1) Comprender la importancia que tiene la Máquina de Turing para la Ciencia de la Computación.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "1) Comprender la importancia que tiene la Máquina de Turing para la Ciencia de la Computación."

Transcripción

1 0

2 1 Temas

3 2 Objetivos 1) Comprender la importancia que tiene la Máquina de Turing para la Ciencia de la Computación. 2) Definir máquinas de Turing unicinta y multicinta, para reconocer lenguajes y para realizar procedimientos.

4 Para dar respuesta al problema decisorio de Hilbert, se produjeron casi simultáneamente (alrededor de 1935) cuatro trabajos: 1. La teoría de funciones recursivas (S. Kleene, 1939) 2. Teorema de incompletitud (Kurt Gödel,1931) 3. El -cálculo (A. Church, 1935) 4. Las máquinas de Turing (A. Turing, 1936) David Hilbert (1862, 1943) Hilbert formuló su famosa lista de 23 problemas esenciales para el progreso en las matemáticas. Uno de esos problemas es el Entscheidungsproblem o problema de la decisión que trata de descubrir un método general para decidir si una fórmula lógica es verdadera o falsa. La meta de Hilbert era crear un sistema matemático formal "completo" y "consistente", en el que todas las aseveraciones pudieran plantearse con precisión. Su idea era encontrar un algoritmo que determinara la verdad o falsedad de cualquier proposición en el sistema formal. 3

5 Alan Turing, 1937, publicó un trabajo sobre números calculables que puede considerarse en parte como el origen de la Informática Teórica. Alan Turing ( ) Turing estaba convencido de que no existía un algoritmo para el problema de decisión planteado por Hilbert y su intención era demostrar dicha no existencia. Introdujo la máquina de Turing (MT) como un modelo matemático abstracto que permitió formalizar el concepto de algoritmo. El modelo en el que se inspiró fue el de una persona real llevando a cabo un cálculo mecánico, por ejemplo una multiplicación de dos grandes números en el sistema decimal. La noción Turing-computabilidad puede considerarse como la base de la programación imperativa. 4

6 5 Una Máquina de Turing es un autómata que consiste de: Una unidad de control Una memoria auxiliar que es una cinta infinita con acceso relativamente no-restringido. La cabeza lectora/grabadora de la cinta puede moverse a lo largo de la cinta en ambas direcciones leyendo y/o escribiendo el contenido de un cuadrado uno a uno. Cinta Infinita Cabeza de lectura / escritura Unidad de Control La cinta almacena inicialmente la entrada y subsecuentemente la máquina de Turing usa su cinta como almacenamiento operacional.

7 6 Una Máquina de Turing es: T = (Q,,,,q 0,F) donde: Q es un conjunto finito y no vacío de estados. es el alfabeto de entrada, no vacío. es el alfabeto de la cinta, no vacío,. q 0 Q es el estado inicial. F Q es el conjunto de estados finales. es la función de transición directa. Es una proyección: Q x en subconjuntos finitos de Q x x {D,I,N}

8 El funcionamiento de la Máquina de Turing está dado por la función de transición directa: (q,a 1 ) = (p,a 2,d) significa que: 1) La unidad de control de la Máquina de Turing está actualmente en el estado q Q y el símbolo A 1 se lee mediante la cabeza de la cinta. 2) Al realizar un movimiento atómico, la unidad de control de la Máquina de Turing cambia al estado p Q, el símbolo A 1 se reemplaza por A 2, y la cabeza lectora/escritora se mueve un cuadrado en dirección d {D, I,,N}. d = D la cabeza se mueve un cuadrado a la derecha. d = I la cabeza se mueve un cuadrado a la izquierda. d = N la cabeza no se mueve. 7

9 Diagrama de Transición 1. Conjunto de nodos correspondientes a los estados de MT. Un estado Estado de inicio Estado final 2. Una transición se representa mediante arcos que unen los nodos, etiquetados de la siguiente manera: X,Y, D q r Función de transición (q, X) = (r, Y, D) 8

10 Tabla de Transición (q 0, X) = (q 1, Y, D) Símbolos pertenecientes a q 0 X Y.. q 1, Y, D Estados q 1 q k Estados Finales q 0 q 1 9

11 INTERPRETACIONES COMO RECONOCEDORA DE UN LENGUAJE: Dada una cadena x * *, como entrada a T, puede suceder que la máquina de Turing se detenga o no. Si T se detiene, con su unidad de control en estado q, se dice que T acepta x si q F y que T rechaza x si q F. Si T no se detiene, entonces se dice que ni acepta ni rechaza a x. Los lenguajes reconocidos por máquinas de Turing reciben el nombre de lenguajes recursivamente numerables.

12 INTERPRETACIONES COMO UN PROCEDIMIENTO: considérese una máquina T y una cadena x *. T realizará una serie de computaciones y eventualmente se detendrá con una cadena y * en su cinta. Esto será así para cada posible cadena de entrada. De tal modo, T establece una relación entre sus entradas y sus salidas. Para cada posible x * produce a lo sumo un y *, es decir, define una función parcial F: * *. Las funciones definidas mediante este mecanismo reciben el nombre de funciones Turing-computables.

13 L={0 n 1 n / n 1} 0,0,D Y,Y,D Y,Y,I Y,Y,D q 0 0,X,D q 1 1,Y,I q X,X,D B,B,N 2 q 3 q 5 q 4 0,0,I T = ({q 0,q 1,q 2,q 3,q 4,q 5 }, {0,1}, {0,1,B,X,Y},, q 0, {q 5 }) δ (q 0,0) = (q 1,X, D) δ (q 1,0) = (q 1,0, D) δ (q 1,Y) = (q 1,Y, D) δ (q 1,1) = (q 2,Y, I) δ (q 2,Y) = (q 2,Y, I) δ (q 2,X) = (q 3,X, D) δ (q 2,0) = (q 4,0, I) δ (q 3,Y) = (q 3,Y, D) δ (q 3,B) = (q 5,B, N) δ (q 4,0) = (q 4,0, I) δ (q 4,X) = (q 0,X, D) 12 12

14 La máquina de Turing que suma dos números naturales expresados en notación unaria. T = ({q 0,q 1,q 2,q 3 }, {1,+}, {1,B,+},, q 0, {q 3 }) B 1 B + 1,1,D q 0 +,1,D q B q 0 q 0, 1, D q 2, +, D q 1 q 0, 1, D +,B,N q 2 q 1, +, I q 3,B,I q 3 q 3,B,N q 2 B,B,I q 3 Estado Final: q

15 Es una descripción instantánea de la máquina de Turing. Se llama configuración de una MT a una terna (q,,i) siendo q un estado, una cadena de símbolos de ( es la cadena que está en ese momento en la cinta) i es un número natural que representa la distancia desde el primer símbolo de hasta el símbolo que está examinando la MT. Un movimiento de una MT T, se define como sigue: Sea (q, A 1 A 2...A n, i) una configuaración de MT con 1 i n+1 Si 1 i n y (q,a i ) = (p,a,d) entonces: (q,a 1 A 2..A n,i) (p,a 1 A 2...A i-1 AA i+1...a n,i+1), MT imprime el símbolo A y se mueve a la derecha. Si (q,a i ) = (p,a,i) con 2 i n entonces: (q,a 1 A 2...A n,i) (p,a 1 A 2..A i-1 AA i+1..a n,i-1), T imprime el símbolo A y se mueve a la izquierda

