MÁQUINAS TÉRMICAS. Figura 1 : Esquema de una máquina térmica

Tamaño: px
Comenzar la demostración a partir de la página:

Download "MÁQUINAS TÉRMICAS. Figura 1 : Esquema de una máquina térmica"

Transcripción

1 MÁQUINAS TÉRMICAS 1. OBJETIVO - Estudio del trabajo realizado por una máquina térmica mediante la interpretación de un diagrama P=f(V). - Valoración de la eficiencia del motor, cálculo del rendimiento. 2.- FUNDAMENTO TEÓRICO Una máquina térmica es un dispositivo que, operando de forma cíclica, absorbe calor de un foco caliente, realiza un trabajo (parte del cual se emplea en hacer funcionar la propia máquina) y cede calor un foco que se encuentra a menor temperatura (Figura 1). Figura 1 : Esquema de una máquina térmica En un sistema que pasa por un proceso cíclico, sus energías internas inicial y final son iguales, es decir, para todo proceso cíclico la primera ley de la termodinámica exige que: U = U 2 U1 = 0 = Q W Q = W (1) El calor neto que fluye hacia la máquina en un proceso cíclico es igual al trabajo realizado por la máquina. La máquina térmica que se va a utilizar consiste en un cilindro plástico con un pistón en su interior, el cual puede moverse a lo largo del cilindro con rozamiento prácticamente despreciable. El pistón está unido a una plataforma en la cual se puede apoyar una masa. Un tubo flexible une el interior del cilindro con un recipiente metálico, de paredes muy finas, sellado con un tapón de goma. El aire encerrado en el interior del recipiente sufrirá variaciones de temperatura ya que puede ser alojado alternativamente en un depósito con agua fría o en un depósito con agua caliente experimentando los siguientes procesos, figura 2: - 1 -

2 1-2: Al inicio del ciclo se mantiene aire frío a temperatura constante y, se coloca una masa sobre el pistón Compresión isoterma. Durante este proceso se cede al exterior una cantidad de calor, Q C< 0. T = cte U = 0 Q = W = P dv nrt ln (V / V ) (2) R=constante de los gases ideales. 1 2 = 2-3: Calentamiento isobaro. El aire absorbe una cantidad de calor Q y aumenta su temperatura, Q H> 0. P = cte U 2 3 = Q W, siendo Q 2 3 = U W 7 7 P2V2 7 P3V3 Q 2 3 = nc p (TC Tf ) = nr (TC Tf ) = (TC Tf ) = (TC Tf ) (3) 2 2 T2 2 T3 7 Al ser el aire un gas diatómico, C p = R 2 3-4: Se quita la masa del pistón Expansión isoterma. En este proceso se absorbe una cantidad de calor de la fuente caliente Q H> 0. Q= U+W T = cte U = 0 Q = W = nrt ln (V / V ) PV ln (V / V ) (4) f final 3 4 C final inicial = 4-1: Enfriamiento isobaro. Cesión de una cantidad de calor Q a presión constante, se produce una disminución en la temperatura del aire, Q C< 0. P 4 1 = cte U = Q W, siendo Q 4 1 = ncp (Tf TC ) (5) inicial final inicial Figura 2: Diagrama P- V - 2 -

3 El rendimiento η del ciclo vendrá dado a través de la expresión: Wtotal realizado W η = = (6) Q Q absorbido por el sistema H siendo Q H=Q 2-3+Q 3-4 Si se considera que el motor térmico es ideal: T f ηideal = 1 (7) TC (Temperaturas expresadas siempre como temperaturas absolutas, es decir, temperatura Kelvin) Cumpliéndose siempre: η < η ideal <1 (8) 3.- MATERIAL UTILIZADO Dispositivo de fricción despreciable, consta de un pistón de grafito, un cilindro Pyrex con escala milimétrica y una plataforma superior. Figura 3: Dispositivo de trabajo - 3 -

4 Recipiente Metálico, de Aluminio, ver figura 3. Masas de 10, 20 y 200 gramos. Termostato y Cubeta para agua caliente. Recipiente de plástico para agua fría. Sondas de temperatura Medidor de temperatura (ver instrucciones en el laboratorio) Resistencia Sensor de presión Sensor de desplazamiento Varillas, soportes y nueces - 4 -

5 4.- EXPERIMENTACIÓN Cálculo del calor absorbido por el gas y del trabajo realizado sobre el sistema durante el ciclo. Evaluación del diagrama P=f(V). El dispositivo experimental se muestra en la figura 4. Preparen inicialmente los dos focos de temperatura, frío y caliente. Para el foco caliente, enchufen el termostato y posicionen el selector de temperatura entre 40 y 60 o C. El foco frío se conseguirá introduciendo en el agua una bolsa de hielo. Figura 4: Dispositivo Experimental Las temperaturas de ambos baños se miden mediante dos sondas de temperatura que se encuentran conectadas al Medidor de temperatura

6 Para que la medida de la Temperatura sea más precisa es conveniente mantener la agitación en ambos focos, frío y caliente. El recipiente que contiene agua fría debe colocarse encima de un agitador, tal y como se muestra en la figura 4. Enchufen dicho agitador a la red eléctrica y comprueben que la pieza magnética que se encuentra en el interior del baño está girando. En el foco caliente, el termostato lleva un sistema de agitación incorporado de modo que mientras esté en funcionamiento se mantendrá la agitación. Para la adquisición del ciclo termodinámico, se utilizará el software DataStudio. Inicien el programa, pulsando el icono que aparece en el escritorio. A la pregunta cómo desea usar DataStudio? Seleccionen Abrir actividad y busquen en Disco local C:/LABORATORIO FÍSICA II/ el fichero plantilla; al abrirlo aparecerá la siguiente pantalla, que se divide en tres zonas A, B y C (figura 5). En la zona A ( Resumen de datos ), aparecen los sensores que van a ser utilizados (sensor de presión y sensor de movimiento). Deben verificar que ambos están activos, en caso de no ser así aparecerá una exclamación en color amarillo al lado de los mismos,. Si esto ocurriese deberán comunicárselo a un responsable de prácticas. Figura 5- Pantalla Inicial En la zona B se indican las diferentes pantallas de datos que pueden mostrarse siendo en la zona C donde se visualizan. Las pantallas que serán de utilidad en el transcurso de la práctica son: - 6 -

7 : Las pantallas de gráficos representan los datos del sensor con respecto al tiempo, o los datos de un sensor con respecto a otro sensor. Previamente a la realización de la toma de datos, se procederá a configurar el experimento y a establecer las condiciones de ensayo. Para ello deben pulsar en y seleccionar los diferentes sensores verificando que todo es correcto. Figura 6. - Pantallas Configuración - 7 -

