TECNOLOGIA DE LA ENERGIA TERMICA

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TECNOLOGIA DE LA ENERGIA TERMICA"

Transcripción

1 TECNOLOGIA DE LA ENERGIA TERMICA DOBLE TUBO Mariano Manfredi Tecnología de la Energía Térmica 1

2 DOBLE TUBO Indice 1. Objeivos 2. Alcance 3. Desarrollo Geomería Cálculo de coeficienes peliculares Verificación del equipo Pérdida de carga Aplicaciones Tecnología de la Energía Térmica 2

3 OBJETIVOS Conocer uno de los equipos de ransferencia de calor más sencillos Conocer los crierios de asignación de fluidos Empleo de correlaciones para cálculo de coeficienes peliculares Empleo de la ecuación de diseño como erramiena de verificación Cálculo de pérdida de carga Conocer las aplicaciones y limiaciones del equipo Tecnología de la Energía Térmica 3

4 ALCANCE Aspecos consrucivos principales Verificación érmica Verificación Hidráulica Tecnología de la Energía Térmica 4

5 Geomería Videos DT - Consruccion DT - Circulacion de Fluidos Tecnología de la Energía Térmica 5

6 Geomería Tecnología de la Energía Térmica 6

7 Cálculo de coeficienes peliculares Lado inerno: Coeficiene pelicular inerno ( i ) Tubo Lado exerno: Coeficiene pelicular exerno ( o ) Ánulo Uso de correlaciones Régimen Tipo de fluido Geomería Tecnología de la Energía Térmica 7

8 Cálculo de coeficienes peliculares Crierios de asignación de fluidos Velocidades recomendadas Corrosión Suciedad Presión Toxicidad Inflamabilidad Temperaura Tecnología de la Energía Térmica 8

9 Cálculo de coeficienes peliculares Crierios de asignación de fluidos Velocidades recomendadas Durane el diseño de un equipo, pueden lograrse mediane la selección adecuada del par de ubos (caños) Tecnología de la Energía Térmica 9

10 Cálculo de coeficienes peliculares Dependencia del régimen Re ρ < v > d µ 4 Q ρ π µ d 4 ω π µ d G d µ Laminar Re < 2100 Transición 2100 < Re < Turbuleno < Re Transición: Zona inesable. Las correlaciones presenan desviaciones imporanes. En lo posible, eviar el diseño en ese régimen. Tecnología de la Energía Térmica 10

11 Cálculo de coeficienes peliculares Coeficiene pelicular inerno Régimen Laminar Correlación Sieder-Tae para régimen laminar Nu 1.86 Re Pr Cp µ Pr k φ Nu µ µ w d k 0.14 d L 1/3 φ Válida para fluidos orgánicos, soluciones acuosas, gases. Propiedades evaluadas a Temperaura media ariméica enre la enrada y salida del equipo (a excepción de µ w ). Se asume que las propiedades ermodinámicas son consanes desde la enrada asa la salida. Tecnología de la Energía Térmica 11

12 Cálculo de coeficienes peliculares Coeficiene pelicular inerno Régimen Turbuleno Correlación Sieder-Tae para régimen urbuleno Nu Re 0.8 Pr 1/3 φ Pr Nu φ Cp µ k µ µ w d k 0.14 Válida para fluidos orgánicos, soluciones acuosas, gases. Propiedades evaluadas a Temperaura media ariméica enre la enrada y salida del equipo (a excepción de µ w ). Se asume que las propiedades ermodinámicas son consanes desde la enrada asa la salida. Tecnología de la Energía Térmica 12

13 Cálculo de coeficienes peliculares Coeficiene pelicular inerno Agua 0.8 v ( ) φ d φ µ µ w 0.14 Válida para agua. [ºC] enre 5 ºC y 95 ºC v [m/s] enre 0,3 m/s y 3 m/s d [m] enre 0,01 m y 0,05 m [W/m 2 K] Propiedades evaluadas a Temperaura media ariméica enre la enrada y salida del equipo (a excepción de µ w ). Se asume que las propiedades ermodinámicas son consanes desde la enrada asa la salida. Tecnología de la Energía Térmica 13

14 Cálculo de coeficienes peliculares Coeficiene pelicular exerno Régimen Laminar Correlación Sieder-Tae para régimen laminar Nu 1.86 Re Pr Cp µ Pr k φ Nu µ µ w d k 0.14 d L 1/3 φ deq Válida para fluidos orgánicos, soluciones acuosas, gases. Propiedades evaluadas a Temperaura media ariméica enre la enrada y salida del equipo (a excepción de µ w ). Se asume que las propiedades ermodinámicas son consanes desde la enrada asa la salida. 2 4 Af Di d Perimero. ermico d Tecnología de la Energía Térmica 14 o 2 o

15 Cálculo de coeficienes peliculares Coeficiene pelicular exerno Régimen Turbuleno Correlación Sieder-Tae para régimen urbuleno Nu Re Pr Nu φ Cp µ k µ µ w d k Pr 1/3 φ deq Válida para fluidos orgánicos, soluciones acuosas, gases. Propiedades evaluadas a Temperaura media ariméica enre la enrada y salida del equipo (a excepción de µ w ). Se asume que las propiedades ermodinámicas son consanes desde la enrada asa la salida. 2 4 Af Di d Perimero. ermico d Tecnología de la Energía Térmica 15 o 2 o

16 Cálculo de coeficienes peliculares Coeficiene pelicular exerno Agua 0.8 v ( ) φ d deq 2 4 Af Di d Perimero. ermico d o 2 o φ µ µ w 0.14 Válida para agua. [ºC] enre 5 ºC y 95 ºC v [m/s] enre 0,3 m/s y 3 m/s d [m] enre 0,01 m y 0,05 m [W/m 2 K] Propiedades evaluadas a Temperaura media ariméica enre la enrada y salida del equipo (a excepción de µ w ). Se asume que las propiedades ermodinámicas son consanes desde la enrada asa la salida. Tecnología de la Energía Térmica 16

17 Tecnología de la Energía Térmica 17 DOBLE TUBO - Cálculo de coeficienes peliculares Cálculo de Temperaura de pared ( ) ( ) T w o w io ( ) ( ) T w io w o io o o io w T + + io o io o w T + +

18 Cálculo de coeficienes peliculares Uso de gráfico J H (coeficiene pelicular en ubos/anulo) Tecnología de la Energía Térmica 18

19 Cálculo de coeficienes peliculares Convección mixa en ubos orizonales Coeficiene pelicular para convección mixa Diámero del ubo Densidad Coeficiene de expansión érmica Gravedad Conducividad érmica Viscosidad Diferencia de emperauras Propiedades a emperaura de film w T Tf + 2 Inervalo de aplicación de gráfico Gr 2 g. β. ρ. d 1 β v d 0.01< Pr < 1 L dv dt 3 2 µ.( T 1 v d Gz Re.Pr. L v T w ) Tecnología de la Energía Térmica 19

20 Cálculo de coeficienes peliculares Convección mixa Tecnología de la Energía Térmica 20

21 Verificación del equipo Uso de la Ecuación de Diseño Q U C AC TML Q U D AD TML Despeje Despeje Comparo conra A A NO SI A C A D A A > A D El equipo verifica érmicamene A A < A D El equipo NO verifica érmicamene Tecnología de la Energía Térmica 21

