Problemas de AMPLIACIÓN DE MATEMÁTICAS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Problemas de AMPLIACIÓN DE MATEMÁTICAS"

Transcripción

1 Problemas de AMPLIACIÓN DE MATEMÁTICAS Ingeniería Industrial. Curso Departamento de Matemática Aplicada II. Universidad de Sevilla. Tema 6: Ecuaciones en derivadas parciales. 6.1 Series de Fourier Problema 6.1 Problema 6. Problema 6.3 [ π, π]. Problema 6.4 [ π, π]. Problema 6.5 Desarrolle la función x en serie de Fourier en el intervalo [ π, π]. Desarrolle en serie de Fourier en el intervalo [ π, π] la función 0, π <x<0 sen(x), 0 <x<π. Desarrolle la función x cos(x) +cos (x) en serie de Fourier en el intervalo Desarrolle la función (x π)(x + π) en serie de Fourier en el intervalo Dada la función 1 cos (x) en [0,π],halle 1. el desarrollo de Fourier en serie de senos,. el desarrollo de Fourier en serie de cosenos. Problema 6.6 Problema 6.7 Problema 6.8 Problema 6.9 Halle los desarrollos en serie de Fourier de tipo coseno y seno de la función π/4, 0 x π. Desarrolle en serie de Fourier en el intervalo [, ] la función 1, <x<0 x, 0 <x<. Desarrolle en serie de Fourier de tipo coseno la función x, 0 <x< 1 1 (1 x), <x<1. Halle los desarrollos en serie de Fourier de la función x 1. en el intervalo [0, ],. en el intervalo [ 1, 1], 3. en serie de senos en el intervalo [0, 1], 4. en serie de cosenos en el intervalo [0, 1]. 1

2 Tema 6 Ecuaciones en derivadas parciales. Sección 6. EDP Problema 6.10 Halle los desarrollos en serie de Fourier de la función x π 4 1. en serie de senos en el intervalo [0, π],. en serie de cosenos en el intervalo [0, 4π]. Problema 6.11 (E+P, pag 598) Desarrolle en serie de Fourier la función x en el intervalo [0, ]. Aplique el teorema de convergencia para deducir que P 1 1. n=1 n = π 6. P ( 1) n+1. = π n=1 n 1. P 1 3. (n 1) = π 8. n=1 Problema 6.1 (E+P pag. 591) Desarrolle en serie de Fourier la función 0, π <x 0 x, 0 <x<π P Aplique el teorema de convergencia para deducir que 1 (n 1) = π 8. n=1 6. EDP Problema 6.13 (E+P pag. 66) Resuelva la ecuación del calor en [0, 50] para las siguientes condiciones de contorno e iniciales u(0,t) = u(50,t)=0, u(x, 0) = 100. Problema 6.14 e iniciales Problema 6.15 e iniciales Resuelva la ecuación del calor en [0,π] para las siguientes condiciones de contorno 0, 0 <x< π u(x, 0) = π 1, <x<π. x (0,t)= (π, t) =0,t>0. x Resuelva la ecuación del calor en [0,L] para las siguientes condiciones de contorno u(x, 0) = 1 + x, 0 <x<l. x (0,t)= (L, t) =0,t>0. x Problema 6.16 Considere una varilla lateralmente aislada, con longitud L = 50 ydifusividad térmica k = 1que tiene una temperatura inicial de u(x, 0) = 0 ytemperaturasenlosextremos u(0,t)=0, u(50,t)=100. Encuentre la temperatura u(x, t). [Nota: ver problema 17 de E+P pag 69]

3 Tema 6 Ecuaciones en derivadas parciales. Sección 6. EDP Problema 6.17 Resuelva la siguiente variante de la ecuación del calor t = k u + αu, k > 0, α R; x con las siguientes condiciones de contorno e iniciales u(0,t)=u(π, t) =0,t>0, u(x, 0) = 1, 0 <x<π. Problema 6.18 Resuelva la siguiente variante de la ecuación del calor t = k u x +,k>0, con las siguientes condiciones de contorno e iniciales u(0,t)=u(π, t) =0,t>0, u(x, 0) = 0, 0 <x<π. Problema 6.19 Resuelva el problema de ecuaciones en derivadas parciales u xx =u tt 0 <x<1, t > 0, u(0,t)=0, u(1,t)=0, t > 0, u(x, 0) = 0, 0 <x<1, u t (x, 0) = cos (πx), 0 <x<1. Problema 6.0 Resuelva la ecuación de ondas en el intervalo [0,π] con las condiciones de contorno e iniciales que se indican u xx = u tt 0 <x<π, t>0, u(0,t)=0, u(π, t) =0, x, 0 <x< π 4 π, u(x, 0) = 4, π 4 4 3π π x, 4 u t (x, 0) = 0. Problema 6.1 Resuelva la ecuación de ondas en el intervalo [0,π] con las condiciones de contorno e iniciales que se indican u xx = u tt 0 <x<π, t>0, u(0,t)=0, u(π, t) =0, u(x, 0) = sen(x) sen(3x), u t (x, 0) = 3 sen(x). Problema 6. Unacuerdaelásticasujetaenlosextremos(u(0,t)=u(L, t) =0)bajolainfluencia de la gravedad verifica la siguiente ecuación en derivadas parciales u tt = a u xx g 0 <x<l, t>0. 1. Encuentre la solución estacionaria φ(x).. Resolver el problema que surge cuando se añaden las condiciones u(x, 0) = 0 y u t (x, 0) = 0 ala ecuación anterior. 3

