Resolución de Ejercicios de aplicación Unidad 3. Termodinámica de los seres vivos

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Resolución de Ejercicios de aplicación Unidad 3. Termodinámica de los seres vivos"

Transcripción

1 Física e Introducción a la biofísica Resolución de Ejercicios de aplicación Unidad 3. Termodinámica de los seres vivos Resolución Problema 1 1 hg g 150 hg g Qa = m. Ce. (Tf-Ti) Qa = g. 0,6 (cal/g C). 11 C Qa = cal El cuerpo debe absorber calorías para elevar su temperatura en 11 Kelvin. Resolución Problema 2 Qc = m. Ce. (Tf - Ti) -99,44 cal = 16g. Ce. (22 C - 77 C) -99,44 cal = 16g. Ce. (-55 C) -99,44 cal = -880 (g. C) Ce Ce = -99,44 cal / -880 (g. C)

2 Ce = 0,113 cal/g C 100 cg...1g cg...29g Qa = m. Ce. (Tf - Ti) Qa = 29g. (0,113 cal/g C). (91 C - 5 C) Qa = 281,82 cal El metal deberá absorber 281,82 cal para elevar su temperatura hasta 91 C. Resolución Problema 3 Debemos calcular la totalidad de Q cedido en las distintas etapas Q cedido = Q sensible del agua desde 10 C hasta 0 C + Q latente de solidificación del agua para convertirse en hielo + Q sensible del hielo desde 0 C hasta -18 C En resumen: Q cedido = Q sensible H Q latente hielo + Q sensible hielo QsH 2 0 = m. Ce. (TF-Ti) Cuánto vale la masa de H 2 0? 1dm 3...1litro Sabemos que un litro equivale a cm 3. También sabemos que la densidad del agua es 1 g/cm 3 por lo tanto la masa de agua equivale a gramos. QsH 2 0 = 1.000g. 1(cal/g C). (0 C-10 C) = cal Conclusión: El agua cede calorías para disminuir su temperatura desde 10 C hasta 0. 2

3 QL hielo = m. (-Cfusión hielo) Nota: Debemos poner el menos al Cfusión porque aquí se está dando el proceso inverso, es decir la solidificación. QL hielo = 1.000g. (-80 cal/g) = cal Conclusión: El agua cede calorías para solidificarse y convertirse en hielo. Qs Hielo = m. Ce. (TF-Ti) Qs Hielo = 1.000g. 0,5 (cal/g C). (-18 C - 0 C) Qs Hielo = cal Conclusión: El hielo cede calorías para disminuir su temperatura desde 0 C hasta -18 C. Qcedido = Qsensible H20 + Qlatente hielo + Qsensible hielo Qcedido = cal cal cal = cal Conclusión: El agua para partir de 10 C y llegar a convertirse en hielo a -18 C debe ceder en total calorías. Cuánto tardará el freezer en realizar este proceso? El frezeer absorbe 2,3 kcal por minuto. Sabemos que un minuto equivale a 60 segundos. 1kcal cal 2,3kcal cal Por lo tanto si absorbe cal en 60 segundos: calorías segundos 3

4 99.000calorías ,6 segundos El freezer tardará 2582,6 seg en transformar esa masa de agua a 10 C en hielo a -18 C. Resolución Problema 4 Sabemos que en un recipiente adiabático no existe intercambio de calor con el medio. Por lo tanto el calor absorbido debe ser igual al calor cedido. Dicho matemáticamente Qa + Qc = 0 Es decir que todas las partes del sistema intercambian calor hasta que se alcanza el equilibrio térmico, estado final en el que todos los puntos del sistema tienen la misma temperatura. Por lo tanto planteamos para el problema en cuestión: Qa + Qc = 0 El agua absorbe las calorías que el plomo le cede 110 g. 1(cal/g C). (39 C - 31 C) + m Pb. 0,113(cal/g C). (39 C-82 C) = cal + m Pb. (-4,859) cal/g = cal = m Pb. 4,859 cal/g M Pb = 181,1 g La masa de plomo es de 181,1 gramos Resolución Problema 5 Qa = Qlatente hielo + Qsensible agua + Qlatente agua + Qsensible vapor Estas son todas las etapas que debe transitar el sistema para pasar de ser agua y hielo a 0 C hasta 4

5 convertirse en vapor a 105 C. El hielo debe fundirse en agua, luego el agua debe subir su temperatura de cero a cien grados C, luego transformarse en vapor y finalmente el vapor subir su temperatura de 100 C a 105 C. Cómo se cúal es la temperatura inicial? Porque me dice que coexisten en el sistema agua más hielo en equilibrio. Agua y hielo en equilibrio sólo pueden estar a una única temperatura! (Si no sabés cual es esa temperatura repasar la teoría!) Entonces matemáticamente: Qa = m hielo. Cf hielo + m agua.ce agua (Tf-Ti) agua + m agua. Cv agua + m vapor.ce vapor (Tf - Ti) vapor Qa = 70 g. 80 cal/g g*. 1cal/g C. (100 C - 0 C) g. 540 cal/g g. 0,45 cal/g C. (105 C-100 C) *Nota: la masa de agua es ahora 320 gramos puesto que el hielo se transformó en agua y se suma a los 250 gramos que había previamente. Qa = cal cal cal cal = cal El sistema deberá absorber calorías para alcanzar una temperatura de 105 C, temperatura en la que estará como vapor. Resolución Problema 6 6. a) W = P. (Vf - Vi) = P. (VB - VA) W = 3 atm (20l-12l) = 24 l.atm Conocemos la equivalencia entre l.at y Joules 0,082 l.atm... 8,31 Joules 24 l. atm ,2 Joules. El trabajo realizado por el gas al expandirse de A hasta B es de 2.432,2 Joules. 5

6 6.b) La variación de la energía interna es 0 (cero) puesto que 32 C equivalen a 305K. El gas en el punto A y en el punto C se encuentra a la misma temperatura. La energía interna depende sólo de la temperatura. Por lo tanto si no varía la temperatura no varía la energía interna. Conclusión ΔU = 0 La variación de energía interna del proceso A B C es cero. 6.c) Sabemos que por el Primer Principio de la Termodinámica ΔU = Q - W y en el punto 6.b establecimos que si no varía la temperatura ΔU = 0 En un ciclo la temperatura inicial y final son iguales, por lo tanto no hay variación de energía interna. Entonces 0 = Q - W Y el valor de Q es dato 527 cal. Por lo tanto: 0 = 527 cal - W W = 527 cal si 1 cal...4,18 Joules 527 cal ,9 Joules El trabajo total realizado por el gas en el ciclo A B C A es de 2.202,9 joules. 6