22 Verificación del equipo Sobredimensionamieno En función de A C En función de A D OS C AA AC % 100 A C OS D AA AD % 100 A D Refleja qué an grande es realmene el equipo respeco de lo que se requiere Valores recomendados (OS D %) 10% - 20% Inceridumbre de correlaciones Margen de seguridad para la operación Tecnología de la Energía Térmica 22

23 Pérdida de carga Pérdida de carga en ubos P 2 G 4 2 ρ f ( 2 N L ) 1 d + ΣK φ ΣK 0 Régimen laminar Régimen urbuleno φ µ µ w 0.25 φ µ µ w 0.14 f 16 Re Tubos lisos Re Tubos rugosos (acero comercial) Re f f Tecnología de la Energía Térmica 23

24 Pérdida de carga Pérdida de carga en anulo P a 2 G 4 2 ρ f a ( 2 N L ) 1 d + ΣK φ ΣK N deq 4 Af Perimero. idraulico D i d o Régimen laminar Régimen urbuleno φ µ µ w 0.25 φ µ µ w 0.14 f 16 Re Tubos lisos Re Tubos rugosos (acero comercial) Re f f Tecnología de la Energía Térmica 24

25 Pérdida de carga Arreglo Serie Paralelo Arreglo empleado para disminuir el P excedido de uno de los dos fluidos Variables afecadas (venaja): ω, G, Re, f, N, ΣK gran disminución del P Variables afecadas (desvenaja): ω, G, Re,, U disminución del coeficiene global de ransferencia de calor se pone en riesgo la verificación érmica Tecnología de la Energía Térmica 25

26 Aplicaciones Venajas Desvenajas Aplicaciones en las que el proceso requiera áreas de inercambio del orden de los m 2 Bajos caudales Empleado cuando quiere lograrse flujo cocorriene o conracorriene puro Fácil consrucción Bajo coso Máxima longiud usual de 6 meros. A mayor longiud el ubo flexiona y se disorsiona el área anular originando una mala disribución del fluido anular El área de ransferencia de una orquilla es muy reducida si el proceso de ransferencia de calor requiere gran área de inercambio, deben emplearse gran número de orquillas, resulando un equipo muy grande, ocupando muco espacio (problemas de layou) y demanda de muco manenimieno Desarme para limpieza complicado y laborioso A mayor amaño de equipo, mayor canidad de punos de fuga (debido a la mayor canidad de empleo de junas) Tecnología de la Energía Térmica 26

27 Aplicaciones Doble ubo aleado Cuando se requiere mayor área de ransferencia Consrucción más compleja Muliubo Cuando se requiere mayor área de ransferencia Cuando se requiere mayor área de flujo para el fluido de ubos Consrucción aun más compleja Tecnología de la Energía Térmica 27

28 PREGUNTAS? Tecnología de la Energía Térmica 28

29 FIN Mariano Manfredi Tecnología de la Energía Térmica 29

TECNOLOGIA DE LA ENERGIA TERMICA

TECNOLOGIA DE LA ENERGIA TERMICA TECNOLOGIA DE LA ENERGIA TERMICA AEROENFRIADORES Mariano Manfredi Tecnología de la Energía Térmica 1 1 AEROENFRIADORES Indice 1. Objetivos 2. Alcance 3. Desarrollo Geometría Códigos constructivos Elementos

Más detalles

TECNOLOGIA DE LA ENERGIA TERMICA

TECNOLOGIA DE LA ENERGIA TERMICA TECNOLOGIA DE LA ENERGIA TERMICA PLACAS Y JUNTAS Mariano Manfredi Tecnología de la Energía Térmica 1 PLACAS Y JUNTAS Indice 1. Objetivos 2. Alcance 3. Desarrollo Geometría Códigos constructivos Elementos

Más detalles

TECNOLOGIA DE LA ENERGIA TERMICA

TECNOLOGIA DE LA ENERGIA TERMICA TECNOLOGIA DE LA ENERGIA TERMICA EBULLICION Mariano Manfredi Tecnología de la Energía Térmica 1 EBULLICION Indice 1. Objetivos 2. Alcance 3. Desarrollo Evaporación y ebullición Formación de burbujas Clasificación

Más detalles

TECNOLOGIA DE LA ENERGIA TERMICA

TECNOLOGIA DE LA ENERGIA TERMICA ECNOLOGIA DE LA ENERGIA ERMICA ESADO NO ESACIONARIO Mariano Manfredi ecnología de la Energía érmica ESADO NO ESACIONARIO Indice. Objetivos. Alcance 3. Desarrollo Concepto de ENE Calentamiento y enfriamiento

Más detalles

Tema 6. Convección natural y forzada

Tema 6. Convección natural y forzada 1. CONCEPTOS BÁSICOS. COEFICIENTES INIVIUALES E TRANSMISIÓN E CALOR.1. Cálculo de los coeficientes individuales de transmisión de calor.1.1. Flujo interno sin cambio de fase: Convección forzada A.- Conducciones

Más detalles

TRANSFERENCIA DE CALOR POR CONVECCIÓN

TRANSFERENCIA DE CALOR POR CONVECCIÓN TRANSFERENCIA DE CALOR POR CONVECCIÓN Nos hemos concentrado en la transferencia de calor por conducción y hemos considerado la convección solo hasta el punto en que proporciona una posible condición de

Más detalles

TECNOLOGIA DE LA ENERGIA TERMICA

TECNOLOGIA DE LA ENERGIA TERMICA TECNOLOGI DE L ENERGI TERMIC CONCEPTOS BSICOS Mariano Manfredi Tecnología de la Energía Térmica CONCEPTOS BSICOS Indice. Objetivos 2. lcance 3. Desarrollo Balance de energía Mecanismos de transferencia

Más detalles

3. Convección interna forzada

3. Convección interna forzada Tubos circulares resisten grandes diferencias de presión dentro y fuera del tubo (Equipos de transferencia) Tubos no circulares costos de fabricación e instalación más bajos (Sistemas de calefacción) Para

Más detalles

TRANSMISIÓN DE CALOR POR CONVECCIÓN CONCEPTOS FUNDAMENTALES Y RESUMEN DE CORRELACIONES

TRANSMISIÓN DE CALOR POR CONVECCIÓN CONCEPTOS FUNDAMENTALES Y RESUMEN DE CORRELACIONES GRAO EN INGENIERÍA MECÁNICA (GR. 1, 4) CURSO 2013-2014 TRANSMISIÓN E CALOR POR CONVECCIÓN CONCEPTOS FUNAMENTALES Y RESUMEN E CORRELACIONES CONVECCIÓN FORZAA 1. Salvo indicaciones expresas en algunas correlaciones,

Más detalles

UNIDAD 6: CONGELACIÓN DE ALIMENTOS. GUIA DE PROBLEMAS RESUELTOS (Versión ALFA)

UNIDAD 6: CONGELACIÓN DE ALIMENTOS. GUIA DE PROBLEMAS RESUELTOS (Versión ALFA) UNIVERSIDAD AUSTRAL DE CHILE INSTITUTO DE CIENCIA Y TECNOLOGIA DE LOS ALIMENTOS / ASIGNATURA : Ingeniería de Procesos III (ITCL 4) PROFESOR : Elon F. Morales Blancas UNIDAD 6: CONGELACIÓN DE ALIMENTOS

