Ejercicios de Optimización y Simulación. Hoja 1

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Ejercicios de Optimización y Simulación. Hoja 1"

Transcripción

1 Ejercicios de Optimización y Simulación. Hoja 1 1. Deducir razonadamente la verdad o falsedad de las siguientes afirmaciones. Sea x 0 R tal que las funciones f(x) y g(x) tienen un extremo local en x 0 (a) La función h(x)=f(x)+g(x) tiene un extremo local en x 0. (b) La función h(x)=f(x)-g(x) tiene un extremo local en x 0. (c) La función h(x)=f(x).g(x) tiene un extremo local en x 0. (d) La función h(x)=f(x)/g(x) tiene un extremo local en x Deducir razonadamente la verdad o falsedad de las siguientes afirmaciones. Sean f(x) y g(x) funciones reales que tienen un mínimo local en los puntos x = x 0 y x = 0. (a) La función h(x) = f(f(x)) tiene un extremo local en x 0. (b) La función h(x) = f(g(x)) tiene un extremo local en x 0. (c) La función h(x) = f 1 (x) tiene un extremo local en x 0. (d) La función h(x) = f 1 (g(x)) tiene un extremo local en x (3 puntos) Decir razonadamente la verdad o falsedad de la siguiente afirmación: Sea f(x) función continua y convexa en R. Si el conjunto S R es convexo, entonces el conjunto S 1 = {x R/f(x) S} también es convexo. 4. Sean f(x) y g(x) R R funciones convexas en el intervalo [a,b]. Demostrar la verdad o falsedad de las siguientes afirmaciones. (a) f(g(x)) también es convexa en [a,b]. (b) f(x) 2 también es convexa en [a,b]. (c) f 1 (x) no es convexa en [a,b]. (d) Si g(x) 0 en [a,b] entonces f(x) g(x) es convexa en [a,b]. 5. Deducir razonadamente la verdad o falsedad de las siguientes afirmaciones. Sean A,B R conjuntos convexos (a) El conjunto A B es convexo. (b) El conjunto A B es convexo. (c) El conjunto A B = {x A tal que x / B} es convexo (d) El conjunto A B R 2 = (x,y) tal que x A e y B es convexo. 6. Demostrar que el conjunto { } n n X = x = λ i x i : λ i 0, λ i = 1, donde x i R n i = 1,...,n es convexo. i=1 i=1 1

2 7. Sea A matriz de orden m n, b R m, demostrar que S = {x R n tales que Ax b} es un conjunto convexo. 8. Sea S un conjunto convexo en R n y sea A una matriz m n y α un escalar. Demostrar que los siguientes conjuntos son convexos: (a) AS = {y/y = Ax,x S} (b) αs = {αx/x S} 9. Sea P(x) polinomio real de grado n, demostrar que a lo mas, P tiene n-1 extremos locales. 10. Considerar la función f(x,y) = x 2 xy + 2y 2 2x + e x+y (a) Escribir la condición de optimalidad de primer orden. (b) Es (0,0) un punto crítico?. (c) Obtener una direccion d a lo largo de la cual la función deba decrecer. (d) Calcular el mínimo de la función en esa dirección. 11. Resolver gráficamente el siguiente problema de optimización: max y (x + 5)2 x x y Demostrar que si f(x) es positiva y tiene dos derivadas continuas en x 0, si f(x) tiene un mínimo local en x 0 entonces f 2 (x) también tiene un mínimo local en x Resolver el siguiente problema de optimizacion: min 1 xy x 1 2x x 0, y Resolver el siguiente problema de optimizacion: min(x 4) 2 + (y 2) 2 3 x y 0 4 x 2y Resolver gráficamente el siguiente problema de optimización: min (x 3)2 4 + (y 5)2 3 y 1 x + x Donde la función x es la función suelo de x. 2

3 16. Resolver el siguiente problema de optimización: min x 9 + y 6 9 x y x y 0 (1) 17. Resolver gráficamente el siguiente problema de optimización: min(x 5) 2 (y 7)2 + 4 sen(y) x 0 x 0 y 0 (2) 18. Para cada una de las funciones siguientes dar su dominio, buscar si existen extremos locales o globales y analizar la curvatura de la función (a) f(x) = x 1 x 2 (b) f(x) = x2 +1 x 2 1 (c) f(x) = ex x 1 (d) f(x) = cos(x)sen(x) (e) f(x) = ln(x) x (f) f(x) = x 2 3 (2x 5) (g) f(x) = xsen(x) 19. Supongamos que el coste total de fabricacion de x artículos viene dado por C(x) = 3x 2 + x + 48 euros. (a) Cuál es el coste de fabricación de 20 artículos? (b) Cual es el coste de fabricacion del vigésimo articulo? (c) Expresar el coste de fabricación medio como funcion de x (d) Para qué valor de x es mínimo el coste medio? 20. Dadas las funciones de ingresos y costes totales de una empresa I(x) = x x para 2 x 5 C(x) = 3 4 x + 1 para 2 x 5 siendo x la producción en miles de unidades, determinese la producción óptima para obtener el máximo beneficio. 3

4 21. La curva de coste total de un artículo es y = 2x 2x 2 +x 3, donde y representa el coste total y x es la cantidad producida. Suponga que las condiciones de mercado indican que deberán producirse entre 0 y 10 unidades. (a) Obtener la curva de coste medio. (b) Estudiar los óptimos de la curva de coste medio. (c) Comparar los óptimos obtenidos con los valores de la función de coste medio en los extremos del intervalo de producción que indica el mercado. 22. A una empresa que cuenta con un taller de reparación de maquinaria que utiliza se le presenta el problema de determinar el número de obreros que constituye la plantilla óptima del taller. Para ello se estudian las condiciones de trabajo y el coste de mantenimiento, obteniendose los siguientes datos: (a) La reparación de una maquina requiere, por termino medio, 3 obreros por dia. (b) La capacidad del taller permite reparar x maquinas al dia. El número medio de máquinas pendientes de reparación que un día cualquiera hay en el taller viene determinado por N(x) = 10/(x 10). (c) La jornada de trabajo es de 8 horas con un salario de 200 unidades/h por obrero. (d) El coste de inactividad de una maquina es de 1920 unidades/dia. Determinese el número óptimo de obreros. 23. Con el fin de adquirir una empresa se efectúa un estudio de la estructura de costes totales y de la demanda de la misma, obteniendose: (a) Los costes fijos vienen dados por la función K(x) = y los costes variables por la función CV (x) =.01xK(x) + L(x) siendo x las unidades producidas y L(x) = 12000x 0,005x 2 el coste de mano de obra. (b) La demanda del mercado viene dada por la función f(p) = p donde p es el precio de cada unidad vendida. En el supuesto de que la empresa es capaz de colocar en el mercado toda la producción, se pide: (a) El nivel de producción que proporciona el beneficio máximo. (b) El precio por unidad para ese nivel de producción 24. Una firma de plásticos ha recibido un pedido para fabricar 800 tablas especiales de espuma de plástico para entrenamientos de natación. La firma posee 10 máquinas, cada una de las cuales puede producir 30 tablas de entrenamientos cada hora. El coste de adaptacion de las maquinas para producir las tablas especiales es de 20 unidades por maquina. Una vez las máquinas han sido adaptadas, la operación es completamente automática y puede ser supervisada por un solo capataz, cuyo salario es de 4,8 unidades/hora. Cuantas máquinas deben adaptarse para reducir al mínimo el coste de fabricación de dichas tablas. 4