7 Resolución Problema 7 7. a) Sabemos que trabajo es fuerza por distancia W = F. d Para este caso la fuerza es el peso de la pesa y la distancia es la altura a la que se encuentra. W = P. h = 5 kg. 9,8 m/s 2. 0,25m = 49 N. 0,25m = 12,25 Joules 12,25 Joules es el trabajo realizado por una pesa de 5kg al caer 0,25 metros. Si queremos calcular el trabajo de las dos pesas debemos multiplicar por dos: W = 2. P. h = 2. 5 kg. 9,8 m/s 2. 0,25m = 24,5 joules. 24,5 Joules es el trabajo realizado por dos pesas de 5 kg al caer 0,25 metros. Pero como las dos pesas caen 30 veces, realizarán ese trabajo 30 veces, entonces: W = n. 2. P. h siendo n el número de veces que caen las pesas. si n vale 30 W = P. h = kg. 9, 8m/s 2. 0,25m = 735 Joules 735 Joules es el trabajo realizado por dos pesas de 5 kg al caer 0,25 metros 30 veces. Por lo tanto llegamos al razonamiento que en la experiencia de Joule del Equivalente Mecánico del Calor el trabajo total realizado sobre el sistema será equivalente a la fuerza peso de las pesas (P), multiplicado por el número de pesas (2), y luego por la altura que caen las mismas, (h) y las veces que caen (n). W = n. 2. P. h 7

8 Ahora pensemos lo siguiente. La variación de temperatura obtenida en el problema de 1,8 C se obtuvo por trabajo mecánico. Es decir una masa de agua aumentó su temperatura porque se realizó trabajo mecánico sobre ella. Pero, si quisiéramos elevar temperatura de esta misma masa de agua por intercambio calórico, podríamos hacerlo? Claro que sí. Podríamos entregarle una cantidad de calorías equivalente a esa masa de agua que eleve la temperatura los mismos 1,8 C que se elevaron por trabajo mecánico. Pero es muy importante que entendamos que esto no sucede en la experiencia de Joule del equivalente mecánico del calor. En la experiencia de Joule del equivalente mecánico del calor no hay intercambio calórico. Esto se debe a que el recipiente es adiabático y a que todas las partes del sistema están a igual temperatura por lo tanto no puede haber ningún intercambio calórico. Pero podemos calcular la cantidad de calorías que podríamos entregarle a la misma masa de agua de la experiencia si eleváramos su temperatura por intercambio calórico. Aunque esto no suceda en la experiencia de Joule. Entonces Ahora pasamos los Joules a Calorías Si 4,18 Joules...1 cal 735 Joules cal Y planteamos Qabsorbido = m agua. Ce agua. Δt agua cal = m agua. 1 cal/g C. 1,8 C masa agua = 97,6 gramos. La masa de agua que se encontraba en el recipiente adiabático era de 97,6 gramos 8

9 7.b) Como ya analizamos en el punto 7.a) no hubo intercambio de calor en la experiencia de Joule Resolución Problema 8 Q = m. Ce. Δt Q = m. 1 cal/g C. (3 C) mm 3...1cm mm cm 3 Q = 1.500g. 1 cal/g C. (3 C) = cal 1 cal...4,18 Joule 4.500cal Joule W = n. 2. P. h Joule = 2. n. 9 kg. 9,8m/s 2. 0,3 m n = 355,4 Ahora como las pesas no pueden caer un número con decimales (o caen o no caen, pero no se quedan en el medio de una caída), como mínimo para lograr el delta de temperatura deseado deberán caer 356 veces (puesto que sí caen 355 me quedo corto y no logro el delta deseado) Las pesas deberán caer 356 veces Resolución Problema 9 Q A = Q B c A. m A. T A = c B. m B. T B 9

10 Si el calor el calor específico del metal A es mayor que le B, y si tienen igual masa, para mantener la igualdad el T A debe ser menor que el T B. Resolución Problema 10 Estamos frente a un caso de transmisión del calor por CONDUCCIÓN. Debemos utilizar la ley de Fourier. = k. A. Si despejamos la variación de temperatura T nos queda: A =. r 2 A = 3, cm 2 A = 12,56 cm 2 12,56 cm 2 = 0, m 2 10 cm = 0,10 m 500 cal = 0,5 kcal T = 318,4 C 10

Estudio del Calor como forma de Energía

Estudio del Calor como forma de Energía Estudio del Calor como forma de Energía NOTA DEL PROFESOR: La finalidad de esta colección de ejercicios resueltos consiste en que sepáis resolver las diferentes situaciones que se nos plantea en el problema.

Más detalles

COMPLEJO EDUCATIVO SAN FRANCISCO PRIMER PERIODO. Nombre del estudiante: No. CALORIMETRIA Y LEY DE LOS GASES

COMPLEJO EDUCATIVO SAN FRANCISCO PRIMER PERIODO. Nombre del estudiante: No. CALORIMETRIA Y LEY DE LOS GASES COMPLEJO EDUCATIVO SAN FRANCISCO PRIMER PERIODO CIENCIAS NATURALES Segundo año Sección: Nombre del estudiante: No. CALORIMETRIA Y LEY DE LOS GASES 1. Una herradura de hierro de 1,5 Kg inicialmente a 600

Más detalles

1.- Un émbolo de 40 cm de diámetro avanza 5 cm bajo una presión de 10 atm. Cuántas calorías corresponderán a este trabajo?

1.- Un émbolo de 40 cm de diámetro avanza 5 cm bajo una presión de 10 atm. Cuántas calorías corresponderán a este trabajo? 1.- Un émbolo de 40 cm de diámetro avanza 5 cm bajo una presión de 10 atm. Cuántas calorías corresponderán a este trabajo? Sabemos que el trabajo termodinámico es el producto de la presión y la variación

Más detalles

Calor. El calor es la energía en tránsito entre dos cuerpos que difieren en la temperatura ( Tº).

Calor. El calor es la energía en tránsito entre dos cuerpos que difieren en la temperatura ( Tº). Objetivos Medir el calor en sus respectivas unidades. Definir los conceptos de capacidad calórica y calor específico. Interpretar las relaciones de estos conceptos con la transmisión del calor. Comprender

Más detalles

Termometría. Ejercicios de Termometría y Calorimetría. A cuántos K equivalen? A cuántos C equivalen.? F F F 27.

Termometría. Ejercicios de Termometría y Calorimetría. A cuántos K equivalen? A cuántos C equivalen.? F F F 27. Termometría 1.- A cuántos F equivalen 65 C? 2.- A cuántos C equivalen 176 F? 3.- A cuántos K equivalen 135 C? 4.- A cuántos C equivalen 245 K? A cuántos F equivalen? 5.- 15 C 8.- 59 C 11.- 85 C 14.- 154

Más detalles

GUÍA DE EJERCICIOS Calor específico, capacidad térmica y cambios de fase

GUÍA DE EJERCICIOS Calor específico, capacidad térmica y cambios de fase Liceo Juan XXIII Villa Alemana Departamento de Ciencias Prof. David Valenzuela GUÍA DE EJERCICIOS Calor específico, capacidad térmica y cambios de fase w³.fisic.jimdo.com el mejor sitio para estudiar física

Más detalles

Termoquímica. Química General II era Unidad

Termoquímica. Química General II era Unidad Termoquímica Química General II 2011 1era Unidad Termodinámica Es el estudio científico de la conversión del calor a otras formas de energía Energía Es la capacidad de efectuar un trabajo. Algunas formas

Más detalles

TERMODINAMICA. Es una parte de la Física que estudia la Temperatura y el Calor que producen los cuerpos.