Más detalles

TECNOLOGIA DE LA ENERGIA TERMICA

TECNOLOGIA DE LA ENERGIA TERMICA TENOLOGI DE L ENERGI TERMI ONDENSION Mariano Manfredi Tecnología de la Energía Térmica 1 ONDENSION Indice 1. Objetivos 2. lcance 3. Desarrollo Mecanismos de la condensación Teoría de Nusselt Orientación

Más detalles

Diapositiva 1. Tema 9: Convección forzada CONVECCIÓN FORZADA. JM.Corberán, R. Royo (upv) 1

Diapositiva 1. Tema 9: Convección forzada CONVECCIÓN FORZADA. JM.Corberán, R. Royo (upv) 1 iapoitiva 1 CONVECCIÓN FORZAA JM.Corberán, R. Royo (upv 1 iapoitiva 2 ÍNICE Flujo externo Flujo interno incompreible placa compreible tubo único circulare normal a tubo hace no circulare laminar turbulento

Más detalles

TECNOLOGÍA DE FLUIDOS Y CALOR

TECNOLOGÍA DE FLUIDOS Y CALOR epartamento de Física Aplicada I Escuela Universitaria Politécnica TECNOLOGÍA E FLUIOS Y CALOR TABLAS E TRANSMISIÓN E CALOR A. Rendimiento de aletas... 1 B. Propiedades de los sólidos metálicos... 2 C.

Más detalles

TEMA 3 Transmisión del calor por conducción y por convección

TEMA 3 Transmisión del calor por conducción y por convección EMA ransmisión del calor por conducción y por convección EAM . Introducción ENERGÍA de un sistema: - ENERGÍA MECÁNICA - ENERGÍA INERNA U FORMA DE RANFERENCIA DE ENERGÍA: rabajo y calor: - no son funciones

Más detalles

TRANSFERENCIA DE CALOR. Q x

TRANSFERENCIA DE CALOR. Q x RANSFERENCIA DE CAOR CONDUCCIÓN k. A.( t t ) Q ó k. A.( t t) Q x t t Cara posterior (fría) a t Material con conductividad k t x Nomenclatura de la ecuación t Cara anterior (caliente) a t Q Dirección del

Más detalles

Dr. Alfredo Barriga R.

Dr. Alfredo Barriga R. DISEÑO, CONSTRUCCIÓN Y PRUEBAS DE LOS EQUIPOS AUXILIARES PARA SER UTILIZADOS EN EL HORNO TÚNEL EXPERIMENTAL PARA SIMULACIÓN Y OPTIMIZACIÓN DEL DISEÑO DE INCINERADORES HOSPITALARIOS SEMILLA - CICYT Dr.

Más detalles

Índice INTRODUCCIÓN... 9

Índice INTRODUCCIÓN... 9 Índice INTRODUCCIÓN... 9. CONDUCCIÓN EN RÉGIMEN ESTACIONARIO.... CONDUCCIÓN EN RÉGIMEN VARIABLE... 33 3. SUPERFICIES ADICIONALES... 59 4. CONVECCIÓN... 75 5. TRANSMISIÓN DE CALOR EN LOS CAMBIOS DE ESTADO...

Más detalles

XIV.- TRANSMISIÓN DE CALOR POR CONVECCIÓN CORRELACIONES PARA LA CONVECCIÓN NATURAL

XIV.- TRANSMISIÓN DE CALOR POR CONVECCIÓN CORRELACIONES PARA LA CONVECCIÓN NATURAL XIV.- TRANSMISIÓN DE CALOR POR CONVECCIÓN CORRELACIONES PARA LA CONVECCIÓN NATURAL La complejidad de la mayoría de los casos en los que interviene la transferencia de calor por convección, hace imposible

Más detalles

VIII.- CONDUCCIÓN TRANSITORIA DEL CALOR MÉTODO GRÁFICO

VIII.- CONDUCCIÓN TRANSITORIA DEL CALOR MÉTODO GRÁFICO VIII.- CONDUCCIÓN TRANSITORIA DEL CALOR MÉTODO GRÁFICO VIII..- SOLUCIONES NUMÉRICAS A PROBLEMAS DE CONDUCCIÓN MONODIMENSIO- NALES EN RÉGIMEN TRANSITORIO El méodo numérico aplicado a los problemas de conducción

Más detalles

CONVECCION NATURAL. En la convección forzada el fluido se mueve por la acción de una fuerza externa.

CONVECCION NATURAL. En la convección forzada el fluido se mueve por la acción de una fuerza externa. CONVECCION NATURAL En la convección forzada el fluido se mueve por la acción de una fuerza externa. En convección natural el fluido se mueve debido a cambios de densidad que resultan del calentamiento

Más detalles

XIV.- TRANSMISIÓN DE CALOR POR CONVECCIÓN CORRELACIONES PARA LA CONVECCIÓN NATURAL

XIV.- TRANSMISIÓN DE CALOR POR CONVECCIÓN CORRELACIONES PARA LA CONVECCIÓN NATURAL XIV.- TRANSMISIÓN DE CALOR POR CONVECCIÓN CORRELACIONES PARA LA CONVECCIÓN NATURAL La complejidad de la mayoría de los casos en los que interviene la transferencia de calor por convección, hace imposible

Más detalles

INGENIERÍA QUÍMICA Problemas propuestos Pág. 1 CONCEPTOS FUNDAMENTALES

INGENIERÍA QUÍMICA Problemas propuestos Pág. 1 CONCEPTOS FUNDAMENTALES Problemas propuestos Pág. 1 CONCEPTOS FUNDAMENTALES Problema nº 1) [01-07] Por una tubería fluyen 100 lb de agua a razón de 10 ft/s. Cuánta energía cinética (E = ½ mav 2 ) tiene el agua, expresada en unidades

Más detalles

PROCEDIMIENTO DE DISEÑO DE INTERCAMBIADOR DE CALOR

PROCEDIMIENTO DE DISEÑO DE INTERCAMBIADOR DE CALOR PROCEDIMIENTO DE DISEÑO DE INTERCAMBIADOR DE CALOR 1. Calcular la cantidad de calor intercambiado (Q). Calcular la diferencia de temperatura media efectiva 3. Asumir el coeficiente global de transferencia

Más detalles

TRANSFERENCIA DE CALOR. MI31A-Fenómenos de Transporte en Metalurgia Extractiva Prof. Tanai Marín 10 Abril 2007 Clase #8

TRANSFERENCIA DE CALOR. MI31A-Fenómenos de Transporte en Metalurgia Extractiva Prof. Tanai Marín 10 Abril 2007 Clase #8 TRANSFERENCIA DE CALOR MI31A-Fenómenos de Transporte en Metalurgia Extractiva Prof. Tanai Marín 10 Abril 2007 Clase #8 Transferencia de calor por convección Hasta ahora hemos discutido el fenómeno de transferencia

Más detalles

CONVECCIÓN. ING ROXSANA ROMERO Febrero 2013

CONVECCIÓN. ING ROXSANA ROMERO Febrero 2013 CONVECCIÓN ING ROXSANA ROMERO Febrero 2013 CONVECCION El tipo de flujo, ya sea laminar o turbulento, del fluido individual, ejerce un efecto considerable sobre el coeficiente de transferencia de calor