16 15 15 Si i = n+1 la máquina está leyendo un blanco (esta en la celda siguiente a la cadena impresa en la cinta), puede especificarse un movimiento a la derecha o a la izquierda. Si hay una instrucción (q,b) = (p,a,d) entonces: (q,a 1...A n,n+1) (p,a 1 A 2...A n A,n+2) Si la instrucción (q,b) = (p,a,i) entonces: (q,a 1...A n,n+1) (p,a 1 A 2...A n A,n)

17 16 16 L={0 n 1 n / n 1} 0,0,D Y,Y,D Y,Y,I Y,Y,D q 0 0,X,D q 1 1,Y,I q X,X,D B,B,N 2 q 3 q 5 q 4 0,0,I Las configuraciones de MT correspondiente al procesamiento de 0011 es: (q 0,0011,1),(q 1,X011,2),(q 1,X011,3),(q 2,X0Y1,2),(q 4,X0Y1,1),(q 0,X0Y1,2), (q 1,XXY1,3),(q 1,XYY1,4),(q 2,XXYY,3),(q 2,XXYY,2), (q 3,XXYY,3),(q 3,XXYY,4), (q 3,XXYYB,5) para en estado final.

18 17 17 U.C. T 1 T 2 T K-1 T k Consta de un número arbitrario (aunque finito) de cintas y de cabezas de lectura/escritura por cinta. Cada cabeza de lectura/escritura se desplaza de manera independiente. es el alfabeto de entrada y es el alfabeto de las cintas. Una palabra w * de entrada de largo n se colocan en las posiciones 1,..., n de la primera cinta. Las siguientes posiciones (n + 1, n + 2,...) de la primera cinta contienen el símbolo B. Las restantes cintas contienen el símbolo z 0 en posición 1 y B en las posiciones 2, 3,...

19 18 18 Al comenzar, la máquina se encuentra en el estado q 0, y cada cabeza lectora está en la posición 1 de su cinta. (q i, a 1,, a k )=(q j,b 1,,b k,d,,i) Significa que: si la máquina está en el estado q i y, las cabezas desde la 1 a la k están leyendo los a 1 a a k, la máquina pasa al estado q j, escribe b 1 a b k en las cintas desde la 1 a la k respectivamente y, mueve cada cabeza hacia la izquierda, derecha o no mueve.

20 19 19 Una Máquina de Turing multicinta es: TM = (Q,,,,q 0,F) donde: Q es un conjunto finito y no vacío de estados. es el alfabeto de entrada, no vacío. es el alfabeto de la cinta, no vacío, {z o,b}. q 0 Q es el estado inicial. F Q es el conjunto de estados finales. es la función parcial. : Q x k Q x k x {D,I,N} k donde k es el número de cintas

21 Las funciones de transición de una máquina de Turing multicinta se representan por una terna separada por barras, donde cada elemento de la terna es un conjunto de símbolos que expresan la lectura, escritura y movimientos respectivos. y 1,..., y k / z 1,..., z k / d 1,...,d k q r donde: y r : representa el símbolo leído en T r con r =1,, k. z r : representa el símbolo que se escribe en T r con r =1,, k. d r { D, I, N } con r =1,, k

22 La máquina de Turing multicinta (k = 2) que reconoce el lenguaje: L(G) = { a n b n c n / n 1} es la siguiente: a,b/a,*/d,d b,*/b,*/d,i c,*/c,*/d,d a,z q 0 /a,z 0 /N,D 0 q 1 b,b/b,b/n,i q c, z 2 0 /c,z 0 /N,D q 3 B,B/B,B/N,N q 4 TM = ({q 0,q 1,q 2, q 3,q 4 }, {a,b,c},{a,b,c,*,z 0,B},,q 0,{q 4 }) δ (q 0,a,z o ) = (q 1,a,z o,n, D) δ (q 1,a,B) = (q 1,a,*,D, D) δ (q 1,b,B) = (q 2,b,B, N,I) δ (q 2,b,*) = (q 2,b,*,D, I) δ (q 2,c,z o ) = (q 3,c,z o, N,D) δ (q 3,c,*) = (q 3,c,*,D, D) δ (q 3,B,B) = (q 4,B,B, N,N) 21 21

23 Turing demostró que la actuación de una máquina de Turing arbitraria MT 0 sobre una sucesión cualquiera w de símbolos de su cinta puede ser simulada por otra máquina, la Máquina Universal de Turing (MT u ). La idea básica de una máquina universal se trata sencillamente de un intérprete, ya que en la cinta de la máquina universal se puede codificar el programa (es decir, la función de transición) de toda otra máquina y los datos con que se desea ejecutar el programa. La máquina universal puede simular entonces, paso a paso, la ejecución de dicho programa con esos datos

24 Mediante un complejo sistema de marcadores, la máquina universal lleva la cuenta del estado codificado de T que se está consultando. Turing demostró que el efecto de la máquina universal sobre la sucesión de símbolos x es exactamente el que produciría T sobre la misma sucesión. La cinta se divide en dos secciones principales: A la izquierda está la descripción codificada de la máquina T A la derecha está la sucesión de símbolos x que T encontrará al ir inspeccionando. La máquina universal se construye entonces de modo que su cabeza vaya y venga entre las dos secciones, izquierda y derecha de la cinta. 23 δ (1,1) = (1,1, D) δ (1,+) = (2,+, D) δ (2,1) = (3,+, I) δ (2,B) = (4,B, I) δ (3,+) = (1,1, D) δ (4,+) = (4,B, N) 23

25 24 24 Estados: pueden representarse por números naturales (1, 2,..., n) expresados en notación binaria. Función de transición: se reproduce la tabla correspondiente, usando: Se comienza la cadena con ccc Luego se reproduce cada campo de una fila de la tabla de transición, separándolos por una c. Se separa cada fila de la tabla de transición por cc. La función de transición no especificadas se representan en la codificación con 0. La codificación de la tabla finaliza con ccc.

26 Suma de dos números en notación unaria. 1,1,D 1 +,1,D 3 2 B,B,I +,B,N B Símbolo Estado , 1, D 2, 0, D , 0, I 4, 01, I , 1, D , 01, N ccc D c D c 0 cc 0110 I c 0 c I cc 0 c 0011 D c 0 cc 0 c D c 0 ccc Comienzo Separa los campos Separa las filas de la tabla de transición Fin 25 25

27 26 26 Dado un programa (o algoritmo o Máquina de Turing) A y un valor de la entrada X, podemos saber siempre si A se parará o no? No hay manera de saber, en general y en un tiempo finito, si la ejecución de un programa dado con una entrada dada terminará o no.

