Lista de ejercicios # 5

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Lista de ejercicios # 5"

Transcripción

1 UNIVERSIDAD DE COSTA RICA FACULTAD DE CIENCIAS MA-005 Ecuaciones Diferenciales para Ingeniería ESCUELA DE MATEMÁTICA Segundo Semestre del 206 Lista de ejercicios # 5 Ecuaciones diferenciales en derivadas parciales. Determine la serie de Fourier de f en el intervalo indicado 0, si π < x < 0 a) f(x) =, si 0 x < π., si < x < 0 b) f(x) = x, si 0 x <. 0, si π < x < 0 c) f(x) = x 2, si 0 x < π. d) f(x) = x + π si π < x < π. 0, si π < x < 0 e) f(x) = sen x, si 0 x < π. 0, si 2 < x < 2, si x < 0 f ) f(x) =, si 0 x < 0, si x < 2., si 5 < x < 0 g) f(x) = + x, si 0 x < RP-III-MA-005-I-204 Considere la siguiente función π, si π < x < 0 f(x) = x, si 0 x π Verificar que la serie de Fourier de f(x) viene dada por: 3π [ ( ) n πn 2 cos(nx) sin(nx) ] n

2 2 3. P-III-I-204 Considere la siguiente función 0, si 5 x 0 f(x) = 2x + 2, si 0 x 3 8 si 3 x 5. a) Al calcular la serie de Fourier de f(x) compruebe que para todo n a n = 0 [ ( ) ] 3nπ π 2 n 2 cos, b n = 2 5 nπ + 0 ( ) 3nπ π 2 n 2 sin 8( )n 5 nπ b) Utilizando la serie de Fourier de f(x) evaluar 00 + cos ( ) 3nπ 5 2 n 2 4. Desarrolle cada una de las funciones siguientes en una serie de cosenos o de senos, según corresponda:, si π < x < 0 a) f(x) =, si 0 x < π. b) f(x) = x, si π < x < π. c) f(x) = x 2, si < x <. d) f(x) = π 2 x 2, si π < x < π. x, si π < x < 0 e) f(x) = x +, si 0 x < π., si 2 < x < x, si x < 0 f ) f(x) = x, si 0 x <, si x < P-I-200 Demuestre que el desarrollo de Fourier para la función f(x) = sen x, si π < x < π es dado por: f(x) = 2 π ( ) n π n 2 cos (nx). n=2 6. R 3P-I-20 Considere la funci on f(x) = sen x cos x

3 3 a) ( Pruebe que la serie de Fourier de f(x) en ( π 2, π ) viene dada por 2 π + + ( ) n ( n 2 )π cos(2nx) n=2 Puede utilizar el hecho de que 2 sen (ax) cos (by) = sen (ax by) + sen (ax + by). b) Use lo anterior para calcular el valor de la serie 4n 2 7. Considere la función f : [0, π] R definida por x si 0 x < π 2 f(x) = π π si 2 2 x < π (a) Calcule a 0 y para n verifique que los coeficientes de la serie de Fourier de cosenos de f(x) están dados por ( nπ ) a n = 2 cos 2 π n 2 (b) Verifique que la serie de Fourier de cosenos de f(x) corresponde a 3π 8 + 2π ( ) n n 2 cos(2nx) 2 π n=0 cos ((2n + )x) (2n + ) 2 8. Desarrolle cada una de las funciones siguientes en una serie de cosenos y en una serie de senos:, si 0 < x < a) f(x) = 2 0, si 2 x <. b) f(x) = cos x, si 0 < x < π 2. x, si 0 < x < π c) f(x) = 2 π π x, si 2 x < π. x, si 0 < x < d) f(x) =, si x < 2.

4 4 e) f(x) = x 2 + x, si 0 < x <. 9. Hallar una solución, sin utilizar separación de variables, al problema de valor de frontera x y = x + 2, ; u(0, y) = 0, u x(x, 0) = x 2 0. Hallar una solución, sin utilizar separación de variables, al problema de valor de frontera x y = 4xy + ex, ; u y (0, y) = y, u(x, 0) = 2.. Encuentre una ecuación en derivadas parciales de segundo orden que tenga como su solución general u(x, y) = xf (y) + yg(x), donde F y G son funciones arbitrarias diferenciables. Puede hallar otra ecuación en derivadas parciales de tercer orden con la misma solución que la anterio y una de cuarto orden? 2. Determine, si es posible, algunas soluciones para las ecuaciones en derivadas parciales que se dan a continuación, por el método de separación de variables. a) x = y. b) x + y = u. c) x x = y y. d) 2 u x u x y + 2 u y 2 = 0. e) k 2 u x 2 u = t, k > 0. f ) a 2 2 u x 2 = 2 u t 2. g) 2 u x u y 2 = 0. h) 2 u x u y 2 = u. 3. Una varilla de longitud L se hace coincidir con el intervalo [0, L]. Plantee el problema de valor frontera para la temperatura u(x, t), si a) El extremo izquierdo se mantiene a la temperatura cero y el derecho está aislado. La temperatura inicial de la varilla en el punto x es f(x). b) El extremo izquierdo se mantiene a la temperatura 00 y hay transmisión de calor desde el extremo derecho hacia el ambiente, el cual se encuentra a temperatura cero. La distribución de temperatura inicial en la varilla es f(x).

5 5 4. Una cuerda de longitud L se hace coincidir con el intervalo [0, L]. Plantee el problema de valor frontera para el desplazamiento u(x, t), si a) Los extremos se mantienen fijos y la cuerda parte del reposo desde el desplazamiento inicial x (L x). b) El extremo izquierdo se mantiene fijo, pero el extremo derecho se mueve de acuerdo con la función sen π t. La cuerda parte del reposo desde un desplazamiento inicial f(x). Para t > 0, las vibraciones se amortiguan con una fuerza proporcional a la velocidad instantanea. 5. Plantee el problema para la temperatura u(x, y) del estado estable de una placa rectangular delgada que se hace coincidir con la región R = (x, y) 0 x 4; 0 y 2 }, si el lado izquierdo y la cara inferior de la placa están aislados; la cara superior se mantiene a temperatura cero y el lado derecho a la temperatura f(y). 6. Una varilla de longitud L se hace coincidir con el intervalo Resuelva el problema de transmisión de calor, sujeto a las condiciones 7. Resuelva la ecuación de onda k 2 u x 2 a 2 2 u x 2 sujeta a las condiciones siguientes a) = t, 0 < x < L, t > 0 u(0, t) = 0 u(l, t) = 0, 0 < x < L u(x, 0) = 2 L 0, 2 < x < L = 2 u t 2, 0 < x < L, t > 0 u(0, t) = 0, u(l, t) = 0 u(x, 0) = x (L x), 4 t = 0 t=0