Más detalles

XI.- TRANSMISIÓN DE CALOR POR CONVECCIÓN FLUJO EN CONDUCTOS

XI.- TRANSMISIÓN DE CALOR POR CONVECCIÓN FLUJO EN CONDUCTOS XI.- TANSMISIÓN DE CALO PO CONVECCIÓN FLUJO EN CONDUCTOS XI.1.- FLUJO ISOTÉMICO EN CONDUCTOS CICULAES En un flujo laminar la corriente es relativamente lenta y no es perturbada por las posibles protuberancias

Más detalles

Intercambiador de Tubo y Coraza. Operaciones Unitarias. Intercambiadores de Calor de Tubo y Carcasa

Intercambiador de Tubo y Coraza. Operaciones Unitarias. Intercambiadores de Calor de Tubo y Carcasa Inercambiador de Tubo y Coraza Operaciones Uniarias Inercambiadores de Calor de Tubo y Carcasa El inercambiador de ubos y coraza (ubos y carcasa, ubos y casco), es hasa ahora, enre los equipos de ransferencia

Más detalles

PRÁCTICA 1 CALIBRACIÓN DE INSTRUMENTOS DE MEDICIÓN DE FLUJO

PRÁCTICA 1 CALIBRACIÓN DE INSTRUMENTOS DE MEDICIÓN DE FLUJO . Objeivos UNIVERSIDD SIMÓN BOLÍVR UNIDD DE LBORTORIOS LBORTORIO PRÁTI LIBRIÓN DE INSTRUMENTOS DE MEDIIÓN DE FLUJO Observar el principio de funcionamieno y las diferencias exisenes enre los principales

Más detalles

RAFAEL BARRANTES SEGURA ID: UM19138SME Master in Mechanical Engineering. Heat Exchanger Design ATLANTIC INTERNATIONAL UNIVERSITY

RAFAEL BARRANTES SEGURA ID: UM19138SME Master in Mechanical Engineering. Heat Exchanger Design ATLANTIC INTERNATIONAL UNIVERSITY RAFAEL BARRANTES SEGURA ID: UM19138SME26986 Master in Mechanical Engineering Heat Exchanger Design ATLANTIC INTERNATIONAL UNIVERSITY HONOLULU, HAWAII SPRING, 2012 TABLA DE CONTENIDO BIBLIOGRAFÍA... 93

Más detalles

PROBLEMAS SOBRE PROTUBERANCIAS Y ALETAS pfernandezdiez.es

PROBLEMAS SOBRE PROTUBERANCIAS Y ALETAS pfernandezdiez.es PROBLEMAS SOBRE PROTUBERANCIAS Y ALETAS IV..- Al realizar un estudio de calefacción se llegó a la conclusión de que era necesario utilizar aletas anulares de radio en la base r b 30 cm y temperatura en

Más detalles

V.- APLICACIÓN DEL PRIMER PRINCIPIO A SISTEMAS ABIERTOS pfernandezdiez.es

V.- APLICACIÓN DEL PRIMER PRINCIPIO A SISTEMAS ABIERTOS pfernandezdiez.es V.- APICACIÓN DE PRIMER PRINCIPIO A SISTEMAS ABIERTOS El concepo de sisema ermodinámico abiero permie analizar corrienes fluidas que no se encuenran en equilibrio en ninguna pare de su recorrido. El procedimieno

Más detalles

TRANSFERENCIA DE CALOR POR CONVECCIÓN

TRANSFERENCIA DE CALOR POR CONVECCIÓN MARZO, 2016 REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA DEFENSA UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA NACIONAL BOLIVARIANA CÁTEDRA: TRANSFERENCIA

Más detalles

XV.- TRANSMISIÓN DE CALOR POR CONVECCIÓN CORRELACIONES PARA LA CONVECCIÓN FORZADA

XV.- TRANSMISIÓN DE CALOR POR CONVECCIÓN CORRELACIONES PARA LA CONVECCIÓN FORZADA XV.- TRANSMISIÓN DE CALOR POR CONVECCIÓN CORRELACIONES PARA LA CONVECCIÓN FORZADA XV.1.- CORRELACIONES PARA LA CONVECCIÓN FORZADA EN PLACAS FLUJO LAMINAR SOBRE PLACA PLANA HORIZONTAL a) El número de Nusselt

Más detalles

Convección Problemas de convección 1.1. PROBLEMAS DE CONVECCIÓN 1

Convección Problemas de convección 1.1. PROBLEMAS DE CONVECCIÓN 1 1.1. PROBLEMAS DE CONVECCIÓN 1 Convección 1.1. Problemas de convección Problema 1 Una placa cuadrada de 0,1 m de lado se sumerge en un flujo uniforme de aire a presión de 1 bar y 20 C con una velocidad

Más detalles

De acuerdo con la descripción del enunciado, la disposición, que podemos tratar como bidimensional, será la de la figura 1.

De acuerdo con la descripción del enunciado, la disposición, que podemos tratar como bidimensional, será la de la figura 1. Solución problema 5.44 De acuerdo con la descripción del enunciado, la disposición, que podemos tratar como bidimensional, será la de la figura 1. Figura 1 problema 5.44. (a) Conjunto. (b) Detalle de un

Más detalles

CAPÍTULO 2 CONVECCION NATURAL SOBRE PLACAS HORIZONTALES. La transferencia de calor es la ciencia que busca predecir la transferencia de energía

CAPÍTULO 2 CONVECCION NATURAL SOBRE PLACAS HORIZONTALES. La transferencia de calor es la ciencia que busca predecir la transferencia de energía CAPÍTULO 2 CONVECCION NATURAL SOBRE PLACAS HORIZONTALES 2.1 Transferencia de Calor La transferencia de calor es la ciencia que busca predecir la transferencia de energía que puede tener lugar entre dos

Más detalles

Válvulas de Control AADECA. Ing. Eduardo Néstor Álvarez Pérdidas de Carga

Válvulas de Control AADECA. Ing. Eduardo Néstor Álvarez Pérdidas de Carga Válvulas de Control AADECA Ing. Eduardo Néstor Álvarez Pérdidas de Carga LA VÁLVULA DE CONTROL ESTRANGULA EL PASO DE FLUIDO, PROVOCA UNA PÉRDIDA DE PRESION. DARCY ' P = )*f * (L/D)*( V 2 /2g) f = factor

Más detalles

CAPÍTULO 2 ANTECEDENTES. La transferencia de calor es la energía que se transfiere de un. sistema a otro con menor temperatura, debido únicamente a la

CAPÍTULO 2 ANTECEDENTES. La transferencia de calor es la energía que se transfiere de un. sistema a otro con menor temperatura, debido únicamente a la CAPÍTULO 2 ANTECEDENTES 2.1 Transferencia de calor. La transferencia de calor es la energía que se transfiere de un sistema a otro con menor temperatura, debido únicamente a la diferencia de temperaturas.