TERMODINAMICA. Es una parte de la Física que estudia la Temperatura y el Calor que producen los cuerpos. TERMODINAMICA TERMODINAMICA Es una parte de la Física que estudia la Temperatura y el Calor que producen los cuerpos. TEMPERATURA La temperatura es una magnitud referida a las nociones comunes de caliente,

Más detalles

A.Objeto del trabajo: Determinar el equivalente en agua del calorímetro y el calor específico del agua.

A.Objeto del trabajo: Determinar el equivalente en agua del calorímetro y el calor específico del agua. Laboratorio2.doc Cátedras: Física II (Ing. Civil e Ing. Electromecánica) Tema : Primer Principio de la Termodinámica y Calorimetría Nombre del trabajo: CALORIMETRÍA Temas asociados: Medición de temperatura,

Más detalles

FÍSICA APLICADA. 1- Completar el siguiente cuadro; utilizando la ecuación de conversión: CENTIGRADO FAHRENHEIT KELVIN 40 F

FÍSICA APLICADA. 1- Completar el siguiente cuadro; utilizando la ecuación de conversión: CENTIGRADO FAHRENHEIT KELVIN 40 F UNIDAD 5: TEMPERATURA Y CALOR 5. A: Temperatura y dilatación Temperatura, energía y calor. Medición de la temperatura. Escalas de temperatura. Dilatación lineal, superficial y volumétrica. Dilatación anómala

Más detalles

TEMPERATURA. las sustancias están compuestas de partículas que poseen un movimiento desordenado:

TEMPERATURA. las sustancias están compuestas de partículas que poseen un movimiento desordenado: TEMPERATURA las sustancias están compuestas de partículas que poseen un movimiento desordenado: La temperatura indica el grado de agitación de las moléculas Depende de la energía cinética de las moléculas

Más detalles

TEMPERATURA DILATACIÓN. 9. En la escala Celsius una temperatura varía en 45 C. Cuánto variará en la escala Kelvin y

TEMPERATURA DILATACIÓN. 9. En la escala Celsius una temperatura varía en 45 C. Cuánto variará en la escala Kelvin y TEMPERATURA 1. A cuántos grados kelvin equivalen 50 grados centígrados? a) 303 b) 353 c) 453 d) 253 2. Si un cuerpo presenta una temperatura de 20 C Cuál será la lectura de esta en la escala Fahrenheit?

Más detalles

SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Calor II: mezclas y cambios de fase

SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Calor II: mezclas y cambios de fase SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Calor II: mezclas y cambios de fase SGUICES010CB32-A16V1 Solucionario guía Calor II: mezclas y cambios de fase Ítem Alternativa Habilidad 1 A Reconocimiento 2 C Aplicación

Más detalles

PROBLEMAS DE TERMODINÁMICA

PROBLEMAS DE TERMODINÁMICA PROBLEMAS DE TERMODINÁMICA 1. Suele ocurrir que, al oír que en Londres están a 43 ºF, se piensa que están pasando un cálido verano. Calcula la temperatura que soportan en la escala Celsius.(Sol.: 6,11

Más detalles

NOCIONES BASICAS ES LA MATERIA QUE INTEGRA UN CUERPO SÓLIDO, UN LIQUIDO O UN GAS.

NOCIONES BASICAS ES LA MATERIA QUE INTEGRA UN CUERPO SÓLIDO, UN LIQUIDO O UN GAS. SUSTANCIA: ES LA MATERIA QUE INTEGRA UN CUERPO SÓLIDO, UN LIQUIDO O UN GAS. SUSTANCIA DE TRABAJO: ES LA PORCIÓN DE MATERIA QUE ACTUANDO EN UN SISTEMA ES CAPAZ DE ABSORBER O CEDER ENERGÍA. EN ESE PROCESO

Más detalles

TECNOLOGÍA INDUSTRIAL

TECNOLOGÍA INDUSTRIAL IES MONTEVIVES TECNOLOGÍA INDUSTRIAL 1º DE BACHILLERATO Cristina Cervilla BLOQUE RECURSOS ENERGÉTICOS TEMA 1: LA ENERGÍA Y SU TRANSFORMACIÓN TEMA 2: ENERGÍAS NO RENOVABLES TEMA 3: ENERGÍAS RENOVABLES TEMA

Más detalles

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Energía y calor

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Energía y calor 1(6) Ejercicio nº 1 Calcula la cantidad de calor que hay que comunicar a 200 litros de agua para que su temperatura se incremente 25 º C. Dato: Ce (agua líquida)= 4180 J/kgK Ejercicio nº 2 A qué temperatura

Más detalles

M del Carmen Maldonado Susano M del Carmen Maldonado Susano

M del Carmen Maldonado Susano M del Carmen Maldonado Susano Antecedentes Temperatura Es una propiedad de la materia que nos indica la energía molecular de un cuerpo. Energía Es la capacidad latente o aparente que poseen los cuerpos para producir cambios en ellos

Más detalles

Termodinámica Tema 9: Primer Principio

Termodinámica Tema 9: Primer Principio Termodinámica Tema 9: Primer Principio Fundamentos Físicos de la Ingeniería 1 er Curso Ingeniería Industrial Dpto. Física Aplicada III 1 Índice Introducción Calor y energía interna Calor específico: calorimetría

Más detalles

Cátedras: Física II (Ing. Civil) y Física del Calor (Ing. Electromecánica) Tema : primer principio de la termodinámica y calorimetría

Cátedras: Física II (Ing. Civil) y Física del Calor (Ing. Electromecánica) Tema : primer principio de la termodinámica y calorimetría Laboratoriowebtpn2.doc Cátedras: Física II (Ing. Civil) y Física del Calor (Ing. Electromecánica) Tema : primer principio de la termodinámica y calorimetría Nombre del trabajo: calorimetría Temas asociados:

Más detalles

PROBLEMAS RESUELTOS DE TERMODINAMICA

PROBLEMAS RESUELTOS DE TERMODINAMICA PROBLEMAS RESUELTOS DE TERMODINAMICA 1. Responder a. Qué es el calor latente de una sustancia? y el calor específico? b. Es posible transformar todo el calor en trabajo en un ciclo? Razona la respuesta.

Más detalles

Tutorial Nivel Básico. FS - b14. Física El calor

Tutorial Nivel Básico. FS - b14. Física El calor Tutorial Nivel Básico FS - b14 Física 2007 El or Calor No se puede decir que un cuerpo tiene or o que la temperatura es una medida del or en un cuerpo. El término or sólo debe emplearse para designar la

Más detalles

Calor, mezclas y cambios de fase

Calor, mezclas y cambios de fase Calor, mezclas y cambios de fase Profesor: Robinson Pino H. OBJETIVOS Al término de la unidad, usted deberá:. Establecer el equilibrio térmico de una mezcla.. Reconocer las diferentes fases de la materia.