28 Máquina de Turing Lenguajes recursivamente numerables Funciones Turingcomputables. MT Unicinta MT Multicinta MT universal Todos los lenguajes aceptados por una MT con una cinta también serán aceptados por una MT con varias cintas y viceversa. Emula el comportamiento de cualquier otra MT. Se trata, pues, de la primera noción de computador con programa almacenado de la historia

29 El famoso problema de decisión planteado por Hilbert fue inmediatamente demostrado insoluble por Turing usando sus máquinas: si la veracidad de las fórmulas de la lógica de primer orden fuera soluble por una MT, ello implicaría que también sería decidible el problema de la parada. TESIS DE CHURCH-TURING La clase de problemas que se pueden resolver utilizando el sistema de programación de Turing es exactamente el mismo que los que se pueden resolver utilizando cualquier sistema de programación razonable. Si una función no es Turing-computable, no existe una solución (o algoritmo) para la misma en ningún sistema de computación. Por lo tanto, es un hecho universalmente aceptado que la Máquina de Turing es una contrapartida formal, totalmente satisfactoria, de noción de algoritmo

Temas. Objetivo. Que el estudiante logre: 1) Identificar conceptos constructivos de la Teoría de la Computabilidad. 2) Definir autómatas de pila.

Temas. Objetivo. Que el estudiante logre: 1) Identificar conceptos constructivos de la Teoría de la Computabilidad. 2) Definir autómatas de pila. 0 Temas Definición de autómata de pila Autómata de pila determinístico y no determinístico Objetivo Que el estudiante logre: 1) Identificar conceptos constructivos de la Teoría de la Computabilidad. 2)

Más detalles

7. Máquinas de Turing.

7. Máquinas de Turing. 7. Máquinas de Turing. Araceli Sanchis de Miguel Agapito Ledezma Espino José A. Iglesias Mar

Más detalles

MÁQUINAS DE TURING CIENCIAS DE LA COMPUTACION I 2009

MÁQUINAS DE TURING CIENCIAS DE LA COMPUTACION I 2009 MÁQUINAS DE TURING Las máquinas de Turing, así como los AF y los AP se utilizan para aceptar cadenas de un lenguaje definidas sobre un alfabeto A. El modelo básico de máquina de Turing, tiene un mecanismo

Más detalles

Computabilidad y Lenguajes Formales: Teoría de la Computabilidad: Máquinas de Turing

Computabilidad y Lenguajes Formales: Teoría de la Computabilidad: Máquinas de Turing 300CIG007 Computabilidad y Lenguajes Formales: Teoría de la Computabilidad: Máquinas de Turing Pontificia Universidad Javeriana Cali Ingenieria de Sistemas y Computación Prof. Gloria Inés Alvarez V. Máquina

Más detalles

Máquinas de Turing Definición y descripción

Máquinas de Turing Definición y descripción Capítulo 12 Máquinas de Turing 12.1. Definición y descripción Definición 1 Se llama máquina de Turing a toda séptupla M = (Γ,Σ,,Q,q 0,f,F), donde: Γ es el alfabeto de símbolos de la cinta. Σ Γ es el alfabeto

Más detalles

13.3. MT para reconocer lenguajes

13.3. MT para reconocer lenguajes 13.3. MT para reconocer lenguajes Gramática equivalente a una MT Sea M=(Γ,Σ,,Q,q 0,f,F) una Máquina de Turing. L(M) es el lenguaje aceptado por la máquina M. A partir de M se puede crear una gramática

Más detalles

Máquinas de Turing IIC3242. IIC3242 Máquinas de Turing 1 / 42

Máquinas de Turing IIC3242. IIC3242 Máquinas de Turing 1 / 42 Máquinas de Turing IIC3242 IIC3242 Máquinas de Turing 1 / 42 Complejidad Computacional Objetivo: Medir la complejidad computacional de un problema. Vale decir: Medir la cantidad de recursos computacionales

Más detalles

Máquinas de Turing IIC3242. IIC3242 Máquinas de Turing 1 / 45

Máquinas de Turing IIC3242. IIC3242 Máquinas de Turing 1 / 45 Máquinas de Turing IIC3242 IIC3242 Máquinas de Turing 1 / 45 Complejidad Computacional Objetivo: Medir la complejidad computacional de un problema. Vale decir: Medir la cantidad de recursos computacionales

Más detalles

Ciencias de la Computación I

Ciencias de la Computación I Ciencias de la Computación I Autómatas Linealmente Acotados Máquinas de Turing Motivación - Es posible diseñar un AP que reconozca el lenguaje L 1? L 1 = { a n b n c n / n > 0 } Ejemplo una estrategia

Más detalles

Departamento de Tecnologías de la Información. Tema 4. Máquinas de Turing. Ciencias de la Computación e Inteligencia Artificial

Departamento de Tecnologías de la Información. Tema 4. Máquinas de Turing. Ciencias de la Computación e Inteligencia Artificial Departamento de Tecnologías de la Información Tema 4 Máquinas de Turing Ciencias de la Computación e Inteligencia Artificial Índice 4.1 Límites de los autómatas 4.2 Definición de Máquina de Turing 4.3

Más detalles

Máquinas de Turing, recordatorio y problemas

Máquinas de Turing, recordatorio y problemas Máquinas de Turing, recordatorio y problemas Elvira Mayordomo, Universidad de Zaragoza 5 de diciembre de 2014 1. Recordatorio de la definición de máquina de Turing Una máquina de Turing, abreviadamente

Más detalles

MÁQUINAS DE TURING Y LENGUAJES ESTRUCTURADOS POR FRASES

MÁQUINAS DE TURING Y LENGUAJES ESTRUCTURADOS POR FRASES Máquinas de Turing y lenguajes estructurados por frases -1- MÁQUINAS DE TURING Y LENGUAJES ESTRUCTURADOS POR FRASES MÁQUINAS DE TURING - Son máquinas teóricas capaces de aceptar lenguajes generados por

Más detalles

Máquinas de Turing. 18 de junio de 2015

Máquinas de Turing. 18 de junio de 2015 Máquinas de Turing 18 de junio de 2015 1. Introducción Hasta ahora hemos visto clases de lenguajes relativamente simples. Lo que vamos a ver ahora es preguntarnos qué lenguajes pueden definirse por cualquier

Más detalles

Introducción. Máquinas de Turing. Turing restringidas. Turing y Computadoras INAOE (INAOE) 1 / 49

Introducción. Máquinas de Turing. Turing restringidas. Turing y Computadoras INAOE (INAOE) 1 / 49 y Computadoras INAOE (INAOE) 1 / 49 Contenido y Computadoras 1 2 3 4 y Computadoras (INAOE) 2 / 49 y Computadoras Hasta ahora hemos visto clases de lenguajes relativamente simples Lo que vamos a ver ahora

Más detalles

Problemas de Decisión

Problemas de Decisión Problemas de Decisión La motivación de este capítulo puede estar dado por lo siguiente: Dado un conjunto Σ de fórmulas proposicionales en L(P ), existe un algoritmo general para determinar si Σ = ϕ Qué

Más detalles

Departamento de Tecnologías de la Información. Tema 5. Decidibilidad. Ciencias de la Computación e Inteligencia Artificial

