Segundo Parcial de Matemáticas II Grado Ingeniería Biomédica

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Segundo Parcial de Matemáticas II Grado Ingeniería Biomédica"

Transcripción

1 Segundo Parcial de Matemáticas II Grado Ingeniería Biomédica ETSII de alència. Junio de 08 Apellidos Nombre Instrucciones Comienza poniendo el nombre y apellidos. En la pregunta de erdadero o also marca claramente tu respuesta. En otro caso la pregunta no será puntuada. Excepto en la primera pregunta pon todos los cálculos necesarios. 4 No se puede usar ningún tipo de material de consulta ni asistentes electrónicos. 5 Escribe con bolígrafo azul o negro. 6 El tiempo total es de horas. Nota final Puntuación Ejercicio Ejercicio Ejercicio Ejercicio 4 Ejercicio 5

2 Ejercicio 0 puntos: 5 puntos cada apartado Indica si las siguientes afirmaciones son erdaderas o alsas (no hay que justificar nada). Pregunta correcta: 0.5 puntos Pregunta incorrecta: -0.5 puntos Pregunta en blanco: 0 puntos x cos(x) =! + x4... para todo x R. 4! La aproximación lineal de f(x) = x en el origen es L(x) = + x/. Si una serie de potencias de centro a = 0 es convergente en el punto x = entonces también lo será en x =. Si una serie de potencias de centro a = 0 es divergente en el punto x = entonces también lo será en x =. La función R(sen(x), cos(x)) = sen (x) + es impar en seno. El volumen de una superficie cuyas secciones mediante planos paralelos al plano XY tienen un área A(z) (con z [a, b]) viene dado por es = π b a A(z) dz. d ( x e t dx x t dt) = e x e x. x El dominio de convergencia de la serie de potencias La suma de la serie ( ) n n n! es e. n= El radio de convergencia de la serie de potencias n= n= x n n es [, ]. x n es R =. n Decimos que una función es una primitiva de f si = f. amos a demostrar que si y G son dos primitivas de una misma función f entonces = G + k siendo k una constante. En efecto veamos que la función h = G es constante. Por ser y G primitivas de f se tiene que: h = 0 amos entonces a aplicar el Teorema del valor medio para demostrar que h es constante. Sean x < y y demostremos que h(x) = h(y). Aplicando el teorema anterior existe z en el intervalo ]x, y[ de manera que h(y) h(x) = h (z)(y x) Y como h = 0 entonces h(y) h(x) = 0 y por lo tanto h es constante.

3 Ejercicio Calcula el desarrollo de MacLaurin de la función f(x) = atan(x) indicando el radio de convergencia de la serie de potencias obtenida. Solución. Derivando y usando el desarrollo de una serie geométrica tenemos: f (x) = + (x) = + 9x = ( 9x ) = + ( 9x ) + ( 9x ) + ( 9x ) + ( 9x ) = 9x + 9 x 4 9 x x siempre que 9x < o lo que es lo mismo x < 9 Integrando término a término: y por tanto x < = R. f(x) = x 9 x + 9 x5 5 9 x siempre que x < = R. Queda calcular C. Pero tomando x = 0 tenemos que + 94 x C = x 9 x x5 9 x x C, C = f(0) = atan(0) = 0. En definitiva: atan(x) = x 9 x x5 9 x x y el radio de convergencia es R = /. Otra forma. Usando el desarrollo de la arcotangente sabemos que: atan(x) = n=0 ( ) n xn+ n + = x x + x5 5 x +... siempre que x < En nuestro caso f(x) = atan(x) = ( (x) (x) = x x + 4 x (x)5 5 6 x (x) + 8 x )... = x x x5 6 x x9... siempre que x < o lo que es lo mismo si x < = R

4 Ejercicio Calcula el volumen de la superficie de revolución que se obtiene al girar, alrededor del eje OX, la función f(x) = x para x [, ]. x + Solución. En primer lugar = π b a ( f(x) ) dx = π ( x ) dx dx = π x + x (x + ). Se trata de una integral racional que resolvemos mediante la descomposición en fracciones simples: { x x = 0 doble (x + ) = 0, x = de donde x (x + ) = A x + B x + C x + Ax(x + ) + B(x + ) + Cx = x. (x + ) Como los denominadores son iguales también lo serán los numeradores: = Ax(x + ) + B(x + ) + Cx. Y puesto que A, B y C son independientes de x: Sustituyendo en la integral = π = π x = 0 : = B = B =, x = : = C = C =, x = : = A + B + C = A =. ( x + x + ) dx = π [ log x + ] + log(x + ) x + x [ log + + log() ( log + ] + log()) = [ ] = π + log() log().