8 Los pasos a seguir para obtener el ciclo que se muestra en la figura 2, una vez alcanzadas las temperaturas deseadas en los focos frío y caliente, son: - Introduzcan el recipiente metálico en el baño frío y manténganlo durante unos segundos, antes de iniciar la medida, para que el aire adquiera la temperatura del baño. -Tomen la lectura inicial, h o, a la que se encuentra el pistón, para poder realizar el cálculo del volumen inicial. El volumen inicial se calculará a partir de la suma del volumen del recipiente metálico, cámara de aire, y del volumen de aire en el cilindro. Se considera que el volumen de aire en el tubo flexible es muy pequeño frente a los sumandos anteriores. D cilindro=32.5 mm D cámara=40 mm h cámara=153 mm V=V cámara+v cilindro=(πr 2 h) cámara+(πr 2 h o) cilindro (9) - Pulsen el botón del programa y realicen las operaciones que se indican a continuación: Coloquen la masa de 200 g sobre la plataforma del dispositivo de fricción despreciable y, rápidamente, Retiren el recipiente metálico del foco frío e introdúzcanlo en el foco caliente, hasta que la presión deje de mantenerse constante. Retiren la masa de la plataforma, e Introduzcan de nuevo el recipiente metálico en el foco frío - Finalizada la experiencia, pulsen Repitan el ciclo las veces que consideren necesarias hasta conseguir un diagrama similar al mostrado en la figura 2. Identifiquen en el ciclo los diferentes tipos de procesos (compresión isoterma, calentamiento isobaro..) Realicen los cálculos necesarios para encontrar la presión y el volumen del sistema en los puntos 1,2,3 y 4 del ciclo sabiendo que: - El valor de la presión del aire encerrado en el sistema P (presión absoluta) es la suma de la presión atmosférica (P a) y de la presión registrada por el sensor de presión. P= P a+psensor P a: se toma en el laboratorio directamente mediante un barómetro. - Considerando que el aire es un gas ideal, en un proceso isobaro se cumple que: y en un proceso isotermo P V = P V A A B B V A V = B, T A T B - 8 -

9 El Volumen en los diferentes puntos pueden calcularlo a partir de las ecuaciones anteriores o a partir de los desplazamientos sufridos por el pistón en los diferentes procesos. Dibujen el ciclo PV Calculen el calor absorbido durante el ciclo, Q H=Q 2-3+Q 3-4. Calculen el trabajo realizado sobre el sistema, a partir del área del ciclo, sabiendo que el ciclo tiene la forma de un paralelogramo. Repitan la experiencia de tal forma que las temperaturas de los focos frío y caliente sean similares. Para ello retiren el agua del foco frio, viertan agua del grifo y caliéntenlo con la resistencia. Mantengan la agitación durante el calentamiento y controlen la temperatura con una de las sondas Valoración del rendimiento del ciclo. A partir del trabajo realizado y del calor absorbido en el ciclo, calculados en el apartado anterior, determinen el rendimiento (en %) definido como: η = W Q H Comparen η con el rendimiento ideal, η ideal, definido a través de la expresión (7). Realicen los cálculos para los dos ciclos obtenidos en el apartado anterior Comenten los resultados obtenidos

MOVIMIENTO CIRCULAR UNIFORME

MOVIMIENTO CIRCULAR UNIFORME MOVIMIENTO CIRCULAR UNIFORME 1. OBJETIVO Con esta práctica se pretende poner de manifiesto la presencia de la fuerza causante del movimiento circular y su dependencia con la masa, el radio de la circunferencia

Más detalles

TEMA 2: PRINCIPIOS DE TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA

TEMA 2: PRINCIPIOS DE TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA TEMA 2: PRINCIPIOS DE TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA La termodinámica es la parte de la física que se ocupa de las relaciones existentes entre el calor y el trabajo. El calor es una

Más detalles

3. TERMODINÁMICA. PROBLEMAS I: PRIMER PRINCIPIO

3. TERMODINÁMICA. PROBLEMAS I: PRIMER PRINCIPIO TERMOINÁMI PROLEMS I: PRIMER PRINIPIO Problema 1 Un gas ideal experimenta un proceso cíclico ---- como indica la figura El gas inicialmente tiene un volumen de 1L y una presión de 2 atm y se expansiona

Más detalles

ECUACIÓN DE ESTADO DE LOS GASES IDEALES

ECUACIÓN DE ESTADO DE LOS GASES IDEALES ECUACIÓN DE ESTADO DE LOS GASES IDEALES Laboratorio de Física 1. OBJETIVO Se estudiará, tomando como ejemplo el aire, el comportamiento de un gas ideal cuando varían sus variables de estado, y se comprobarán

Más detalles

MATERIAL DE APOYO DE USO ESCLUSIVO DEL CENTRO DE ESTUDIOS MATEMÁTICOS. C.E.M.

MATERIAL DE APOYO DE USO ESCLUSIVO DEL CENTRO DE ESTUDIOS MATEMÁTICOS. C.E.M. 1-. Una cubeta con hielo recibe constantemente calor de un B. mechero como se aprecia en la figura. C. D. De la gráfica de temperatura como función del tiempo, para la muestra, se concluye que entre A.

Más detalles

F. Aclarando conceptos sobre termodinámica

F. Aclarando conceptos sobre termodinámica IES Antonio Glez Glez Principios de máquinas Página 1 F. Aclarando conceptos sobre termodinámica Termodinámica La termodinámica es la parte de la física que analiza los fenómenos en los que interviene

Más detalles

CONSERVACIÓN DE LA ENERGÍA MECÁNICA (II) CAÍDA LIBRE

CONSERVACIÓN DE LA ENERGÍA MECÁNICA (II) CAÍDA LIBRE CONSERVACIÓN DE LA ENERGÍA MECÁNICA (II) CAÍDA LIBRE 1. OBJETIVO Verificar la conservación de la energía mecánica de tres objetos diferentes en caída libre. Determinar la aceleración de la gravedad, g,

Más detalles

CONSERVACIÓN DE LA ENERGÍA MECÁNICA (III) Resortes Helicoidales - Ley de HOOKE

CONSERVACIÓN DE LA ENERGÍA MECÁNICA (III) Resortes Helicoidales - Ley de HOOKE CONSERVACIÓN DE LA ENERGÍA MECÁNICA (III) Resortes Helicoidales - Ley de HOOKE 1. OBJETIVO Estudiar el Principio de Conservación de la Energía Mecánica en un móvil que se desplaza impulsado por un resorte.