Departamento de Tecnologías de la Información. Tema 5. Decidibilidad. Ciencias de la Computación e Inteligencia Artificial Departamento de Tecnologías de la Información Tema 5 Decidibilidad Ciencias de la Computación e Inteligencia Artificial Índice 5.1 Lenguajes reconocibles y decidibles 5.2 Problemas decidibles sobre lenguajes

Más detalles

Unidad 4. Autómatas de Pila

Unidad 4. Autómatas de Pila Unidad 4. Autómatas de Pila Una de las limitaciones de los AF es que no pueden reconocer el lenguaje {0n1n} debido a que no se puede registrar para todo n con un número finito de estados. Otro lenguaje

Más detalles

Teoría de Autómatas y Compiladores [ICI-445] Capítulo 2: Autómatas Finitos

Teoría de Autómatas y Compiladores [ICI-445] Capítulo 2: Autómatas Finitos Teoría de Autómatas y Compiladores [ICI-445] Capítulo 2: Autómatas Finitos Dr. Ricardo Soto [ricardo.soto@ucv.cl] [http://www.inf.ucv.cl/ rsoto] Escuela de Ingeniería Informática Pontificia Universidad

Más detalles

Introducción a la indecidibilidad

Introducción a la indecidibilidad Introducción a la indecidibilidad José M. empere Departamento de istemas Informáticos y Computación Universidad Politécnica de Valencia Lenguajes y problemas Un problema será considerado cualquier cuestión

Más detalles

7 Máquina de Turing. 7.1 Introducción. 7.2 El modelo de la Máquina de Turing

7 Máquina de Turing. 7.1 Introducción. 7.2 El modelo de la Máquina de Turing 1 Curso Básico de Computación 7 Máquina de Turing Es este capítulo introducimos la Máquina de Turing que es, un modelo matemático simple de una computadora. 7.1 Introducción Hasta ahora no se ha podido

Más detalles

Máquinas de estado finito y expresiones regulares

Máquinas de estado finito y expresiones regulares Capítulo 3 Máquinas de estado finito y expresiones regulares En este tema definiremos y estudiaremos máquinas de estado finito, llamadas también máquinas de estado finito secuenciales o autómatas finitos.

Más detalles

Examen. Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación. Segundo Semestre, 2003.

Examen. Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación. Segundo Semestre, 2003. Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación Examen IIC 2222 Teoría de Autómatas y Lenguajes Formales Segundo Semestre, 2003 Este examen tiene

Más detalles

Capítulo 9. Introducción a los lenguajes formales. Continuar

Capítulo 9. Introducción a los lenguajes formales. Continuar Capítulo 9. Introducción a los lenguajes formales Continuar Introducción Un lenguaje es un conjunto de símbolos y métodos para estructurar y combinar dichos símbolos. Un lenguaje también recibe el nombre

Más detalles

5. Propiedades de los Lenguajes Recursivamente Enumerables y de los Lenguajes Recursivos.

5. Propiedades de los Lenguajes Recursivamente Enumerables y de los Lenguajes Recursivos. 5. Propiedades de los Lenguajes Recursivamente Enumerables y de los Lenguajes Recursivos. 5.1 Esquemas de representación de áquinas de Turing. 5.2 Propiedades de cierre. 5.3 Codificación de áquinas de

Más detalles

Complejidad Computacional. Andrés Abeliuk Estudiante de Ciencias de la computación U. de Chile

Complejidad Computacional. Andrés Abeliuk Estudiante de Ciencias de la computación U. de Chile Complejidad Computacional Andrés Abeliuk Estudiante de Ciencias de la computación U. de Chile Números infinitos por cantor Es una de las creaciones matemáticas más sorprendentes y atrevidas de toda la

Más detalles

Tipos de datos en S. Lógica y Computabilidad. Codificación de variables y etiquetas de S. Codificación de programas en S

Tipos de datos en S. Lógica y Computabilidad. Codificación de variables y etiquetas de S. Codificación de programas en S Tipos de datos en S Lógica y Computabilidad Verano 2011 Departamento de Computación - FCEyN - UBA Computabilidad - clase 5 Codificación de programas, Halting problem, diagonalización, tesis de Church,

Más detalles

Clase 07: Autómatas. Solicitado: Ejercicios 05: Autómatas

Clase 07: Autómatas. Solicitado: Ejercicios 05: Autómatas Solicitado: Ejercicios 05: Autómatas M. en C. Edgardo Adrián Franco Martínez http://computacion.cs.cinvestav.mx/~efranco @efranco_escom edfranco@ipn.mx 1 Contenido Autómata Teoría de Autómatas Definición

Más detalles

Curso Básico de Computación

Curso Básico de Computación Curso Básico de Computación 8 Indecibilidad Feliú Sagols Troncoso Matemáticas CINVESTAV-IPN 2010 Curso Básico de Computación (Matemáticas) 8 Indecibilidad 2010 1 / 58 8 Indecibilidad

Más detalles

Curso Básico de Computación

Curso Básico de Computación Curso Básico de Computación 7 Máquina de Turing Feliú Sagols Troncoso Matemáticas CINVESTAV-IPN 2010 Curso Básico de Computación (Matemáticas) 7 Máquina de Turing 2010 1 / 43

Más detalles

Máquinas de Turing, programas y tesis de Turing-Church

Máquinas de Turing, programas y tesis de Turing-Church Máquinas de Turing, programas y tesis de Turing-Church Elvira Mayordomo, Universidad de Zaragoza Ilustraciones: Costas Busch, Rensselaer Polytechnic Institute 1 Máquinas de Turing 2 La jerarquía de lenguajes

Más detalles

Maquina de Turing. 5. Fundamentos de algoritmos. Turing TURING TURING 10/08/2010. MI Elizabeth Fonseca Chávez

Maquina de Turing. 5. Fundamentos de algoritmos. Turing TURING TURING 10/08/2010. MI Elizabeth Fonseca Chávez Maquina de Turing 5. Fundamentos de algoritmos MI Elizabeth Fonseca Chávez matemático inglés Alan Turing Turing Definición de algoritmo: conjunto ordenado de operaciones que permite hallar la solución

Más detalles

Temas finales de Teoría de Autómatas y Lenguajes Formales II Curso

Temas finales de Teoría de Autómatas y Lenguajes Formales II Curso Temas finales de Teoría de Autómatas y Lenguajes Formales II Curso 2002-2003 M. Luisa González Díaz Departamento de Informática Universidad de Valladolid 2. Máquinas de Turing 2.1. 2.1.1. Definición, representación

Más detalles

Unidad 4. Autómatas de Pila

Unidad 4. Autómatas de Pila Unidad 4. Autómatas de Pila Una de las limitaciones de los AF es que no pueden reconocer el lenguaje {0 n 1 n } debido a que no se puede registrar para todo n con un número finito de estados. Otro lenguaje

Más detalles

La máquina de Turing

La máquina de Turing La máquina de Turing José M. Sempere Departamento de Sistemas Informáticos y Computación Universidad Politécnica de Valencia David Hilbert (1862, Rusia 1943, Alemania) Matemático que aportó diversos resultados