5 25. Una empresa recibe el encargo de fabricar piezas, para lo cual pedirá al INEM que le facilite la contratación de un número de trabajadores entre 3 y 13. Cada pieza del encargo se compone de 100g de hierro y 200g de aluminio, siendo los precios de compra del kilogramo de hierro y alumunio respectivamente de 2000 y 1500 unidades. Se sabe que el salario por hora de cada trabajador es de 800 unidades, que los gastos de administración y gestión son de unidades y que el número de piezas que los trabajadores pueden realizar en una hora de trabajo viene dado por la función p(x) = x 2 +16x 36 donde x es el número de trabajadores contratados. Se pide: (a) La función de costes totales del pedido en función del número de trabajadores contratados. (b) El número de trabajadores a contratar para que se minimicen los coestes totales del pedido. En cuanto tiempo realizaran el pedido? (c) El numero de trabajadores a contratar si se desea entregar el pedido lo antes posible. Cual sería entonces el coste del pedido? 26. Suponga que usted es gerente de una empresa que comercializa un producto con la siguiente estructura de costes (a) Costes fijos unidades (b) Coste de mano de obra por unidad de producto 120 unidades (c) Coste de materia prima: El 40% del coste de la mano de obra. Sabiendo que la curva de demanda es p = 400 (1/q) donde p es el precio de venta al público y q es el nivel de producción, se pide: (a) El nivel de producción y precio al que se maximiza la función de ingresos (b) El nivel de producción y precio al que se maximiza la función de beneficios (c) Si el coste de la materia prima fuese un 20% del precio de venta al público, Crees que la empresa obtendría mayores beneficios? 27. Una empresa compra y vende anualmente litros de la bebida X. La política actual de compras consiste en adquirir una vez al mes 1000 litros de dicha bebida. El precio de coste de un litro de la bebida X es de 300 unidades, los gastos administrativos de realizar cada pedido son de unidades y el coste diario de mantenimiento en almacen es de 1,5 unidades por litro. Si es estima que el número de litros que, en promedio, hay en el almacen es la mitad de los litros que contiene un pedido, y que el año tiene 360 dias, se pide: (a) Calcular el coste total que actualmente soporta la empresa cada año, entendiendo como tal el coste de la bebida, los costes de realizar los pedidos y el coste de mantenimiento en almacen. (b) Suponiendo que se mantienen las ventas, modificar la actual política de compras para que se minimice la función de costes totales anuales. 5

6 28. Calcular puntos críticos de las siguientes funciones y determinar cuales de ellos son máximos o mínimos locales y cuales son puntos de silla (a) f(x,y) = x 2 y 2 + xy (b) f(x,y) = x 2 y 2 xy (c) f(x,y) = x 2 y 2 + 2xy (d) f(x,y) = x 2 y 2 + 3xy (e) f(x,y) = e 1+x2 +y 2 (f) f(x,y) = log(x 2 + y 2 + 1) (g) f(x,y) = x 2 3xy + 5x 2y + 6y (h) f(x,y) = 3x 2 + 2xy + 2x + y 2 + y + 4 (i) f(x,y) = (y 3x 2 )(y x 2 ) (j) f(x,y) = sen(x 2 +y 2 ) (Estudiar solamente el punto critico (0,0)) (k) f(x,y) = cos(x 2 +y 2 ) (Estudiar solamente los puntos criticos (0,0),( π/2, π/2),(0, π)) (l) f(x,y) = y + xsen(y) (m) f(x,y) = e x cos(y) (n) f(x,y) = (x y)(xy 1) (o) f(x,y) = xy + 1 x + 1 y (p) f(x,y) = log(2 + sen xy) (q) f(x,y) = x sen(y) (r) f(x,y) = (x + y)(xy + 1) 29. Calcular el punto del plano 2x y + 2z = 20 más cercano al origen. 30. Mostrar que la caja rectangular de volumen fijo que tiene superficie mínima es un cubo. 31. Mostrar que la caja rectangular con superficie mímima que tiene el volumen máximo es un cubo. 32. Escribir el numero 120 como suma de tres números, de modo que la suma de los productos tomados dos a dos sea máxima 33. Calcular el mínimo de la función f(x) = 6e 2x + 2x 2 Por cada uno de los siguientes métodos (a) Método de la razón aúrea (b) Método de la busqueda dicotómica (c) Método de Newton (d) Método de la bisección (e) Método de Fibonacci Tomar como longitud final admisible l =.01 y como intervalo de incertidumbre ( 3, 3). Tomar ǫ =

, hallar su dominio, los puntos de corte con los ejes y la pendiente de la recta x 2-4 tangente a la gráfica de la función en x = 1.

, hallar su dominio, los puntos de corte con los ejes y la pendiente de la recta x 2-4 tangente a la gráfica de la función en x = 1. . [04] [ET-A] El beneficio semanal (en miles de euros) que obtiene una fábrica por la producción de aceite viene dado por la función B(x) = -x +6x-8, donde x representa los hectolitros de aceite producidos

Más detalles

e x -1 2 e x [2013] [JUN] Dependiendo de los valores de a, estudia la continuidad de la función f(x) = . a si x = 0

e x -1 2 e x [2013] [JUN] Dependiendo de los valores de a, estudia la continuidad de la función f(x) = . a si x = 0 . [204] [ET-A] Sea = (x)2 x-. i) Determina el dominio de f. ii) Halla sus asíntotas. iii) Determina los extremos relativos y estudia la monotonía de f. iv) Dibuja la gráfica de f destacando los elementos

Más detalles

Aproximaciones de funciones y problemas de extremos

Aproximaciones de funciones y problemas de extremos Aproximaciones de funciones y problemas de extremos José Vicente Romero Bauset ETSIT-curso 2009/2010 José Vicente Romero Bauset Tema 5.- Aproximaciones de funciones y problemas de extremos 1 Teorema de

Más detalles

1.- Para cada una de las siguientes situaciones, escribir un programa matemático que permita obtener su solución.