Más detalles

3. TERMODINÁMICA. PROBLEMAS I: PRIMER PRINCIPIO

3. TERMODINÁMICA. PROBLEMAS I: PRIMER PRINCIPIO TERMOINÁMI PROLEMS I: PRIMER PRINIPIO Problema 1 Un gas ideal experimenta un proceso cíclico ---- como indica la figura El gas inicialmente tiene un volumen de 1L y una presión de 2 atm y se expansiona

Más detalles

ANEXO GUÍA DE PROBLEMAS

ANEXO GUÍA DE PROBLEMAS ANEXO GUÍA DE PROBLEMAS Unidad 5.A: TEMPERATURA Problemas propuestos 1) Expresar en grados Fahrenheit el cero absoluto. 2) Transformar 175 K a grados centígrados. 3) A qué temperatura Celsius equivalen

Más detalles

La unidad de temperatura en el Sistema Internacional es el Kelvin (K) Elaboración Propia

La unidad de temperatura en el Sistema Internacional es el Kelvin (K) Elaboración Propia La energía y su transferencia: En este tema se estudia qué se entiende por sistema en termodinámica y los principios generales que rigen la evolución de los mismos. Se verá como el intercambio de energía

Más detalles

ENERGÍA. Energía del movimiento de los cuerpos

ENERGÍA. Energía del movimiento de los cuerpos ENERGÍA es uno de los conceptos más importantes de la ciencia, lo encontramos no sólo en todas las ramas de la ciencia, sino que aparece en todos los aspectos de nuestra vida. El Sol nos da energía, consumimos

Más detalles

SERIE 8: Segunda Ley de la Termodinámica

SERIE 8: Segunda Ley de la Termodinámica SERIE 8: Segunda Ley de la Termodinámica I. Ciclos y máquinas térmicas 1. Un mol de gas ideal (C v = 3 / 2 R) realiza el siguiente ciclo: AB) Se expande contra una presión exterior constante, en contacto

Más detalles

ALUMNO: AUTORA: Prof. Ma. Laura Sanchez

ALUMNO: AUTORA: Prof. Ma. Laura Sanchez h ALUMNO: AUTORA: Prof. Ma. Laura Sanchez 3.1 Temperatura A menudo solemos confundir calor con temperatura, cuando decimos hoy hace calor, ó el helado está frío nos estamos refiriendo a sensaciones térmicas

Más detalles

ENERGÍA TÉRMICA ACTIVIDAD:

ENERGÍA TÉRMICA ACTIVIDAD: ENERGÍA TÉRMICA El calor es una forma de energía que se manifiesta en la velocidad (energía cinética) que presentan las moléculas de las sustancias. La temperatura es la expresión de la velocidad promedio

Más detalles

Calor y Temperatura. Fisica I - Instituto de Fisica F B Q F 1. Diapositivas de clase

Calor y Temperatura. Fisica I - Instituto de Fisica F B Q F 1. Diapositivas de clase Calor y Temperatura Diapositivas de la clase Física I Fisica I - Instituto de Fisica F B Q F 1 Diapositivas de clase Estas diapositivas solo pueden servir como guía de lo que se estudió en clase teórica

Más detalles

TERMODINÁMICA 1. EL CALOR 2. LA TEMPERATURA 3. CONCEPTO DE TERMODINÁMICA 4. PRIMER PRINCIPIO 5. SEGUNDO PRINCIPIO 6.

TERMODINÁMICA 1. EL CALOR 2. LA TEMPERATURA 3. CONCEPTO DE TERMODINÁMICA 4. PRIMER PRINCIPIO 5. SEGUNDO PRINCIPIO 6. TERMODINÁMICA 1. EL CALOR 2. LA TEMPERATURA 3. CONCEPTO DE TERMODINÁMICA 4. PRIMER PRINCIPIO 5. SEGUNDO PRINCIPIO 6. CICLO DE CARNOT 7. DIAGRAMAS ENTRÓPICOS 8. ENTROPIA Y DEGRADACIÓN ENERGÉTICA INTRODUCCIÓN

Más detalles

Capítulo 18: Temperatura, Calor y la Primera Ley de Termodinámica

Capítulo 18: Temperatura, Calor y la Primera Ley de Termodinámica Capítulo 18: Temperatura, Calor y la Primera Ley de Termodinámica Propiedad termométrica ~ propiedad física que varía con la temperatura. Algunos ejemplos son: el volumen de un sólido o un líquido, la

Más detalles

UNIDAD VII TEMPERATURA Y DILATACIÓN

UNIDAD VII TEMPERATURA Y DILATACIÓN UNIDAD VII TEMPERATURA Y DILATACIÓN TEMPERATURA Expresión del nivel térmico de un cuerpo Un cuerpo con mucha temperatura tiene mucha cantidad de calor; sin embargo hay cuerpos como el mar con gran cantidad

Más detalles

Tema 2: Energía mecánica y energía térmica

Tema 2: Energía mecánica y energía térmica Tema 2: Energía mecánica y energía térmica 1.- Introducción En el tema anterior vimos que todos los tipos de energías, al final, se resumen en dos: la energía potencial y la energía cinética. Pues bien,

Más detalles

M en A. M. del Carmen Maldonado Susano Agosto 2015

M en A. M. del Carmen Maldonado Susano Agosto 2015 M en A. M. del Carmen Maldonado Susano Agosto 2015 1 Temperatura Es una propiedad de la materia que nos indica la energía molecular de un cuerpo. 2 Escalas de temperatura Celsius Kelvin Escalas Ferenheit

Más detalles

Tema 9: Calor, Trabajo, y Primer Principio

Tema 9: Calor, Trabajo, y Primer Principio 1/34 Tema 9: Calor, Trabajo, y Primer Principio Fátima Masot Conde Ing. Industrial 2010/11 Tema 9: Calor, Trabajo, Primer Principio 2/34 Índice: 1. Introducción. 2. Capacidad calorífica. Calor específico.