Más detalles

Ecuación de estado del gas ideal

Ecuación de estado del gas ideal Prácticas de laboratorio de Física I Ecuación de estado del gas ideal Curso 2010/11 1 Objetivos Comprobación de la ecuación de estado del gas ideal experimentalmente Construcción de curvas a presión, temperatura

Más detalles

CAPITULO V TERMODINAMICA - 115 -

CAPITULO V TERMODINAMICA - 115 - CAPIULO V ERMODINAMICA - 5 - 5. EL GAS IDEAL Es el conjunto de un gran número de partículas diminutas o puntuales, de simetría esférica, del mismo tamaño y de igual volumen, todas del mismo material. Por

Más detalles

Ciclos de Aire Standard

Ciclos de Aire Standard Ciclos Termodinámicos p. 1/2 Ciclos de Aire Standard máquinas reciprocantes modelo de aire standard ciclo Otto ciclo Diesel ciclo Brayton Ciclos Termodinámicos p. 2/2 máquinas de combustión interna el

Más detalles

ECUACIÓN DE ESTADO DE LOS GASES IDEALES

ECUACIÓN DE ESTADO DE LOS GASES IDEALES ECUACIÓN DE ESTADO DE LOS GASES IDEALES Laboratorio de Física 1. OBJETIVO Se estudiará, tomando como ejemplo el aire, el comportamiento de un gas ideal cuando varían sus variables de estado, y se comprobarán

Más detalles

Electricidad y calor. Dr. Roberto Pedro Duarte Zamorano. Departamento de Física 2011

Electricidad y calor. Dr. Roberto Pedro Duarte Zamorano. Departamento de Física 2011 Electricidad y calor Dr. Roberto Pedro Duarte Zamorano Departamento de Física 2011 A. Termodinámica Temario 1. Temperatura y Ley Cero. (3horas) 2. Calor y transferencia de calor. (5horas) 3. Gases ideales

Más detalles

QUÉ ES LA TEMPERATURA?

QUÉ ES LA TEMPERATURA? 1 QUÉ ES LA TEMPERATURA? Nosotros experimentamos la temperatura todos los días. Cuando estamos en verano, generalmente decimos Hace calor! y en invierno Hace mucho frío!. Los términos que frecuentemente

Más detalles

PROBLEMARIO No. 2. Veinte problemas con respuesta sobre los Temas 3 y 4 [Trabajo y Calor. Primera Ley de la Termodinámica]

PROBLEMARIO No. 2. Veinte problemas con respuesta sobre los Temas 3 y 4 [Trabajo y Calor. Primera Ley de la Termodinámica] Universidad Simón olívar Departamento de Termodinámica y Fenómenos de Transferencia -Junio-007 TF - Termodinámica I Prof. Carlos Castillo PROLEMARIO No. Veinte problemas con respuesta sobre los Temas y

Más detalles

Capítulo 17. Temperatura. t(h) = 100 h h 0

Capítulo 17. Temperatura. t(h) = 100 h h 0 Capítulo 17 Temperatura t(h) = 100 h h 0 h 1 00 h 0 rincipio cero de la termodinámica. Temperatura empírica. La temperatura empírica de un sistema en equilibrio termodinámico se puede asignar mediante

Más detalles

Dispositivos Cilindro-Pistón

Dispositivos Cilindro-Pistón Presión ejercida sobre superficies sólidas: sistema cilindro-pistón Un sistema importante desde el punto de vista termodinámico es el sistema cilindro-pistón, ya que se puede estudiar con él el comportamiento

Más detalles

SISTEMA TERMODINÁMICO.

SISTEMA TERMODINÁMICO. TERMODINAMICA La Termodinámica es la rama de la Física que trata del estudio de las propiedades materiales de los sistemas macroscópicos y de la interconversión de las distintas formas de energía, en particular

Más detalles

PRÁCTICA 2: CONDUCTIVIDAD TÉRMICA DE LOS METALES

PRÁCTICA 2: CONDUCTIVIDAD TÉRMICA DE LOS METALES PRÁCTICA 2: CONDUCTIVIDAD TÉRMICA DE LOS METALES 1. OBJETIVO En esta práctica se determina la conductividad térmica del cobre y del aluminio midiendo el flujo de calor que atraviesa una barra de cada uno

Más detalles

Ley de Boyle P 1/V (T y n constante) Ley de Charles Gay-Lussac V T (P y n constante) Ley de Amonton P T (V y n constante)

Ley de Boyle P 1/V (T y n constante) Ley de Charles Gay-Lussac V T (P y n constante) Ley de Amonton P T (V y n constante) Práctica 6 Ecuación de los Gases Ideales 6.1 Objetivo El estado de un gas puede describirse en términos de cuatro variables (denominadas variables de estado): presión (P), volumen (V), temperatura (T)

Más detalles

ENERGÍA INTERNA PARA GASES NO IDEALES.

ENERGÍA INTERNA PARA GASES NO IDEALES. DEPARTAMENTO DE FISICA UNIERSIDAD DE SANTIAGO DE CHILE ENERGÍA INTERNA PARA GASES NO IDEALES. En el caso de los gases ideales o cualquier cuerpo en fase no gaseosa la energía interna es función de la temperatura

Más detalles

ESTUDIO REALIZADO POR DIRA S.L. (Desenvolupament, Investigació i Recerca Aplicada S.L.)

ESTUDIO REALIZADO POR DIRA S.L. (Desenvolupament, Investigació i Recerca Aplicada S.L.) : nuevo refrigerante sustitutivo del R-22 con bajo PCA (GWP). Comparación de rendimiento con seis refrigerantes ya existentes ESTUDIO REALIZADO POR DIRA S.L. (Desenvolupament, Investigació i Recerca Aplicada

Más detalles

Electricidad y calor. Una introducción... Temas. 5. Segunda ley de la Termodinámica. Por qué unos procesos ocurren en un sentido y no en el contrario?

Electricidad y calor. Una introducción... Temas. 5. Segunda ley de la Termodinámica. Por qué unos procesos ocurren en un sentido y no en el contrario? Electricidad y calor Webpage: http://paginas.fisica.uson.mx/qb 2007 Departamento de Física Universidad de Sonora 1 Temas 5. Segunda ley de la Termodinámica. i. Máquinas térmicas y su eficiencia. ii. Segunda

Más detalles

Sistemas termodinámicos. Temperatura

Sistemas termodinámicos. Temperatura Sistemas termodinámicos. Temperatura 1. Se desea construir una escala termométrica que opere en grados Celsius, mediante una varilla que presenta una longitud de 5.00 cm a la temperatura de fusión del

Más detalles

Sustancias puras, procesos de cambios de fase, diagramas de fase. Estado 3 Estado 4 Estado 5. P =1 atm T= 100 o C. Estado 3 Estado 4.