Más detalles

Lechos empacados, Fluidización

Lechos empacados, Fluidización Lechos empacados, Fluidización El fluido ejerce una fuerza sobre el sólido en la dirección de flujo, conocida como arrastre o rozamiento. Existen una gran cantidad de factores que afectan a los rozamientos

Más detalles

DEFINICIONES DEFINICIONES

DEFINICIONES DEFINICIONES DEFINICIONES Líneas de corriente: línea imaginaria, tangente en cada punto al ector elocidad de la partícula que en un instante determinado pasa por dicho punto. Las líneas de corriente son las enolentes

Más detalles

ÍNDICE DE CONTENIDOS

ÍNDICE DE CONTENIDOS ÍNDICE DE CONTENIDOS CERTIFICACIÓN DE LA ELABORACIÓN DEL PROYECTO LEGALIZACIÓN DEL PROYECTO DEDICATORIA AGRADECIMIENTO ÍNDICE DE CONTENIDOS RESUMEN Pag. ii iii iv v vi xviii CAPÍTULO 1: GENERALIDADES 1.1

Más detalles

CÁLCULO DE TIEMPOS EFECTIVOS DE CONGELACION DE ALIMENTOS UTILIZANDO MÉTODOS FÓRMULA

CÁLCULO DE TIEMPOS EFECTIVOS DE CONGELACION DE ALIMENTOS UTILIZANDO MÉTODOS FÓRMULA CÁLCULO DE TIEMPOS EFECTIVOS DE CONGELACION DE ALIMENTOS UTILIZANDO MÉTODOS FÓRMULA Produco: Melón Tuna Y WZ = 87 % (b.h.) Propiedades Produco No Congelado: k UZ = 0,55 W/m - ºC Cp UZ = 850 J/kg - ºC ρ

Más detalles

1. OBJETO PRINCIPIOS DE CÁLCULO CONDICIONES DE DISEÑO RESULTADOS... 8

1. OBJETO PRINCIPIOS DE CÁLCULO CONDICIONES DE DISEÑO RESULTADOS... 8 ÍNDICE 1. OBJETO... 2 2. PRINCIPIOS DE CÁLCULO... 3 3. CONDICIONES DE DISEÑO... 7 4. RESULTADOS... 8 Página 1 de 8 1. OBJETO Esta memoria justificativa da respuesta a los diámetros utilizados en las tuberías

Más detalles

HIDRODINAMICA Fluidos en movimiento

HIDRODINAMICA Fluidos en movimiento HIDRODINAMICA Fluidos en movimiento Principio de la conservación de la masa y de continuidad. Ecuación de Bernoulli. 3/0/0 Yovany Londoño Flujo de fluidos Un fluido ideal es o o Incompresible si su densidad

Más detalles

FORMULARIO DE FÍSICA III y IV Profr.: Ing. Ernesto Cortés Rodríguez. h = altura. t = tiempo. inicial a = aceleración d = desplazamiento.

FORMULARIO DE FÍSICA III y IV Profr.: Ing. Ernesto Cortés Rodríguez. h = altura. t = tiempo. inicial a = aceleración d = desplazamiento. C L A V E D E I N C O R P O R A C I Ó N U N A M 1 4 4 C I C L O E S C O L A R : 0 1 7-0 1 8 Profr.: Ing. Erneso Corés Rodríguez 1 1.1) X = X 1+X +x 3 + +X n N 1.) E A = (x 1,,+ +Xn ) X 1.3) DM = E A N

Más detalles

ALCANTARILLADO 3. ASPECTOS HIDRAULICOS DE LOS ALCANTARILLADOS Fórmulas para cálculos hidráulicos

ALCANTARILLADO 3. ASPECTOS HIDRAULICOS DE LOS ALCANTARILLADOS Fórmulas para cálculos hidráulicos ALCANTARILLADO 3. ASPECTOS HIDRAULICOS DE LOS ALCANTARILLADOS 3.1. Fórmulas para cálculos hidráulicos Para los cálculos hidráulicos de tuberías existe gran diversidad de fórmulas, en este boletín se aplicarán

Más detalles

Soluciones Analíticas de Navier Stokes.

Soluciones Analíticas de Navier Stokes. 1 Soluciones Analíticas de Navier Stokes. Problema 1 Un fluido newtoniano fluye en el huelgo formado por dos placas horizontales. La placa superior se mueve con velocidad u w, la inferior está en reposo.

Más detalles

La radiación es la energía de calor transferida por radiación electromagnética. Depende del medio en el que ocurra, de las temperaturas relativas y

La radiación es la energía de calor transferida por radiación electromagnética. Depende del medio en el que ocurra, de las temperaturas relativas y RADIACIÓN La radiación es la energía de calor transferida por radiación electromagnética. Depende del medio en el que ocurra, de las temperaturas relativas y la superficie que absorba o emita la energía.

Más detalles

CONDUCCIÓN DE CALOR EN ESTADO INESTABLE

CONDUCCIÓN DE CALOR EN ESTADO INESTABLE CONDUCCIÓN DE CALOR EN ESADO INESABLE FLUJO DE CALOR RANSIORIO Y PERIODICO SE ANALIZARÁN PROBLEMAS QUE PUEDEN SIMPLIFICARSE SUPONIENDO QUE LA EMPERAURA ES UNA FUNCIÓN DEL IEMPO Y ES UNIFORME A RAVÉS DEL

Más detalles

XIII.- TRANSMISIÓN DE CALOR POR CONVECCIÓN, ANALOGÍAS Y ANÁLISIS DIMENSIONAL

XIII.- TRANSMISIÓN DE CALOR POR CONVECCIÓN, ANALOGÍAS Y ANÁLISIS DIMENSIONAL XIII.- TRANSMISIÓN DE CALOR POR CONVECCIÓN, ANALOGÍAS Y ANÁLISIS DIMENSIONAL XIII.1.- ANALOGÍA ENTRE LA TRANSMISIÓN DE CALOR Y LA CANTIDAD DE MOVI- MIENTO EN LUJO TURBULENTO CAPA LIMITE TÉRMICA SOBRE PLACA

Más detalles

XIII.- TRANSMISIÓN DE CALOR POR CONVECCIÓN, ANALOGÍAS Y ANÁLISIS DIMENSIONAL

XIII.- TRANSMISIÓN DE CALOR POR CONVECCIÓN, ANALOGÍAS Y ANÁLISIS DIMENSIONAL XIII.- TRANSMISIÓN DE CALOR POR CONVECCIÓN, ANALOGÍAS Y ANÁLISIS DIMENSIONAL XIII.1.- ANALOGÍA ENTRE LA TRANSMISIÓN DE CALOR Y LA CANTIDAD DE MOVI- MIENTO EN LUJO TURBULENTO CAPA LIMITE TÉRMICA SOBRE PLACA

Más detalles

REVISTA MEXICANA DE INGENIERÍA QUÍMICA Vol. 2 (2003)

REVISTA MEXICANA DE INGENIERÍA QUÍMICA Vol. 2 (2003) REVISTA MEXICANA DE INGENIERÍA QUÍMICA Vol. 2 (2003) 53-65 AMIDIQ AREA MINIMA DE REDES DE INTERCAMBIO DE CALOR BASADA EN LAS CAIDAS DE PRESION DE LAS CORRIENTES. II. ESPECIFICACIONES NO UNIFORMES DE INTERCAMBIADORES

Más detalles

Diseño Termohidráulico de Intercambiadores de Calor.