1.- Para cada una de las siguientes situaciones, escribir un programa matemático que permita obtener su solución. Tema 1. Programas matemáticos 1.- Para cada una de las siguientes situaciones, escribir un programa matemático que permita obtener su solución. a) Una empresa produce tres bienes cuyos precios de mercado

Más detalles

3. [2014] [JUN-A] Considere la función: f(x) = x2 +3

3. [2014] [JUN-A] Considere la función: f(x) = x2 +3 x [04] [EXT-A] Considere la función: f(x) = x-6 a) Determine el dominio y las asíntotas, si existen, de esa función b) Determine los intervalos de crecimiento y decrecimiento y los máximos y mínimos relativos,

Más detalles

(1-mx)(2x+3) x 2 +4 = 6. x > -1

(1-mx)(2x+3) x 2 +4 = 6. x > -1 . [04] [EXT-A] Sea la función f(x) = e x +ax+b a) Calcular a y b para que f(x) tenga un extremo en el punto (,). b) Calcular los extremos de la función f(x) cuando a = 0 y b = 0.. [04] [EXT-B] En la figura

Más detalles

b) Escribir una restricción de forma que los puntos obtenidos en a) no sean solución del problema restringido.

b) Escribir una restricción de forma que los puntos obtenidos en a) no sean solución del problema restringido. 1.- Sea f (x,y) = e x + e y, se pide: a) Existe algún punto óptimo de f?. b) Si se considera la función f sujeta a la restricción x + y = 2, existe algún punto óptimo?. 2.- Sea f (x,y) = x 2 + y 2 : a)

Más detalles

EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES

EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES 1 er PARCIAL 1. Obtén los valores reales que cumplen las siguientes condiciones: x+ x 3 5 x 1/ =1. Opera y expresa el resultado en notación científic (5,

Más detalles

Funciones de varias variables: continuidad derivadas parciales y optimización

Funciones de varias variables: continuidad derivadas parciales y optimización Titulación: Ingeniero en Telecomunicación. Asignatura: Cálculo. Relación de problemas número 4. Funciones de varias variables: continuidad derivadas parciales y optimización Problema 1. Determinar el dominio

Más detalles

x 2 y si x 3y 2 si x = 3y Describir el conjunto de los puntos de discontinuidad de f en coordenadas polares.

x 2 y si x 3y 2 si x = 3y Describir el conjunto de los puntos de discontinuidad de f en coordenadas polares. FIUBA 07-05-11 Análisis Matemático II Parcial - Tema 1 1. Sea f(x, y) = { x y si x 3y si x = 3y Describir el conjunto de los puntos de discontinuidad de f en coordenadas polares.. Sea G(x, y) = (u(x, y),

Más detalles

Funciones Parte 1. Prof. Derwis Rivas Olivo

Funciones Parte 1. Prof. Derwis Rivas Olivo Universidad de Los ndes Facultad de Ingeniería Escuela ásica de Ingeniería Departamento de Cálculo Funciones Parte 1 Prof. Derwis Rivas Olivo 1.- Dadas las funciones f : R R / f(x) = x 3 + x 3 y g : R

Más detalles

Métodos Numéricos I. Curso Colección de Problemas Capítulo 3. Ecuaciones no lineales. Iteración funcional HOJA 1

Métodos Numéricos I. Curso Colección de Problemas Capítulo 3. Ecuaciones no lineales. Iteración funcional HOJA 1 HOJA 1 1. Determinase que la función f(x) = x 3 + 4x 2 10 tiene una única raíz α en I = [1; 2]. Estime teóricamente cuántas iteraciones serán necesarias utilizando el método de bisección, para hallar un

Más detalles

Introducción a la optimización con algoritmos. Ejercicios. 0 2 f(x + t(y x))(y x)dt. J(x + t(y x))(y x)dt siendo J la matriz Jacobiana de F.

Introducción a la optimización con algoritmos. Ejercicios. 0 2 f(x + t(y x))(y x)dt. J(x + t(y x))(y x)dt siendo J la matriz Jacobiana de F. Introducción a la optimización con algoritmos Ejercicios Preliminares 1. Demostrar que si f C 2 (IR n ), f : IR n IR entonces f(y) f(x) = 1 0 2 f(x + t(y x))(y x)dt. 2. Demostrar que si F C 1 (IR n ),

Más detalles

EJERCICIOS DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 2: Cálculo diferencial de una variable

EJERCICIOS DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 2: Cálculo diferencial de una variable EJERCICIOS DE CÁLCULO I Para Grados en Ingeniería Capítulo 2: Cálculo diferencial de una variable Domingo Pestana Galván José Manuel Rodríguez García Índice 2. Cálculo diferencial de una variable. 2..

Más detalles

a) Representa gráficamente la función b) Calcula asíntotas, dominio, corte con los ejes y monotonía

a) Representa gráficamente la función b) Calcula asíntotas, dominio, corte con los ejes y monotonía 1. Expresa las siguientes funciones mediante forma algebraica: a) Asignar a cada número real su mitad b) Asignar a cada número real su raíz cuadrada c) Asignar a cada número real la mitad de su cuadrado

Más detalles

ALGEBRA LINEAL - Práctica N 1 - Segundo cuatrimestre de 2017 Espacios Vectoriales

ALGEBRA LINEAL - Práctica N 1 - Segundo cuatrimestre de 2017 Espacios Vectoriales Departamento de Matemática - Facultad de Ciencias Exactas y Naturales - UBA 1 ALGEBRA LINEAL - Práctica N 1 - Segundo cuatrimestre de 2017 Espacios Vectoriales Ejercicio 1. Resolver los siguientes sistemas

Más detalles

9. Diferenciación de funciones reales de varias variables reales

9. Diferenciación de funciones reales de varias variables reales 9.2. Extremos 9.2.1. POLINOMIOS DE TAYLOR Polinomios de Taylor y de McLaurin Se llama polinomio de Taylor de orden n 1 de la función f(x, y) en (a, b) al polinomio: f(a, b) f(a, b) n (x, y) = f(a, b) +

Más detalles

EJERCICIOS PROPUESTOS: Interpolación

EJERCICIOS PROPUESTOS: Interpolación EJERCICIOS PROPUESTOS: Interpolación 1º. Determínese el polinomio de primer grado que en x = 1 toma el valor y en x 1 = toma el valor. Para ello: a) Escríbase el sistema de ecuaciones lineales que proporciona