Más detalles

TIPOS DE GRAMATICAS JERARQUIAS DE CHOMSKY

TIPOS DE GRAMATICAS JERARQUIAS DE CHOMSKY TIPOS DE GRAMATICAS JERARQUIAS DE CHOMSKY Para el estudio de este tema es necesario analizar dos tipos de gramáticas de la clasificación de Chomsky, las regulares y las independientes de contexto, las

Más detalles

Entscheidungsproblem I TEORÍA DE LA COMPUTACIÓN MÁQUINAS DE TURING Y DECIDIBILIDAD. Máquinas de Turing (TM) Procedimiento efectivo

Entscheidungsproblem I TEORÍA DE LA COMPUTACIÓN MÁQUINAS DE TURING Y DECIDIBILIDAD. Máquinas de Turing (TM) Procedimiento efectivo Entscheidungsproblem I TEORÍA DE LA COMPUTACIÓN MÁQUINAS DE TURING Y DECIDIBILIDAD Francisco Hernández Quiroz Departamento de Matemáticas Facultad de Ciencias, UNAM E-mail: fhq@ciencias.unam.mx Página

Más detalles

Teorema de incompletitud de Gödel

Teorema de incompletitud de Gödel Teorema de incompletitud de Gödel Theorem (Gödel) Th(N) es una teoría indecidible. IIC2213 Teorías 79 / 109 Teorema de incompletitud de Gödel Theorem (Gödel) Th(N) es una teoría indecidible. Corolario

Más detalles

Clases 18 y 19:Máquina de Turing. M. en C. Edgardo Adrián Franco Martínez

Clases 18 y 19:Máquina de Turing. M. en C. Edgardo Adrián Franco Martínez Clases 18 y 19:Máquina de Turing M. en C. Edgardo Adrián Franco Martínez http://computacion.cs.cinvestav.mx/~efranco @efranco_escom edfranco@ipn.mx 1 Contenido Máquinas de Turing Definición formal de la

Más detalles

300CIG007 Computabilidad y Lenguajes Formales: Autómatas Finitos

300CIG007 Computabilidad y Lenguajes Formales: Autómatas Finitos 300CIG007 Computabilidad y Lenguajes Formales: Autómatas Finitos Pontificia Universidad Javeriana Cali Ingeniería de Sistemas y Computación Prof. Gloria Inés Alvarez V. Qué es un computador? Todos lo sabemos!!!

Más detalles

Autómatas de Estados Finitos

Autómatas de Estados Finitos Asignatura: Teoría de la Computación Unidad 1: Lenguajes Regulares Tema 1: Autómatas de Estados Finitos Autómatas de Estados Finitos Definición de Autómatas de estados finitos: Tipo Lenguaje Máquina Gramática

Más detalles

Una (muy) breve introducción a la teoría de la computación

Una (muy) breve introducción a la teoría de la computación Una (muy) breve introducción a la teoría de la computación Marcelo Arenas M. Arenas Una (muy) breve introducción a la teoría de la computación 1 / 48 Ciencia de la computación Cuál es el objeto de estudio

Más detalles

CONJUNTOS REGULARES. Orlando Arboleda Molina. 19 de Octubre de Escuela de Ingeniería de Sistemas y Computación de La Universidad del Valle

CONJUNTOS REGULARES. Orlando Arboleda Molina. 19 de Octubre de Escuela de Ingeniería de Sistemas y Computación de La Universidad del Valle CONJUNTOS REGULARES Orlando Arboleda Molina Escuela de Ingeniería de Sistemas y Computación de La Universidad del Valle 19 de Octubre de 2008 Contenido Expresiones regulares Teorema de Kleene Autómatas

Más detalles

La Máquina de Turing como precusora de la Teoría de la Computación (I)

La Máquina de Turing como precusora de la Teoría de la Computación (I) La Máquina de Turing como precusora de la Teoría de la Computación (I) Mª Araceli Sanchis de Miguel Grupo de Control y Aprendizaje de Sistemas 1 Contenido Mo3vación e interés Ordenadores, paradojas y fundamentos

Más detalles

7. ( ) Describe una máquina de Turing que acepte el siguiente lenguaje: L = {a n b n n>0}. L = {a n b n c n n>0}. L = {xcx x {a, b} + }.

7. ( ) Describe una máquina de Turing que acepte el siguiente lenguaje: L = {a n b n n>0}. L = {a n b n c n n>0}. L = {xcx x {a, b} + }. Universidad Rey Juan Carlos Curso 2010 2011 Teoría de Autómatas y Lenguajes Formales Ingeniería Técnica en Informática de Sistemas Hoja de Problemas 13 Máquinas de Turing Nivel del ejercicio : ( ) básico,

Más detalles

Tema 6: Máquina de Turing

Tema 6: Máquina de Turing Tema 6: Máquina de Turing Departamento de Sistemas Informáticos y Computación http://www.dc.upv.es p.1/28 Tema 6: Máquina de Turing La Máquina de Turing. Máquinas de Turing como aceptores Otros modelos

Más detalles

Teoría de Lenguajes y Autómatas Conceptos y teoremas fundamentales

Teoría de Lenguajes y Autómatas Conceptos y teoremas fundamentales Se prohíbe la reproducción total o parcial de este documento, excepto para uso privado de los alumnos de la asignatura Teoría de Autómatas I de la UNED y los alumnos de asignaturas equivalentes de otras

Más detalles

PROGRAMACIÓN II AÑO 2009 TALLER 3: TEORÍA DE LENGUAJES Y AUTÓMATAS

PROGRAMACIÓN II AÑO 2009 TALLER 3: TEORÍA DE LENGUAJES Y AUTÓMATAS Licenciatura en Sistemas de Información PROGRAMACIÓN II AÑO 2009 TALLER 3: TEORÍA DE LENGUAJES Y AUTÓMATAS UNSE FCEyT 1. DESCRIPCIÓN Este taller consta de tres partes. En cada una de ellas se especifican

Más detalles

Teoría de autómatas. Un enfoque práctico. Recortables. Thelma Cantú María Gpe. Mendoza

Teoría de autómatas. Un enfoque práctico. Recortables. Thelma Cantú María Gpe. Mendoza Teoría de autómatas. Un enfoque práctico Recortables Thelma Cantú María Gpe. Mendoza 1.1 Búsqueda de lenguajes Alumno: 1 Nombre del lenguaje Alfabeto: Dónde se utiliza? Cuál es el beneficio para la humanidad?

Más detalles

Universidad de Valladolid

Universidad de Valladolid Universidad de Valladolid Departamento de Informática Teoría de autómatas y lenguajes formales. 2 o I.T.Informática. Gestión. Examen de primera convocatoria. 18 de junio de 29 Apellidos, Nombre... Grupo:...