4 Tema 6 Ecuaciones en derivadas parciales. Sección 6.3 Algunos problemas de exámenes. Problema 6.3 Problema 6.4 Resuelva el siguiente problema de Dirichlet en el cuadrado [0,π] [0,π] u x + u y =0 u(x, 0) = πx x,u(x, π) =0, 0 <x<π. u(0,y)=u(π, y) =0, 0 <y<π. Resuelva el siguiente problema de Dirichlet en el cuadrado [0,π] [0,π] u x + u y =0 u(x, 0) = 0, u(x, π) =sen(x), 0 <x<π. u(0,y)=0,u(π, y) =sen(y), 0 <y<π. Problema 6.5 La función u(x, y) satisface la ecuación u xx + u yy = a u (donde a es un parámetro real) en el interior del cuadrado de lado unidad y de vértices O =(0, 0), A =(0, 1), B =(1, 0) y C =(1, 1). La función u se anula en los lados OA, OB y BC,mientrasque en el lado AC vale sen(4πx). Hallar el valor de la función u en el centro del cuadrado. Problema 6.6 Resuelva el problema de Dirichlet para el círculo unidad con las siguientes funciones de contorno T0 0 <θ<π 1. f(θ) = T 0 π<θ<π. f(θ) =θ, π <θ<π. 6.3 Algunos problemas de exámenes. Problema 6.7 (Febrero 003) Aplicando el método de separación de variables paso a paso, resuelva el siguiente problema u t = u xx + u, (0 <x<π, t>0) u(0,t)=u(π, t) =0 (t>0) u(x, 0) = sen(x)+sen(3x) (0 <x<π). Problema 6.8 (Segundo parcial 00-03) Se considera la temperatura u(x, t) de un alambre delgado de longitud L, desnudo, que pierde calor hacia el medio que lo rodea, cuya ecuación es t = k u x hu (k, h constantes, k>0, h>0) con las condiciones de contorno u(0,t)=0, u(l, t) =T (t >0) y la condición inicial dada por u(x, 0) = T L x (0 <x<l). Resolver el problema escribiendo u(x, t) =v(x, t)e ht + φ(x), µ v eligiendo φ(x) de forma que v(x, t) satisfaga la ecuación del calor t = k v con las condiciones de contorno homogéneas (v(0,t)=0, v(l, t) x =0). 4

5 Tema 6 Ecuaciones en derivadas parciales. Sección 6.3 Algunos problemas de exámenes. Problema 6.9 (Final Junio 003) Para una cuerda que vibra en el aire con una resistencia proporcional a la velocidad, el problema con condiciones en la frontera es y tt = a y xx hy t (0 <x<l, t>0) y(0, t) = y(l, t) =0 (t>0) y(x, 0) = f(x) (0 < x < L) y t (x, 0) = 0 (0 <x<l). Supongamos que 0 <h<πa/l.se pide resolver el problema anterior sabiendo que la solución y(x, t) es de la forma y(x, t) =e ht v(x, t). Problema 6.30 (Septiembre 003) Sea f(x) una función definida en el intervalo [0,L]. Se pide: 1. Deducir la serie de Fourier de f(x) en términos de senos.. Deducir la serie de Fourier de f(x) en términos impares ¾ de senos. Para ello, considerar la función f(x), x [0,L], F (x) dada por F (x) = y extenderla al intervalo [ L, 0] de forma f(l x), x [L, L], impar como indica la figura. -L -L L L Probar que X n impar b n sen ³ nπx, donde b n = L L Z L 0 f(x)sen ³ nπx dx. L 3. Teniendo en cuenta el apartado anterior, resolver el problema de ecuaciones en derivadas parciales siguiente: u xx + u yy =0, (x, y) Ω, u(x, 0) = 0, u(x, b) =f(x), 0 <x<a, u(0,y)=0, (a, y) =0, x 0 <y<b, donde Ω = {(x, y) :0<x<a, 0 <y<b} y a, b > 0. (Septiembre 00) Resuelva el siguiente problema de ecuaciones en derivadas par- u t = u xx + u, (0 <x<π, t>0) u x (0,t)=u x (π, t) =0, (t >0) u(x, 0) = 1 + cos(6x) (0 <x<π). Problema 6.31 ciales: 5

6 Tema 6 Ecuaciones en derivadas parciales. Sección 6.3 Algunos problemas de exámenes. Problema 6.3 (Febrero 004) Resuelva el problema de ecuaciones en derivadas parciales 4u xx u tt =4(x + )(t), 0 <x< π, t > 0, u(0,t)=0, u( π,t)=0, t > 0, u(x, 0) = 0, u t (x, 0) = x, 0 <x< π. Busque la solución escribiendo u(x, t) =v(x, t)+φ(x)sen(t), eligiendo Φ(x) de forma que v(x, t) satisfaga la ecuación homogénea (4v xx v tt =0)con las condiciones de contorno homogéneas v(0,t)=v( π,t)=0,t>0. 6

CÁLCULO III. Problemas

CÁLCULO III. Problemas CÁLCULO III. Problemas Grado en Ingeniería en Tecnologías Industriales Tema 4 Arturo de Pablo Elena Romera Open Course Ware, UC3M http://ocw.uc3m.es/matematicas 4 MÉTODO DE SEPARACIÓN DE VARIABLES 19 4.

Más detalles

Lista de ejercicios # 5

Lista de ejercicios # 5 UNIVERSIDAD DE COSTA RICA FACULTAD DE CIENCIAS MA-005 Ecuaciones Diferenciales para Ingeniería ESCUELA DE MATEMÁTICA Segundo Semestre del 206 Lista de ejercicios # 5 Ecuaciones diferenciales en derivadas

Más detalles

Lección 1.- Ecuaciones Diferenciales de Primer Orden

Lección 1.- Ecuaciones Diferenciales de Primer Orden Métodos Matemáticos de la Ingeniería Química. 009 0. Lección.- Ecuaciones Diferenciales de Primer Orden - Sección.: al. - Sección.: c, a, 3, 5, 7, 9,, 4 y. - Sección.3: y 3. - Sección.4:, 3, 5 y 5. - Sección.5:,

Más detalles

AMPLIACIÓN DE MATEMÁTICAS

AMPLIACIÓN DE MATEMÁTICAS Departamento de Matemática Aplicada II. Universidad de Sevilla. Curso 009 00. AMPLIACIÓN DE MATEMÁTICAS o Curso de Ingeniero Industrial. Relación complementaria de Problemas Ecuacionesdeprimerorden. 5

Más detalles

Examenes de Ecuaciones en Derivadas Parciales

Examenes de Ecuaciones en Derivadas Parciales Examenes de Ecuaciones en Derivadas Parciales Ingeniería de Caminos, Canales y Puertos Antonio Cañada Villar Departamento de Análisis Matemático Universidad de Granada Ingeniería de Caminos, Canales y

Más detalles

EDP/M2NI/MASTERICCP/UC

EDP/M2NI/MASTERICCP/UC MASTER U. en Ingeniera de Caminos, Canales y Puertos Métodos Matemáticos y Numéricos en Ingeniería CURSO 2014-15 - Bloque I: EDP Hoja 1 - Preliminares: valores propios y desarrollos en serie de Fourier.

Más detalles

Práctica 8. f n (x) = sea la mejor aproximación (en media cuadrática) de la función f(x) = 1 en (0, 2). (x 2 a b cos x c sen x) 2 dx.