Más detalles

UNIVERSIDAD TECNOLÓGICA DE PUEBLA

UNIVERSIDAD TECNOLÓGICA DE PUEBLA Térmica PRÁCTICA 7: Capacidad térmica específica de metales OBJETIVO: Identificar algunos metales de trabajo. Determinar cualitativamente el valor de la capacidad térmica específica de algunos metales

Más detalles

1.- Responde de manera clara, breve y justificada a las siguientes cuestiones: (1,5 puntos)

1.- Responde de manera clara, breve y justificada a las siguientes cuestiones: (1,5 puntos) Nombre: 4º ESO A-B Instrucciones: Cada ejercicio se puntuará con la puntuación indicada en cada uno de ellos. Para obtener la puntuación máxima, será necesario hacer un dibujo del problema, plantear bien

Más detalles

TRABAJO DE FÍSICA ELECTIVO CUARTO NIVEL

TRABAJO DE FÍSICA ELECTIVO CUARTO NIVEL Liceo Bicentenario Teresa Prats de Sarratea Departamento de Física TRABAJO DE FÍSICA ELECTIVO CUARTO NIVEL Este trabajo consta de 15 preguntas de desarrollo, referidas a los temas que a continuación se

Más detalles

Capítulo 8. Termodinámica

Capítulo 8. Termodinámica Capítulo 8 Termodinámica 1 Temperatura La temperatura es la propiedad que poseen los cuerpos, tal que su valor para ellos es el mismo siempre que estén en equilibrio térmico. Principio cero de la termodinámica:

Más detalles

13. DETERMINACIÓN DEL EQUIVALENTE MECÁNICO DEL CALOR

13. DETERMINACIÓN DEL EQUIVALENTE MECÁNICO DEL CALOR 13. DETERMINACIÓN DEL EQUIVALENTE MECÁNICO DEL CALOR OBJETIVO El objetivo de la práctica es la determinación del equivalente mecánico J de la caloría. Para obtenerlo se calcula el calor absorbido por una

Más detalles

IES RIBERA DE CASTILLA. Unidad 12 ENERGÍA y CALOR. OBJETIVOS. Cuando termines de estudiar esta unidad serás capaz de:

IES RIBERA DE CASTILLA. Unidad 12 ENERGÍA y CALOR. OBJETIVOS. Cuando termines de estudiar esta unidad serás capaz de: Unidad 12 ENERGÍA y CALOR. OBJETIVOS 0 Introducción Qué es una termografía? Cómo funciona un horno de microondas? Repasa: La temperatura. Definición. Termómetros. Escala termométricas. Puntos fijos. La

Más detalles

t = Vf Vi Vi= Vf - a t Aceleración : Se le llama así al cambio de velocidad y cuánto más rápido se realice el cambio, mayor será la aceleración.

t = Vf Vi Vi= Vf - a t Aceleración : Se le llama así al cambio de velocidad y cuánto más rápido se realice el cambio, mayor será la aceleración. Las magnitudes físicas Las magnitudes fundamentales Magnitudes Derivadas son: longitud, la masa y el tiempo, velocidad, área, volumen, temperatura, etc. son aquellas que para anunciarse no dependen de

Más detalles

Dentro de las más conocidas, tenemos: Celcius, Fahrenheit, kelvin. Física II Mg. José Castillo Ventura 1

Dentro de las más conocidas, tenemos: Celcius, Fahrenheit, kelvin. Física II Mg. José Castillo Ventura 1 ESCALAS DE TEMPERATURA 100 100 180 Dentro de las más conocidas, tenemos: Celcius, Fahrenheit, kelvin 1 Kelvin Grado Celcius Grado Farenheit Kelvin K K K C + 273,15 K (F + 459,67)5/9 Grado Celcius Grado

Más detalles

Física para Ciencias: Termodinámica

Física para Ciencias: Termodinámica Física para Ciencias: Termodinámica Dictado por: Profesor Aldo Valcarce 1 er semestre 2014 La Termodinámica Trata de: Calor (energía térmica) Temperatura Dilatación Comportamiento de gases (tratamiento

Más detalles

Calor y temperatura. Cap. 13, 14 y 15 Giancoli 6ta ed.

Calor y temperatura. Cap. 13, 14 y 15 Giancoli 6ta ed. Calor y temperatura Cap. 13, 14 y 15 Giancoli 6ta ed. Contenido Definiciones Clasificación Leyes, principios Procedimientos Definiciones Termodinámica: es el estudio de los procesos en los que la energía

Más detalles

Concepto de temperatura

Concepto de temperatura Concepto de temperatura Temperatura: una magnitud de sistemas que están en equilibrio térmico, da información sobre la energía cinética de las partículas >Termómetro tradicional se basa en idea de equilibrio

Más detalles

Tema 2: Componentes del sistema climático La atmósfera como escenario de los fenómenos climáticos

Tema 2: Componentes del sistema climático La atmósfera como escenario de los fenómenos climáticos Tema 2: Componentes del sistema climático La atmósfera como escenario de los fenómenos climáticos TEMARIO GENERAL 1. Introducción: Climatología y Biogeografía como ciencias geográficas. 2. Componentes

Más detalles

GUIA DE ESTUDIO FÍSICA 4 MÓDULO PREPARACIÓN PRUEBA COEFICIENTE DOS Nombre: Curso: Fecha:

GUIA DE ESTUDIO FÍSICA 4 MÓDULO PREPARACIÓN PRUEBA COEFICIENTE DOS Nombre: Curso: Fecha: I.MUNICIPALIDAD DE PROVIDENCIA CORPORACIÓN DE DESARROLLO SOCIAL LICEO POLIVALENTE ARTURO ALESSANDRI PALMA DEPARTAMENTO DE FÍSICA PROF.: Nelly Troncoso Rojas. GUIA DE ESTUDIO FÍSICA 4 MÓDULO PREPARACIÓN

Más detalles

Módulo 2: Termodinámica Segundo principio de la Termodinámica

Módulo 2: Termodinámica Segundo principio de la Termodinámica Módulo 2: Termodinámica Segundo principio de la Termodinámica 1 Transferencias de energía Sabemos por el primer principio de la Termodinámica que la energía de un sistema se conserva. Sólo que en diferentes

Más detalles

CALORIMETRIA CALOR Y TEMPERATURA CALOR

CALORIMETRIA CALOR Y TEMPERATURA CALOR 1 CALORIMETRIA CALOR Y TEMPERATURA Supongamos que uno tiene un ladrillo y lo calienta. Ahora el ladrillo tiene mayor temperatura. Veamos que quiere decir esto de tener mayor temperatura. Desde el punto

Más detalles

UNIDAD Nº 2: GASES IDEALES Y CALORIMETRIA

UNIDAD Nº 2: GASES IDEALES Y CALORIMETRIA UNIDAD Nº 2: GASES IDEALES Y CALORIMETRIA UNIVERSIDAD CATÓLICA DE SALTA FAC. DE CS AGRARIAS Y VETERINARIAS AÑO 2008 Farm. Pablo F. Corregidor 1 TEMPERATURA 2 TEMPERATURA Termoreceptores: Externos (piel)

Más detalles

Tema 3: La materia. Segunda parte

Tema 3: La materia. Segunda parte Tema 3: La materia. Segunda parte Esquema de trabajo: 1. Temperatura Concepto Unidades de medida 2. Calor Concepto Unidades de medida 3. Calor específico Concepto Unidad de medida 4. Cambios de estado:

Más detalles

I TEMA 1.- LA ENERGÍA

I TEMA 1.- LA ENERGÍA Tecnología Industrial I TEMA 1.- LA ENERGÍA José Antonio Herrera Sánchez I.E.S. Villa de Abarán 1 de 6 TEMA 1.- LA ENERGÍA 1.1.- Introducción En el ámbito de la física y la tecnología se suele definir