6 6 b) u(0, t) = 0, u(l, t) = 0 u(x, 0) = 3 L x, 0 x < L 3, L 3 x < 2 L 3 3 L ( L x ), 2 L x L 3 8. Considere la ecuaci on del calor α 2 2 u x 2 = t con 0 x 2 y sujeta a las condiciones de frontera u(0, t) = 0 u(2, t) = 0 ( ) 2 (2n + )πx u(x, 0) = (2n + ) 2 sin 2 t = 0 t=0 Resuelva el problema anterior analizando todos los casos posibles de constantes. 9. Resuelva la ecuación de Laplace con las condiciones de frontera siguientes: a) b) c) x u = 0, 0 < x < a, 0 < y < b y2 u(0, y) = 0 u(a, y) = 0 u(x, 0) = 0 u(x, b) = f(x) u(0, y) = 0 u(a, y) = 0 u(x, 0) = f(x) u(x, b) = 0 u(0, y) = 0 u(, y) = y (se considera a = ) = 0 y=0 = 0 (se considera b = ) y=

7 7 20. Aplique el método de separación de variables para resolver la ecuación en derivadas parciales t = 2 u, u(x, 0) = sen x, 0 < x < π; u(0, t) = (π, t) = 0, t > 0. x2 x 2. Amp. I-20 Compruebe que la función de dos variables u(x, t) = 4 + ( ) n+ π 4 sin (nπx) sin (nπt), satisface la ecuación de onda x 2 = 2 u t 2 con 0 < x < y, t > 0 sujeta a las condiciones de frontera u(0, t) = 0; u(, t) = 0; n 4 u(x, 0) = 0; (x, 0) = x( x). t 22. PIII-I-204 Aplicar el método de separación de variables para encontrar la solución del problema de la cuerda vibrante: t 2 = u 4 2 x 2, 0 < x < π, t > 0 u(0, t) = u(π, t) = 0, t 0 u(x, 0) = + + t (x, 0) = n 2 sin(nx), ( ) n+ 0 x π n 2 sin(nx), 0 x π 23. RP-III-MA-005-I-204 Aplicar el método de separación de variables para encontrar la solución del problema de la cuerda vibrante: t 2 = 4 2 u x 2, 0 < x < π, t > 0 u(0, t) = u(π, t) = 0, t 0 u(x, 0) = sin(3x) 4 sin(0x) (x, 0) = 2 sin(4x) + 6 sin(6x) t

8 8 24. RP-III-MA-005-II-20 Haga un análisis completo para resolver la ecuaci on de Laplace U xx + U yy = 0 con 0 x π 3 y 0 y π 3, sujeto a las condiciones iniciales U(x, 0) = 0 U ( x, π ) 3 = 0 Universidad de Costa Rica U x (0, y) = 0 U ( π 3, y) = 2 π ( ) n sin(3ny) n Escuela de Matemática 2 de Diciembre de 204. MA-005 Ecuaciones Diferenciales para Ingeniería Examen Parcial # 4 Segundo Semestre Instrucciones Cuenta con tres horas para realizar el examen. El examen consta de cinco preguntas que suman cien puntos. Debe justificar cada una de las preguntas que realice. Los problemas aplicados podrían no representar la realidad. El coordinador atenderá las dudas que se presenten sobre la redacción de la prueba durante la primer hora del examen. Enunciados. 20 puntos Dos grandes tanques A y B, de 00 litros de capacidad cada uno, están interconectados por dos tubos. Suponga que el líquido fluye desde el tanque A hacia el tanque B a razón de 3 litros por minuto, y del tanque B hacia el tanque A a razón de un litro por minuto. El líquido en cada tanque permanece siempre bien agitado. Desde el exterior ingresa salmuera, con una concentración de 2 kilos de sal por litro, hacia el tanque A a razón de 6 litros por minuto. La solución fluye entonces hacia afuera de A a razón de 4 litros por minuto y hacia fuera del tanque B a razón de 2 litros por minuto. Si inicialmente el tanque A contiene sólo agua y el tanque B contiene 200 kilos de de sal, entonces: a) Realice un dibujo que corresponda a la situación descrita en el texto anterior.

9 9 b) Si se denota por x(t) y y(t) a las cantidades de sal contenidas en los tanques A y B, respectivamente, en el tiempo t, entonces hallar las constantes a, b, c, d, e, f, g en dx = a + by cx, dt puntos dy dt = dx ey, x(0) = f, y(0) = h. a) Encuentre por medio de operadores diferenciales la solución del sistema: d 5 x dt 5 d3 x dt 3 + d4 y dt 4 d2 y dt 2 y = 204 d 2 x dt 2 + dy dt = t 2 Debe encontrar necesariamente la relación entre las constantes arbitrarias que aparezcan. b) Utilizando la parte anterior, hallar la solución (x(t), y(t)) que cumpla que x(0) = 0 y x (0) = puntos Encuentre, por medio de valores y vectores propios, la solución del sistema: x (t) = x z y (t) = x z (t) = x y puntos Encuentre, por medio de la separación de variables, la solución, u(x, t), de la ecuación en derivadas parciales: sujeta a las condiciones de frontera e iniciales: (0, t) = 0, x (π, t) = 0, x u(x, 0) = sen 2 (x). t = 2 u, 0 < x < π, t > 0, x2 Debe realizar un análisis completo del problema. Como sugerencia se indica que en la búsqueda de la solución no necesita calcular una serie de Fourier.

10 puntos Considere la función f(x) = x sen(x) definida en π x π. a) Verifique que la serie de Fourier de f(x) es 2 cos(x) 2 + n=2 cos(nx) n 2. b) Deducir que = π 2. 4 Fórmulas 2 sen(α) cos(β) = sen(α β) + sen(α + β). 2 sen(α) sen(β) = cos(α β) cos(α + β). El entendimiento es una especie de éxtasis. Carl Sagan Universidad de Costa Rica Escuela de Matemática 4 de Diciembre de 205. MA-005 Ecuaciones Diferenciales para Ingeniería Segundo Semestre Examen Parcial # 3 Instrucciones Cuenta con tres horas para realizar el examen. El examen consta de cuatro preguntas que suman cien puntos. Debe justificar cada una de las preguntas que realice con los teoremas y métodos vistos en clase, o establecidos en la carta al estudiante. El coordinador atenderá las dudas que se presenten sobre la redacción de la prueba durante la primer media hora del examen.. Considere el siguiente sistema: x + y + y + y + x = 2t x + y + y =. ()