Más detalles

Examen final. 8 de enero de 2013

Examen final. 8 de enero de 2013 Cálculo I Examen final Universidade de Vigo Departamento de Matemática Aplicada II ETSI Minas 8 de enero de 2013 3 p 1 Se considera la función escalar de una variable real fx = lnx a Calcular el dominio

Más detalles

UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica Superior Departamento de Matemáticas

UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica Superior Departamento de Matemáticas UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica Superior Departamento de Matemáticas a t e a t i c a s PROBLEMAS, CÁLCULO I, er CURSO 2. CÁLCULO DIFERENCIAL DE UNA VARIABLE GRADO EN INGENIERÍA EN:

Más detalles

MATEMÁTICAS I BOLETÍN DE PROBLEMAS 3.DIFERENCIABILIDAD DE FUNCIONES REALES DE VARIABLE REAL. Moebius

MATEMÁTICAS I BOLETÍN DE PROBLEMAS 3.DIFERENCIABILIDAD DE FUNCIONES REALES DE VARIABLE REAL. Moebius 2018-19 MATEMÁTICAS I BOLETÍN DE PROBLEMAS 3.DIFERENCIABILIDAD DE FUNCIONES REALES DE VARIABLE REAL. 1. Halle la derivada de las siguientes funciones: a) f(x) = 3x 4 + 2 x 5 + 5 x 2 b) f(x) = 2x 1 2x+1

Más detalles

Apellidos:... Nombre:... Examen

Apellidos:... Nombre:... Examen Cálculo Numérico I. Grado en Matemáticas y doble grado Física/Matemáticas. 16 de junio de 017 Curso 016/017. Apellidos:... Nombre:... Examen 1. Explicar razonadamente si las siguientes afirmaciones son

Más detalles

Hoja 4 Variables aleatorias multidimensionales

Hoja 4 Variables aleatorias multidimensionales Hoja 4 Variables aleatorias multidimensionales 1.- Estudiar si F (x, y) = 1, si x + 2y 1, 0, si x + 2y < 1, es una función de distribución en IR 2. 2.- Dada la variable aleatoria 2-dimensional (X, Y )

Más detalles

TEMA V. Espacios vectoriales

TEMA V. Espacios vectoriales TEMA V. Espacios vectoriales 1 1. Demostrar que cada uno de los siguientes conjuntos tiene estructura de espacio vectorial sobre el cuerpo de los reales: a El conjunto (R 2, +,, R. b El conjunto (R 3,

Más detalles

Álgebra y Álgebra II - Segundo Cuatrimestre 2017 Práctico 4 - Espacios Vectoriales

Álgebra y Álgebra II - Segundo Cuatrimestre 2017 Práctico 4 - Espacios Vectoriales Álgebra y Álgebra II - Segundo Cuatrimestre 2017 Práctico 4 - Espacios Vectoriales (1) Sea n N. Mostrar que el conjunto de polinomios sobre R de grado menor que n es un subespacio vectorial de R[x]. Este

Más detalles

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis. (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas)

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis. (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas) Análisis (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas) Problema 1: Sea la función Determina: a) El dominio de definición. b) Las asíntotas si existen. c) El o los intervalos de

Más detalles

Tema 3. FUNCIONES. CÁLCULO DIFERENCIAL. Funciones. 1. Estudiar la acotación de las siguientes funciones:

Tema 3. FUNCIONES. CÁLCULO DIFERENCIAL. Funciones. 1. Estudiar la acotación de las siguientes funciones: Fundamentos Matemáticos para la Ingeniería. Curso 2015-2016. Tema 3. Hoja 1 Tema 3. FUNCIONES. CÁLCULO DIFERENCIAL. Funciones 1. Estudiar la acotación de las siguientes funciones: (a) y = 2x 1; (b) y =

Más detalles

Polinomios V: Desarrollo con POLINOMIOS DE TAYLOR

Polinomios V: Desarrollo con POLINOMIOS DE TAYLOR Ing. Jose Luis Unamuno Pag. 1 de 5 www.unamuno.com.ar Polinomios V: Desarrollo con POLINOMIOS DE TAYLOR Teoría y problemas con Resoluciones en Youtube: canal: unamunoenlinea Introduccion teórica Videos:

Más detalles

Material de uso exclusivamente didáctico 1

Material de uso exclusivamente didáctico 1 TEMA 1 Ejercicio 1 ( puntos) Sea f(x) = 10 + 4. Hallar a R tal que f(a) = 9. Para el valor encontrado, hallar la ecuación de la recta tangente x 4 al gráfico de f en (a; f(a)) f(a) = 9 10 a 4 + 4 = 9 10

Más detalles

a) Calcula el valor de k. b) Halla la ecuación de la recta tangente a la gráfica de la función f en el punto de abscisa x = 1.

a) Calcula el valor de k. b) Halla la ecuación de la recta tangente a la gráfica de la función f en el punto de abscisa x = 1. Selectividad CCNN 0. [ANDA] [JUN-A] Sea la función f: definida por f(x) = e x (x - ). a) Calcula la asíntotas de f. b) Halla los extremos relativos (abscisas donde se obtienen y valores que se alcanzan)

Más detalles

2. [2014] [JUN] Sean x e y dos números reales tal que x+y = 10. Cuál es el máximo valor posible para el producto (x+1)(y-1)?

2. [2014] [JUN] Sean x e y dos números reales tal que x+y = 10. Cuál es el máximo valor posible para el producto (x+1)(y-1)? [04] [ET] Supongamos que queremos construir un gallinero rectangular (como el que se muestra en la figura de la derecha) apoyado sobre dos muros formando un ángulo recto de longitudes y metros, respectivamente

Más detalles

CÁLCULO NUMÉRICO I (Tema 2 - Relación 1)

CÁLCULO NUMÉRICO I (Tema 2 - Relación 1) CÁLCULO NUMÉRICO I (Tema - Relación 1) 1 Cuáles de los siguientes algoritmos son finitos? a) Cálculo del producto de dos números enteros. b) Cálculo de la división de dos números enteros. c) Cálculo de

Más detalles

Apellidos:... Nombre:... Examen

Apellidos:... Nombre:... Examen Cálculo Numérico I. Grado en Matemáticas. Curso 0/0. 0 de Junio de 0 Apellidos:... Nombre:... Examen. Decidir razonadamente si las siguientes afirmaciones son verdaderas o falsas, buscando un contraejemplo

Más detalles

ALGEBRA y ALGEBRA II SEGUNDO CUATRIMESTRE 2011 PRÁCTICO 3

ALGEBRA y ALGEBRA II SEGUNDO CUATRIMESTRE 2011 PRÁCTICO 3 ALGEBRA y ALGEBRA II SEGUNDO CUATRIMESTRE 2011 PRÁCTICO 3 Ejercicio 1. Sea V un espacio vectorial. Probar que: (a) Si a es un escalar y v es un vector tales que a.v = 0, entonces a = 0 ó v = 0. (b) Para