Más detalles

PROBLEMAS de TERMOQUÍMICA

PROBLEMAS de TERMOQUÍMICA Datos para los problemas: PROBLEMAS de TERMOQUÍMICA Agua: densidad 1 g/cm 3, calor latente de fusión: 80 cal/g; calor latente de vaporización = 540 cal/g; calores específicos (cal/g ºC): sólido = 0,5,

Más detalles

GUÍA III MEDIO COMÚN FÍSICA CALOR Y TEMPERATURA. Año 2017

GUÍA III MEDIO COMÚN FÍSICA CALOR Y TEMPERATURA. Año 2017 GUÍA III MEDIO COMÚN FÍSICA CALOR Y TEMPERATURA Año 2017 1. Si un cuerpo varía su temperatura en 20 ºC, entonces la variación de su temperatura en la escala Kelvin es: A) 20 K B) 273/20 K C) 253 K D) 273

Más detalles

Dentro de las más conocidas, tenemos: Celcius, Fahrenheit, kelvin. Física II Mg. José Castillo Ventura 1

Dentro de las más conocidas, tenemos: Celcius, Fahrenheit, kelvin. Física II Mg. José Castillo Ventura 1 Dentro de las más conocidas, tenemos: Celcius, Fahrenheit, kelvin 100 100 180 Mg. José Castillo Ventura 1 Kelvin Grado Celcius Grado Farenheit Kelvin K = K K = C + 273,15 K = (F + 459,67)5/9 Grado Celcius

Más detalles

FISICOQUIMICA. La energía total de un sistema puede ser: externa, interna o de tránsito. CLASIFICACION TIPOS DETERMINACION Energía Potencial:

FISICOQUIMICA. La energía total de un sistema puede ser: externa, interna o de tránsito. CLASIFICACION TIPOS DETERMINACION Energía Potencial: FISICOQUIMICA ENERGIA: No puede definirse de forma precisa y general, sin embargo, puede decirse que es la capacidad para realizar trabajo. No se puede determinar de manera absoluta, solo evaluar los cambios.

Más detalles

m 20 m/s s Por tanto, su energía cinética vale:

m 20 m/s s Por tanto, su energía cinética vale: Pág. 1 18 Un calefactor tiene una potencia de 1,5 kw. Calcula, en calorías y en julios, la energía que suministra en 3 horas. Teniendo en cuenta que E = P t, resulta: E 1,5 kw 3 h 4,5 kwh 4,5 kwh 3 600

Más detalles

E t = C e. m. (T f T i ) = 1. 3,5 (T f -20) =5 Kcal

E t = C e. m. (T f T i ) = 1. 3,5 (T f -20) =5 Kcal EJERCICIOS TEMA 1: LA ENERGÍA Y SU TRANSFORMACIÓN Ejercicio 1: Calcula la energía, en KWh, que ha consumido una máquina que tiene 40 CV y ha estado funcionando durante 3 horas. Hay que pasar la potencia

Más detalles

UNIDADES, CAMBIO DE UNIDADES

UNIDADES, CAMBIO DE UNIDADES 1. Ordena de mayor a menor las siguientes longitudes: En primer lugar, para poder ordenarlos hay que poner los en las mismas unidades, siempre vamos a ponerlas en las unidades del SI (Sistema Internacional),

Más detalles

Titular: Daniel Valdivia

Titular: Daniel Valdivia UNIVERSIDAD NACIONAL DE TRES DE FEBRERO PROBLEMAS DE LA CÁTEDRA FÍSICA 2 Titular: Daniel Valdivia Adjunto: María Inés Auliel 7 de septiembre de 2016 Primer Principio Justificar cada una de sus respuestas.

Más detalles

Módulo 2: Termodinámica Temperatura y calor

Módulo 2: Termodinámica Temperatura y calor Módulo 2: Termodinámica Temperatura y calor 1 Termodinámica y estado interno Para describir el estado externo de un objeto o sistema se utilizan en mecánica magnitudes físicas como la masa, la velocidad

Más detalles

ESTO NO ES UN EXAMEN, ES UNA HOJA DEL CUADERNILLO DE EJERCICIOS. Heroica Escuela Naval

ESTO NO ES UN EXAMEN, ES UNA HOJA DEL CUADERNILLO DE EJERCICIOS. Heroica Escuela Naval CUADERNILLO DE FÍSICA. TERCER GRADO. I.- SUBRAYE LA RESPUESTA CORRECTA EN LOS SIGUIENTES ENUNCIADOS. 1.- CUANDO DOS CUERPOS CON DIFERENTE TEMPERATURA SE PONEN EN CONTACTO, HAY TRANSMISIÓN DE: A) FUERZA.

Más detalles

DEPARTAMENTO DE INGENIERÍA QUÍMICA CATEDRA DE FISICOQUÍMICA TRABAJO PRÁCTICO DE LABORATORIO Nº 6

DEPARTAMENTO DE INGENIERÍA QUÍMICA CATEDRA DE FISICOQUÍMICA TRABAJO PRÁCTICO DE LABORATORIO Nº 6 Universidad Tecnológica Nacional Facultad Regional La Plata DEPARTAMENTO DE INGENIERÍA QUÍMICA CATEDRA DE FISICOQUÍMICA TRABAJO PRÁCTICO DE LABORATORIO Nº 6 DETERMINACIÓN DEL VALOR CALÓRICO DE LOS ALIMENTOS

Más detalles

Calor y temperatura. Termómetros: son instrumentos utilizados para medir la temperatura.

Calor y temperatura. Termómetros: son instrumentos utilizados para medir la temperatura. Calor y temperatura Fuente: Capítulos 12, 13 y 14 del libro de texto, Hecht, Vol I. 1. DEFINICIONES L a física térmica estudia la temperatura, la transferencia y transformación de la energía interna que

Más detalles

TEMA 2: PRINCIPIOS DE TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA

TEMA 2: PRINCIPIOS DE TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA TEMA 2: PRINCIPIOS DE TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA La termodinámica es la parte de la física que se ocupa de las relaciones existentes entre el calor y el trabajo. El calor es una

Más detalles

Capacidades Térmicas Específicas. M. del Carmen Maldonado Susano

Capacidades Térmicas Específicas. M. del Carmen Maldonado Susano Capacidades Térmicas Específicas M. del Carmen Maldonado Susano 1 03/05/2016 Objetivo El alumno identificará e inferirá Experimentalmente la capacidad térmica específica de algunas sustancias, mediante

Más detalles

Máquinas térmicas y Entropía

Máquinas térmicas y Entropía Física 2 (Biólogos y Geólogos) SERIE 10 Máquinas térmicas y Entropía 1. Un mol de gas ideal (C v = 3 / 2 R) realiza el siguiente ciclo: AB) Se expande contra una presión exterior constante, en contacto

Más detalles

Table 1: Datos de interés. 1. Cuánto calor se entrega para aumentar la temperatura de 3 kg de aluminio de 20 C a 50 C? Resp: 82.