Diseño Termohidráulico de Intercambiadores de Calor. Diseño Termohidráulico de Intercambiadores de Calor. Horario de clases: Martes y Jueves, 7:00-10:00 hrs. Horario de asesorías: Jueves de 15:00-17:00 hrs. Aula: B-306 Trimestre: 13I Curso: 2122096 1 Intercambiadores

Más detalles

PROBLEMAS SOBRE CONVECCIÓN pfernandezdiez.es

PROBLEMAS SOBRE CONVECCIÓN pfernandezdiez.es PROBLEMAS SOBRE CONVECCIÓN V.1.- Se bombea aceite de motor sin usar a 60ºC, a través de 80 tubos que tienen un diámetro de,5 cm, y una longitud de 10 m a una velocidad media de 0,6 m/s. Calcular: a) La

Más detalles

CAPÍTULO 4 RESULTADOS Y DISCUSIÓN

CAPÍTULO 4 RESULTADOS Y DISCUSIÓN CAPÍTULO 4 RESULTADOS Y DISCUSIÓN 4.1 Verificación del código numérico Para verificar el código numérico, el cual simula la convección natural en una cavidad abierta considerando propiedades variables,

Más detalles

TRANSFERENCIA DE MOMENTUM. MI31A-Fenómenos de Transporte en Metalurgia Extractiva Prof. Tanai Marín 16 Abril 2007 Clase #9

TRANSFERENCIA DE MOMENTUM. MI31A-Fenómenos de Transporte en Metalurgia Extractiva Prof. Tanai Marín 16 Abril 2007 Clase #9 TRANSFERENCIA DE MOMENTUM MI31A-Fenómenos de Transporte en Metalurgia Extractiva Prof. Tanai Marín 16 Abril 2007 Clase #9 Flujo de Fluidos Viscosos Para fluidos con bajo peso molecular, la propiedad física

Más detalles

Centro de desarrollo tecnológico Sustentable SISTEMA DE POST-COMBUSTIÓN Y REDUCCIÓN DE EMISIONES PARA HORNOS DE COMBUSTIÓN OBJETIVOS

Centro de desarrollo tecnológico Sustentable SISTEMA DE POST-COMBUSTIÓN Y REDUCCIÓN DE EMISIONES PARA HORNOS DE COMBUSTIÓN OBJETIVOS Centro de desarrollo tecnológico Sustentable CORPORACION PARA EL MEJORAMIENTO DEL AIRE DE QUITO SISTEMA DE POST-COMBUSTIÓN Y REDUCCIÓN DE EMISIONES PARA HORNOS DE COMBUSTIÓN EXPOSITOR. Ing. Emérita Delgado

Más detalles

XIII.- TRANSMISIÓN DE CALOR POR CONVECCIÓN CORRELACIONES PARA LA CONVECCIÓN NATURAL Y FORZADA

XIII.- TRANSMISIÓN DE CALOR POR CONVECCIÓN CORRELACIONES PARA LA CONVECCIÓN NATURAL Y FORZADA XIII.- TRANSMISIÓN DE CALOR POR CONVECCIÓN CORRELACIONES PARA LA CONVECCIÓN NATURAL Y FORZADA La complejidad de la mayoría de los casos en los que interviene la transferencia de calor por convección, hace

Más detalles

Física General II. Guía N 2: Hidrodinámica y Viscosidad

Física General II. Guía N 2: Hidrodinámica y Viscosidad Física General II Guía N 2: Hidrodinámica y Viscosidad Problema 1: Ley de Torricelli. La figura muestra un líquido que está siendo descargado de un tanque a través de un orificio que se encuentra a una

Más detalles

XV.- TRANSMISIÓN DE CALOR POR CONVECCIÓN CORRELACIONES PARA LA CONVECCIÓN FORZADA

XV.- TRANSMISIÓN DE CALOR POR CONVECCIÓN CORRELACIONES PARA LA CONVECCIÓN FORZADA XV.- TRANSMISIÓN DE CAOR POR CONVECCIÓN CORREACIONES PARA A CONVECCIÓN FORZADA XV.1.- CORREACIONES PARA A CONVECCIÓN FORZADA EN PACAS FUJO AMINAR SOBRE PACA PANA HORIZONTA a) El número de Nusselt local

Más detalles

XII.- TRANSMISIÓN DE CALOR POR CONVECCIÓN ANALOGÍAS Y ANÁLISIS DIMENSIONAL

XII.- TRANSMISIÓN DE CALOR POR CONVECCIÓN ANALOGÍAS Y ANÁLISIS DIMENSIONAL XII.- TRANSMISIÓN DE CALOR POR CONVECCIÓN ANALOGÍAS Y ANÁLISIS DIMENSIONAL XII.1.- ANALOGÍA ENTRE LA TRANSMISIÓN DE CALOR Y LA CANTIDAD DE MOVIMIEN- TO EN LUJO TURBULENTO CAPA LIMITE TÉRMICA SOBRE PLACA

Más detalles

M. EN C. AG. ABILIO MARÍN TELLO

M. EN C. AG. ABILIO MARÍN TELLO M. EN C. AG. ABILIO MARÍN TELLO Perdidas de energía en tuberías y accesorios UNIDAD DE COMPETENCIA IV TUBERÍAS 4.1. Ecuación de Darcy-Weisbach 4.2. Diagrama de Moody 4.3. Pérdidas menores 4.1. Ecuación

Más detalles

Principios de la termodinámica

Principios de la termodinámica Física aplicada a procesos naturales Tema I.- Balance de Energía: Primer principio de la Termodinámica. Lección 1. Principios de la termodinámica Equilibrio térmico. Define el método de medida de la temperatura

Más detalles

4. DISCUSIÓN DE RESULTADOS

4. DISCUSIÓN DE RESULTADOS 4. DISCUSIÓN DE RESULTADOS 4.1 Revisión bibliográfica La revisión bibliográfica aportó la información, datos y ecuaciones matemáticas para poder tener un punto de partida y sustentar este trabajo con datos

Más detalles

DINÁMICA DE FLUIDOS REALES. Asignatura: Operaciones Unitarias Profesor: Jimmy Walker Alumnos: Giovanni Ramirez Luis Cabrera Antonio Marín

DINÁMICA DE FLUIDOS REALES. Asignatura: Operaciones Unitarias Profesor: Jimmy Walker Alumnos: Giovanni Ramirez Luis Cabrera Antonio Marín DINÁMICA DE FLUIDOS REALES Asignatura: Operaciones Unitarias Profesor: Jimmy Walker Alumnos: Giovanni Ramirez Luis Cabrera Antonio Marín Viscosidad Consideraciones Fluido ideal Viscosidad =0 Fluido real

Más detalles

PÉRDIDAS DE CARGA FRICCIONALES

PÉRDIDAS DE CARGA FRICCIONALES PÉRDIDAS DE CARGA FRICCIONALES La pérdida de carga friccional que tiene lugar en una conducción representa la pérdida de energía de un flujo hidráulico a lo largo de la misma por efecto del rozamiento.

Más detalles

Shell Térmico Oil B. Aceite para transferencia térmica

Shell Térmico Oil B. Aceite para transferencia térmica Shell Térmico B es un aceite mineral puro de baja viscosidad, baja tensión de vapor y alta resistencia a la oxidación desarrollado para transferencia de calor ya sea en sistemas de calefacción cerrados

Más detalles

Modelación Matemática y Computacional en la Ingeniería Metalúrgica

Modelación Matemática y Computacional en la Ingeniería Metalúrgica Modelación Maemáica y Compuacional en la Ingeniería Mealúrgica Dr. Bernardo Hernández Morales Depo. de Ingeniería Mealúrgica Faculad de Química UNAM bernie@servidor.unam.m Seminarios de Modelación Maemáica

Más detalles

TEMA 4 (Parte I) Ley de Darcy. Flujos hidráulicos a través de terrenos.