Práctica 8. f n (x) = sea la mejor aproximación (en media cuadrática) de la función f(x) = 1 en (0, 2). (x 2 a b cos x c sen x) 2 dx. MATEMATICA 4 er Cuatrimestre de 25 Práctica 8. a) Verificar que f n (x) = { n si x n si x > n converge uniformemente a cero en R pero que (f n ) no converge a cero en media cuadrática. b) Verificar que

Más detalles

PRÁCTICA 9. TRANSFORMADA DE FOURIER

PRÁCTICA 9. TRANSFORMADA DE FOURIER PRÁCTICA 9. TRANSFORMADA DE FOURIER Ejercicio. Teorema de la integral de Fourier: sea f una función casi continua en todo intervalo finito del eje x tal que existe la f(x) dx ; sea f (x) la función definida

Más detalles

Examenes de Física Matemática (Ecuaciones en Derivadas Parciales e Integrales)

Examenes de Física Matemática (Ecuaciones en Derivadas Parciales e Integrales) Examenes de Física Matemática (Ecuaciones en Derivadas Parciales e Integrales) Licenciatura en Física Antonio Cañada Villar Departamento de Análisis Matemático Universidad de Granada FÍSICA MATEMÁTICA

Más detalles

METODOS MATEMATICOS DE LA FISICA II.

METODOS MATEMATICOS DE LA FISICA II. METODOS MATEMATICOS DE LA FISICA II. EXAMEN DEL PRIMER PARCIAL 3 de enero de 24 GRUPO I (Pedro López Rodríguez).. (2.5 puntos) Calcular el flujo del campo F (x, y, z) = (x, y, 2z) a través de la superficie

Más detalles

Series complejas, Teorema de los Residuos y Ecuaciones en Derivadas Parciales.

Series complejas, Teorema de los Residuos y Ecuaciones en Derivadas Parciales. FACULTAD CS. FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Guía de Ejercicios 3. MA6B Matemáticas Aplicadas. Semestre 5- Profesor: Héctor Ramírez C. Auxiliares: Oscar Peredo, Felipe Torres. Series complejas,

Más detalles

Jorge Mozo Fernández Dpto. Matemática Aplicada

Jorge Mozo Fernández Dpto. Matemática Aplicada Álgebra y Ecuaciones Diferenciales Lineales y Matemáticas II E.T.S. Ingenieros de Telecomunicación I.T. Telecomunicación Esp. Telemática y Sistemas de Telecomunicación Curso 2009-2010 Tema 11: Introducción

Más detalles

La ecuación de calor (El problema directo) L. Roberto Hernández C. J. Armando Velazco V.

La ecuación de calor (El problema directo) L. Roberto Hernández C. J. Armando Velazco V. La ecuación de calor (El problema directo) L. Roberto Hernández C. J. Armando Velazco V. 21 de febrero de 2015 1.1. La ecuación de calor Muchos de los problemas estudiados por diversas disciplinas de la

Más detalles

r r a) Clasificar el sistema x = Ax en función del parámetro r R.

r r a) Clasificar el sistema x = Ax en función del parámetro r R. Examen Final de Ecuaciones Diferenciales Fecha: 15 de junio de 2012 3 Problemas (7.5 puntos) Tiempo total: 3 horas Problema 1 [2.5 puntos]. Queremos dibujar el croquis de un sistema lineal 2D y realizar

Más detalles

Lista de ejercicios # 3. Sistemas de ecuaciones diferenciales

Lista de ejercicios # 3. Sistemas de ecuaciones diferenciales UNIVERSIDAD DE COSTA RICA FCULTAD DE CIENCIAS MA-005 Ecuaciones Diferenciales ESCUELA DE MATEMÁTICA I Ciclo del 207 Uso de operadores Lista de ejercicios # 3 Sistemas de ecuaciones diferenciales (3PII206

Más detalles

Práctico Preparación del Examen

Práctico Preparación del Examen Cálculo Diferencial e Integral (Áreas Tecnológicas) Segundo Semestre 4 Universidad de la República Práctico Preparación del Examen Límites, funciones y continuidad Ejercicio Sea log(+x ) f(x) =, si x

Más detalles

Ecuaciones Diferenciales y Métodos Numéricos

Ecuaciones Diferenciales y Métodos Numéricos NOMBRE...Número... Ecuaciones Diferenciales y Métodos Numéricos 3 er Curso I. Caminos. Ecuaciones en Derivadas Parciales Examen Parcial: 7-XII-2006 Observaciones: Escribir exactamente la solución donde

Más detalles

2. Método de separación de variables

2. Método de separación de variables APUNTES DE AMPIACIÓN DE MATEMÁTICAS II PARA INGENIEROS DE TEECOMUNICACIONES Elaborados por Arturo de Pablo, Domingo Pestana y José Manuel Rodríguez 2. Método de separación de variables 2.1. Separación

Más detalles

problemas de EDII (r) 2011 y + = 2 e y

problemas de EDII (r) 2011 y + = 2 e y problemas 1 1 Resolver (si es posible) los siguientes problemas de Cauchy: 3 2 y + = 5 (2y ) y + =2y (, 0)= 3 (1, y)=0 y = y y (, 1)= y + = 2 e y ( 1, y)=0 y +3y 2 = 2 y +6y4 y y +(2y ) = (, 1)= 2 (, 1)=0

Más detalles

Examen final de Ecuaciones Diferenciales II Curso 2005/06

Examen final de Ecuaciones Diferenciales II Curso 2005/06 5 de Junio de 2006 Examen final de Ecuaciones Diferenciales II Curso 2005/06 1. [1punto]Seauunafunciónarmónicaenel discod = {r < 2}delplanoytal queu = 3sin2θ+1 cuando r = 2. Sin calcular la solución, responder

Más detalles

Ampliación de Matemáticas y Métodos Numéricos

Ampliación de Matemáticas y Métodos Numéricos 4. Ampliación de EDP. Resolución numérica Ampliación de Matemáticas y Métodos Numéricos M a Luz Muñoz Ruiz José Manuel González Vida Francisco José Palomo Ruiz Francisco Joaquín Rodríguez Sánchez Departamento

Más detalles

ECUACIONES EN DERIVADAS PARCIALES Y ANÁLISIS FUNCIONAL GENERALIDADES

ECUACIONES EN DERIVADAS PARCIALES Y ANÁLISIS FUNCIONAL GENERALIDADES ECUACONES EN DERVADAS PARCALES Y ANÁLSS FUNCONAL GENERALDADES. Efectuar el cambio de variables ξ = x + 2t, η = x + 3t en la ecuación 2w ξξ + 8w ξη + 7w ηη =. 2. Se considera el problema de la cuerda vibrante

Más detalles

MÉTODOS MATEMÁTICOS DE LA FÍSICA V (plan 1999)

MÉTODOS MATEMÁTICOS DE LA FÍSICA V (plan 1999) Segundo parcial, 11 de junio del año 2002. CUESTIONES Duración: de 9:05 a 9:55. Cada cuestión vale 1 punto. Cada cuestión vale 0.5 puntos. Responda de manera clara y concisa a todo lo que se pregunta.