Table 1: Datos de interés. 1. Cuánto calor se entrega para aumentar la temperatura de 3 kg de aluminio de 20 C a 50 C? Resp: 82. Guía 3 - Termodinámica 1 A. Calor y temperatura Elemento densidad calor específico/latente Agua líquida 1 g/cm 3 c agua =1 cal/(g C) vapor c vapor =0.5 cal/(g C) sólida 0.9168 g/cm 3 c hielo =0.5 cal/(g

Más detalles

Física 2 (Biólogos y Geólogos) SERIE 8

Física 2 (Biólogos y Geólogos) SERIE 8 Física 2 (Biólogos y Geólogos) SERIE 8 i) Máquinas térmicas 1. Un mol de gas ideal (C v = 3 / 2 R) realiza el siguiente ciclo: AB) Se expande contra una presión exterior constante, en contacto térmico

Más detalles

Tema 5: La energía mecánica

Tema 5: La energía mecánica Tema 5: La energía mecánica Introducción En este apartado vamos a recordar la Energía mecánica que vimos al principio del Bloque. 1. Energía Potencial gravitatoria 2. Energía Cinética 3. Principio de conservación

Más detalles

FyQ Rev 01. IES de Castuera. 1 Introducción. 2 Clasificación de los Sistemas Materiales. 3 Las Variables Termodinámicas

FyQ Rev 01. IES de Castuera. 1 Introducción. 2 Clasificación de los Sistemas Materiales. 3 Las Variables Termodinámicas Física y Química 1º Bachillerato LOMCE IES de Castuera Tema 6 Termoquímica FyQ 1 2015 2016 Rev 01 1 Introducción 2 Clasificación de los Sistemas Materiales 3 Las Variables Termodinámicas 4 Primer Principio

Más detalles

FÍSICA Y QUÍMICA 4º ESO Apuntes: Energía Térmica y Calor

FÍSICA Y QUÍMICA 4º ESO Apuntes: Energía Térmica y Calor 1(15) 1 ENERGÍA INTERNA La materia está formada por átomos, moléculas o iones que se encuentran animados de un movimiento continuo. Este movimiento es lo que se denomina movimiento térmico, y su existencia

Más detalles

Unidad 16: Temperatura y gases ideales

Unidad 16: Temperatura y gases ideales Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 16: Temperatura y gases ideales Universidad Politécnica de Madrid 14 de abril de 2010

Más detalles

FÍSICA Y QUÍMICA TEMA 2: LA MATERIA Y SUS ESTADOS DE AGREGACIÓN

FÍSICA Y QUÍMICA TEMA 2: LA MATERIA Y SUS ESTADOS DE AGREGACIÓN 1 Física y Química 3º Curso Educación Secundaria Obligatoria Curso académico 2015/2016 FÍSICA Y QUÍMICA TEMA 2: LA MATERIA Y SUS ESTADOS DE AGREGACIÓN 2 Física y Química 3º Curso Educación Secundaria Obligatoria

Más detalles

EL CALOR Y LA TEMPERATURA

EL CALOR Y LA TEMPERATURA EL CALOR Y LA TEMPERATURA Prof.- Juan Sanmartín 4º Curso de E.S.O. 1 INTERCAMBIO DEL CALOR COMO FORMA DE TRANSFERENCIA DE ENERGÍA Pese a que los cambios que pueden producirse en los sistemas son muy variados,

Más detalles

MATERIAL DE APOYO DE USO ESCLUSIVO DEL CENTRO DE ESTUDIOS MATEMÁTICOS. C.E.M.

MATERIAL DE APOYO DE USO ESCLUSIVO DEL CENTRO DE ESTUDIOS MATEMÁTICOS. C.E.M. 1-. Una cubeta con hielo recibe constantemente calor de un B. mechero como se aprecia en la figura. C. D. De la gráfica de temperatura como función del tiempo, para la muestra, se concluye que entre A.

Más detalles

El resultado se expresa mediante una cantidad seguida de la unidad elegida. La cantidad representa el número de veces que se repite la unidad.

El resultado se expresa mediante una cantidad seguida de la unidad elegida. La cantidad representa el número de veces que se repite la unidad. LA MEDIDA Magnitudes físicas Todas las propiedades que podemos medir se denominan magnitudes. Para medir una magnitud hay que determinar previamente una cantidad de esta, llamada unidad. Al medir, se comparan

Más detalles

UNIDAD 2: ESTADO GASEOSO

UNIDAD 2: ESTADO GASEOSO UNIDAD 2: ESTADO GASEOSO 1 CARACTERISTICAS DE LOS GASES Los gases poseen masa y ocupan un determinado volumen en el espacio, este volumen queda determinado por el volumen del recipiente que los contiene.

Más detalles

PRACTICA 9 CALOR ESPECIFICO

PRACTICA 9 CALOR ESPECIFICO PRACTICA 9 CALOR ESPECIFICO OBJETO Determinar calores específicos por el método de las mezclas. MA TERIAL líquidos. Vaso calorimétrico. Termómetro. Probeta graduada. Cazo eléctrico hervidor de FUNDAMENTO

Más detalles

GASES IDEALES. Contiene una mezcla de gases CP + O 2. Volumen = 1 litro Temperatura = 23 C = ,15 = 298,15K =585 = 0,7697 =250 = 0,3289

GASES IDEALES. Contiene una mezcla de gases CP + O 2. Volumen = 1 litro Temperatura = 23 C = ,15 = 298,15K =585 = 0,7697 =250 = 0,3289 GASES IDEALES PROBLEMA 10 Mezclas de los gases ciclopropano (C 3H 8) y oxígeno se utilizan mucho como anestésicos. a) Cuántos moles de cada gas están presentes en un recipiente de 1 litro a 23 C, si la

Más detalles

FÍSICA II. Guía De Problemas Nº4: Primer Principio de la Termodinámica. Transformaciones Gaseosas Consecuencias del Primer Principio

FÍSICA II. Guía De Problemas Nº4: Primer Principio de la Termodinámica. Transformaciones Gaseosas Consecuencias del Primer Principio Universidad Nacional del Nordeste Facultad de Ingeniería Departamento de Físico-Química/Cátedra Física II FÍSICA II Guía De Problemas Nº4: Primer Principio de la Termodinámica Transformaciones Gaseosas

Más detalles

Según el modelo cinético molecular de la materia, sabemos que las partículas que la forman están sometidas a un movimiento constante.