Sustancias puras, procesos de cambios de fase, diagramas de fase. Estado 3 Estado 4 Estado 5. P =1 atm T= 100 o C. Estado 3 Estado 4. TERMODINÁMICA Departamento de Física Carreras: Ing. Industrial y Mecánica Trabajo Práctico N 2: PROPIEDADES DE LAS SUSTANCIAS PURAS La preocupación por el hombre y su destino debe ser el interés primordial

Más detalles

BLOQUE 1: ASPECTOS CUANTATIVOS DE LA QUÍMICA

BLOQUE 1: ASPECTOS CUANTATIVOS DE LA QUÍMICA BLOQUE 1: ASPECTOS CUANTATIVOS DE LA QUÍMICA Unidad 2: Los gases ideales Teresa Esparza araña 1 Índice 1. Los estados de agregación de la materia a. Los estados de la materia b. Explicación según la teoría

Más detalles

Guía de Examen Semestral Física II Grupo: 82-A Bachillerato. Prof. Alberto Flores Ferrer

Guía de Examen Semestral Física II Grupo: 82-A Bachillerato. Prof. Alberto Flores Ferrer Guía de Examen Semestral Física II Grupo: 82-A Bachillerato. Prof. Alberto Flores Ferrer Junio/2016 Alumno: Esta Guía se resuelve en el cuaderno y se entrega al iniciar el examen. Describe las siguientes

Más detalles

Tema 3. Máquinas Térmicas II

Tema 3. Máquinas Térmicas II Asignatura: Tema 3. Máquinas Térmicas II 1. Motores Rotativos 2. Motores de Potencia (Turbina) de Gas: Ciclo Brayton 3. Motores de Potencia (Turbina) de Vapor: Ciclo Rankine Grado de Ingeniería de la Organización

Más detalles

Termodinámica Temas Selectos de Física 2. Prof. Daniel Valerio Martínez Universidad La Salle Nezahualcóyotl

Termodinámica Temas Selectos de Física 2. Prof. Daniel Valerio Martínez Universidad La Salle Nezahualcóyotl Termodinámica Temas Selectos de Física 2 Prof. Daniel Valerio Martínez Universidad La Salle Nezahualcóyotl Conceptos básicos Termodinámica Sistema Sistema abierto Sistema cerrado Sistema aislado Frontera

Más detalles

PROBLEMAS DE MÁQUINAS. SELECTIVIDAD

PROBLEMAS DE MÁQUINAS. SELECTIVIDAD PROBLEMAS DE MÁQUINAS. SELECTIVIDAD 77.- El eje de salida de una máquina está girando a 2500 r.p.m. y se obtiene un par de 180 N m. Si el consumo horario de la máquina es de 0,5 10 6 KJ. Se pide: a) Determinar

Más detalles

Tema 9: Calor, Trabajo, y Primer Principio

Tema 9: Calor, Trabajo, y Primer Principio 1/34 Tema 9: Calor, Trabajo, y Primer Principio Fátima Masot Conde Ing. Industrial 2010/11 Tema 9: Calor, Trabajo, Primer Principio 2/34 Índice: 1. Introducción. 2. Capacidad calorífica. Calor específico.

Más detalles

EQUILIBRIO LÍQUIDO-VAPOR PRESIÓN DE VAPOR Y ENTALPÍA DE VAPORIZACIÓN DEL AGUA

EQUILIBRIO LÍQUIDO-VAPOR PRESIÓN DE VAPOR Y ENTALPÍA DE VAPORIZACIÓN DEL AGUA EQUILIBRIO LÍQUIDO-VAPOR PRESIÓN DE VAPOR Y ENTALPÍA DE VAPORIZACIÓN DEL AGUA I. OBJETIVO GENERAL Comprender e interpretar el significado de las variables termodinámicas involucradas en la ecuación de

Más detalles

Director de Curso Francisco J. Giraldo R.

Director de Curso Francisco J. Giraldo R. Director de Curso Francisco J. Giraldo R. EL AIRE El aire seco es una mezcla de gases: El 78% es Nitrógeno. El 21% es Oxígeno. El 1% es Argón. El Dioxido de carbono (CO 2 ), Helio (He), Neón (Ne), Kripton

Más detalles

Manual de Prácticas. Práctica número 5 Algunas propiedades térmicas del agua

Manual de Prácticas. Práctica número 5 Algunas propiedades térmicas del agua Práctica número 5 Algunas propiedades térmicas del agua Tema Correspondiente: Termodinámica Nombre del Profesor: Nombre completo del alumno Firma N de brigada: Fecha de elaboración: Grupo: Elaborado por:

Más detalles

Determinación de entalpías de vaporización

Determinación de entalpías de vaporización Prácticas de Química. Determinación de entalpías de vaporización I. Introducción teórica y objetivos........................................ 2 II. Desarrollo experimental...............................................

Más detalles

Determinación de la constante de los gases ideales

Determinación de la constante de los gases ideales Prácticas de Química. Determinación de la constante de los gases ideales I. Introducción teórica y objetivos........................................ 2 II. Material................................................................

Más detalles

Termodinámica y Máquinas Térmicas

Termodinámica y Máquinas Térmicas Termodinámica y Máquinas Térmicas Tema 04. Funciones de Estado Inmaculada Fernández Diego Severiano F. Pérez Remesal Carlos J. Renedo Estébanez DPTO. DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA Este tema se publica

Más detalles

UNIVERIDAD DE LA SERENA DEPARTAMENTO DE FISICA Laboratorio 2:Comportamiento un gases ideales COMPORTAMIENTO DE UN GASES IDEALES.

UNIVERIDAD DE LA SERENA DEPARTAMENTO DE FISICA Laboratorio 2:Comportamiento un gases ideales COMPORTAMIENTO DE UN GASES IDEALES. COMPORTAMIENTO DE UN GASES IDEALES. INTRODUCCIÓN El siguiente trabajo se espera que sean capaces de plantearse hipótesis, planificar y diseñar una experiencia de laboratorio, discutir resultados y finalmente

Más detalles

TEMPERATURA DILATACIÓN. 9. En la escala Celsius una temperatura varía en 45 C. Cuánto variará en la escala Kelvin y

TEMPERATURA DILATACIÓN. 9. En la escala Celsius una temperatura varía en 45 C. Cuánto variará en la escala Kelvin y TEMPERATURA 1. A cuántos grados kelvin equivalen 50 grados centígrados? a) 303 b) 353 c) 453 d) 253 2. Si un cuerpo presenta una temperatura de 20 C Cuál será la lectura de esta en la escala Fahrenheit?

