDAD TECNOLÓGICA DE PUEBLA

UNIVERSIDAD TECNOLÓGICA DE PUEBLA TÉRMICA. PRÁCTICA NÚMERO 5 Simulación de Ley de Boyle. OBJETIVO: Confirmar de manera experimental la ley de Boyle. Analizar con base en gráficos obtenidos a partir de los datos experimentales de presión

Más detalles

Propiedades de la materia que nos rodea

Propiedades de la materia que nos rodea Propiedades de la materia que nos rodea Propiedades generales La masa: Cantidad de materia que tiene un objeto, se mide en Kg en el SI. DOS SUSTANCIAS DIFERENTES PUEDEN TENER IGUAL MASA NO SIRVE PARA DIFERENCIAR

Más detalles

Ley de Charles. Por qué ocurre esto?

Ley de Charles. Por qué ocurre esto? Ley de Charles En 1787, Jack Charles estudió por primera vez la relación entre el volumen y la temperatura de una muestra de gas a presión constante y, observó que cuando se aumentaba la temperatura el

Más detalles

Teoría Cinética de los Gases

Teoría Cinética de los Gases NOMBRE: CURSO: EJEMPLO: Un envase con un volumen de 0,3 m³ contiene 2 moles de helio a 20º C. Suponiendo que el helio se comporta como un gas ideal, calcular: a) la energía cinética total del sistema,

Más detalles

LEYES FUNDAMENTALES DE LA QUÍMICA

LEYES FUNDAMENTALES DE LA QUÍMICA LEYES FUNDAMENTALES DE LA QUÍMICA SUSTANCIAS PURAS Cambios físicos Cambios Químicos TRANSFORMACIÓN No implican cambio de composición Ejemplo: Cambio de fase COMPUESTOS COMBINACIONES QUIMICAS DE ELEMENTOS

Más detalles

Tema 5.-Propiedades de transporte

Tema 5.-Propiedades de transporte Tema 5.- Propiedades de transporte Tema 5.-Propiedades de transporte 5.1-Teoría cinética de los gases 5.2.-Difusión 5.3.-Sedimentación 5.4.-Viscosidad 5.5.-Electroforesis 5.1-Teoría cinética de los gases

Más detalles