11 a) 5 puntos Reescriba el sistema () en notación de operadores e indique el número de constantes arbitrarias que deben aparecer en la solución general. b) 0 puntos Hallar el valor de x(t). c) 0 puntos Sin sustituir el valor de x(t) en alguna de las ecuaciones del sistema (), encuentre el valor de y(t). 2. Considere el siguiente sistema lineal homogéneo: 0 d x dt = 0 0 x(t) (2) a) 20 puntos Suponiendo que los valores propios de la matriz del sistema anterior son raíces de la ecuación característica λ( λ) 2 = 0, hallar la solución general del sistema (2). b) 5 puntos Hallar la solución del sistema (2) que cumpla la condición inicial: 0 x(0) = puntos Encuentre, por medio de la separación de variables, la solución, u(x, t), de la ecuación en derivadas parciales: sujeta a las condiciones de frontera e iniciales: u(0, t) = u (π, t) = 0, para t 0, u(x, 0) = 2 π + n=2 t =, 0 x π, t 0, 4 x2 + ( ) n n 2 sin(nx), para 0 x π, 4. a) 20 puntos Calcule la serie coseno de Fourier para f(x) = sin(x) en el intervalo [0, π]. b) 5 puntos Cuál es la serie de Fourier para f(x) = sin(x) en [ π, π]? No hay mucho que hacer aquí. Fórmulas útiles 2 sen(α) cos(β) = sen(α β) + sen(α + β). 2 sen(α) sen(β) = cos(α β) cos(α + β).

Lección 1.- Ecuaciones Diferenciales de Primer Orden

Lección 1.- Ecuaciones Diferenciales de Primer Orden Métodos Matemáticos de la Ingeniería Química. 009 0. Lección.- Ecuaciones Diferenciales de Primer Orden - Sección.: al. - Sección.: c, a, 3, 5, 7, 9,, 4 y. - Sección.3: y 3. - Sección.4:, 3, 5 y 5. - Sección.5:,

Más detalles

EJERCICIOS UNIDADES 1, 2 Y 3

EJERCICIOS UNIDADES 1, 2 Y 3 EJERCICIOS UNIDADES 1, Y 3 Nota: En adelante utilizaremos la abreviación ED para ecuación diferencial. TEMAS A EVALUAR Unidad 1 o Clasificación de las ecuaciones diferenciales o Problemas de valor inicial

Más detalles

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales Grado en Ingeniería agrícola y del medio rural Tema 8 José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es 2016 Licencia Creative Commons 4.0 Internacional J.

Más detalles

Operador Diferencial y Ecuaciones Diferenciales

Operador Diferencial y Ecuaciones Diferenciales Operador Diferencial y Ecuaciones Diferenciales. Operador Diferencial Un operador es un objeto matemático que convierte una función en otra, por ejemplo, el operador derivada convierte una función en una

Más detalles

Complementos de Análisis. Año 2016

Complementos de Análisis. Año 2016 Complementos de Análisis. Año 2016 Práctica 8. Ecuaciones diferenciales ordinarias. 1 Modelando con ecuaciones diferenciales Modelar con ecuaciones diferenciales las siguientes situaciones. Intentar resolver

Más detalles

ANÁLISIS I MATEMÁTICA 1 ANÁLISIS II (Computación) Práctica 5 - Verano 2009

ANÁLISIS I MATEMÁTICA 1 ANÁLISIS II (Computación) Práctica 5 - Verano 2009 ANÁLISIS I MATEMÁTICA ANÁLISIS II (Computación) Práctica 5 - Verano 2009 Derivadas parciales de orden superior - Polinomio de Taylor - Convexidad y Extremos Derivadas de orden superior. Calcular las derivadas

Más detalles

2. Continuidad y derivabilidad. Aplicaciones

2. Continuidad y derivabilidad. Aplicaciones Métodos Matemáticos (Curso 2013 2014) Grado en Óptica y Optometría 7 2. Continuidad y derivabilidad. Aplicaciones Límite de una función en un punto Sea una función f(x) definida en el entorno de un punto

Más detalles

La función, definida para toda, es periódica si existe un número positivo tal que

La función, definida para toda, es periódica si existe un número positivo tal que Métodos con series de Fourier Definición: Función periódica La función, definida para toda, es periódica si existe un número positivo tal que para toda. El número en un periodo de la función. Si existe

Más detalles

Problemario de la asignatura de Ecuaciones Diferenciales

Problemario de la asignatura de Ecuaciones Diferenciales Problemario de la asignatura de Ecuaciones Diferenciales Alejandro Hernández Madrigal Maxvell Jiménez Escamilla Academia de Matemáticas y Física Unidad Profesional Interdisciplinaria de Biotecnología,

Más detalles

4.3 Problemas de aplicación 349

4.3 Problemas de aplicación 349 4. Problemas de aplicación 49 4. Problemas de aplicación Ejemplo 4.. Circuito Eléctrico. En la figura 4.., se muestra un circuito Eléctrico de mallas en el cual se manejan corrientes, una en cada malla.

Más detalles

Apéndice sobre ecuaciones diferenciales lineales

Apéndice sobre ecuaciones diferenciales lineales Apéndice sobre ecuaciones diferenciales lineales Juan-Miguel Gracia 10 de febrero de 2008 Índice 2 Determinante wronskiano. Wronskiano de f 1 (t), f 2 (t),..., f n (t). Derivada de un determinante de funciones.

Más detalles

Cálculo en varias variables

Cálculo en varias variables Cálculo en varias variables Dpto. Matemática Aplicada Universidad de Málaga Resumen Límites y continuidad Funciones de varias variables Límites y continuidad en varias variables 1 Límites y continuidad

Más detalles

x = t 3 (x t) 2 + x t. (1)

x = t 3 (x t) 2 + x t. (1) Problema 1 - Considera la siguiente ecuación de primer orden: x = t 3 (x t + x t (1 (a Comprueba que x(t = t es solución de la ecuación (b Demuestra que si x = x(t es la solución que pasa por el punto

Más detalles

Métodos Matemáticos 2 Ecuaciones Diferenciales de Orden Superior

Métodos Matemáticos 2 Ecuaciones Diferenciales de Orden Superior Métodos Matemáticos 2 Ecuaciones Diferenciales de Orden Superior L. A. Núñez * Centro de Astrofísica Teórica, Departamento de Física, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela

Más detalles

7 Ecuación diferencial ordinaria de orden n con coecientes constantes

7 Ecuación diferencial ordinaria de orden n con coecientes constantes 7 Ecuación diferencial ordinaria de orden n con coecientes constantes La ecuación lineal homogénea de coecientes constantes de orden n es: donde a 1, a 2,..., a n son constantes. a n y (n) + a n 1 y n