Más detalles

Introducción a las EDP A 21 de Abril de 2016

Introducción a las EDP A 21 de Abril de 2016 2 de Abril de 26 Ejercicio [.4 puntos] Resolver el siguiente problema, cuando x >, 2xu x (x, y) + yu y (x, y) + 3u(x, y) = 5x + 2y + 3, u(x, ϕ(x)) = 3x +, en los siguientes casos: ϕ(x) = x y ϕ(x) =. u

Más detalles

Funciones reales de varias variables

Funciones reales de varias variables PROBLEMAS DE CÁLCULO II Curso 2-22 2 Funciones reales de varias variables. Dibuja las curvas de niveles,,..., 5 y la representación gráfica de las siguientes funciones a) f(x, y) = 5 x y b) f(x, y) = x

Más detalles

Introducción a las EDP 17 de Abril de 2015

Introducción a las EDP 17 de Abril de 2015 7 de Abril de 25 Ejercicio [.5 puntos] Resolver el problema u x (x, ) + u (x, ) + 2u(x, ) = 3, u(x, ϕ(x)) = x 2, en los siguientes casos: ϕ(x) = ϕ(x) =. canónica, haciendo todos los cambios en detalle

Más detalles

TERCER EXAMEN EJERCICIOS RESUELTOS

TERCER EXAMEN EJERCICIOS RESUELTOS MATEMÁTICAS II G. I. T. I.) TERCER EXAMEN 4 EJERCICIOS RESUELTOS EJERCICIO. ) Dibuja la región limitada por la circunferencia de ecuación r = r θ) = senθ) y la lemniscata de ecuación r = r θ) = cosθ).

Más detalles

Práctica 8 Series de Fourier

Práctica 8 Series de Fourier MATEMATICA 4 - Análisis Matemático III Primer Cuatrimestre de 8 Práctica 8 Series de Fourier. (**) a) Verificar que f n (x) = { n si x n si x > n converge uniformemente a cero en R pero que (f n ) no converge

Más detalles

MATEMÁTICAS II (PAUU XUÑO 2011)

MATEMÁTICAS II (PAUU XUÑO 2011) MATEMÁTICAS II (PAUU XUÑO 0) OPCIÓN A. a) Sean C, C, C 3 las columnas primera, segunda y tercera, respectivamente, de una matriz cuadrada M de orden 3 con det (M ) = 4. Calcula enunciando las propiedades

Más detalles

CÁLCULO DE PRIMITIVAS

CÁLCULO DE PRIMITIVAS CÁLCULO DE PRIMITIVAS David Ariza-Ruiz Departamento de Análisis Matemático Seminario I 7 de noviembre de 202 (Universidad de Sevilla) David Ariza Ruiz 7 de noviembre de 202 / 42 Definición y propiedades

Más detalles

DEPARTAMENTO DE FÍSICA COLEGIO "LA ASUNCIÓN"

DEPARTAMENTO DE FÍSICA COLEGIO LA ASUNCIÓN COLEGIO "LA ASUNCIÓN" 1(8) Ejercicio nº 1 La ecuación de una onda armónica es: Y = 0 02 sen (4πt πx) Estando x e y expresadas en metros y t en segundos: a) Halla la amplitud, la frecuencia, la longitud

Más detalles

[25] EJERCICIO 1. Se considera el problema isoperimétrico consistente en calcular el mínimo relativo de

[25] EJERCICIO 1. Se considera el problema isoperimétrico consistente en calcular el mínimo relativo de UNIVERSIDAD DE GRANADA Modelos Matemáticos II. 3 de mayo de 3 [5] EJERCICIO. Se considera el problema isoperimétrico consistente en calcular el mínimo relativo de F[y] = y x) + yx) ) dx { en D = y C [,

Más detalles

FENÓMENOS ONDULATORIOS

FENÓMENOS ONDULATORIOS FENÓMENOS ONDULATORIOS 1.- Halla la velocidad de propagación de un movimiento ondulatorio sabiendo que su longitud de onda es 0,25 m y su frecuencia es 500 Hz. R.- 125 m/s. 2.- La velocidad del sonido

Más detalles

A = α cuyos VAPs son λ = 2 y λ ± = α ± i. (No hace falta que comprobeis este dato.) a) Calcular la solución general real del sistema x = Ax.

A = α cuyos VAPs son λ = 2 y λ ± = α ± i. (No hace falta que comprobeis este dato.) a) Calcular la solución general real del sistema x = Ax. Examen Final de Ecuaciones Diferenciales Fecha: 7 de junio de 013 3 Problemas (7.5 puntos) Tiempo total: horas 30 minutos Problema 1 [.5 puntos]. Consideramos la matriz A = α 1 0 1 α 0, α R, 0 0 cuyos

Más detalles

Lección: Ortogonalidad y Series de Fourier

Lección: Ortogonalidad y Series de Fourier Lección: Ortogonalidad y Series de Fourier Dr. Miguel Angel Uh Zapata, Centro de Investigación en Matemáticas, Unidad Mérida Facultad de Matemáticas, UADY Octubre 2015 Miguel Uh Lección: Ortogonalidad

Más detalles

Matemática Aplicada - Licenciatura de Farmacia- HOJA 1 1 SOLUCIONES DE LOS EJERCICIOS DE LA HOJA 1. x = x + 5 si x < 0.