Más detalles

- Determinar experimentalmente la relación entre la presión y el volumen. - Comprender la Ley de Boyle.

- Determinar experimentalmente la relación entre la presión y el volumen. - Comprender la Ley de Boyle. LEY DE BOYLE Objetivos: - Determinar experimentalmente la relación entre la presión y el volumen. - Comprender la Ley de Boyle. Equipo y materiales: - Aparato de la Ley de Gases (pasco TD 8572) - Sensor

Más detalles

FUNDAMENTOS DE FÍSICA TEMA II GRADIENTE DE PRESIÓN

FUNDAMENTOS DE FÍSICA TEMA II GRADIENTE DE PRESIÓN FUNDAMENTOS DE FÍSICA TEMA II GRADIENTE DE PRESIÓN 1. Se tiene un manómetro diferencial que está cerrado en una de sus ramas como lo muestra la figura. Con base en ello, determine: a) La presión absoluta

Más detalles

Actualización 2012 del Curso Electricidad y Calor: Tema Segunda Ley de la Termodinámica y sus aplicaciones

Actualización 2012 del Curso Electricidad y Calor: Tema Segunda Ley de la Termodinámica y sus aplicaciones Actualización 2012 del Curso Electricidad y Calor: Tema Segunda Ley de la Termodinámica y sus aplicaciones Responsable : Dr. Mario Enrique Alvarez Ramos Colaboradores: Dra. María Betsabe Manzanares Martínez

Más detalles

Capítulo 8. Termodinámica

Capítulo 8. Termodinámica Capítulo 8 Termodinámica 1 Temperatura La temperatura es la propiedad que poseen los cuerpos, tal que su valor para ellos es el mismo siempre que estén en equilibrio térmico. Principio cero de la termodinámica:

Más detalles

Unidad 16: Temperatura y gases ideales

Unidad 16: Temperatura y gases ideales Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 16: Temperatura y gases ideales Universidad Politécnica de Madrid 14 de abril de 2010

Más detalles

Sea Brillante, a la manera BOXLIGHT. Calor y color. Medición de temperatura asociada al color que posee un objeto

Sea Brillante, a la manera BOXLIGHT. Calor y color. Medición de temperatura asociada al color que posee un objeto Sea Brillante, a la manera BOXLIGHT. Calor y color Medición de temperatura asociada al color que posee un objeto Objetivo Estudiar la absorción de calor y los cambios de temperatura asociados al color

Más detalles

Electricidad y calor

Electricidad y calor Electricidad y calor Webpage: http://paginas.fisica.uson.mx/qb 2007 Departamento de Física Universidad de Sonora Temario A. Termodinámica 1. Temperatura y Ley Cero. (3horas) 1. Equilibrio Térmico y ley

Más detalles

Electricidad y calor. Webpage: Departamento de Física Universidad de Sonora

Electricidad y calor. Webpage: Departamento de Física Universidad de Sonora Electricidad y calor Webpage: http://paginas.fisica.uson.mx/qb 2007 Departamento de Física Universidad de Sonora Temario A. Termodinámica 1. Temperatura y Ley Cero. (3horas) 1. Equilibrio Térmico y ley

Más detalles

La energía interna. Nombre Curso Fecha

La energía interna. Nombre Curso Fecha Ciencias de la Naturaleza 2.º ESO Unidad 10 Ficha 1 La energía interna La energía interna de una sustancia está directamente relacionada con la agitación o energía cinética de las partículas que la componen.

Más detalles

CALOR ESPECÍFICO Y CALOR LATENTE

CALOR ESPECÍFICO Y CALOR LATENTE CALOR ESPECÍFICO Y CALOR LATENTE Objetivos: Equipo: - Evaluar experimentalmente el valor del calor específico de diferentes sustancias. - Evaluar experimentalmente el valor del calor latente de fusión

Más detalles

TRABAJO PRÁCTICO. Estudio de la compresión y expansión de gases ideales, en procesos adiabáticos e isotérmicos

TRABAJO PRÁCTICO. Estudio de la compresión y expansión de gases ideales, en procesos adiabáticos e isotérmicos FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA ESCUELA DE CIENCIAS BÁSICAS DEPARTAMENTO DE FÍSICA Y QUÍMICA FÍSICA II - Termodinámica TRABAJO PRÁCTICO Estudio de la compresión y expansión de gases

Más detalles

APARATO DE VENTURI. Esta relación es conocida como la ecuación de continuidad, y es expresada como: (1) ν ν

APARATO DE VENTURI. Esta relación es conocida como la ecuación de continuidad, y es expresada como: (1) ν ν APARATO DE VENTURI Objetivo Estudiar cualitativamente y cuantitativamente para verificar la ecuación de continuidad, el principio de Bernoulli y el efecto Venturi. Introducción En el aparato de Venturi,

Más detalles

Procesos termodinámicos

Procesos termodinámicos Procesos termodinámicos Objetivo El objetivo de esta propuesta es el estudio experimental de distintos procesos termodínamicos simples para un gas ideal (aire). En particular se estudiarán procesos adiabáticos,

Más detalles

PRÁCTICA: ESTUDIO DEL CICLO BRAYTON

PRÁCTICA: ESTUDIO DEL CICLO BRAYTON PRÁCTICA: ESTUDIO DEL CICLO BRAYTON 1. INTRODUCCIÓN En el análisis de los ciclos de turbinas de gas resulta muy útil utilizar inicialmente un ciclo ideal de aire estándar. El ciclo ideal de las turbinas

Más detalles

Guía práctica de autoclavado para la clínica veterinaria

Guía práctica de autoclavado para la clínica veterinaria Guía práctica de autoclavado para la clínica veterinaria 2 Qué necesito esterilizar? Artículos sólidos sin envolver: instrumental no embolsado, utensilios, cristalería, contenedores vacíos. Material resistente

Más detalles

Objetivos: Principal: Investigar las propiedades de un gas a presión constante. Secundario: Determinar la tasa de enfriamiento de un cuerpo.

Objetivos: Principal: Investigar las propiedades de un gas a presión constante. Secundario: Determinar la tasa de enfriamiento de un cuerpo. ! " # $ %& ' () ) Objetivos: Principal: Investigar las propiedades de un gas a presión constante. Secundario: Determinar la tasa de enfriamiento de un cuerpo. Conceptos a afianzar: Descripción termodinámica

Más detalles

Según el modelo cinético molecular de la materia, sabemos que las partículas que la forman están sometidas a un movimiento constante.