Más detalles

2 Obtener el término general de las siguientes sucesiones definidas por recurrencia: y0 = a > 0

2 Obtener el término general de las siguientes sucesiones definidas por recurrencia: y0 = a > 0 CÁLCULO NUMÉRICO I (Ejercicios Temas 1 y ) 1 Cuáles de los siguientes algoritmos son finitos? (a) Cálculo del producto de dos números enteros. (b) Cálculo de la división de dos números enteros. (c) Cálculo

Más detalles

5. ANÁLISIS MATEMÁTICO // 5.2. DERIVADA DE

5. ANÁLISIS MATEMÁTICO // 5.2. DERIVADA DE 5. ANÁLISIS MATEMÁTICO // 5.2. DERIVADA DE UNA FUNCIÓN EN UN PUNTO Y APLICACIONES. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2010-2011 5.2.1. El problema de la tangente. Derivada.

Más detalles

Problemas tipo examen

Problemas tipo examen Problemas tipo examen La división en temas no es exhaustiva. Las referencias (H n- m) indican el problema m de la hoja n y las referencias (A- cd), con A en números romanos indican un examen del mes A

Más detalles

Boletín II. Cálculo diferencial de funciones de una variable

Boletín II. Cálculo diferencial de funciones de una variable CÁLCULO Boletín II. Cálculo diferencial de funciones de una variable Ejercicios básicos 1. Sea f la función dada por 5x 2. a) Utiliza la definición de derivada para demostrar que f (x) = 10x. b) Calcula

Más detalles

Práctica 3: Diferenciación I

Práctica 3: Diferenciación I Análisis I Matemática I Análisis II (C) Cuat II - 009 Práctica 3: Diferenciación I Derivadas parciales y direccionales. Sea f una función continua en x = a. Probar que f es derivable en x = a si y solo

Más detalles

Métodos Numéricos I - C.S.I. - Curso 2003/04. TEMA 2: Interpolación polinómica de funciones

Métodos Numéricos I - C.S.I. - Curso 2003/04. TEMA 2: Interpolación polinómica de funciones Ejercicios. Hoja 2.1 1. Usar la fórmula de Lagrange para obtener un polinomio cúbico que interpola los valores de la tabla siguiente. Evaluarlo luego para x = 2, 3, 5. x k 0 1 4 6 y k 1-1 1-1 [Sol.: P

Más detalles

ETSI de Topografía, Geodesia y Cartografía

ETSI de Topografía, Geodesia y Cartografía Temas y : Continuidad, derivabilidad y Fórmula de Taylor Prueba de Evaluación Continua -Octubre-08 SIN DERIVE (NI CALCULADORA).- Sean las funciones f (x) = arc tg (x ), g (x) = ln ( x ) a) Hallar g f (x)

Más detalles

CÁLCULO ELEMENTAL PROBLEMAS. Valor absoluto. Funciones y sus gráficas

CÁLCULO ELEMENTAL PROBLEMAS. Valor absoluto. Funciones y sus gráficas CÁLCULO ELEMENTAL PROBLEMAS Valor absoluto - Resolver las ecuaciones siguientes: (i) 2x 6 = x (ii) x + 8 = 3x 4 2- Resolver la inecuación 2x 3 4 Funciones y sus gráficas 3- Dada f(x) = 2x 2 x, hallar f(

Más detalles

Segundo Parcial de Matemáticas II Grado Ingeniería Biomédica

Segundo Parcial de Matemáticas II Grado Ingeniería Biomédica Segundo Parcial de Matemáticas II Grado Ingeniería Biomédica ETSII de alència. Junio de 08 Apellidos Nombre Instrucciones Comienza poniendo el nombre y apellidos. En la pregunta de erdadero o also marca

Más detalles

Derivadas e integrales

Derivadas e integrales Derivadas e integrales Álvarez S., Caballero M.V. y Sánchez M a M salvarez@um.es, m.victori@um.es, marvega@um.es Índice 1. Definiciones 3 2. Herramientas 5 2.1. Reglas de derivación............................

Más detalles

Derivadas e integrales

Derivadas e integrales Derivadas e integrales Álvarez S., Caballero M.V. y Sánchez M a M salvarez@um.es, m.victori@um.es, marvega@um.es ÍNDICE Matemáticas Cero Índice. Definiciones 3. Herramientas 4.. Reglas de derivación.......................

Más detalles

ÁLGEBRA LINEAL II Práctica

ÁLGEBRA LINEAL II Práctica ÁLGEBRA LINEAL II Práctica 2.1-2.2 Espacios Euclídeos. Ortogonalidad (Curso 2011 2012) 1. Se considera un espacio euclídeo de dimensión 3, y en él una base {ē 1, ē 2, ē 3 } tal que el módulo de ē 1 y el

Más detalles

TALLER DE MATEMÁTICAS NOTAS. Toda expresión algebraica del tipo. a n x n + a n 1 x n a 1 x + a 0. es un polinomio de grado n, si a n 0.

TALLER DE MATEMÁTICAS NOTAS. Toda expresión algebraica del tipo. a n x n + a n 1 x n a 1 x + a 0. es un polinomio de grado n, si a n 0. NOTAS Toda expresión algebraica del tipo es un polinomio de grado n, si a n 0. a n x n + a n 1 x n 1 +... + a 1 x + a 0 RELACIONES DE DIVISIBILIDAD 1) x n a n = (x a)(x n 1 + ax n 2 + a 2 x n 3 +... +

Más detalles

Análisis Matemático I

Análisis Matemático I Universidad Nacional de La Plata Facultad de Ciencias Exactas Departamento de Matemática Análisis Matemático I Evaluación Final - Agosto de 26. Nombre: Dirección correo electrónico: Ejercicio. Sea f una

Más detalles

1 El número x = 0, es irracional. Encontrar una sucesión de números racionales x n cuyo límite sea x.

1 El número x = 0, es irracional. Encontrar una sucesión de números racionales x n cuyo límite sea x. El número x =,... es irracional. Encontrar una sucesión de números racionales x n cuyo límite sea x. Si x =, x =, x 3 =, x 4 =,... entonces cada x n es racional y (x x n ) n tiende a cero, es decir, lim