Matemática Aplicada - Licenciatura de Farmacia- HOJA 1 1 SOLUCIONES DE LOS EJERCICIOS DE LA HOJA 1. x = x + 5 si x < 0. Matemática Aplicada - Licenciatura de Farmacia- HOJA 1 1 SOLUCIONES DE LOS EJERCICIOS DE LA HOJA 1 1. Estudiemos cada caso: a) El único número que verifica la condición es x = 5, ya que: x = x + 5 { x

Más detalles

sea a lo largo de la curva solución de la ecuación diferencial xy, = 5x

sea a lo largo de la curva solución de la ecuación diferencial xy, = 5x 1. Hallar κ de manera que el flujo saliente del campo f ( x, = (x + y + z, 6y a través de la frontera del cuerpo x + y + z 16 x + y κ, 0 < k < 4 f : R R un campo vectorial definido por:. Sea γ ( t ) =

Más detalles

1. Se trata en primer lugar de calcular la transformada de Fourier F[f]. Para ello

1. Se trata en primer lugar de calcular la transformada de Fourier F[f]. Para ello 1. Enunciados 1.1. Primer ejercicio Sea f(x := e x, x R. 1. Se trata en primer lugar de calcular la transformada de Fourier F[f]. Para ello a Asegurar que existe probando que la función f es absolutamente

Más detalles

Universidad Simón Bolívar Departamento de Matemáticas Puras y Aplicadas Enero - Marzo, 2008

Universidad Simón Bolívar Departamento de Matemáticas Puras y Aplicadas Enero - Marzo, 2008 Universidad Simón Bolívar Departamento de Matemáticas Puras y Aplicadas Enero - Marzo, 8 MA- Practica: semana y/o Ejercicios sugeridos para la semana y/o. Cubre el siguiente material: Propiedades de la

Más detalles

Funciones (continuación)

Funciones (continuación) Nivelación de Matemática MTHA UNLP Funciones (continuación) Funciones trigonométricas Consideremos un ángulo x y seleccionemos un punto (a, b) sobre el rayo que determina dicho ángulo Sea R = a + b, la

Más detalles

3. Funciones de varias variables

3. Funciones de varias variables Métodos Matemáticos (Curso 2013 2014) Grado en Óptica y Optometría 17 3. Funciones de varias variables Función real de varias variables reales Sea f una función cuyo dominio es un subconjunto D de R n

Más detalles

Hojas de problemas de interpolación y cuadratura numérica. Ampliación de Matemáticas.

Hojas de problemas de interpolación y cuadratura numérica. Ampliación de Matemáticas. Hojas de problemas de interpolación y cuadratura numérica. Ampliación de Matemáticas. 1.- El polinomio p 3 (x) = 2 (x + 1) + x(x + 1) 2x(x + 1)(x 1) interpola a los primeros cuatro datos de la tabla x

Más detalles

Ampliación de Cálculo. Práctica 10. Ecuaciones en derivadas parciales de primer y segundo orden

Ampliación de Cálculo. Práctica 10. Ecuaciones en derivadas parciales de primer y segundo orden Ampliación de Cálculo Escuela Politécnica Superior I. Eléctrica, I. Electrónica Industrial, I. Mecánica e I. Diseño Industrial y Desarrollo del Producto Curso 2013 2014 Práctica 10. Ecuaciones en derivadas

Más detalles

2. Continuidad y derivabilidad. Aplicaciones

2. Continuidad y derivabilidad. Aplicaciones Métodos Matemáticos (Curso 2013 2014) Grado en Óptica y Optometría 7 2. Continuidad y derivabilidad. Aplicaciones Límite de una función en un punto Sea una función f(x) definida en el entorno de un punto

Más detalles

1 A. Cañada, Diciembre 2006, EDPICCP

1 A. Cañada, Diciembre 2006, EDPICCP A. Cañada, Diciembre 2006, EDPICCP CAPÍTULO IV: LA ECUACIÓN DEL POTENCIAL. CÁLCULO DE VARIACIONES Aquí podrás encontrar los apartados siguientes: conocimientos previos necesarios para seguir adecuadamente

Más detalles

Introducción a las ecuaciones diferenciales ordinarias. senx + C 2. e x + C 2

Introducción a las ecuaciones diferenciales ordinarias. senx + C 2. e x + C 2 - Comprobar que la función y = C senx + C 2 x es solución de la ecuación diferencial ( - x cotgx) d2 y dx 2 - x dy dx + y = 0 2- a) Comprobar que la función y = 2x + C e x es solución de la ecuación diferencial

Más detalles

OCW-Universidad de Málaga, (2014). Bajo licencia. Creative Commons Attribution- NonComercial-ShareAlike 3.

OCW-Universidad de Málaga,  (2014). Bajo licencia. Creative Commons Attribution- NonComercial-ShareAlike 3. OCW-Universidad de Málaga, http://ocw.uma.es (014). Bajo licencia Creative Commons Attribution- NonComercial-ShareAlike 3.0 Spain Matemáticas III Relación de ejercicios Tema 1 Ejercicios Ej. 1 Encuentra

Más detalles

Prácticas de Métodos Numéricos Prof. Tomás Martín

Prácticas de Métodos Numéricos Prof. Tomás Martín %%Control 1. Lecciones A-B Tomás Martín Hernández Iniciada: 16 de febrero de 2009 10:49 Preguntas: 5 Prácticas de Métodos Numéricos Prof. Tomás Martín 1. (Puntos: 0,5) Importante: El separador decimal

Más detalles

Extensión de la regla de la cadena Funciones diferenciables. z = f(x, y), x = x(u, v, w), y = y(u, v, w) z = f ( x(u, v, w), y(u, v, w) ) x u + f

Extensión de la regla de la cadena Funciones diferenciables. z = f(x, y), x = x(u, v, w), y = y(u, v, w) z = f ( x(u, v, w), y(u, v, w) ) x u + f 1 228 Extensión de la regla de la cadena Funciones diferenciables. z = f(x, y), x = x(u, v, w), y = y(u, v, w) z = f ( x(u, v, w), y(u, v, w) ) z u = f x x u + f y y u z v = f x x v + f y y v z w = f x

Más detalles

Soluciones de ecuaciones de primer orden

Soluciones de ecuaciones de primer orden GUIA 2 Soluciones de ecuaciones de primer orden Dada una ecuación diferencial, la primera pregunta que se presenta es cómo hallar sus soluciones? Por cerca de dos siglos (XVIII y XIX ) el esfuerzo de los

Más detalles

Ejercicios de Fundamentos Matemáticos I. Rafael Payá Albert. Ingeniería de Telecomunicaciones. Departamento de Análisis Matemático

Ejercicios de Fundamentos Matemáticos I. Rafael Payá Albert. Ingeniería de Telecomunicaciones. Departamento de Análisis Matemático Ejercicios de Fundamentos Matemáticos I Ingeniería de Telecomunicaciones Rafael Payá Albert Departamento de Análisis Matemático Universidad de Granada FUNDAMENTO MATEMÁTICO I Relación de Ejercicios N o

Más detalles

ETSII Febrero Análisis Matemático.