Más detalles

Cálculo Diferencial - Parcial No. 2

Cálculo Diferencial - Parcial No. 2 Cálculo Diferencial - Parcial No. 2 Departamento de Matemáticas - Universidad de los Andes Marzo 18 de 2010 Juro solemnemente abstenerme de copiar o de incurrir en actos que puedan conducir a la trampa

Más detalles

Problema 1. Calcula las derivadas parciales de las siguientes funciones: (d) f(x, y) = arctan x + y. (e) f(x, y) = cos(3x) sin(3y),

Problema 1. Calcula las derivadas parciales de las siguientes funciones: (d) f(x, y) = arctan x + y. (e) f(x, y) = cos(3x) sin(3y), Problema. Calcula las derivadas parciales de las siguientes funciones: (a) f(x, y) = x + y cos(xy), (b) f(x, y) = x x + y, (c) f(x, y) = log x + y x y, (d) f(x, y) = arctan x + y x y, (e) f(x, y) = cos(3x)

Más detalles

Funciones reales. Números complejos

Funciones reales. Números complejos Funciones reales. Números complejos Funciones reales 1. Encuentra todos los números reales x que verifican: a) (x 1)(x 3) > 1 b) x + 1 > 1 1 x c) x 1 + x + 1 < 1 d) 5 < x 2 14x + 5 < 26 2. Si la gráfica

Más detalles

BACHILLERATO FÍSICA A. HERRAMIENTAS MATEMÁTICAS DE LA FÍSICA. Dpto. de Física y Química. R. Artacho

BACHILLERATO FÍSICA A. HERRAMIENTAS MATEMÁTICAS DE LA FÍSICA. Dpto. de Física y Química. R. Artacho BACHILLERATO FÍSICA A. HERRAMIENTAS MATEMÁTICAS DE LA FÍSICA R. Artacho Dpto. de Física y Química ÍNDICE 1. Áreas y volúmenes de figuras geométricas. Funciones trigonométricas 3. Productos de vectores

Más detalles

Tema 6: Ecuaciones diferenciales lineales.

Tema 6: Ecuaciones diferenciales lineales. Tema 6: Ecuaciones diferenciales lineales Una ecuación diferencial lineal de orden n es una ecuación que se puede escribir de la siguiente forma: a n (x)y (n) (x) + a n 1 (x)y (n 1) (x) + + a 0 (x)y(x)

Más detalles

Unidad IV: Sistemas de ecuaciones diferenciales lineales

Unidad IV: Sistemas de ecuaciones diferenciales lineales Unidad IV: Sistemas de ecuaciones diferenciales lineales 4.1 Teoría preliminar 4.1.1 Sistemas de EDL Los problemas de la vida real pueden representarse de mejor manera con la ayuda de múltiples variables.

Más detalles

Derivadas e integrales

Derivadas e integrales Derivadas e integrales Álvarez S., Caballero M.V. y Sánchez M a M salvarez@um.es, m.victori@um.es, marvega@um.es ÍNDICE Matemáticas Cero Índice. Definiciones 3. Herramientas 4.. Reglas de derivación.......................

Más detalles

Transformada de Laplace: Aplicación a vibraciones mecánicas

Transformada de Laplace: Aplicación a vibraciones mecánicas Transformada de Laplace: Aplicación a vibraciones mecánicas Santiago Gómez Jorge Estudiante de Ingeniería Electrónica Universidad Nacional del Sur, Avda. Alem 1253, B8000CPB Bahía Blanca, Argentina thegrimreaper7@gmail.com

Más detalles

Laboratorio Nº 4 Ecuaciones diferenciales de orden n. Ecuación lineal homogénea. Soluciones linealmente independientes

Laboratorio Nº 4 Ecuaciones diferenciales de orden n. Ecuación lineal homogénea. Soluciones linealmente independientes Universidad Diego Portales Segundo Semestre 2007 Facultad de Ingeniería Instituto de Ciencias Básicas Asignatura: Ecuaciones Diferenciales Laboratorio Nº 4 Ecuaciones diferenciales de orden n. Ecuación

Más detalles

TERCER TRABAJO EN GRUPO Grupo 10

TERCER TRABAJO EN GRUPO Grupo 10 TERCER TRABAJO EN GRUPO Grupo 10 Problema 1.- Se considera la ecuación x 3 + x + mx 6 = 0. Utilizando el Teorema de Bolzano demostrar que: (i) Si m > 3 la ecuación tiene al menos una raíz real menor que.

Más detalles

VELOCIDAD Y ACELERACION. RECTA TANGENTE.

VELOCIDAD Y ACELERACION. RECTA TANGENTE. VELOCIDAD Y ACELERACION. RECTA TANGENTE. 3. Describir la trayectoria y determinar la velocidad y aceleración del movimiento descrito por las curvas siguientes: (a) r (t) = i 4t 2 j + 3t 2 k. (b) r (t)

Más detalles

8.4. CRITERIO DE ESTABILIDAD POR EL METODO DIRECTO DE LIAPUNOV

8.4. CRITERIO DE ESTABILIDAD POR EL METODO DIRECTO DE LIAPUNOV 8.4. CRITERIO DE ESTAB.: METODO DE LIAPUNOV 309 8.4. CRITERIO DE ESTABILIDAD POR EL METODO DIRECTO DE LIAPUNOV Consideremos el sistema autónomo dx = F (x, y) dt (8.32) dt = G(x, y), y supongamos que tiene

Más detalles

CLAVE: MIS 206 PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO

CLAVE: MIS 206 PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO MATEMÁTICAS AVANZADAS PARA LA INGENIERÍA EN SISTEMAS CLAVE: MIS 206 PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO 1 1. SISTEMAS LINEALES DISCRETOS Y CONTINUOS 1.1. Modelos matemáticos 1.2. Sistemas 1.3. Entrada

Más detalles

INSTRUCCIONES GENERALES Y VALORACIÓN OPCIÓN A

INSTRUCCIONES GENERALES Y VALORACIÓN OPCIÓN A INSTRUCCIONES GENERALES Y VALORACIÓN Instrucciones: El examen presenta dos opciones A y B; el alumno deberá elegir una y sólo una de ellas, y resolver los cuatro ejercicios de que consta. No se permite

Más detalles

2. Método de separación de variables

2. Método de separación de variables APUNTES DE AMPIACIÓN DE MATEMÁTICAS II PARA INGENIEROS DE TEECOMUNICACIONES Elaborados por Arturo de Pablo, Domingo Pestana y José Manuel Rodríguez 2. Método de separación de variables 2.1. Separación

Más detalles

DERIVADAS PARCIALES Y APLICACIONES

DERIVADAS PARCIALES Y APLICACIONES CAPITULO IV CALCULO II 4.1 DEFINICIÓN DERIVADAS PARCIALES Y APLICACIONES En cálculo una derivada parcial de una función de diversas variables es su derivada respecto a una de esas variables con las otras

Más detalles

UNIDADES TECNOLÓGICAS DE SANTANDER DEPARTAMENTO DE CIENCIAS BÁSICAS CÁLCULO MULTIVARIABLE Primer Parcial

UNIDADES TECNOLÓGICAS DE SANTANDER DEPARTAMENTO DE CIENCIAS BÁSICAS CÁLCULO MULTIVARIABLE Primer Parcial Primer Parcial Identifica los criterios de convergencia para determinar si una serie es convergente o no. 1,2 Representa una función mediante una serie de potencias estableciendo el intervalo de convergencia.