Más detalles

f (x) = 3(1 + x2 cos x)(x sin x 1) 2 x ( x + 7x) 2/3 cos 4 (tan x) ) 1/5 f (x) = 3x4 + 6x 3 9x 2 + 3x + 3 x(x 3 + 3x 1)

f (x) = 3(1 + x2 cos x)(x sin x 1) 2 x ( x + 7x) 2/3 cos 4 (tan x) ) 1/5 f (x) = 3x4 + 6x 3 9x 2 + 3x + 3 x(x 3 + 3x 1) 1. Derivar las siguientes funciones: ( ) 3 1 a. f(x) = x sin x f (x) = 3(1 + x cos x)(x sin x 1) x 4 b. f(x) = ( ln[(x cos x) 4 ] ) 7 7 (ln(x cos x)) 6 sec x (cos x x sin x) x 1 + tan x c. f(x) = f (x)

Más detalles

RELACIÓN 2: DERIVACIÓN DE FUNCIONES

RELACIÓN 2: DERIVACIÓN DE FUNCIONES 5 Doble Grado en Derecho y en Administración y Dirección de Empresas Matemáticas I. Curso 017-018 RELACIÓN : DERIVACIÓN DE FUNCIONES EJERCICIO 1.- Aplicando la definición, calcular la función derivada

Más detalles

CLAVES DE CORRECCIÓN FINAL 11/07/2017 MATEMÁTICA 1º Cuatrimestre 2017 TEMA 1

CLAVES DE CORRECCIÓN FINAL 11/07/2017 MATEMÁTICA 1º Cuatrimestre 2017 TEMA 1 FINAL 11/7/17 1º Cuatrimestre 17 TEMA 1 Ejercicio 1 ( puntos) Hallar la expresión de un polinomio de grado 5 que verifica las siguientes condiciones: a) Tiene una raíz simple en x = 3 b) Tiene una raíz

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA Definición valor extremo: Si f(x,y) està definida en una regiòn R y P 0 =(a, es un punto de R, entonces: a) f(a, es un valor máximo local de f si f(a, f(x,y) para todos los

Más detalles

Funciones de dos variables:extremos locales de funciones de dos variables. Condición necesaria. Teorema de los valores extremos.

Funciones de dos variables:extremos locales de funciones de dos variables. Condición necesaria. Teorema de los valores extremos. Funciones de dos variables:extremos locales de funciones de dos variables. Condición necesaria.. 1 1 Departamento de Matemáticas. Universidad de Alcalá de Henares. Contenidos 1 Introducción 2 3 4 Índice

Más detalles

Introducción a la Programación Matemática. Yolanda Hinojosa

Introducción a la Programación Matemática. Yolanda Hinojosa Introducción a la Programación Matemática Yolanda Hinojosa Contenido Planteamiento general de un problema de programación matemática. Convexidad. ANEXO: Derivadas Sucesivas. Fórmula de Taylor. Clasificación

Más detalles

Práctica 3: Diferenciación

Práctica 3: Diferenciación Análisis I Matemática I Análisis II (C) Análisis Matemático I (Q) Primer Cuatrimestre - 03 Práctica 3: Diferenciación Aplicación de algunos resultados de diferenciación en una variable. Vericar que se

Más detalles

Universidad de Costa Rica. Proyecto MATEM SEGUNDO EXAMEN PARCIAL CÁLCULO

Universidad de Costa Rica. Proyecto MATEM SEGUNDO EXAMEN PARCIAL CÁLCULO Universidad de Costa Rica Proyecto MATEM SEGUNDO EXAMEN PARCIAL CÁLCULO 7 de junio de 207 INSTRUCCIONES GENERALES: Lea cuidadosamente, cada instrucción y pregunta, antes de contestar. Utilice únicamente

Más detalles

Matemática-ILSE. Universidad de Buenos Aires Instituto Libre de Segunda Enseñanza MATEMÁTICA. Guía de verano

Matemática-ILSE. Universidad de Buenos Aires Instituto Libre de Segunda Enseñanza MATEMÁTICA. Guía de verano Universidad de Buenos Aires Instituto Libre de Segunda Enseñanza MATEMÁTICA Guía de verano 1 1) Con la información dada, hallar la fórmula en cada caso: a) El vértice de la parábola es V = ( ;1 ) y pasa

Más detalles

ALGEBRA LINEAL - Práctica N 2 - Segundo Cuatrimestre de 2016

ALGEBRA LINEAL - Práctica N 2 - Segundo Cuatrimestre de 2016 Departamento de Matemática - Facultad de Ciencias Exactas y Naturales - UBA 1 ALGEBRA LINEAL - Práctica N 2 - Segundo Cuatrimestre de 2016 Espacios Vectoriales 1. Sea V un espacio vectorial sobre K k K

Más detalles

TRABAJO PRÁCTICO Nº 4: POLINOMIOS

TRABAJO PRÁCTICO Nº 4: POLINOMIOS TRABAJO PRÁCTICO Nº : POLINOMIOS EJERCICIOS A DESARROLLAR Clase ) Dados los polinomios reales P(x) =.x ; Q(x) = 3x3 x + y los polinomios complejos R(x) = i.x ; S(x) = x + ( + i).x i, calcular: a) 3x. P(x)

Más detalles

Conjuntos numéricos. Sucesiones. Funciones

Conjuntos numéricos. Sucesiones. Funciones Conjuntos numéricos. Sucesiones. Funciones Conjuntos numéricos 1. Pertenece el número real 2.15 al entorno de centro 2.2 y radio 0.1? 2. Representa gráficamente el conjunto de puntos tales que (a) x+6

Más detalles

Lista de ejercicios # 5

Lista de ejercicios # 5 UNIVERSIDAD DE COSTA RICA FACULTAD DE CIENCIAS MA-005 Ecuaciones Diferenciales para Ingeniería ESCUELA DE MATEMÁTICA Segundo Semestre del 206 Lista de ejercicios # 5 Ecuaciones diferenciales en derivadas

Más detalles

ÁLGEBRA LINEAL I Práctica 5

ÁLGEBRA LINEAL I Práctica 5 ÁLGEBRA LINEAL I Práctica 5 Espacios vectoriales (Curso 2014 2015) 1. En el espacio vectorial real IR 2 consideramos los siguientes subconjuntos: (a) A = {(x y) IR 2 x 2 + y 2 = 1}. (b) B = {(x y) IR 2

Más detalles

Álgebra y Álgebra II - Primer Cuatrimestre 2018 Práctico 4 - Espacios Vectoriales

Álgebra y Álgebra II - Primer Cuatrimestre 2018 Práctico 4 - Espacios Vectoriales Álgebra y Álgebra II - Primer Cuatrimestre 2018 Práctico 4 - Espacios Vectoriales (1) Decidir si los siguientes conjuntos son R-espacios vectoriales con las operaciones abajo denidas. (a) R n con v w =