ETSII Febrero Análisis Matemático. Departamento de Análisis Matemático ETSII Febrero 2000. Análisis Matemático. Problema 1. (1 punto) Calcular los siguientes ites: e x e senx x 0 x senx x π/4 (tgx)tg2x Problema 2. (2 puntos) Considérese

Más detalles

Grado en Ingeniería Informática Doble Grado en Informática y Administración de Empresas

Grado en Ingeniería Informática Doble Grado en Informática y Administración de Empresas Grado en Ingeniería Informática Doble Grado en Informática y Administración de Empresas Colección de Problemas de Cálculo Diferencial Aplicado Manuel Carretero (coordinador del curso [Mag 81-82; Mag 83;

Más detalles

Funciones reales. Números complejos

Funciones reales. Números complejos Funciones reales. Números complejos Funciones reales 1. Encuentra todos los números reales x que verifican: a) (x 1)(x 3) > 1 b) x + 1 > 1 1 x c) x 1 + x + 1 < 1 d) 5 < x 2 14x + 5 < 26 2. Si la gráfica

Más detalles

Análisis Matemático I

Análisis Matemático I Universidad Nacional de La Plata Facultad de Ciencias Exactas Departamento de Matemática Análisis Matemático I Evaluación Final - Agosto de 26. Nombre: Dirección correo electrónico: Ejercicio. Sea f una

Más detalles

Análisis II - Análisis matemático II - Matemática 3 2do. cuatrimestre de 2013

Análisis II - Análisis matemático II - Matemática 3 2do. cuatrimestre de 2013 Análisis II - Análisis matemático II - Matemática 3 do. cuatrimestre de 3 Práctica 4 - Teoremas de Stokes y de Gauss. Campos conservativos. Aplicaciones.. Verificar el teorema de Stokes para el hemisferio

Más detalles

Examen de Matemáticas

Examen de Matemáticas Examen de Matemáticas Enunciados. 1 1 Primer ejercicio Enero 2003 Se considera la función f(x) = x, x ] π, π[. 1. Calcular su serie de Fourier (realizar los cálculos; la respuesta es [ ] sin 2x sin 3x

Más detalles

ECUACIONES DIFERENCIALES

ECUACIONES DIFERENCIALES ECUACIONES DIFERENCIALES DEFINICIÓN Ecuación Diferencial es una ecuación que contiene las derivadas o diferenciales de una función de una o más variables. 1. Si hay una sola variable independiente, las

Más detalles

Problemas de AMPLIACIÓN DE MATEMÁTICAS

Problemas de AMPLIACIÓN DE MATEMÁTICAS Problemas de AMPLIACIÓN DE MATEMÁTICAS Ingeniería Industrial. Curso 3-4. Departamento de Matemática Aplicada II. Universidad de Sevilla. Tema : Series. Problema. Halle la representación en serie de McLaurin

Más detalles

Diferenciación SEGUNDA PARTE

Diferenciación SEGUNDA PARTE ANÁLISIS I MATEMÁTICA 1 ANÁLISIS II (Computación) Práctica 4 - Primer Cuatrimestre 009 Diferenciación SEGUNDA PARTE Regla de la Cadena 1 Sean f(u, v, w) = u + v 3 + wu y g(x, y) = x sen(y) Además, tenemos

Más detalles

[0.6 p.] b) Resolver la EDO lineal no homogénea de primer orden a coeficientes constantes

[0.6 p.] b) Resolver la EDO lineal no homogénea de primer orden a coeficientes constantes Fecha: 25 de junio de 2 Problema [2 puntos] Conviene recordar los problemas Depósito de salmuera y Grandes Lagos En los primeros apartados se preparan algunos cálculos previos [4 p] a) Resolver la EDO

Más detalles

UNIDADES TECNOLÓGICAS DE SANTANDER DEPARTAMENTO DE CIENCIAS BÁSICAS CÁLCULO MULTIVARIABLE Primer Parcial

UNIDADES TECNOLÓGICAS DE SANTANDER DEPARTAMENTO DE CIENCIAS BÁSICAS CÁLCULO MULTIVARIABLE Primer Parcial Primer Parcial Identifica los criterios de convergencia para determinar si una serie es convergente o no. 1,2 Representa una función mediante una serie de potencias estableciendo el intervalo de convergencia.

Más detalles

UNIVERSIDAD DE VALPARAISO INGENIERIA CIVIL OCEANICA. Ecuaciones Diferenciales Ecuaciones Lineales de orden superior Segundo Semestre 2008

UNIVERSIDAD DE VALPARAISO INGENIERIA CIVIL OCEANICA. Ecuaciones Diferenciales Ecuaciones Lineales de orden superior Segundo Semestre 2008 UNIVERSIDAD DE VALPARAISO INGENIERIA CIVIL OCEANICA Ecuaciones Diferenciales Ecuaciones Lineales de orden superior Segundo Semestre 2008 VIVIANA BARILE M 1. Decida si las funciones respectivas son linealmente

Más detalles

Introducción a EDP: Ecuaciones hiperbólicas y parabólicas

Introducción a EDP: Ecuaciones hiperbólicas y parabólicas Clase No. 27: MAT 251 Introducción a EDP: Ecuaciones hiperbólicas y parabólicas Dr. Alonso Ramírez Manzanares Depto. de Matemáticas Univ. de Guanajuato e-mail: alram@ cimat.mx web: http://www.cimat.mx/

Más detalles

1) Determinar qué elección de h asegurará, a priori, que la solución numérica del P.C.: con el método de diferencias centrales, existe y es única.