Más detalles

IDENTIDADES DE ÁNGULOS DOBLE Y MEDIOS

IDENTIDADES DE ÁNGULOS DOBLE Y MEDIOS FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS GRADO: 10 TALLER Nº: 10 SEMESTRE 1 IDENTIDADES DE ÁNGULOS DOBLE Y MEDIOS RESEÑA HISTÓRICA Jean Baptiste Joseph Fourier. (176 en Auxerre

Más detalles

6.4 Método de solución de las ecuaciones diferenciales parciales (directos, equiparables con las ordinarias, separación de variables)

6.4 Método de solución de las ecuaciones diferenciales parciales (directos, equiparables con las ordinarias, separación de variables) 6.4 Método de solución de las ecuaciones diferenciales parciales(directos, equiparables con las ordinarias, separación de variables) 439 6.4 Método de solución de las ecuaciones diferenciales parciales

Más detalles

Funciones de Una Variable Real I. Derivadas

Funciones de Una Variable Real I. Derivadas Contents : Derivadas Universidad de Murcia Curso 2010-2011 Contents 1 Funciones derivables Contents 1 Funciones derivables 2 Contents 1 Funciones derivables 2 3 Objetivos Funciones derivables Definir,

Más detalles

La cuerda vibrante. inicialmente se encuentra sobre el eje de abscisas x la posición de un punto de la cuerda viene descrita por su posición vertical

La cuerda vibrante. inicialmente se encuentra sobre el eje de abscisas x la posición de un punto de la cuerda viene descrita por su posición vertical la cuerda es extensible La cuerda vibrante inicialmente se encuentra sobre el eje de abscisas x la posición de un punto de la cuerda viene descrita por su posición vertical y(x, t) la posición depende

Más detalles

ALGEBRA. Escuela Politécnica Superior de Málaga

ALGEBRA. Escuela Politécnica Superior de Málaga ALGEBRA. Escuela Politécnica Superior de Málaga Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Espacio vectorial. Espacios vectoriales R n. Dependencia e independencia lineal. Base. Matrices y determinantes.

Más detalles

INSTRUCTIVO PARA TUTORÍAS

INSTRUCTIVO PARA TUTORÍAS INSTRUCTIVO PARA TUTORÍAS Las tutorías corresponden a los espacios académicos en los que el estudiante del Politécnico Los Alpes puede profundizar y reforzar sus conocimientos en diferentes temas de cara

Más detalles

1. Usando la definición correspondiente demostrar que la función. z = f(x, y) = 3x xy 2

1. Usando la definición correspondiente demostrar que la función. z = f(x, y) = 3x xy 2 1. Usando la definición correspondiente demostrar que la función es diferenciable en todo R 2. z = f(x, y = 3x xy 2 Se debe verificar que para todo (a, b en R 2, existen funciones, de = x y k = y, ɛ 1

Más detalles

Ejercicios de Variables Aleatorias

Ejercicios de Variables Aleatorias Ejercicios de Variables Aleatorias Elisa M. Molanes-López, Depto. Estadística, UC3M Transformaciones de variables aleatorias Ejercicio. Sea X una v.a. continua con función de densidad dada por: /, si

Más detalles

Álgebra Lineal VII: Independencia Lineal.

Álgebra Lineal VII: Independencia Lineal. Álgebra Lineal VII: Independencia Lineal José María Rico Martínez Departamento de Ingeniería Mecánica División de Ingenierías, Campus Irapuato-Salamanca Universidad de Guanajuato email: jrico@salamancaugtomx

Más detalles

Tarea 1 - Vectorial 201420

Tarea 1 - Vectorial 201420 Tarea - Vectorial 040. Part :. - 3... Hacer parametrización de la curva de intersección del cilindro x + y = 6 y el plano x + z = 5. Encontrar las coordenadas de los puntos de la curva donde la curvatura

Más detalles

APLICACIONES DE LAS SERIES DE FOURIER

APLICACIONES DE LAS SERIES DE FOURIER APLICACIONES DE LAS SERIES DE FOURIER Renato Álvarez Nodarse 1. Resolución de EDPs 1.1. La ecuación de ondas En este apartado vamos a usar las series de Fourier para resolver la ecuación de ondas unidimensional

Más detalles

1. ECUACIONES DIFERENCIALES ORDINARIAS

1. ECUACIONES DIFERENCIALES ORDINARIAS 1 1. ECUACIONES DIFERENCIALES ORDINARIAS 1.1. PRIMERAS DEFINICIONES. PROBLEMA DEL VALOR INICIAL Definición 1.1. Una ecuación diferencial es una ecuación en la que intervienen una variable dependiente y

Más detalles

PRÁCTICA DE LABORATORIO - trigonometría Funciones trigonométricas y ondas senoides.

PRÁCTICA DE LABORATORIO - trigonometría Funciones trigonométricas y ondas senoides. PRÁCTICA DE LABORATORIO - trigonometría Funciones trigonométricas y ondas senoides. Objetivos: Identificar y familiarizarse con las ondas senoides. construir e identificar claramente las características

Más detalles

EXAMEN EXTRAORDINARIO 8 de julio de 2016

EXAMEN EXTRAORDINARIO 8 de julio de 2016 CÁLCULO I EXAMEN EXTRAORDINARIO 8 de julio de 16 Apellidos: Titulación: Duración del eamen: horas y 3 minutos Fecha publicación notas: 18-7-16 Fecha revisión eamen: 1-7-16 Todas las respuestas deben de

Más detalles

ECUACIONES DIFERENCIALES AUTÓNOMAS Y ESTABILIDAD DE LOS PUNTOS DE EQUILIBRIO Complemento sobre Ecuaciones Diferenciales para los cursos de Cálculo

ECUACIONES DIFERENCIALES AUTÓNOMAS Y ESTABILIDAD DE LOS PUNTOS DE EQUILIBRIO Complemento sobre Ecuaciones Diferenciales para los cursos de Cálculo ECUACIONES DIFERENCIALES AUTÓNOMAS Y ESTABILIDAD DE LOS PUNTOS DE EQUILIBRIO Complemento sobre Ecuaciones Diferenciales para los cursos de Cálculo Eleonora Catsigeras * 17 de Noviembre 2013 Notas para

Más detalles

1. SISTEMAS DE ECUACIONES DIFERENCIALES

1. SISTEMAS DE ECUACIONES DIFERENCIALES 1 1 SISTEMAS DE ECUACIONES DIFERENCIALES 11 SISTEMAS LINEALES DE PRIMER ORDEN Un sistema de ecuaciones diferenciales del tipo dx 1 dt a 11 tx 1 + a 1n tx n + f 1 t dx n dt a n1 tx 1 + a nn tx n + f n t

Más detalles

Unidad V. 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales.