5 Ejercicio 4 Calcula la longitud de la curva f(x) = (x + ) para x [, ]. Solución. y como L = + f (x) dx, f(x) = (x + ) = (x + )/ entonces f (x) = (x + )/ = (x + ), sustituyendo en la integral L = = + ( (x + ) /) dx = + x dx [ ( + x) / ( + x) / dx = / ] = (8 ).

6 Ejercicio 5 0 puntos: 5 puntos cada apartado Escribe el polinomio p(x) = x en potencias de x +. Solución. Sabemos que p(x) = P n (x) + R n (x) donde P n es el polinomio de Taylor de centro a =. Como p es un polinomio de grado n = aplicando la fórmula del resto de Lagrange (con este valor de n) tenemos que R (x) = piv) (z) (x + ) 4 = 0 para un z entre a = y x, 4! porque p iv) (z) = 0. De esta manera p(x) = P (x) = p( ) + p ( )(x + ) + p ( ) (x + ) + p ( ) (x + ).! Y como p(x) = x, p (x) = x, p (x) = 6x y p (x) = 6 entonces: p(x) = P (x) = + (x + ) + 6 (x + ) + 6! (x + ) = + (x + ) + ( )(x + ) + (x + ). Calcula, usando un polinomio de MacLaurin de grado, una aproximación de log(.0). Escribe un valor del error cometido. Solución. Tomamos f(x) = log( + x) y sabemos que f(x) = P (x) + R (x). Usando el polinomio de MacLaurin de la función logaritmo sabemos que P (x) = x x, con lo que f(0.0) P (0.0) = 0.0 (0.0) Para el error sabemos que = R (0.0) = f (z) (0.0) siendo z un valor entre a = 0 y x = 0.0.! Y como f(x) = log( + x), f (x) = + x, f (x) = ( + x), f (x) = entonces f (z) = ( + z). Pero como 0 < z < 0.0 entonces < + z <.0 = < ( + z) < (.0) = (.0) < ( + z) <, ( + x), En definitiva y por lo tanto f (z) = ( + z) =, R (0.0) = f (z) (0.0)!! (0.0) =

Nombre y Apellidos: x (1 + ln(x)) si x > 0 f(x) = 0 si x = 0.

Nombre y Apellidos: x (1 + ln(x)) si x > 0 f(x) = 0 si x = 0. Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Cálculo I Convocatoria de Septiembre de Septiembre de 008 Nombre y Apellidos: DNI: (6.5 p.) ) Se considera la función f : [0,

Más detalles

U de Talca. Funciones y series de potencias Introducción. Temas Métodos para determinar series de potencias de nuevas funciones.

U de Talca. Funciones y series de potencias Introducción. Temas Métodos para determinar series de potencias de nuevas funciones. Sesión 28 Funciones y series de potencias Temas Métodos para determinar series de potencias de nuevas funciones. 28. Introducción Colin Maclaurin Escocés. (698-6. Capacidades Conocer y aplicar el método

Más detalles

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIONES CURSO CERO DE MATEMATICAS Apuntes elaborados por Domingo Pestana Galván y José Manuel Rodríguez García UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica

Más detalles

CÁLCULO DE PRIMITIVAS

CÁLCULO DE PRIMITIVAS CÁLCULO DE PRIMITIVAS David Ariza-Ruiz Departamento de Análisis Matemático Seminario I 7 de noviembre de 202 (Universidad de Sevilla) David Ariza Ruiz 7 de noviembre de 202 / 42 Definición y propiedades

Más detalles

PROBLEMAS DE CÁLCULO I

PROBLEMAS DE CÁLCULO I INGENIERÍAS TÉCNICAS INDUSTRIALES PROBLEMAS DE CÁLCULO I UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica Superior Departamento de Matemáticas ING. TEC. IND. MECANICA, ELECTRICIDAD Y ELECTRÓNICA 24

Más detalles

Soluciones de los ejercicios del examen de Cálculo del 29 de junio de 2007 Primero de Ingeniería de Telecomunicación

Soluciones de los ejercicios del examen de Cálculo del 29 de junio de 2007 Primero de Ingeniería de Telecomunicación Soluciones de los ejercicios del examen de del 29 de junio de 27 Primero de Ingeniería de Telecomunicación Ejercicio a Justifica que la ecuación x 2 = x sen x+ cos x tiene exactamente dos soluciones reales.