Más detalles

Turing Machines and their applications

Turing Machines and their applications Reporte de Caso páginas: Máquinas 31-39 de Turing y sus ISSN: aplicaciones 2415-2323 Iluminate vol. 8, Noviembre de 2016 14 31 Turing Machines and their applications Cristian Fernando Vilca Gutierrez crisfer.4217@gmail.com

Más detalles

si w=ay por tanto a Σ e y Σ*

si w=ay por tanto a Σ e y Σ* EJERCICIOS: LENGUAJES Y GRAMÁTICAS FORMALES Y MÁQUINAS DE TURING 1.- Prefijos de una cadena x son las cadenas que se pueden obtener de x suprimiendo 0 o más caracteres del final de x. Prefijos propios

Más detalles

09 Análisis léxico V Compiladores - Profr. Edgardo Adrián Franco Martínez

09 Análisis léxico V Compiladores - Profr. Edgardo Adrián Franco Martínez 2 Contenido Autómata Definición formal de autómata Representación de un autómata Mediante tablas de transiciones Mediante diagramas de estados Autómata finito Definición formal de autómata finito Lenguaje

Más detalles

Análisis y Complejidad de Algoritmos. Completitud NP

Análisis y Complejidad de Algoritmos. Completitud NP Análisis y Complejidad de Algoritmos Completitud NP Arturo Díaz Pérez Sección de Computación Departamento de Ingeniería Eléctrica CINVESTAV-IPN Av. Instituto Politécnico Nacional No. 2508 Col. San Pedro

Más detalles

Enfoques computacionales de la memoria humana: un estado del arte. Renato Garita Figueiredo PROIFED

Enfoques computacionales de la memoria humana: un estado del arte. Renato Garita Figueiredo PROIFED Enfoques computacionales de la memoria humana: un estado del arte Renato Garita Figueiredo PROIFED Revisión bibliográfica En total se revisaron 35 artículos. Categorización: - Aplicaciones de interacción

Más detalles

ALGORITMOS DIGITALES II. Ing. Hugo Fdo. Velasco Peña Universidad Nacional 2006

ALGORITMOS DIGITALES II. Ing. Hugo Fdo. Velasco Peña Universidad Nacional 2006 ALGORITMOS DIGITALES II Ing. Hugo Fdo. Velasco Peña Universidad Nacional 2006 OBJETIVOS Conocer los principios básicos de los algoritmos. Establecer paralelos entre los algoritmos, los programas y las

Más detalles

Temas. Objetivo. Símbolo, alfabeto. Hileras y operaciones con hileras. Operaciones con lenguajes

Temas. Objetivo. Símbolo, alfabeto. Hileras y operaciones con hileras. Operaciones con lenguajes 0 1 Temas Símbolo, alfabeto Hileras y operaciones con hileras Operaciones con lenguajes Objetivo Que el estudiante logre conocer, comprender y manejar conceptos vinculados con la Teoría de Lenguajes Formales

Más detalles

PROGRAMA DE CURSO. Horas de Trabajo Personal Horas de Cátedra. Resultados de Aprendizaje

PROGRAMA DE CURSO. Horas de Trabajo Personal Horas de Cátedra. Resultados de Aprendizaje Código Nombre CC3102 Teoría de la Computación Nombre en Inglés Theory of Computation SCT es Docentes PROGRAMA DE CURSO Horas de Cátedra Horas Docencia Auxiliar Horas de Trabajo Personal 6 10 3 1.5 5.5

Más detalles

Autómatas de Pila y Lenguajes Incontextuales

Autómatas de Pila y Lenguajes Incontextuales Autómatas de Pila y Lenguajes Incontextuales Elvira Mayordomo Universidad de Zaragoza 5 de noviembre de 2012 Contenido de este tema 1. Introducción a los autómatas de pila 2. Definiciones 3. Equivalencia

Más detalles

Lenguaje de Diseño. Primera Parte. Resolución de Problemas y Algoritmos. Primer Cuatrimestre Ing. En Informática e Ing.

Lenguaje de Diseño. Primera Parte. Resolución de Problemas y Algoritmos. Primer Cuatrimestre Ing. En Informática e Ing. Primera Parte Resolución de Problemas y Algoritmos Ing. En Informática e Ing. En Computación Primer Cuatrimestre 2017 1 Lenguajes Algorítmicos Los algoritmos pueden describirse, en mayor o menor detalle,

Más detalles

Introducción a las Ciencias de la Computación

Introducción a las Ciencias de la Computación Introducción a las Ciencias de la Computación Colaboratorio de Computación Avanzada (CNCA) 2015 1 / 22 Contenidos 1 Computación e Informática Caracterización Áreas relacionadas 2 Antecedentes Orígenes

Más detalles

Lenguaje de Diseño. Primera Parte. Segundo Cuatrimestre 2017

Lenguaje de Diseño. Primera Parte. Segundo Cuatrimestre 2017 Primera Parte Fund. de la Informática Int. a la Programación Int. a la Computación Resolución de Problemas y Algoritmos Segundo Cuatrimestre 2017 1 Etapas en el proceso de resolver un problema: 1- Comprender

Más detalles

Análisis y Diseño de Algoritmos

Análisis y Diseño de Algoritmos Análisis y Diseño de Algoritmos Teoría NP-Completeness DR. JESÚS A. GONZÁLEZ BERNAL CIENCIAS COMPUTACIONALES INAOE Problemas de Decisión Teoría de NP-Completeness Diseñada para aplicarse solo a problemas

Más detalles

Problemas indecidibles

Problemas indecidibles Capítulo 7 Problemas indecidibles 71 Codificación de máquinas de Turing Toda MT se puede codificar como una secuencia finita de ceros y unos En esta sección presentaremos una codificación válida para todas

Más detalles

Traductores Push Down

Traductores Push Down Push Down Extensión de Autómatas Universidad de Cantabria Outline El Problema 1 El Problema 2 3 El Problema Hemos estudiado anteriormente los autómatas con pila y hemos visto su relación con los lenguajes

Más detalles

Modelos de Informática Teórica Capítulo 2 - Clases de Complejidad

Modelos de Informática Teórica Capítulo 2 - Clases de Complejidad Modelos de Informática TeóricaCapítulo 2 - Clases de Complejidad p. 1/40 Modelos de Informática Teórica Capítulo 2 - Clases de Complejidad Serafín Moral Callejón Departamento de Ciencias de la Computación

Más detalles

Texto: Hopcroft, J. E., Motwani, R., Ullman, J.D., Introduction to Automata Theory, Languajes, and Computation. 3rd Edition. Addison Wesley, 2007.