Unidad V. 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales. Unidad V Aplicaciones de la derivada 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales. Una tangente a una curva es una recta que toca la curva en un solo punto y tiene la misma

Más detalles

1 Autor: José Arturo Barreto M.A. Páginas web: www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve Correo electrónico: josearturobarreto@yahoo.com Guía preparada a partir de las secciones 11.5 a

Más detalles

Ejemplos Desarrollados

Ejemplos Desarrollados Universidad de Santiago de Chile Departamento de Ingeniería Mecánica Mecánica de Medios Continuos Eugenio Rivera Mancilla Ejemplos Desarrollados 1. Una placa rectangular homogénea, de masa m, cuyas aristas

Más detalles

Tasa de variación. Tasa de variación media

Tasa de variación. Tasa de variación media Tasa de variación Consideremos una función y = f(x) y consideremos dos puntos próximos sobre el eje de abscisas "a" y "a+h", siendo "h" un número real que corresponde al incremento de x (Δx). Se llama

Más detalles

Tema 1 Generalidades sobre Ecuaciones Diferenciales Ordinarias (E.D.O.)

Tema 1 Generalidades sobre Ecuaciones Diferenciales Ordinarias (E.D.O.) Tema 1 Generalidades sobre Ecuaciones Diferenciales Ordinarias (E.D.O.) 1.1 Definiciones Se llama ecuación diferencial a toda ecuación que contiene las derivadas de una o más variables dependientes respecto

Más detalles

Capítulo 1 Vectores. 26 Problemas de selección - página 13 (soluciones en la página 99)

Capítulo 1 Vectores. 26 Problemas de selección - página 13 (soluciones en la página 99) Capítulo 1 Vectores 26 Problemas de selección - página 13 (soluciones en la página 99) 21 Problemas de desarrollo - página 22 (soluciones en la página 100) 11 1.A PROBLEMAS DE SELECCIÓN Sección 1.A Problemas

Más detalles

Ejercicios para el Examen departamental

Ejercicios para el Examen departamental Departamento de Física Y Matemáticas Ejercicios para el Examen departamental 1ª Parte M. en I.C. J. Cristóbal Cárdenas O. 15/08/2011 Ejercicios para el examen departamental de Cálculo 1 primera parte A

Más detalles

Introducción La Circunferencia Parábola Elipse Hiperbola. Conicas. Hermes Pantoja Carhuavilca

Introducción La Circunferencia Parábola Elipse Hiperbola. Conicas. Hermes Pantoja Carhuavilca Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Matematica I Contenido 1 Introducción 2 La Circunferencia 3 Parábola 4 Elipse 5 Hiperbola Objetivos Se persigue que el estudiante:

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- Sea f : R R definida por f(x) = x 3 +ax 2 +bx+c. a) [1 75 puntos] Halla a,b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1 2 y que la recta tangente en

Más detalles

Hoja de Prácticas tema 2: Derivación de Funciones de Varias Variables. (d) z = arctan(xy) (e) z = arcsin(x+y) (f) z = x y. x 2 +y 2 +z 2, ω xx =

Hoja de Prácticas tema 2: Derivación de Funciones de Varias Variables. (d) z = arctan(xy) (e) z = arcsin(x+y) (f) z = x y. x 2 +y 2 +z 2, ω xx = Cálculo II EPS (Grado TICS) Curso 2012-2013 Hoja de Prácticas tema 2: Derivación de Funciones de Varias Variables 1. Hallar las derivadas parciales primera y segunda de las siguientes funciones: (a) z

Más detalles

* e e Propiedades de la potenciación.

* e e Propiedades de la potenciación. ECUACIONES DIFERENCIALES 1 REPASO DE ALGUNOS CONCEPTOS PREVIOS AL ESTUDIO DE LAS ECUACIONES DIFERENCIALES 1. Cuando hablamos de una función en una variable escribíamos esta relación como y = f(x), esta

Más detalles

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 7: Lunes 22 - Viernes 27 de Abril. Contenidos

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 7: Lunes 22 - Viernes 27 de Abril. Contenidos Coordinación de Matemática I (MAT01) 1 er Semestre de 013 Semana 7: Lunes - Viernes 7 de Abril Cálculo Contenidos Clase 1: Álgebra de límites. Teorema del Sandwich. Cálculo de límites. Límites trigonométricos.

Más detalles

Órdenes y funciones básicas (segunda parte) Práctica 2.

Órdenes y funciones básicas (segunda parte) Práctica 2. Práctica 2. Órdenes y funciones básicas (segunda parte) Operaremos con matrices, resolveremos ecuaciones y Objetivos: sistemas y calcularemos límites, derivadas e integrales 2 3 7 Una matriz es una lista

Más detalles

CAPÍTULO 2. SOLUCIÓN DE ECUACIONES DE UNA VARIABLE

CAPÍTULO 2. SOLUCIÓN DE ECUACIONES DE UNA VARIABLE En este capítulo analizaremos uno de los problemas básicos del análisis numérico: el problema de búsqueda de raíces. Si una ecuación algebraica o trascendente es relativamente complicada, no resulta posible

Más detalles

PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO

PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO 1. Una onda transversal se propaga en una cuerda según la ecuación (unidades en el S.I.) Calcular la velocidad de propagación de la onda y el estado de vibración

Más detalles

Función diferenciable Regla de la cadena (2 variables) Regla de la cadena (vectorial) Diferenciabilidad

Función diferenciable Regla de la cadena (2 variables) Regla de la cadena (vectorial) Diferenciabilidad Diferenciabilidad 1 Función diferenciable 2 Regla de la cadena (2 variables) 3 Regla de la cadena (vectorial) OBJETIVO Generalizar el concepto de diferenciabilidad (conocido ya para funciones de una variable)

Más detalles

Ejercicios Resueltos de Cálculo III.