Según el modelo cinético molecular de la materia, sabemos que las partículas que la forman están sometidas a un movimiento constante. Física y Química 4º ESO Energía Térmica página 1 de 7 CONCEPTO DE CALOR Y TEMPERATURA Según el modelo cinético molecular de la materia, sabemos que las partículas que la forman están sometidas a un movimiento

Más detalles

1. FLUIDOS (1 punto) Enuncie la ecuación de Bernoulli y describa cada uno de los términos.

1. FLUIDOS (1 punto) Enuncie la ecuación de Bernoulli y describa cada uno de los términos. Física Forestales. Examen A. 7-0-0 Instrucciones. La parte de teoría se contestará en primer lugar utilizando la hoja de color, sin consultar libros ni apuntes, durante el tiempo que el estudiante considere

Más detalles

Índice. Aspectos fundamentales. El cristal vitrocerámico. Limpieza y cuidado. Tipos de aparatos. Vitrocerámicas de con calefactores radiantes

Índice. Aspectos fundamentales. El cristal vitrocerámico. Limpieza y cuidado. Tipos de aparatos. Vitrocerámicas de con calefactores radiantes Índice Aspectos fundamentales El cristal vitrocerámico Limpieza y cuidado Tipos de aparatos Vitrocerámicas de con calefactores radiantes Vitrocerámicas de inducción Aspectos funcionales Cómo se regula

Más detalles

TERMODINÁMICA Tema 10: El Gas Ideal

TERMODINÁMICA Tema 10: El Gas Ideal TERMODINÁMICA Tema 10: El Gas Ideal Fundamentos Físicos de la Ingeniería 1 er Curso Ingeniería Industrial Dpto. Física Aplicada III 1 Índice Introducción Ecuación de estado Experimento de Joule Capacidades

Más detalles

UNIVERSIDAD TECNOLÓGICA DE PUEBLA

UNIVERSIDAD TECNOLÓGICA DE PUEBLA TÉRMICA. PRÁCTICA NÚMERO 1 TEMPERATURA OBJETIVO: 1. Comprender el fundamento termodinámico de la medición de la temperatura. 2. Construirla curva de calentamiento del agua. 3. Obtener mediciones de temperatura

Más detalles

DEPARTAMENTO DE INGENIERÍA QUÍMICA. Laboratorio de Ingeniería Química BALANCE DE ENERGÍA EN ESTADO NO ESTACIONARIO

DEPARTAMENTO DE INGENIERÍA QUÍMICA. Laboratorio de Ingeniería Química BALANCE DE ENERGÍA EN ESTADO NO ESTACIONARIO DEPARAMENO DE INGENIERÍA QUÍMICA Laboratorio de Ingeniería Química BALANCE DE ENERGÍA EN ESADO NO ESACIONARIO 1. INRODUCCIÓN El sistema al que se va a plantear el balance de energía calorífica consiste

Más detalles

LABORATORIO Nº 3 SEGUNDA LEY DE NEWTON

LABORATORIO Nº 3 SEGUNDA LEY DE NEWTON LABORATORIO Nº 3 SEGUNDA LEY DE NEWTON I. LOGROS Comprobar e interpretar la segunda ley de Newton. Comprobar la relación que existe entre fuerza, masa y aceleración. Analizar e interpretar las gráficas

Más detalles

EFECTO DEL CALOR SOBRE LA MATERIA

EFECTO DEL CALOR SOBRE LA MATERIA EFECTO DEL CALOR SOBRE LA MATERIA MATERIA: es todo aquello que ocupa un lugar en el espacio y tiene masa LOS EFECTOS QUE PRODUCE EL CALOR SOBRE LA MATERIA SE PUEDEN CLASIFICAR EN: * CAMBIOS FÍSICOS. *

Más detalles

Electricidad y calor

Electricidad y calor Electricidad y calor Webpage: http://paginas.fisica.uson.mx/qb 2007 Departamento de Física Universidad de Sonora 1 emas 5. Segunda ley de la ermodinámica. i. Máquinas térmicas y su eficiencia. ii. Segunda

Más detalles

Procedimiento específico: PEC01 REALIZACIÓN DEL BAÑO DEL "PUNTO DEL HIELO" Copia No Controlada. Instituto Nacional de Tecnología Industrial

Procedimiento específico: PEC01 REALIZACIÓN DEL BAÑO DEL PUNTO DEL HIELO Copia No Controlada. Instituto Nacional de Tecnología Industrial Instituto Nacional de Tecnología Industrial Centro de Desarrollo e Investigación en Física y Metrología Procedimiento específico: PEC01 REALIZACIÓN DEL BAÑO DEL "PUNTO DEL HIELO" Revisión: Abril 2015 Este

Más detalles

COEFICIENTE ADIABÁTICO DE GASES

COEFICIENTE ADIABÁTICO DE GASES PRÁCTICA 4A COEFICIENTE ADIABÁTICO DE GASES OBJETIVO Determinación del coeficiente adiabático γ del aire, argón y del anhídrido carbónico utilizando un oscilador de gas tipo Flammersfeld. MATERIAL NECESARIO

Más detalles

Clase 2. Estructura de la Atmósfera

Clase 2. Estructura de la Atmósfera Clase 2 Estructura de la Atmósfera Preguntas claves 1. Qué es la presión y temperatura? 2. Cómo varían con la altura? 3. Cuál es la estructura de la atmósfera? La física y dinámica de la atmósfera puede

Más detalles

Relación de problemas: Tema 6

Relación de problemas: Tema 6 Relación de problemas: ema 6.- Un coche de 500 kg choca a 0 m/s con una pared de cemento. Si la temperatura ambiente es de 0ºC, calcula la variación de entropía. Se calienta kg de agua de 0ºC a 00ºC. Calcula

Más detalles

PROBLEMAS. Segundo Principio. Problema 1

PROBLEMAS. Segundo Principio. Problema 1 PROBLEMAS Segundo Principio Problema 1 La figura muestra un sistema que capta radiación solar y la utiliza para producir electricidad mediante un ciclo de potencia. El colector solar recibe 0,315 kw de

Más detalles

El Equilibrio Termodinámico. Tipos de Equilibrios.