Texto: Hopcroft, J. E., Motwani, R., Ullman, J.D., Introduction to Automata Theory, Languajes, and Computation. 3rd Edition. Addison Wesley, 2007. Universidad de Puerto Rico Recinto de Mayagüez Facultad de Artes y Ciencias DEPARTAMENTO DE CIENCIAS MATEMÁTICAS Programa de Autómata y Lenguajes Formales Curso: Autómata y Lenguajes Formales Codificación:

Más detalles

UNIVERSIDAD TECNOLOGICA DE PEREIRA FACULTAD DE INGENIERIAS

UNIVERSIDAD TECNOLOGICA DE PEREIRA FACULTAD DE INGENIERIAS Asignatura Código Gramática y Lenguajes Formales IS405 Créditos 4 Intensidad semanal Requisitos 6 Horas IS323 Justificación Objetivo general Dar al estudiante toda una gran base teórica sobre Ciencias

Más detalles

autómatas finitos y lenguajes regulares LENGUAJES FORMALES Y

autómatas finitos y lenguajes regulares LENGUAJES FORMALES Y CONTENIDO Reconocedores [HMU2.1]. Traductores [C8]. Diagramas de Estado [HMU2.1]. Equivalencia entre AF deterministas y no deterministas [HMU2.2-2.3]. Expresiones [HMU3]. Propiedades de [HMU4]. Relación

Más detalles

Nuestro objetivo es demostrar que autómata = lógica Qué significa esto? Queremos encontrar una lógica que defina a los lenguajes regulares

Nuestro objetivo es demostrar que autómata = lógica Qué significa esto? Queremos encontrar una lógica que defina a los lenguajes regulares Autómata = Lógica Nuestro objetivo es demostrar que autómata = lógica Qué significa esto? Queremos encontrar una lógica que defina a los lenguajes regulares Pero antes: Vamos a hacer un breve repaso sobre

Más detalles

Teoría Matemática de la Computación Primer Problemario Prof. Miguel A. Pizaña 22 de Febrero de 2007

Teoría Matemática de la Computación Primer Problemario Prof. Miguel A. Pizaña 22 de Febrero de 2007 Teoría Matemática de la Computación Primer Problemario Prof. Miguel A. Pizaña 22 de Febrero de 2007 I Tareas 1. Dudar de todo, al menos una vez en la vida. 2. Qué emociones le produce el teorema de Cantor,

Más detalles

Tema 4. Autómatas Finitos

Tema 4. Autómatas Finitos Tema 4. Autómatas Finitos 4.1. Autómatas finitos. 4.1.1. Introducción. 4.1.2. Máquinas secuenciales. 4.2. Autómatas finitos deterministas (A.F.D.). 4.2.1. Introducción. 4.2.2. Definición AFD. Representación.

Más detalles

Equivalencia Entre PDA y CFL

Equivalencia Entre PDA y CFL Equivalencia Entre PDA y CFL El Lenguaje aceptado por un Autómata con Pila Universidad de Cantabria Esquema 1 Introducción 2 3 Lenguaje Aceptado por un Autómata Como en los autómatas finitos, se puede

Más detalles

Máquinas Secuenciales, Autómatas y Lenguajes Tema 5: Propiedades de los Lenguajes Regulares. Luis Peña

Máquinas Secuenciales, Autómatas y Lenguajes Tema 5: Propiedades de los Lenguajes Regulares. Luis Peña Máquinas Secuenciales, Autómatas y Lenguajes Tema 5: Propiedades de los Lenguajes Regulares Luis Peña Lenguaje Regular Definición 1 (Lenguaje Regular) Un lenguaje L se denomina regular si y sólo si existe

Más detalles

L = {a n b n n>0}. L = {a n b n c n n>0}. L = {xcx x {a, b} + }.

L = {a n b n n>0}. L = {a n b n c n n>0}. L = {xcx x {a, b} + }. Universidad Rey Juan Carlos Curso 2010 2011 Teoría de Autómatas y Lenguajes Formales Ingeniería Técnica en Informática de Sistemas Hoja de Problemas 13 Máquinas de Turing Nivel del ejercicio : ( ) básico,

Más detalles

Complejidad computacional (Análisis de Algoritmos)

Complejidad computacional (Análisis de Algoritmos) Definición. Complejidad computacional (Análisis de Algoritmos) Es la rama de las ciencias de la computación que estudia, de manera teórica, la optimización de los recursos requeridos durante la ejecución

Más detalles

Clases de complejidad computacional: P y NP

Clases de complejidad computacional: P y NP 1er cuatrimestre 2006 La teoría de Se aplica a problemas de decisión, o sea problemas que tienen como respuesta SI o NO (aunque es sencillo ver que sus implicancias pueden extenderse a problemas de optimización).

Más detalles

ALGORITMO. Podemos encontrar muchas definiciones de algoritmo en los textos de programación, todas ellas muy similares:

ALGORITMO. Podemos encontrar muchas definiciones de algoritmo en los textos de programación, todas ellas muy similares: Nuestra herramienta mental más importante para competir con la complejidad es la abstracción. Por tanto, un problema no deberá considerarse inmediatamente en términos de instrucciones de un lenguaje, sino

Más detalles

Autómata de Pila (AP, PDA) Tema 18

Autómata de Pila (AP, PDA) Tema 18 Tema Autómata de Pila (Pushdown Automata Autómata de Pila (AP, PDA Un AP es una máquina que acepta el lenguage generado por una GLC Consiste en un NFA- aumentado con una pila (stack. Dr. Luis A. Pineda

Más detalles

Matemática computable

Matemática computable Conjuntos computables - Combinatoria - Álgebra Antonio Montalbán. U. de Chicago Coloquio Uruguayo de Matemática. Diciembre, 2009 Conjuntos computables - Combinatoria - Álgebra 1 Conjuntos computables 2

Más detalles

Máquinas Secuenciales, Autómatas y Lenguajes. Tema 3.1: Autómatas Finitos Deterministas

Máquinas Secuenciales, Autómatas y Lenguajes. Tema 3.1: Autómatas Finitos Deterministas Tema 3.1: Autómatas Finitos Deterministas Luis Peña luis.pena@urjc.es http://www.ia.urjc.es/cms/es/docencia/ic-msal Sumario Tema 3.1: Autómatas Finitos Deterministas. 1. Concepto de AFD 2. Equivalencia

Más detalles

MODELOS DE COMPUTACION I Preguntas Tipo Test. 1. El lema de bombeo puede usarse para demostrar que un lenguaje determinado es regular.

MODELOS DE COMPUTACION I Preguntas Tipo Test. 1. El lema de bombeo puede usarse para demostrar que un lenguaje determinado es regular. MODELOS DE COMPUTACION I Preguntas Tipo Test Indicar si son verdaderas o falsas las siguientes afirmaciones: 1. El lema de bombeo puede usarse para demostrar que un lenguaje determinado es regular. 2.