Más detalles

Matemáticas Primer Examen Parcial, 18 de Noviembre de 2004, Prueba 1

Matemáticas Primer Examen Parcial, 18 de Noviembre de 2004, Prueba 1 Matemáticas Primer Examen Parcial, 18 de Noviembre de 2004, Prueba 1 Ejercicio 1: Estudiar el dominio, asíntotas, signo, crecimiento, decrecimiento, máximos y mínimos relativos de la función f(x) = e 2x

Más detalles

PROBLEMAS DE CÁLCULO I

PROBLEMAS DE CÁLCULO I INGENIERÍAS TÉCNICAS INDUSTRIALES PROBLEMAS DE CÁLCULO I UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica Superior Departamento de Matemáticas ING. TEC. IND. MECANICA, ELECTRICIDAD Y ELECTRÓNICA 24

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- Sea f : R R definida por f(x) = x 3 +ax 2 +bx+c. a) [1 75 puntos] Halla a,b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1 2 y que la recta tangente en

Más detalles

Interpretación. 1) De una función f:[0,4] R se sabe que f(1) = 3 y que la gráfica de su función derivada es la que aparece en el dibujo

Interpretación. 1) De una función f:[0,4] R se sabe que f(1) = 3 y que la gráfica de su función derivada es la que aparece en el dibujo Interpretación 1) De una función f:[0,4] R se sabe que f(1) = 3 y que la gráfica de su función derivada es la que aparece en el dibujo (a) [0'5 puntos] Halla la recta tangente a la gráfica de f en el punto

Más detalles

TEMA 3: CONTINUIDAD DE FUNCIONES

TEMA 3: CONTINUIDAD DE FUNCIONES TEMA 3: CONTINUIDAD DE FUNCIONES. Valor Absoluto Trabajaremos en el campo de los números reales, R. Para el estudio de las propiedades de las funciones necesitamos el concepto de valor absoluto de un número

Más detalles

1. Método de bisección

1. Método de bisección Cálculo Infinitesimal y Numérico. E.T.S. de Ingeniería Informática. Universidad de Sevilla 1 Tema 1: resolución de ecuaciones. Ejercicios y Problemas Nota: Abreviación usual en estos ejercicios: C.D.E.

Más detalles

Coordinación de Matemática I (MAT021) Taller 10

Coordinación de Matemática I (MAT021) Taller 10 Coordinación de Matemática I MAT01 Taller 10 Primer semestre de 01 Semana 11: Lunes 0 viernes 08 de junio Ejercicios Ejercicio 1 Calcular las derivadas de las siguientes funciones: 1. cos x ln x. x + x

Más detalles

FUNCIONES DE. 1.- Determinar y representar gráficamente el dominio de las siguientes funciones: a) f (x) = x 2 16 b) f (x) = x 2 1.

FUNCIONES DE. 1.- Determinar y representar gráficamente el dominio de las siguientes funciones: a) f (x) = x 2 16 b) f (x) = x 2 1. FUNCIONES DE n EN m Nota: se entenderá log log0 = y ln = log e - Determinar y representar gráficamente el dominio de las siguientes funciones: a) f () = 6 b) f () = c) f () = d) f () = e) f () = + + +

Más detalles

TEMA 8 CARACTERÍSTICAS GLOBALES Y LOCALES DE LAS FUNCIONES

TEMA 8 CARACTERÍSTICAS GLOBALES Y LOCALES DE LAS FUNCIONES A) IMÁGENES Y ANTI-IMÁGENES. DOMINIO E IMAGEN DE UNA FUNCIÓN. COMPOSICIÓN DE Y FUNCIÓN INVERSA. 1. Calcula el dominio de las siguientes funciones: a) f(x) = 2 b) g(x) = x + 3 c) h(x) = 1 x 6 a) f(x) =

Más detalles

x x x x. I.E.S. Sol de Portocarrero. Nombre: 1.- Efectúa las siguientes operaciones simplificando si es posible:

x x x x. I.E.S. Sol de Portocarrero. Nombre: 1.- Efectúa las siguientes operaciones simplificando si es posible: Departamento de Matemáticas. Curso 011/1. 1CC.NN. Prueba inicial. Nombre: 1.- Efectúa las siguientes operaciones simplificando si es posible: 5 15 5 + 7 18 16 54.- Racionaliza y efectúa: 7 7+ 7 log 7 7.

Más detalles

UNIVERSIDAD DE BUENOS AIRES FACULTAD DE FARMACIA Y BIOQUÍMICA MATEMÁTICA CURSO INTRODUCTORIO. Guía de Trabajos Prácticos

UNIVERSIDAD DE BUENOS AIRES FACULTAD DE FARMACIA Y BIOQUÍMICA MATEMÁTICA CURSO INTRODUCTORIO. Guía de Trabajos Prácticos UNIVERSIDAD DE BUENOS AIRES FACULTAD DE FARMACIA Y BIOQUÍMICA MATEMÁTICA CURSO INTRODUCTORIO Guía de Trabajos Prácticos Esta guía fue realizada por los docentes de la Cátedra de Matemática CÁTEDRA DE MATEMÁTICA

Más detalles

Boletín I. Cálculo diferencial de funciones de una variable

Boletín I. Cálculo diferencial de funciones de una variable CÁLCULO Boletín I. Cálculo diferencial de funciones de una variable 1. Demuestra que la ecuación x + sin x = Ejercicios básicos 1 x + 3 tiene al menos una raíz en [0, π]. 2. Justifica la existencia de

Más detalles

Universidad Torcuato Di Tella

Universidad Torcuato Di Tella Universidad Torcuato Di Tella Matemática I Modalidad Semestral Práctica : Funciones Primer Semestre - 205 Práctica 2: Funciones 2 Ejercicio. Determinar cuál de las siguientes curvas son gráficos de funciones.