TEMA 4 (Parte I) Ley de Darcy. Flujos hidráulicos a través de terrenos. TEMA 4 (Parte I) Ley de Darcy. Flujos hidráulicos a través de terrenos. 4.1. Introducción DEFINICIÓN DE SUELO: geólogo, ingeniero agrónomo, arquitecto. Delgada capa sobre la corteza terrestre de material

Más detalles

Hidráulica. Temario: Tuberías Hidrostática Hidrodinámica. Energía. Perdidas de Carga Software para diseño Información en la Web

Hidráulica. Temario: Tuberías Hidrostática Hidrodinámica. Energía. Perdidas de Carga Software para diseño Información en la Web Temario: Tuberías Hidrostática Hidrodinámica Hidráulica Flujo laminar intermedio turbulento Energía Bernoulli Torricelli Ec. Gral del gasto Perdidas de Carga Software para diseño Información en la Web

Más detalles

XVIII.- INTERCAMBIADORES DE CALOR MÉTODO DE LA EFICIENCIA

XVIII.- INTERCAMBIADORES DE CALOR MÉTODO DE LA EFICIENCIA XVIII.- INTERCAMBIADORES DE CALOR MÉTODO DE LA EFICIENCIA XVIII..- EFICACIA DE LOS INTERCAMBIADORES DE CALOR En muchas situaciones lo único que se conoce es la descripción física del intercambiador, como

Más detalles

DETERMINACION DE LAS CURVAS DE FLUJO MEDIANTE EL VISCOSIMETRO DE TUBO CAPILAR

DETERMINACION DE LAS CURVAS DE FLUJO MEDIANTE EL VISCOSIMETRO DE TUBO CAPILAR 1 DETERMINACION DE LAS CURVAS DE FLUJO MEDIANTE EL VISCOSIMETRO DE TUBO CAPILAR Preparado por; Ing. Esteban L. Ibarrola Cátedra de Mecánica de los Fluidos- FCEFyN - UNC 1. Fluidos newtonianos La distribución

Más detalles

HIDRODINAMICA. INTRODUCCIÓN: En un fluido en movimiento, su flujo puede ser estable, caso contrario será no estable o turbulento.

HIDRODINAMICA. INTRODUCCIÓN: En un fluido en movimiento, su flujo puede ser estable, caso contrario será no estable o turbulento. OBJETIVOS ESPECIFICOS HIDRODINAMICA Analizar ciertas características fundamentales de los fluidos en reposo y en movimiento. Relacionar la presión, la velocidad y la altura de un líquido incomprensible.

Más detalles

0. GLOSARIO Y UNIDADES

0. GLOSARIO Y UNIDADES 0. GLOSARIO Y UNIDADES ) Área de paso del fluido en la configuración en la que circula únicamente agua. ) Área de intercambio en intercambiador de calor. ) Área de paso del fluido en la configuración en

Más detalles

XVI.- INTERCAMBIADORES DE CALOR MÉTODO DE LA EFICIENCIA

XVI.- INTERCAMBIADORES DE CALOR MÉTODO DE LA EFICIENCIA XVI.- INTERCAMBIADORES DE CALOR MÉTODO DE LA EFICIENCIA XVI..- EFICACIA DE LOS INTERCAMBIADORES DE CALOR En muchas situaciones lo único que se conoce es la descripción física del intercambiador, como el

Más detalles

EJERCICIOS TEMA 7: MOTOR TÉRMICO

EJERCICIOS TEMA 7: MOTOR TÉRMICO EJERCICIOS TEMA 7: MOTOR TÉRMICO Ejercicio 1 Según los daos del fabricane, el moor del Ciroen Xsara RFY iene las siguienes caracerísicas: Nº de cilindros : 4 Calibre 86 mm Carrera 86 mm Relación de compresión

Más detalles

Curso Válvulas de Control. AADECA 2005 Ing. Eduardo Néstor Álvarez Primer Aplicación

Curso Válvulas de Control. AADECA 2005 Ing. Eduardo Néstor Álvarez Primer Aplicación Curso Válvulas de Control AADECA 2005 Ing. Eduardo Néstor Álvarez Primer Aplicación Ejercicio Circulación de Agua a 27ºC 300ºK Diferencia de alturas en cañería 80 m Longitud Cañería 310m Elegir Válvula

Más detalles

En la convección forzada el fluido se mueve por la acción de una fuerza externa.

En la convección forzada el fluido se mueve por la acción de una fuerza externa. CONECCION NATRAL En la convección forzada el fluido se mueve por la acción de una fuerza externa. En convección natural el fluido se mueve debido a cambios de densidad que resultan del calentamiento o

Más detalles

MECÁNICA DE LOS FLUIDOS

MECÁNICA DE LOS FLUIDOS Dinámica de los Fluidos MECÁNICA DE LOS FLUIDOS Ing. Rubén Marcano PRINCIPIO DE CONSERVACIÓN DE LA ENERGÍA la energía ni se crea ni se destruye solo se transforma, y es una propiedad ligada a la masa para

Más detalles

TABLAS Y DIAGRAMAS INGENIERÍA FLUIDOMECÁNICA

TABLAS Y DIAGRAMAS INGENIERÍA FLUIDOMECÁNICA DEPARTAMENTO DE INGENIERÍA NUCLEAR Y MECÁNICA DE FLUIDOS INGENIARITZA NUKLEARRA ETA JARIAKINEN MEKANIKA SAILA TABLAS Y DIAGRAMAS INGENIERÍA FLUIDOMECÁNICA TABLAS Y DIAGRAMAS INGENIERÍA FLUIDOMECÁNICA Conersión

Más detalles

Método desarrollado en el año de 1889, pero por su sencillez todavía se sigue utilizando.

Método desarrollado en el año de 1889, pero por su sencillez todavía se sigue utilizando. 1 3.2.1.1. Fórmula racional Méodo desarrollado en el año de 1889, pero por su sencillez odavía se sigue uilizando. Hipóesis fundamenal: una lluvia consane y uniforme que cae sobre la cuenca de esudio,

Más detalles

REGIMENES DE CORRIENTES O FLUJOS

REGIMENES DE CORRIENTES O FLUJOS LINEAS DE CORRIENTE Ø Las líneas de corriente son líneas imaginarias dibujadas a través de un fluido en movimiento y que indican la dirección de éste en los diversos puntos del flujo de fluidos. Ø Una

Más detalles

Física de Suelos Estructura Agua del Suelo

Física de Suelos Estructura Agua del Suelo Física de Suelos Estructura Agua del Suelo Edafología 2018 Dr. Ing. Agr. Omar A. Bacmeier Estructura Estructura Agua del Suelo Retención de Agua Fenómenos involucrados: Adsorción s/ iones y sup. coloidales

Más detalles

INCERTIDUMBRE EN LA CALIBRACIÓN DE VISCOSÍMETROS CAPILARES

INCERTIDUMBRE EN LA CALIBRACIÓN DE VISCOSÍMETROS CAPILARES CENTO NACIONAL DE METOLOGÍA INCETIDUMBE EN LA CALIBACIÓN DE VISCOSÍMETOS CAPILAES Wolfgang A. Schmid ubén J. Lazos Marínez Sonia Trujillo Juárez Noa: El presene ejercicio ha sido desarrollado bajo aspecos

Más detalles

Dinamica Curso de Verano 2005 Cinetica: Ecuaciones de Impulso y Momentum

Dinamica Curso de Verano 2005 Cinetica: Ecuaciones de Impulso y Momentum Dinámica: Cineica Impulso y Momenum Dinamica Curso de Verano 25 Cineica: Ecuaciones de Impulso y Momenum ITESM Campus Monerrey Deparameno de Ingenieria Mecanica Documeno preparado por: Ing. Jovanny Pacheco