Más detalles

DATOS DE IDENTIFICACIÓN DEL CURSO

DATOS DE IDENTIFICACIÓN DEL CURSO DATOS DE IDENTIFICACIÓN DEL CURSO DEPARTAMENTO: Ciencias Computacionales ACADEMIA A LA QUE PERTENECE: Estructuras y Algoritmos NOMBRE DE LA MATERIA: Teoría de la Computación CLAVE DE LA MATERIA: CC209

Más detalles

Coordinación de Ciencias Computacionales INAOE. Teoría de Autómatas y Lenguajes Formales. Temario detallado para examen de ingreso 2012

Coordinación de Ciencias Computacionales INAOE. Teoría de Autómatas y Lenguajes Formales. Temario detallado para examen de ingreso 2012 Coordinación de Ciencias Computacionales INAOE Teoría de Autómatas y Lenguajes Formales Temario detallado para examen de ingreso 2012 1. Autómatas 1.1. Por qué estudiar la teoría de autómatas? 1.1.1. Introducción

Más detalles

1. Cadenas EJERCICIO 1

1. Cadenas EJERCICIO 1 LENGUAJES FORMALES Y AUTÓMATAS CURSO 2006/2007 - BOLETÍN DE EJERCICIOS Víctor J. Díaz Madrigal y José Miguel Cañete Departamento de Lenguajes y Sistemas Informáticos 1. Cadenas La operación reversa aplicada

Más detalles

Ciencias de la Computación I

Ciencias de la Computación I Ciencias de la Computación I Autómatas Finitos No Determinísticos Minimización de Autómatas Finitos Determinísticos Agosto 2007 Autómatas Finitos Determinísticos Para cada estado y para cada símolo se

Más detalles

Teoría de la Computación puesta en Práctica

Teoría de la Computación puesta en Práctica Teoría de la Computación puesta en Práctica Marcelo Arenas M. Arenas Teoría de la Computación puesta en Práctica 1 / 24 Problema a resolver WiMAX (Worldwide Interoperability for Microwave Access): estándar

Más detalles

Departamento de Tecnologías de la Información. Tema 1. Introducción a los Modelos de Computación. Ciencias de la Computación e Inteligencia Artificial

Departamento de Tecnologías de la Información. Tema 1. Introducción a los Modelos de Computación. Ciencias de la Computación e Inteligencia Artificial Departamento de Tecnologías de la Información Tema 1 Introducción a los Ciencias de la Computación e Inteligencia Artificial Índice 1.1 Definiciones 1.2 Galería de personajes 1.3 Preliminares matemáticos

Más detalles

Introducción a la complejidad computacional

Introducción a la complejidad computacional Introducción a la complejidad computacional definida sobre anillos arbitrarios 18 de junio de 2016 Fuente: http://www.utmmcss.com/ Por qué otro modelo? Continuo vs discreto. Intuición interiorizada del

Más detalles

Teoría de la Computación Lenguajes Regulares (LR) - Propiedades

Teoría de la Computación Lenguajes Regulares (LR) - Propiedades Teoría de la Computación Lenguajes Regulares (LR) - Propiedades Prof. Hilda Y. Contreras Departamento de Computación hyelitza@ula.ve http://webdelprofesor.ula.ve/ingenieria/hyelitza Objetivo Lenguajes

Más detalles

Es un conjunto de palabras y símbolos que permiten al usuario generar comandos e instrucciones para que la computadora los ejecute.

Es un conjunto de palabras y símbolos que permiten al usuario generar comandos e instrucciones para que la computadora los ejecute. Los problemas que se plantean en la vida diaria suelen ser resueltos mediante el uso de la capacidad intelectual y la habilidad manual del ser humano. La utilización de la computadora en la resolución

Más detalles

Autómatas Finitos Deterministicos (DFA)

Autómatas Finitos Deterministicos (DFA) Autómatas Finitos Deterministicos (DFA) Introducción a la Lógica Fa.M.A.F., Universidad Nacional de Córdoba 22//4 Info útil Bibliografía: Introducción a la teoría de autómatas, lenguajes y computación.

Más detalles

Autómatas Finitos Deterministicos (DFA)

Autómatas Finitos Deterministicos (DFA) Autómatas Finitos Deterministicos (DFA) Introducción a la Lógica y la Computación Fa.M.A.F., Universidad Nacional de Córdoba 26/0/6 Info útil Bibliografía: Introducción a la teoría de autómatas, lenguajes

Más detalles

TEORÍA DE AUTÓMATAS I Informática de Sistemas. Soluciones a las cuestiones de examen del curso 2009/2010

TEORÍA DE AUTÓMATAS I Informática de Sistemas. Soluciones a las cuestiones de examen del curso 2009/2010 TEORÍA DE AUTÓMATAS I Informática de Sistemas Soluciones a las cuestiones de examen del curso 2009/2010 Febrero 10, 1ª semana 1. Considere la gramática de símbolos terminales {(, ), ;, 1, 2, 3}: S (A),

Más detalles

LENGUAJES Y GRAMÁTICAS

LENGUAJES Y GRAMÁTICAS LENGUAJES Y GRAMÁTICAS Orlando Arboleda Molina Escuela de Ingeniería de Sistemas y Computación de La Universidad del Valle 20 de septiembre de 2008 Contenido Lenguajes y Gramáticas Gramáticas Gramáticas

Más detalles

Autómatas de Pila. Descripciones instantáneas o IDs. El Lenguaje de PDA. Equivalencia entre PDAs y CFGs INAOE (INAOE) 1 / 50

Autómatas de Pila. Descripciones instantáneas o IDs. El Lenguaje de PDA. Equivalencia entre PDAs y CFGs INAOE (INAOE) 1 / 50 INAOE (INAOE) 1 / 50 Contenido 1 2 3 4 (INAOE) 2 / 50 Pushdown Automata Las gramáticas libres de contexto tienen un tipo de autómata que las define llamado pushdown automata. Un pushdown automata (PDA)

Más detalles

Procesadores de Lenguaje

Procesadores de Lenguaje Procesadores de Lenguaje Repaso TALF Cristina Tîrnăucă Dept. Matesco, Universidad de Cantabria Fac. Ciencias Ing. Informática Primavera de 2013 La Jerarquía de Chomsky Cuatro niveles de lenguajes formales

Más detalles

PROGRAMA INSTRUCCIONAL AUTOMATAS Y LENGUAJES FORMALES

PROGRAMA INSTRUCCIONAL AUTOMATAS Y LENGUAJES FORMALES UNIVERSIDAD FERMIN TORO VICE RECTORADO ACADEMICO UNIVERSIDAD FACULTAD DE INGENIERIA ESCUELA DE MANTENIMIENTO MECÁNICO ESCUELA DE TELECOMUNICACIONES ESCUELA DE ELÉCTRICA ESCUELA DE COMPUTACIÓN PROGRAMA

Más detalles

ÁRBOLES CRISTIAN ALFREDO MUÑOZ ÁLVAREZ JUAN DAVID LONDOÑO CASTRO JUAN PABLO CHACÓN PEÑA EDUARDO GONZALES

ÁRBOLES CRISTIAN ALFREDO MUÑOZ ÁLVAREZ JUAN DAVID LONDOÑO CASTRO JUAN PABLO CHACÓN PEÑA EDUARDO GONZALES ÁRBOLES CRISTIAN ALFREDO MUÑOZ ÁLVAREZ JUAN DAVID LONDOÑO CASTRO JUAN PABLO CHACÓN PEÑA EDUARDO GONZALES ÁRBOL Un árbol es un grafo no dirigido, conexo, sin ciclos (acíclico), y que no contiene aristas

Más detalles

Ciencias de la Computación I

Ciencias de la Computación I Ciencias de la Computación I Gramáticas Regulares Expresiones Regulares Gramáticas - Intuitivamente una gramática es un conjunto de reglas para formar correctamente las frases de un lenguaje - Por ejemplo,

Más detalles

Introducción a la programación

Introducción a la programación Introducción a la programación Resolución de Problemas El objetivo principal para que las personas aprendan a programar en algún lenguaje de programación en particular es utilizar el computador como una

Más detalles