El Equilibrio Termodinámico. Tipos de Equilibrios. TEMA 1.) CONCEPTOS BASICOS Sistema Termodinámico. Paredes. Tipos de Sistemas. Criterio de Signos. Estado Termodinámico. El Equilibrio Termodinámico. Tipos de Equilibrios. Variables Termodinámicas. Procesos

Más detalles

PRÁCTICA 10. TORRE DE REFRIGERACIÓN POR AGUA

PRÁCTICA 10. TORRE DE REFRIGERACIÓN POR AGUA PRÁCTICA 10. TORRE DE REFRIGERACIÓN POR AGUA OBJETIVO GENERAL: Familiarizar al alumno con los sistemas de torres de refrigeración para evacuar el calor excedente del agua. OBJETIVOS ESPECÍFICOS: Investigar

Más detalles

Transferencia de energía en forma de calor

Transferencia de energía en forma de calor Transferencia de energía en forma de calor Mariana Isabel Genna y María Fernanda Romano migena57@hotmail.com Marcovalli@ciudad.com.ar Laboratorio II para Biólogos y Geólogos - UBA Resumen: Bajo la hipótesis

Más detalles

Determinación de la relación Cp/Cv en gases

Determinación de la relación Cp/Cv en gases Determinación de la relación p/v en gases Objetivo. En esta práctica se determinará la relación entre p/vγ o coeficiente isentrópico de un gas combinando un sencillo proceso de expansión en condiciones

Más detalles

TRABAJO PRÁCTICO N 0 3 TERMOQUÍMICA

TRABAJO PRÁCTICO N 0 3 TERMOQUÍMICA TRABAJO PRÁCTICO N 0 3 TERMOQUÍMICA OBJETIVOS Determinación de la variación de entalpía asociada a procesos químicos. Aplicación de conceptos termodinámicos: temperatura, calor, entalpía. Verificación

Más detalles

AUTOMOCIÓN MOTORES TÉRMICOS Y SUS SISTEMAS AUXILIARES RELACIÓN DE COMPRESIÓN CILINDRADA

AUTOMOCIÓN MOTORES TÉRMICOS Y SUS SISTEMAS AUXILIARES RELACIÓN DE COMPRESIÓN CILINDRADA RELACIÓN DE COMPRESIÓN PARÁMETROS CARACTERÍSTICOS...01...02 RELACIÓN DE COMPRESIÓN...05 RELACIÓN CARRERA / DIÁMETRO...06 MOTORES CUADRADOS...06 MOTORES SUPERCUADRADOS O DE CARRERA CORTA...07 VENTAJAS DE

Más detalles

IT-ATM Metodos de medida no normalizados Determinación de la velocidad y caudal

IT-ATM Metodos de medida no normalizados Determinación de la velocidad y caudal IT-ATM-08.1 Metodos de medida no normalizados Determinación de la velocidad y caudal ÍNDICE 1. OBJETO. 2. ALCANCE Y ÁMBITO DE APLICACIÓN. 3. DEFINICIONES. 4. EQUIPOS. 5. DESARROLLO. 6. CÁLCULOS Y EXPRESIÓN

Más detalles

GASES. Contenidos. Leyes de los gases y su aplicación en la resolución de problemas numéricos.

GASES. Contenidos. Leyes de los gases y su aplicación en la resolución de problemas numéricos. GASES Contenidos Postulados de la teoría cinética de los gases y su relación con las características (expansión, comprensión y difusión) y las propiedades ( presión, volumen y temperatura) que los definen.

Más detalles

Tc / 5 = Tf - 32 / 9. T = Tc + 273

Tc / 5 = Tf - 32 / 9. T = Tc + 273 ENERGIA TERMICA Energía Interna ( U ) : Es la energía total de las partículas que lo constituyen, es decir, la suma de todas las formas de energía que poseen sus partículas; átomos, moléculas e iones.

Más detalles

Termotanque Eléctrico

Termotanque Eléctrico Termotanque Eléctrico 50 LITROS 80 LITROS 100 LITROS MANUAL DE USO DESTINADO AL USUARIO Y AL INSTALADOR Modelos Acumulación 50 litros Vertical Acumulación 80 litros Vertical Acumulación 100 litros Vertical

Más detalles

Joaquín Bernal Méndez Dpto. Física Aplicada III 1

Joaquín Bernal Méndez Dpto. Física Aplicada III 1 TERMODINÁMICA Tm Tema 7: 7Cn Conceptos ptsfndmntls Fundamentales Fundamentos Físicos de la Ingeniería 1 er Curso Ingeniería Industrial Dpto. Física Aplicada III 1 Índice Introducción Sistema y entorno

Más detalles

Guía Teórica Experiencia Motor Stirling

Guía Teórica Experiencia Motor Stirling Universidad de Chile Escuela de Verano 2009 Curso de Energía Renovable Guía Teórica Experiencia Motor Stirling Escrito por: Diego Huarapil Enero 2009 Introducción El Motor Stirling es un motor térmico,

Más detalles

TEMA 1. DIAGRAMAS AEROLÓGICOS

TEMA 1. DIAGRAMAS AEROLÓGICOS TEMA 1. DIAGRAMAS AEROLÓGICOS 1.1 Finalidad y elección de coordenadas 1.2 Orientación relativa de las líneas fundamentales 1.3 Diagrama de Clapeyron 1.4 Tefigrama 1.5 Emagrama o diagrama de Neuhoff 1.6

Más detalles

DRAFT. Trabajo, Calor y Primer Principio de la Termodinámica.

DRAFT. Trabajo, Calor y Primer Principio de la Termodinámica. DRAFT Trabajo, Calor y Primer Principio de la Termodinámica. J.V. Alvarez Departmento de Fisica de la Materia Condensada, Universidad Autonoma de Madrid. 28049 Madrid, Spain. (Dated: October 10, 2007)

Más detalles

Termotecnia y Mecánica de Fluidos (DMN) Mecánica de Fluidos y Termodinámica (ITN) TD. T6.- Ciclos de Refrigeración

Termotecnia y Mecánica de Fluidos (DMN) Mecánica de Fluidos y Termodinámica (ITN) TD. T6.- Ciclos de Refrigeración Termotecnia y Mecánica de Fluidos (DMN) Mecánica de Fluidos y Termodinámica (ITN) TD. T6.- Ciclos de Refrigeración Las trasparencias son el material de apoyo del profesor para impartir la clase. No son

Más detalles

MAQUINAS HIDRAULICAS Y TERMICAS Motores de Combustión Interna Alternativos Introducción. Elementos Constructivos. Clasificación

MAQUINAS HIDRAULICAS Y TERMICAS Motores de Combustión Interna Alternativos Introducción. Elementos Constructivos. Clasificación INTRODUCCIÓN A LOS MOTORES DE COMBUSTIÓN INTERNA ALTERNATIVOS INTRODUCCIÓN A LOS MOTORES TÉRMICOS MOTOR DE COMBUSTIÓN INTERNA ALTERNATIVO CARACTERÍSTICAS PRINCIPALES ELEMENTOS CONSTRUCTIVOS DE LOS M.C.I.A.