Ejercicios Resueltos de Cálculo III. Ejercicios Resueltos de Cálculo III. 1.- Considere y. a) Demuestre que las rectas dadas se cortan. Encuentre el punto de intersección. b) Encuentre una ecuación del plano que contiene a esas rectas. Como

Más detalles

Funciones de varias variables: problemas propuestos

Funciones de varias variables: problemas propuestos Funciones de varias variables: problemas propuestos BENITO J. GONZÁLEZ RODRÍGUEZ (bjglez@ull.es) DOMINGO HERNÁNDEZ ABREU (dhabreu@ull.es) MATEO M. JIMÉNEZ PAIZ (mjimenez@ull.es) M. ISABEL MARRERO RODRÍGUEZ

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 26 de Junio de 2008 Primera parte. =1, a,b > 0.

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 26 de Junio de 2008 Primera parte. =1, a,b > 0. ÁLULO Primer curso de ngeniero de Telecomunicación Examen Final. 6 de Junio de 8 Primera parte Ejercicio. onsideremos los rectángulos de lados paralelos a los ejes que pueden inscribirse en la elipse x

Más detalles

Práctica 1. Espacios vectoriales

Práctica 1. Espacios vectoriales Práctica 1. Espacios vectoriales 1. Demuestre que R n (C n ) es un espacio vectorial sobre R (C) con la suma y el producto por un escalar usuales. Es C n un R-espacio vectorial con la suma y el producto

Más detalles

Modelización por medio de sistemas

Modelización por medio de sistemas SISTEMAS DE ECUACIONES DIFERENCIALES LINEALES. Modelización por medio de sistemas d y dy Ecuaciones autónomas de segundo orden: = f ( y, ) Una variable independiente. Una variable dependiente. La variable

Más detalles

ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR DE COEFICIENTES VARIABLES

ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR DE COEFICIENTES VARIABLES ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR DE COEFICIENTES VARIABLES MÉTODO DE CAUCHY-EULER ING. JONATHAN ALEJANDRO CORTÉS MONTES DE OCA ESIME CULHUACAN En el tema anterior tocamos el caso de las ecuaciones

Más detalles

Define las unidades y forma de medir propiedades físicas. 1. Competencias Básicas: I. ECUACIONES DIFERENCIALES 1.1. Definición.

Define las unidades y forma de medir propiedades físicas. 1. Competencias Básicas: I. ECUACIONES DIFERENCIALES 1.1. Definición. UNIVERSIDAD AUTÓNOMA DE CHIHUAHUA UNIDAD ACADÉMICA PROGRAMA DEL CURSO: ECUACIONES DIFERENCIALES DES: Ingeniería Programa(s) Educativo(s): Ingeniería Civil Tipo de materia: Obligatoria Clave de la materia:

Más detalles

3 Curvas alabeadas. Solución de los ejercicios propuestos.

3 Curvas alabeadas. Solución de los ejercicios propuestos. 3 Curvas alabeadas. Solución de los ejercicios propuestos.. Se considera el conjunto C = {(x, y, z R 3 : x y + z = x 3 y + z = }. Encontrar los puntos singulares de la curva C. Solución: Llamemos f (x,

Más detalles

1 - Ecuaciones. Sistemas de Ecuaciones Mixtos

1 - Ecuaciones. Sistemas de Ecuaciones Mixtos Nivelación de Matemática MTHA UNLP 1 1 - Ecuaciones. Sistemas de Ecuaciones Mixtos 1. Conjuntos numéricos Los números mas comunes son los llamados NATURALES O ENTEROS POSI- TIVOS: 1,, 3,... Para designar

Más detalles

DERIVADAS. Para hallar la pendiente de una curva en algún punto hacemos uso de la recta tangente de una curva en un punto.

DERIVADAS. Para hallar la pendiente de una curva en algún punto hacemos uso de la recta tangente de una curva en un punto. DERIVADAS Tema: La derivada como pendiente de una curva Para hallar la pendiente de una curva en algún punto hacemos uso de la recta tangente de una curva en un punto. La pendiente de la curva en el punto

Más detalles

Ciencias Básicas y Matemáticas

Ciencias Básicas y Matemáticas UNIVERSIDAD AUTÓNOMA DE CHIHUAHUA UNIDAD ACADÉMICA DES: Programa(s) Educativo(s): Tipo de materia: Clave de la materia: Semestre: 3 Área en plan de estudios: Ingeniería Ingeniería en Tecnología de Procesos

Más detalles

x 2 + 1, si x 0 1 x 2 si x < 0 e x, si x > 0 x si 0 x < 2 f(x) = x + 2 si 2 x < 3 2x 1 si 3 x < 4 tgx, 0 < x < π/4

x 2 + 1, si x 0 1 x 2 si x < 0 e x, si x > 0 x si 0 x < 2 f(x) = x + 2 si 2 x < 3 2x 1 si 3 x < 4 tgx, 0 < x < π/4 CÁLCULO. Curso 2003-2004. Tema 7. Derivabilidad.. Estudiar la continuidad y la derivabilidad de las funciones: {, si 0 (a) e, si > 0 2 +, si > 0 (b), si = 0 2. Dada la función (c) 2 si < 0 e, si > 0 2

Más detalles

Elementos de Cálculo en Varias Variables

Elementos de Cálculo en Varias Variables Elementos de Cálculo en Varias Variables Departamento de Matemáticas, CSI/ITESM 5 de octubre de 009 Índice Introducción Derivada parcial El Jacobiano de una Función 5 Derivadas Superiores 5 5 Derivada

Más detalles

Teoremas de convergencia y derivación bajo el signo integral

Teoremas de convergencia y derivación bajo el signo integral Capítulo 8 Teoremas de convergencia y derivación bajo el signo integral En este capítulo estudiaremos sucintamente bajo qué circunstancias puede intercambiarse el orden de la integral con las operaciones

Más detalles

Trabajo Práctico N 5: ESPACIOS VECTORIALES

Trabajo Práctico N 5: ESPACIOS VECTORIALES Trabajo Práctico N 5: ESPACIOS VECTORIALES Ejercicio 1: Determine si los siguientes conjuntos con las operaciones definidas en cada caso son o no espacios vectoriales. Para aquellos que no lo sean, indique

Más detalles

Cálculo Integral Enero 2015

Cálculo Integral Enero 2015 Cálculo Integral Enero 015 Laboratorio # 1 Antiderivadas I.- Halle las siguientes integrales indefinidas. 10) ) 6) 1 1 1 1 16) 1 8) 9) 18) II.- Calcule 1.. 1 Cálculo Integral Enero 015 Laboratorio # Aplicaciones

Más detalles

Grado en Química Bloque 1 Funciones de una variable

Grado en Química Bloque 1 Funciones de una variable Grado en Química Bloque Funciones de una variable Sección.4: La derivada y sus propiedades básicas. La Regla de la cadena. El concepto de derivada aparece en muchas situaciones en la ciencias: en matemáticas

Más detalles

Figura Trabajo de las fuerzas eléctricas al desplazar en Δ la carga q.