Más detalles

x 2-3x+4 si x 2 4. [ANDA] [SEP-B] Sea la función f(x) = 4 - a x si x > 2

x 2-3x+4 si x 2 4. [ANDA] [SEP-B] Sea la función f(x) = 4 - a x si x > 2 e -2x 1. [ANDA] [JUN-A] a) Calcule la función derivada de f(x) = -x 2 +2 2 b) Se sabe que la expresión que representa el número medio de clientes N(t) que acude a una cadena de almacenes, en función del

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- [2 5 puntos] Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Ejercicio 2.- [2 5 puntos] Sea f : ( 2, + ) R la función

Más detalles

INTERPOLACIÓN: Error en la la interpolación polinómica de Lagrange

INTERPOLACIÓN: Error en la la interpolación polinómica de Lagrange INTERPOLACIÓN: Error en la la interpolación polinómica de Lagrange Arturo Hidalgo LópezL Alfredo López L Benito Carlos Conde LázaroL Marzo, 007 Departamento de Matemática Aplicada y Métodos Informáticos

Más detalles

TALLER DE MATEMÁTICAS 1 ECUACIONES POLINÓMICAS

TALLER DE MATEMÁTICAS 1 ECUACIONES POLINÓMICAS TALLER DE MATEMÁTICAS 1 ECUACIONES POLINÓMICAS NOTAS Toda expresión algebraica del tipo a n x n + a n 1 x n 1 + + a 1 x + a 0 es un polinomio de grado n, si a n 0. Es bien conocida la fórmula que da las

Más detalles

MATEMÁTICAS (Grado en Química) PRÁCTICA 8 FUNCIONES DE VARIAS VARIABLES

MATEMÁTICAS (Grado en Química) PRÁCTICA 8 FUNCIONES DE VARIAS VARIABLES MATEMÁTICAS (Grado en Química) PRÁCTICA 8 FUNCIONES DE VARIAS VARIABLES 1.- GRÁFICOS TRIDIMENSIONALES ü 1.1.- CÓMO DIBUJAR FUNCIONES EN TRES DIMENSIONES El comando que se necesita para dibujar funciones

Más detalles

ETSII Febrero Análisis Matemático.

ETSII Febrero Análisis Matemático. Departamento de Análisis Matemático ETSII Febrero 2000. Análisis Matemático. Problema 1. (1 punto) Calcular los siguientes ites: e x e senx x 0 x senx x π/4 (tgx)tg2x Problema 2. (2 puntos) Considérese

Más detalles

1. [ANDA] [SEP-B] En el mar hay una mancha producida por una erupción submarina. La superficie afectada, en km 2, viene dada por

1. [ANDA] [SEP-B] En el mar hay una mancha producida por una erupción submarina. La superficie afectada, en km 2, viene dada por Selectividad CCSS 202. [ANDA] [SEP-B] En el mar hay una mancha producida por una erupción submarina. La superficie afectada, en km 2, viene dada por la función f(t) = t+20, siendo t el tiempo transcurrido

Más detalles

Tema 7: Funciones de una variable. Límites y continuidad.

Tema 7: Funciones de una variable. Límites y continuidad. Tema 7: Funciones de una variable. Límites y continuidad. José M. Salazar Noviembre de 2016 Tema 7: Funciones de una variable. Límites y continuidad. Lección 8. Funciones de una variable. Límites y continuidad.

Más detalles

ANÁLISIS I MATEMÁTICA 1 ANÁLISIS II (Computación) Práctica 5 - Verano 2009

ANÁLISIS I MATEMÁTICA 1 ANÁLISIS II (Computación) Práctica 5 - Verano 2009 ANÁLISIS I MATEMÁTICA ANÁLISIS II (Computación) Práctica 5 - Verano 2009 Derivadas parciales de orden superior - Polinomio de Taylor - Convexidad y Extremos Derivadas de orden superior. Calcular las derivadas

Más detalles

Práctico Preparación del Examen

Práctico Preparación del Examen Cálculo Diferencial e Integral (Áreas Tecnológicas) Segundo Semestre 4 Universidad de la República Práctico Preparación del Examen Límites, funciones y continuidad Ejercicio Sea log(+x ) f(x) =, si x

Más detalles

SESIÓN 2 Splines e integración numérica

SESIÓN 2 Splines e integración numérica SESIÓN Splines e integración numérica ) Sea f x = x 4 para x [,] y sea s: [,] R el spline cúbico que aproxima a f definido a partir de los puntos de abscisas, y. Razona cual de las siguientes expresiones

Más detalles

Problemas de Cálculo Matemático E.U.A.T. CURSO Primer cuatrimestre

Problemas de Cálculo Matemático E.U.A.T. CURSO Primer cuatrimestre 1 Problemas de Cálculo Matemático EUAT CURSO 00-003 Primer cuatrimestre Problemas del Tema 5 Teoremas relativos a funciones derivables y aplicaciones 1 La función f(x) = 1 3 x se anula para x 1 = 1 y para

Más detalles

FUNCIONES REALES DE VARIABLE REAL

FUNCIONES REALES DE VARIABLE REAL FUNCIONES REALES DE VARIABLE REAL Definición. donde D R. Se define función real de variable real a una aplicación f : D R [, [. Ejemplo. Si consideramos f(x) = x entonces el dominio máximo de f es D =

Más detalles

MÉTODOS NUMÉRICOS. Curso o. B Resolución de ecuaciones I (ecuaciones generales f (x) = 0)

MÉTODOS NUMÉRICOS. Curso o. B Resolución de ecuaciones I (ecuaciones generales f (x) = 0) MÉTODOS NUMÉRICOS. Curso 06-07. 1 o. B Resolución de ecuaciones I (ecuaciones generales f (x = 0 1. Utiliza el método de bisección para calcular con una precisión de 10 las soluciones de x 3 7x + 14x 6

Más detalles

Cálculo Numérico III Curso 2010/11

Cálculo Numérico III Curso 2010/11 Cálculo Numérico III Curso 2010/11 Problemas del Tema 1 1. Sean {x 0, x 1,..., x n } IR con x i x j si i j. Hoja de problemas - Parte I a) Hallar el polinomio de grado n que interpola a la función en los

Más detalles

1. Completar la siguiente tabla escribiendo o bien el símbolo o la expresión matemática o su significado según proceda.

1. Completar la siguiente tabla escribiendo o bien el símbolo o la expresión matemática o su significado según proceda. 1. Completar la siguiente tabla escribiendo o bien el símbolo o la expresión matemática o su significado según proceda. Símbolo o expresión = A B x A A B Significado para todo A y B son conjuntos disjuntos

Más detalles

Hoja de Problemas Tema 3 (Variables aleatorias multidimensionales)

Hoja de Problemas Tema 3 (Variables aleatorias multidimensionales) Depto. de Matemáticas Estadística (Ing. de Telecom.) Curso 2004-2005 Hoja de Problemas Tema 3 (Variables aleatorias multidimensionales) 1. Consideremos dos variables aleatorias independientes X 1 y X 2,

Más detalles

Aplicando el teorema de los incrementos finitos a la función f(x) = x 2 + 4x - 2 en los extremos [-1, 3] hallar x o

Aplicando el teorema de los incrementos finitos a la función f(x) = x 2 + 4x - 2 en los extremos [-1, 3] hallar x o DERIVADAS Y TEOREMAS DE DERIVABILIDAD Aplicando el teorema de los incrementos finitos a la función f(x) = x 2 + 4x - 2 en los extremos [-, 3] hallar x o El teorema de Lagrange dice que: f(3) - f(-) = f

Más detalles