Según el modelo cinético molecular de la materia, sabemos que las partículas que la forman están sometidas a un movimiento constante. Física y Química 4º ESO Energía Térmica página 1 de 7 CONCEPTO DE CALOR Y TEMPERATURA Según el modelo cinético molecular de la materia, sabemos que las partículas que la forman están sometidas a un movimiento

Más detalles

Tema 2: Magnitudes físicas

Tema 2: Magnitudes físicas Tema 2: Magnitudes físicas 1.- Qué son las magnitudes físicas? Una magnitud es una propiedad que podemos medir Las magnitudes nos permiten estudiar una propiedad de un objeto. Por ejemplo, si queremos

Más detalles

TEMA 1: Energía. 1 cal = 4,18 J. 1 kwh = 1000 Wh = 1000 Wh 3600 s/h = J = J. 1J = 1 w s

TEMA 1: Energía. 1 cal = 4,18 J. 1 kwh = 1000 Wh = 1000 Wh 3600 s/h = J = J. 1J = 1 w s TEMA 1: Energía. Energía. Se define la energía, como la capacidad para realizar un cambio en forma de trabajo. Se mide en el sistema internacional en Julios (J), que se define como el trabajo que realiza

Más detalles

Energía interna: ec. energética de estado. Energía interna de un gas ideal. Experimento de Joule. Primer principio de la Termodinámica

Energía interna: ec. energética de estado. Energía interna de un gas ideal. Experimento de Joule. Primer principio de la Termodinámica CONTENIDO Calor: capacidad calorífica y calor específico Transiciones de fase: diagramas de fase Temperatura y presión de saturación Energía interna: ec. energética de estado. Energía interna de un gas

Más detalles

Termodinámica. Problemas resueltos de Física. Universidad Tecnológica Nacional Facultad Regional Gral. Pacheco

Termodinámica. Problemas resueltos de Física. Universidad Tecnológica Nacional Facultad Regional Gral. Pacheco Universidad ecnológica Nacional ermodinámica POEM. En una transformación a resión constante (resión atmosférica) el volumen de un gas varía en 0, litros. Se le suministran,8 cal.. En una transformación

Más detalles

2.- Calcula la energía que posee un balón de baloncesto que pesa 1,5 kg, y se encuentra en el alero de un tejado situado a 6 metros de altura.

2.- Calcula la energía que posee un balón de baloncesto que pesa 1,5 kg, y se encuentra en el alero de un tejado situado a 6 metros de altura. SOLUCIONES EJERCICIOS AUTOEVALUACIÓN 1.- Que energía cinética acumula un ciclista que tiene una masa de 75 kg y se desplaza a una velocidad de 12 metros por segundo. Aplicando la definición de energía

Más detalles

El t ermomet ro d e gas a volumen c onst ant e Las lecturas de temperatura en un termometro de gas son casi independientes de la substancia utilizada,

El t ermomet ro d e gas a volumen c onst ant e Las lecturas de temperatura en un termometro de gas son casi independientes de la substancia utilizada, Termo di nami c a La termodinamica estudia las transferencias de calor y traba jos asociados. C onsta de tres leyes fundamentales: -Ley 0( Denicion de Temperatura) -Primera Ley( C onservacion de la energa

Más detalles

PARCIAL DE FISICA II 7/6/2001 CASEROS II TEORICO: 1-Enunciar los Principios de la Termodinámica para sistemas cerrados y sistemas abiertos.

PARCIAL DE FISICA II 7/6/2001 CASEROS II TEORICO: 1-Enunciar los Principios de la Termodinámica para sistemas cerrados y sistemas abiertos. PARCIAL DE FISICA II 7/6/2001 CASEROS II ALUMNO: MATRICULA: 1-Enunciar los Principios de la Termodinámica para sistemas cerrados y sistemas abiertos. 2-Obtener la ecuación de las Adiabáticas. 3-Explicar

Más detalles

1. Calcula la energía cinética de un vehículo de 1000 kg de masa que circula a una velocidad de 120 km/h.

1. Calcula la energía cinética de un vehículo de 1000 kg de masa que circula a una velocidad de 120 km/h. SISTEMA DE UNIDADES EQUIVALENCIAS DE UNIDADES DE ENERGÍA 1 cal = 4,18 J 1 J = 0,24 cal 1Kwh = 3,6 x 10 6 J PROBLEMAS SOBRE ENERGÍA MECÁNICA FÓRMULAS: Energía potencial gravitatoria:. Energía cinética:.

Más detalles

1 1 Rc M 60 EJERCICICIOS RESUELTOS

1 1 Rc M 60 EJERCICICIOS RESUELTOS SIGNTUR: TENOLOGÍ INDUSTRIL II BLOQUE: RINIIOS DE MÁQUINS (MOTORES TÉRMIOS) ) Un motor tipo OTTO de cilindros desarrolla una potencia efectiva (al freno) de 65.. a 500 r.p.m. Se sabe que el diámetro de

Más detalles

SOLUIONES A LOS ESS MONOEMÁIOS DE ERMODINAMIA.-. La curva que representa una expansión adiabática tiene una pendiente mayor que la correspondiente expansión isoterma, como se puede comprobar en la igura.

Más detalles

PRIMER PRINCIPIO DE LA TERMODINÁMICA. Ciclo de CARNOT.

PRIMER PRINCIPIO DE LA TERMODINÁMICA. Ciclo de CARNOT. PRIMER PRINCIPIO DE LA TERMODINÁMICA. Ciclo de CARNOT. Se mantiene un gas a presión constante de 0 atm mientras se expande desde un volumen de 0 005 m 3 hasta uno de 0 009 m 3. Qué cantidad de calor se

Más detalles

LABORATORIO DE TERMODINÁMICA PRÁCTICA 1: TÍTULO DE UN VAPOR HÚMEDO

LABORATORIO DE TERMODINÁMICA PRÁCTICA 1: TÍTULO DE UN VAPOR HÚMEDO LABORATORIO DE TERMODINÁMICA PRÁCTICA 1: TÍTULO DE UN VAPOR HÚMEDO 1. OBJETIVO Determinar la calidad de un vapor húmedo 2. MATERIAL - Calderín para producir el vapor (p atmosférica = constante) - Calorímetro

Más detalles

FÍSICA Y QUÍMICA TEMA 2: LOS SISTEMAS MATERIALES

FÍSICA Y QUÍMICA TEMA 2: LOS SISTEMAS MATERIALES Física y Química 3º Curso Educación Secundaria Obligatoria Curso académico 2015/2016 1 FÍSICA Y QUÍMICA TEMA 2: LOS SISTEMAS MATERIALES Física y Química 3º Curso Educación Secundaria Obligatoria Curso

Más detalles

TERMOMETRÌA Y CALORIMETRÌA

TERMOMETRÌA Y CALORIMETRÌA TERMOMETRÌA Y CALORIMETRÌA Termómetros Basados en alguna propiedad física de un sistema que cambia con la temperatura: Volumen de un líquido Longitud de un sólido Presión de un gas a volumen constante

Más detalles

MINI ENSAYO DE FÍSICA Nº 3

MINI ENSAYO DE FÍSICA Nº 3 MINI ENSAYO DE FÍSICA Nº 3 TEMA: CALOR, TEMPERATURA Y ONDAS. 1. Una pieza de cobre cae dentro de una fuente con agua. Si el sistema está aislado, y la temperatura del agua sube. Qué sucede con la temperatura

Más detalles