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS MATERIA: ELECTROTECNIA OFICIALES DE GRADO (MODELO DE EXAMEN) Curso 2013-2014 INSTRUCCIONES GENERALES Y

Más detalles

APIGLASS. PROCESADO de la miel

APIGLASS. PROCESADO de la miel APIGLASS PROCESADO de la miel Procesar la miel en frío o a temperaturas bajas (no superiores a 35-40ºC) y controladas, que permitan conservar sus máximas cualidades es el objetivo principal de la maquinaria

Más detalles

SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Calor II: mezclas y cambios de fase

SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Calor II: mezclas y cambios de fase SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Calor II: mezclas y cambios de fase SGUICES010CB32-A16V1 Solucionario guía Calor II: mezclas y cambios de fase Ítem Alternativa Habilidad 1 A Reconocimiento 2 C Aplicación

Más detalles

Termodinámica del aire: experimento de expansión adiabática de un gas y medida de γ = C p / C v con el método de Clément y Desormes (*)

Termodinámica del aire: experimento de expansión adiabática de un gas y medida de γ = C p / C v con el método de Clément y Desormes (*) Termodinámica del aire: experimento de expansión adiabática de un gas y medida de γ = C p / C v con el método de Clément y Desormes (*) 1. Introducción El cociente de calores específicos a presión constante

Más detalles

Mecánica y Electricidad

Mecánica y Electricidad José Ángel Rodrigo A mortiguadores Convencionales y Ajustables El principio de funcionamiento de los amortiguadores hidráulicos convencionales está basado en la conversión de la energía cinética (movimiento)

Más detalles

HIDRAULICA DE POTENCIA. Unidad 1. Bases físicas de la hidráulica

HIDRAULICA DE POTENCIA. Unidad 1. Bases físicas de la hidráulica HIDRAULICA DE POTENCIA Unidad 1. Bases físicas de la hidráulica Presión Este término se refiere a los efectos de una fuerza que actúa distribuida sobre una superficie. La fuerza causante de la presión

Más detalles

Comentarios de Vaillant RITE (modificaciones 2013) Publicado en el B.O.E: 13/04/2013 Entrada en vigor: 14/04/2013

Comentarios de Vaillant RITE (modificaciones 2013) Publicado en el B.O.E: 13/04/2013 Entrada en vigor: 14/04/2013 Comentarios de Vaillant (modificaciones 2013) Publicado en el B.O.E: 13/04/2013 Entrada en vigor: 14/04/2013 Qué calderas individuales permite instalar el? Concepto de reforma Artículo 2. Ámbito de aplicación...

Más detalles

PRÁCTICA 6: CAPACIDAD TÉRMICA

PRÁCTICA 6: CAPACIDAD TÉRMICA PRÁCTICA 6: CAPACIDAD TÉRMICA Prof. Elizabeth K. Galván Miranda Prof. Ximena Villegas Pañeda Facultad de Química, UNAM Departamento de Fisicoquímica Laboratorio de Termodinámica ObjeMvo general Comprender

Más detalles

III Tema Segunda ley de la termodinámica

III Tema Segunda ley de la termodinámica UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO "EL SABINO" PROGRAMA DE INGENIERÍA PESQUERA AREA DE TECNOLOGÍA UNIDAD CURRICULAR: TERMODINÁMICA APLICADA III Tema Segunda ley de

Más detalles

FÍSICA Y QUÍMICA TEMA 2: LA MATERIA Y SUS ESTADOS DE AGREGACIÓN

FÍSICA Y QUÍMICA TEMA 2: LA MATERIA Y SUS ESTADOS DE AGREGACIÓN 1 Física y Química 3º Curso Educación Secundaria Obligatoria Curso académico 2015/2016 FÍSICA Y QUÍMICA TEMA 2: LA MATERIA Y SUS ESTADOS DE AGREGACIÓN 2 Física y Química 3º Curso Educación Secundaria Obligatoria

Más detalles

1.- Conceptos básicos. Sistemas, variables y procesos. 2.- Energía, calor y trabajo. 1 er Principio de la Termodinámica. 3.- Entalpía. 4.

1.- Conceptos básicos. Sistemas, variables y procesos. 2.- Energía, calor y trabajo. 1 er Principio de la Termodinámica. 3.- Entalpía. 4. 1.- Conceptos básicos. Sistemas, variables y procesos. 2.- Energía, calor y trabajo. 1 er Principio de la Termodinámica. 3.- Entalpía. 4.- Calor de reacción. Ley de Hess. 5.- Entalpías estándar de formación.

Más detalles

Soluciones. DESCRIPCION MACROSCOPICA DE UN GAS IDEAL (Serway, Cap 19, vol I)

Soluciones. DESCRIPCION MACROSCOPICA DE UN GAS IDEAL (Serway, Cap 19, vol I) Soluciones DESCRIPCION MACROSCOPICA DE UN GAS IDEAL (Serway, Cap 19, vol I) 1. Demuestre que 1 mol de cualquier gas a presión atmosférica de 101 kpa y temperatura de 0ºC ocupa un volumen de 22,4 L. n =

Más detalles

TEMPERATURA Y CALOR. Tomás Rada Crespo Ph.D.

TEMPERATURA Y CALOR. Tomás Rada Crespo Ph.D. TEMPERATURA Y CALOR Tomás Rada Crespo Ph.D. Temperatura y Calor Tengo Calor!!!! Tengo Frio!!!! Este café esta frío!!!! Uff qué temperatura!!!! Esta gaseosa esta caliente!!!! En el lenguaje cotidiano, es

Más detalles

y 2 Considere que el viento no sopla en la dirección AB sino que lo hace de forma que v r

y 2 Considere que el viento no sopla en la dirección AB sino que lo hace de forma que v r P1. Anemometría sónica. Hoy en día, los Centros Meteorológicos disponen de aparatos muy sofisticados para medir la velocidad del viento que, además y simultáneamente, miden la temperatura del aire. El

Más detalles

MOTOR STIRLING; UNA ENERGÍA RENOVABLE

MOTOR STIRLING; UNA ENERGÍA RENOVABLE Página 1 MOTOR STIRLING; UNA ENERGÍA RENOVABLE 3. RESUMEN El motor Stirling es una propuesta ecológica, ya que gracias a su combustión externa, con la cual se puede obtener un trabajo, hace de este motor

Más detalles