Figura Trabajo de las fuerzas eléctricas al desplazar en Δ la carga q. 1.4. Trabajo en un campo eléctrico. Potencial Clases de Electromagnetismo. Ariel Becerra Al desplazar una carga de prueba q en un campo eléctrico, las fuerzas eléctricas realizan un trabajo. Este trabajo

Más detalles

3. Determinantes. Propiedades. Depto. de Álgebra, curso

3. Determinantes. Propiedades. Depto. de Álgebra, curso Depto de Álgebra curso 06-07 3 Determinantes Propiedades Ejercicio 3 Use la definición para calcular el valor del determinante de cada una de las siguientes matrices: 3 0 0 α A = 5 4 0 A = 6 A 3 = 0 β

Más detalles

VARIABLE COMPLEJA Y ANÁLISIS FUNCIONAL

VARIABLE COMPLEJA Y ANÁLISIS FUNCIONAL VARIABLE COMPLEJA Y ANÁLISIS FUNCIONAL (Curso 00-00) HOJA Ejercicio. Determina en qué recintos es holomorfa la siguiente función: f(x + iy) x + ay + i(bx + cy) En este caso consideramos: u(x, y) x + ay

Más detalles

Métodos de solución de ED de primer orden

Métodos de solución de ED de primer orden CAPÍTULO Métodos de solución de ED de primer orden.3 Ecuaciones diferenciales lineales Las ecuaciones diferenciales ordinarias de primer orden pueden ser lineales o no lineales. En esta sección centraremos

Más detalles

INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA

INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA Pobre del estudiante que no aventaje a su maestro. LA LÍNEA RECTA Leonardo da Vinci DESEMPEÑOS Identificar, interpretar, graficar

Más detalles

Contenido 1. Integrales Dobles 2. Integrales Triples

Contenido 1. Integrales Dobles 2. Integrales Triples Integración Contenido 1. Integrales Dobles 2 1.1. Integrales iteradas............................. 2 1.2. Regiones en R 2.............................. 3 1.3. Volumen..................................

Más detalles

COORDINACIÓN DE CIENCIAS APLICADAS. Ecuaciones diferenciales de primer orden lineales y no lineales 2.

COORDINACIÓN DE CIENCIAS APLICADAS. Ecuaciones diferenciales de primer orden lineales y no lineales 2. UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA PROGRAMA DE ESTUDIO 1325 ECUACIONES DIFERENCIALES Asignatura CIENCIAS BÁSICAS Clave Optativa Créditos INGENIERÍA INDUSTRIAL Departamento X

Más detalles

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIONES CURSO CERO DE MATEMATICAS Apuntes elaborados por Domingo Pestana Galván y José Manuel Rodríguez García UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica

Más detalles

Algebra Lineal XXVI: La Regla de Cramer.

Algebra Lineal XXVI: La Regla de Cramer. Algebra Lineal XXVI: La Regla de Cramer José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato email: jrico@salamancaugtomx

Más detalles

Ortogonalidad y Series de Fourier

Ortogonalidad y Series de Fourier Capítulo 4 Ortogonalidad y Series de Fourier El adjetivo ortogonal proviene del griego orthos (recto) y gonia (ángulo). Este denota entonces la perpendicularidad entre dos elementos: dos calles que se

Más detalles

Asignatura: Horas: Total (horas): Obligatoria X Teóricas 4.5 Semana 4.5 Optativa Prácticas Semanas 72.0

Asignatura: Horas: Total (horas): Obligatoria X Teóricas 4.5 Semana 4.5 Optativa Prácticas Semanas 72.0 UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA PROGRAMA DE ESTUDIO Aprobado por el Consejo Técnico de la Facultad de Ingeniería en su sesión ordinaria del 19 de noviembre de 2008 ECUACIONES

Más detalles

1 Ecuaciones diferenciales

1 Ecuaciones diferenciales 1 Ecuaciones diferenciales La solución a una ecuación algebraica es un número, o un conjunto de números que satisfacen la ecuación. Por ejemplo las soluciónes de x 2 4x + 3 = 0 son x 0 = 1 y x 1 = 3. Las

Más detalles

CÁLCULO DIFERENCIAL Muestras de examen

CÁLCULO DIFERENCIAL Muestras de examen CÁLCULO DIFERENCIAL Muestras de examen Febrero 2012 T1. [2] Demostrar que la imagen continua de un conjunto compacto es compacto. T2. [2.5] Definir la diferencial de una función en un punto y demostrar

Más detalles

Funciones de Clase C 1

Funciones de Clase C 1 Capítulo 7 Funciones de Clase C 1 Vamos a considerar ahora la extensión a varias variables del concepto de función de clase C 1. Cada vez que establezcamos una propiedad de las funciones diferenciables,

Más detalles

Métodos directos para resolver sistemas de ecuaciones lineales

Métodos directos para resolver sistemas de ecuaciones lineales Métodos directos para resolver sistemas de ecuaciones lineales Problemas para examen Si en algún problema se pide calcular el número de flops (operaciones aritméticas con punto flotante), entonces en el

Más detalles

Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas.

Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas. Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas. 1.- Determine la velocidad con que se propagación de una onda a través de una cuerda sometida ala tensión F, como muestra la figura. Para ello considere

Más detalles

Ecuaciones cuadráticas Resolver ecuaciones cuadráticas casos especiales

Ecuaciones cuadráticas Resolver ecuaciones cuadráticas casos especiales Ecuaciones cuadráticas Resolver ecuaciones cuadráticas casos especiales Departamento de Matemáticas Universidad de Puerto Rico - Arecibo Ecuación cuadrática en forma general Una ecuación cuadrática tiene

Más detalles

Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y Ciencias de la Computación

Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y Ciencias de la Computación Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y Ciencias de la Computación EJERCICIOS RESUELTOS DE ECUACIONES NO LINEALES Profesor: Jaime Álvarez Maldonado Ayudante: Rodrigo

Más detalles

Ecuaciones diferenciales ordinarias de primer orden: problemas resueltos

Ecuaciones diferenciales ordinarias de primer orden: problemas resueltos Ecuaciones diferenciales ordinarias de primer orden: problemas resueltos BENITO J. GONZÁLEZ RODRÍGUEZ (bjglez@ull.es) DOMINGO HERNÁNDEZ ABREU (dhabreu@ull.es) MATEO M. JIMÉNEZ PAIZ (mjimenez@ull.es) M.

Más detalles