1) Determinar qué elección de h asegurará, a priori, que la solución numérica del P.C.: con el método de diferencias centrales, existe y es única. I. Resolución numérica de Problemas de Contorno en E.D.O.: Métodos en diferencias finitas 1) Determinar qué elección de h asegurará, a priori, que la solución numérica del P.C.: y (x) + 4 sen x y (x) 4

Más detalles

SOLUCIONES. <, >: H H C (x, y) ; <x, y>

SOLUCIONES. <, >: H H C (x, y) ; <x, y> 1. Teoría Ingeniero Industria Curso 99\ Asignatura: Transformadas Integraes y Ecuaciones en Derivadas Parciaes. Test sobre e Método de Separación de Variabes. 7 de Noviembre de 1999. SOLUCIONES (a) Qué

Más detalles

EXAMEN DE MATRICES Y DETERMINANTES

EXAMEN DE MATRICES Y DETERMINANTES º BACHILLERATO EXAMEN DE MATRICES Y DETERMINANTES 8 7 m + Ejercicio. Considera las matrices A m (a) [,5 puntos] Determina, si existen, los valores de m para los que A I A (b) [ punto] Determina, si existen,

Más detalles

Ecuaciones diferenciales

Ecuaciones diferenciales Ecuaciones diferenciales 1. Hallar las isoclinas y esbozar las soluciones relativas a las siguientes ecuaciones diferenciales (a) y = x 2 + y 2. (b) y = y/x 2. (c) y = y x. (d) y = y/x. (e) y = x/y. 2.

Más detalles

MÉTODOS NUMÉRICOS. Curso o. B Resolución de ecuaciones I (ecuaciones generales f (x) = 0)

MÉTODOS NUMÉRICOS. Curso o. B Resolución de ecuaciones I (ecuaciones generales f (x) = 0) MÉTODOS NUMÉRICOS. Curso 06-07. 1 o. B Resolución de ecuaciones I (ecuaciones generales f (x = 0 1. Utiliza el método de bisección para calcular con una precisión de 10 las soluciones de x 3 7x + 14x 6

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás de mayo de 013 Capítulo 10 Año 009 10.1. Modelo 009 - Opción A Problema 10.1.1 (3 puntos) Dados el plano π

Más detalles

1 A. Cañada, Noviembre 2006, EDPICCP

1 A. Cañada, Noviembre 2006, EDPICCP A. Cañada, Noviembre 2006, EDPICCP 1 CAPÍTULO III: LA ECUACIÓN DEL CALOR 1 Aquí podrás encontrar los apartados siguientes: conocimientos previos necesarios para seguir adecuadamente este capítulo, resumen

Más detalles

a de un conjunto S de R n si

a de un conjunto S de R n si 1 235 Máximos, mínimos y puntos de ensilladura Definición.- Se dice que una función real f( x) tiene un máximo absoluto en un punto a de un conjunto S de R n si f( x) f( a) (2) para todo x S. El número

Más detalles

ECUACIONES DIFERENCIALES INTRODUCCIÓN A LAS ECUACIONES EN DERIVADAS PARCIALES

ECUACIONES DIFERENCIALES INTRODUCCIÓN A LAS ECUACIONES EN DERIVADAS PARCIALES ECUACIONES DIFERENCIALES INTRODUCCIÓN A LAS ECUACIONES EN DERIVADAS PARCIALES Objetivo: El alumno conocerá las ecuaciones en derivadas parciales y aplicará el método de separación de variables en su resolución.

Más detalles

Métodos Matemáticos de la Física serra/mmf.html Guía 7 Noviembre de 2014

Métodos Matemáticos de la Física  serra/mmf.html Guía 7 Noviembre de 2014 Métodos Matemáticos de la Física http://www.famaf.unc.edu.ar/ serra/mmf.html Guía 7 Noviembre de 2014 Problema 1: Muestre que en R 3 se cumple: ( ) 1 2 x x = 4πδ( x x ) Problema 2: Considere un círculo

Más detalles

En esta sección vamos a tratar de expresar una función f : R R periódica como suma de una cierta serie.

En esta sección vamos a tratar de expresar una función f : R R periódica como suma de una cierta serie. Capítulo 8 Series de Fourier 8.. Desarrollo en serie de Fourier En esta sección vamos a tratar de expresar una función f : R R periódica como suma de una cierta serie. Recordemos que una función f : R

Más detalles

Análisis II Análisis matemático II Matemática 3.

Análisis II Análisis matemático II Matemática 3. Análisis II Análisis matemático II Matemática 3. er. cuatrimestre de 8 Práctica 4 - Teoremas de Stokes y de Gauss. Campos conservativos. Aplicaciones. Ejercicio. Verificar el teorema de Stokes para el

Más detalles

Hoja 2: Derivadas direccionales y diferenciabilidad.

Hoja 2: Derivadas direccionales y diferenciabilidad. Sonia L. Rueda ETS Arquitectura. UPM Curso 2011-2012. 1 CÁLCULO Hoja 2: Derivadas direccionales y diferenciabilidad. 1. Sea f : R 2 R la función definida por x 4 (x 2 +y 2 ) 2, (x, y) (0, 0) 0, (x, y)

Más detalles

2 Estudio local de funciones de varias variables.

2 Estudio local de funciones de varias variables. a t e a PROBLEMAS DE CÁLCULO II t i c a s 1 o Ings. Industrial y de Telecomunicación CURSO 2009 2010 2 Estudio local de funciones de varias variables. 2.1 Derivadas de orden superior. Problema 2.1 Sea

Más detalles

1. Teoría: a) Forma polar; b) Producto de números complejos; c) Ley de Moivre.

1. Teoría: a) Forma polar; b) Producto de números complejos; c) Ley de Moivre. 1. Teoría: a) Forma polar; b) Producto de números complejos; c) Ley de Moivre. 2. Si el senx=0,6 y ð/2

Más detalles

2.1 Separación de variables

2.1 Separación de variables Método de separación de variables 6 a t e a PROBLEMAS DE AMPLIACIÓN DE MATEMÁTICAS II t i c a s o Ing. Telecomunicación CURSO 9 SOLUCIONES Método de separación de variables. Separación de variables Problema..

Más detalles

ANÁLISIS FUNCIONAL Y ECUACIONES EN DERIVADAS PARCIALES HOJA 2: FORMULACIÓN DÉBIL DE PROBLEMAS ELÍPTICOS

ANÁLISIS FUNCIONAL Y ECUACIONES EN DERIVADAS PARCIALES HOJA 2: FORMULACIÓN DÉBIL DE PROBLEMAS ELÍPTICOS ANÁLSS FUNCONAL Y ECUACONES EN DERVADAS PARCALES HOJA : FORMULACÓN DÉBL DE PROBLEMAS ELÍPTCOS E. Sean X e Y dos espacios normados y sea T : X Y una aplicación lineal. Probar que las siguientes afirmaciones

Más detalles

PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO

PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO 1. Una onda transversal se propaga en una cuerda según la ecuación (unidades en el S.I.) Calcular la velocidad de propagación de la onda y el estado de vibración

Más detalles

Soluciones de los ejercicios del examen de Cálculo del 29 de junio de 2007 Primero de Ingeniería de Telecomunicación

Soluciones de los ejercicios del examen de Cálculo del 29 de junio de 2007 Primero de Ingeniería de Telecomunicación Soluciones de los ejercicios del examen de del 29 de junio de 27 Primero de Ingeniería de Telecomunicación Ejercicio a Justifica que la ecuación x 2 = x sen x+ cos x tiene exactamente dos soluciones reales.