Más detalles

Formulario de Electroquímica

Formulario de Electroquímica Formulario de Electroquímica Salvador Blasco Llopis. Notación α coeficiente de transferencia de materia a e área específica del electrodo A e área del electrodo c concentración c A concentración de A en

Más detalles

3.1 Parámetros característicos del regenerador.

3.1 Parámetros característicos del regenerador. Regenerador PFC de José Manuel Álvarez Prieto Regenerador 0 Introducción Como veremos al estudiar los modelos, el regenerador juega un papel muy importante en el ciclo Stirling y es el responsable de

Más detalles

XII.- TRANSMISIÓN DE CALOR POR CONVECCIÓN ANALOGÍAS Y ANÁLISIS DIMENSIONAL

XII.- TRANSMISIÓN DE CALOR POR CONVECCIÓN ANALOGÍAS Y ANÁLISIS DIMENSIONAL XII.- TRANSMISIÓN DE CALOR POR CONVECCIÓN ANALOGÍAS Y ANÁLISIS DIMENSIONAL XII..- ANALOGÍA ENTRE LA TRANSMISIÓN DE CALOR Y LA CANTIDAD DE MOVI- MIENTO EN LUJO TURBULENTO CAPA LIMITE TÉRMICA SOBRE PLACA

Más detalles

Dinámica de Fluidos. Mecánica y Fluidos VERANO

Dinámica de Fluidos. Mecánica y Fluidos VERANO Dinámica de Fluidos Mecánica y Fluidos VERANO 1 Temas Tipos de Movimiento Ecuación de Continuidad Ecuación de Bernouilli Circulación de Fluidos Viscosos 2 TIPOS DE MOVIMIENTO Régimen Laminar: El flujo

Más detalles

ANÁLISIS DEL COMPORTAMIENTO FLUIDO DINÁMICO DE UNA SECCIÓN DE DUCTO DE AGUA DE CIRCULACIÓN, APLICANDO ANSYS/FLOTRAN

ANÁLISIS DEL COMPORTAMIENTO FLUIDO DINÁMICO DE UNA SECCIÓN DE DUCTO DE AGUA DE CIRCULACIÓN, APLICANDO ANSYS/FLOTRAN ANÁLISIS DEL COMPORTAMIENTO FLUIDO DINÁMICO DE UNA SECCIÓN DE DUCTO DE AGUA DE CIRCULACIÓN, APLICANDO ANSYS/FLOTRAN Oscar Dorantes, Antonio Carnero, Rodolfo Muñoz Instituto de Investigaciones Eléctricas

Más detalles

Mecánica de Fluidos GIEAI 2016/17

Mecánica de Fluidos GIEAI 2016/17 Mecánica de Fluidos GIEAI 016/17 Mecánica de Fluidos º curso GIEAI 016/17 Resumen Flujo viscoso incompresible interno Número de Reynolds régimen laminar Flujos planos: flujo de Couette Flujo en conductos

Más detalles

TEMA 4: REACTORES PARA REACCIONES GAS-SOLIDO NO CATALITICAS. Tabla 4.1 Tipos y ejemplos de reacciones gas-sólido no catalíticas

TEMA 4: REACTORES PARA REACCIONES GAS-SOLIDO NO CATALITICAS. Tabla 4.1 Tipos y ejemplos de reacciones gas-sólido no catalíticas TEMA 4: EACTOES PAA EACCIONES GAS-SOLIDO NO CATALITICAS Tabla 4.1 Tios y ejemlos de reacciones gas-sólido no caalíicas Tio Ejemlos SÓLIDO+GAS SÓLIDO+GAS Fe O 3 + 3CO Fe + 3CO ZnS + 3 O 3 Fe + 4 H O

Más detalles

Flujo en Cañerías. Ejercicio 9.3. A muy bajas temperaturas,

Flujo en Cañerías. Ejercicio 9.3. A muy bajas temperaturas, Flujo en Cañerías Ejercicio 9.1. El huelgo radial entre el émbolo y la pared de un cilindro es 0,075mm, la longitud del émbolo es 250mm y su diámetro es de 100mm. Hay agua en un lado y en otro del émbolo

Más detalles

DINÁMICA DE FLUIDOS ÍNDICE

DINÁMICA DE FLUIDOS ÍNDICE DINÁMICA DE FLUIDOS ÍNDICE. Tipos de flujo. Ecuación de continuidad 3. Ecuación de Bernouilli 4. Aplicaciones de la ecuación de Bernouilli 5. Efecto Magnus 6. Viscosidad BIBLIOGRAFÍA: Cap. 3 del Tipler

Más detalles

Ingeniería Electroquímica MÓDULO I

Ingeniería Electroquímica MÓDULO I Ingeniería Electroquímica MÓDULO I Problema 1.- Voltaje mínimo y balance de materia para la regeneración de ácido crómico Un proceso químico utiliza una solución ácida de dicromato de sodio (Na 2 Cr 2

Más detalles

MECÁNICA DE FLUIDOS: VISCOSIDAD Y TURBULENCIA. Fís. Carlos Adrián Jiménez Carballo Escuela de Física Instituto Tecnológico de Costa Rica

MECÁNICA DE FLUIDOS: VISCOSIDAD Y TURBULENCIA. Fís. Carlos Adrián Jiménez Carballo Escuela de Física Instituto Tecnológico de Costa Rica MECÁNICA DE FLUIDOS: VISCOSIDAD Y TURBULENCIA Fís. Carlos Adrián Jiménez Carballo Escuela de Física Instituto Tecnológico de Costa Rica 1 / 23 Objetivos Al finalizar esta sección el estudiante deberá ser

Más detalles

ESQUEMA DE DESARROLLO

ESQUEMA DE DESARROLLO Movimieno oscilaorio. Inroducción ESQUEM DE DESRROLLO 1.- Inroducción..- Cinemáica del movimieno armónico simple. 3.- Dinámica del movimieno armónico simple. 4.- Energía de un oscilador armónico. 5.- Ejemplos

Más detalles

INDICE 1.- CÁLCULO DE CHIMENEA DE EVACUACIÓN DE HUMOS SEGÚN LA NORMA EN DATOS DE PARTIDA... 2

INDICE 1.- CÁLCULO DE CHIMENEA DE EVACUACIÓN DE HUMOS SEGÚN LA NORMA EN DATOS DE PARTIDA... 2 INDICE 1.- CÁLCULO DE CHIMENEA DE EVACUACIÓN DE HUMOS SEGÚN LA NORMA EN 13384-1.... 2 1.1.- DATOS DE PARTIDA.... 2 1.2.- CAUDAL DE LOS PRODUCTOS DE COMBUSTIÓN.... 2 1.3.- DENSIDAD MEDIA DE LOS HUMOS...

Más detalles

TEMA 3 Dinámica de fluidos viscosos

TEMA 3 Dinámica de fluidos viscosos TEMA 3 Dinámica de fluidos viscosos 3.1. Intoducción: viscosidad y tipos de fluidos viscosos VISCOSIDAD µ: FLUDIOS VISCOSOS: Hay que tene en cuenta las fuezas de ozamiento: - ente patículas del fluido

Más detalles