Más detalles

9 Ecuaciones diferenciales ordinarias. Ecuaciones diferenciales de primer orden en forma normal

9 Ecuaciones diferenciales ordinarias. Ecuaciones diferenciales de primer orden en forma normal Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1 9 Ecuaciones diferenciales ordinarias. Ecuaciones diferenciales de primer orden en forma normal 9.1 Definición Se llama ecuación diferencial ordinaria

Más detalles

Facultad de Ingeniería Matemática Básica 1 UNIVERSIDAD DE SAN CARLOS DE GUATEMALA

Facultad de Ingeniería Matemática Básica 1 UNIVERSIDAD DE SAN CARLOS DE GUATEMALA Universidad de San Carlos de Guatemala Departamento de Matemáticas Matemática Básica 1 UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-101-6-M-2-00-2017 CURSO:

Más detalles

a f af= 3. a) Clasificar las singularidades de la función: f z sen x Universidad de Las Palmas de Gran Canaria

a f af= 3. a) Clasificar las singularidades de la función: f z sen x Universidad de Las Palmas de Gran Canaria E.T.S.I.T. º CURSO CONVOCATORIA ORDINARIA 8.. Profesor A. Plaa TIEMPO ESTIMADO:. Horas. Los que se examinan de toda la asignatura deben responder a las 4 primeras preguntas. Las personas que liberaron

Más detalles

Jorge Mozo Fernández Dpto. Matemática Aplicada

Jorge Mozo Fernández Dpto. Matemática Aplicada Álgebra y Ecuaciones Diferenciales Lineales y Matemáticas II E.T.S. Ingenieros de Telecomunicación I.T. Telecomunicación Esp. Telemática y Sistemas de Telecomunicación Curso 9- Tema : Series de Fourier

Más detalles

10.1. Modelo Opción A

10.1. Modelo Opción A 10.1. Modelo 009 - Opción A Problema 10.1.1 (3 puntos) Dados el plano π : x + y z =, la recta: r : x 3 = y 1 = z 5 4 y el punto P (, 3, ), perteneciente al plano π, se pide: 1. (0,5 puntos) Determinar

Más detalles

Ejercicio 1 de la Opción A del modelo 3 de Solución

Ejercicio 1 de la Opción A del modelo 3 de Solución Ejercicio 1 de la Opción A del modelo 3 de 2004 [2 5 puntos] Calcula Para calcular determinamos primero las raíces del denominador, para descomponerlo en producto de factores y aplicarle la técnica de

Más detalles

a-2. -a º) Si a= 2, el sistema es compatible indeterminado y la solución depende de un parámetro: 4. 2 =-2y z=1.

a-2. -a º) Si a= 2, el sistema es compatible indeterminado y la solución depende de un parámetro: 4. 2 =-2y z=1. EXTRAORDINARIO DE 7. PROBLEMA A. Estudia el siguiente sistema de ecuaciones lineales dependiente del parámetro real a y resuélvelo en los casos en que es compatible: x+y+z x+(a +)y+3z3 x(a +)y+(a3)z 3

Más detalles

1. Método de bisección

1. Método de bisección Cálculo Infinitesimal y Numérico. E.T.S. de Ingeniería Informática. Universidad de Sevilla 1 Tema 1: resolución de ecuaciones. Ejercicios y Problemas Nota: Abreviación usual en estos ejercicios: C.D.E.

Más detalles

Álgebra Lineal Análisis vectorial Cálculo Ecuaciones diferenciales Matemáticas

Más detalles

Problemas de Series de Fourier

Problemas de Series de Fourier Problemas de Series de Fourier 1. Generalidades MMF II: Grupo I http://euler.us.es/~renato/clases.html Definición 1.1 Se dice que un espacio vectorial E es un espacio euclídeo si dados dos elementos cualesquiera

Más detalles

Colominas I., Gómez H. Problemas de EDPs en la matemática aplicada 63/117

Colominas I., Gómez H. Problemas de EDPs en la matemática aplicada 63/117 Colominas I., Gómez H. Problemas de EDPs en la matemática aplicada 63/117 5. Se desea estudiar la distribución estacionaria de temperaturas en el interior de una esfera homogénea de radio R, centrada en

Más detalles

CÁLCULO. Ingeniería Industrial. Curso Departamento de Matemática Aplicada II. Universidad de Sevilla.

CÁLCULO. Ingeniería Industrial. Curso Departamento de Matemática Aplicada II. Universidad de Sevilla. CÁLCULO Ingeniería Industrial. Curso 2009-2010. Departamento de Matemática Aplicada II. Universidad de Sevilla. Lección 1. Derivadas. Polinomios de Taylor. Resumen de la lección. 1.1. La derivada y la

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO Opción A Ejercicio 1.- Sea la función f : (0, + ) R definida por f(x) = 1 +ln(x) donde ln denota la función x logaritmo neperiano. (a) [1 75 puntos] Halla los [ extremos ] absolutos de f (abscisas donde

Más detalles

ECUACIONES DIFERENCIALES

ECUACIONES DIFERENCIALES ECUACIONES DIFERENCIALES INGENIERÍA (NIVEL LICENCIATURA) Curso Básico - Primavera 2017 Omar De la Peña-Seaman Instituto de Física (IFUAP) Benemérita Universidad Autónoma de Puebla (BUAP) 1 / Omar De la

Más detalles

INTERPOLACIÓN: Error en la la interpolación polinómica de Lagrange

INTERPOLACIÓN: Error en la la interpolación polinómica de Lagrange INTERPOLACIÓN: Error en la la interpolación polinómica de Lagrange Arturo Hidalgo LópezL Alfredo López L Benito Carlos Conde LázaroL Marzo, 007 Departamento de Matemática Aplicada y Métodos Informáticos

Más detalles