Más detalles

Nombre y Apellidos: e f(x) dx. Estudiar si converge la integral impropia

Nombre y Apellidos: e f(x) dx. Estudiar si converge la integral impropia Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Cálculo I Convocatoria de Febrero 27 de Enero de 26 Nombre y Apellidos: DNI: 6.25 p.) ) Se considera la función f : [, ) R definida

Más detalles

Soluciones de los ejercicios del del examen final de febrero

Soluciones de los ejercicios del del examen final de febrero Matemáticas II (GIC, curso 5 6) Soluciones de los ejercicios del del examen final de febrero EJERCICIO. Determina el ángulo polar de los puntos con tangente horizontal y los puntos con tangente vertical

Más detalles

1. Para la función f(x) = x sen x, halle su polinomio de Taylor de orden 2 en a = 0. x x3 3!, x x3

1. Para la función f(x) = x sen x, halle su polinomio de Taylor de orden 2 en a = 0. x x3 3!, x x3 Cálculo I (Grado en Ingeniería Informática) Problemas resueltos, - y -4 (tercera parte) Preparado por los profesores de la asignatura: Pablo Fernández, Dragan Vukotić (coordinadores), Luis Guijarro, Kazaros

Más detalles

Capítulo 3: Cálculo integral

Capítulo 3: Cálculo integral (Fundamentos Matemáticos de la Biotecnología) Departamento de Matemáticas Universidad de Murcia Contenidos La integral indefinida Propiedades básicas de la integral indefinida Métodos de integración: por

Más detalles

Departamento de Matemática Aplicada a la I.T. de Telecomunicación

Departamento de Matemática Aplicada a la I.T. de Telecomunicación Departamento de Matemática Aplicada a la I.T. de Telecomunicación ASIGNATURA: CÁLCULO I (Examen Final) CONVOCATORIA: FEBRERO FECHA: de Enero de 3 Duración del examen: 3 horas Fecha publicación notas: 8--3

Más detalles

MÉTODOS MATEMÁTICOS II

MÉTODOS MATEMÁTICOS II MÉTODOS MATEMÁTICOS II (Licenciatura de Física. Curso 2007-2008) Boletín de problemas a evaluar correspondientes a los Temas I y II Fecha de entrega: Viernes, 23 de Noviembre de 2007 1. Calcula los siguientes

Más detalles

1. Algunas primitivas inmediatas (o casi inmediatas).

1. Algunas primitivas inmediatas (o casi inmediatas). Cálculo I. o Matemáticas. Curso 00/0. Cálculo de Primitivas. Algunas primitivas inmediatas (o casi inmediatas). (5x 6) = 5 (5x 6) 5 = 5 (5x 6) + C. Nota: Si f(x) = 5x 6 su derivada es 5. En la primera

Más detalles

Problemas tipo examen

Problemas tipo examen Problemas tipo examen La división en temas no es exhaustiva. Las referencias (H n- m) indican el problema m de la hoja n y las referencias (A- cd), con A en números romanos indican un examen del mes A

Más detalles

Nombre y Apellidos: x e 1 x 1 x f(x) = ln(x) x

Nombre y Apellidos: x e 1 x 1 x f(x) = ln(x) x Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Nombre y Apellidos: Cálculo I Convocatoria de Diciembre de Diciembre de 008 DNI: (6.5 p.) ) Se considera la función f : R R definida

Más detalles

Análisis Matemático I

Análisis Matemático I Universidad Nacional de La Plata Facultad de Ciencias Exactas Departamento de Matemática Análisis Matemático I Evaluación Final - Agosto de 26. Nombre: Dirección correo electrónico: Ejercicio. Sea f una

Más detalles

Análisis Matemático. Convocatoria de enero Prueba Global. Evaluación Continua

Análisis Matemático. Convocatoria de enero Prueba Global. Evaluación Continua Apellidos y nombre: Análisis Matemático. Convocatoria de enero. 9--26. Prueba Global. Evaluación Continua Instrucciones: No abandonar el examen durante los primeros 3 minutos. Tiempo para esta parte del

Más detalles

Para saber si tiene asíntotas horizontales hacemos los límites en los infinitos.

Para saber si tiene asíntotas horizontales hacemos los límites en los infinitos. 1.- Considerad las funciones: f(x) = x + 2 2x x + 2 g(x) = 2 x + 2 a) Determinar el dominio de la función f(x) y calcular sus asíntotas (horizontales, verticales y oblicuas) en caso de que existan. b)

Más detalles

SUCESIONES Y SERIES INFINITAS

SUCESIONES Y SERIES INFINITAS de SUCESIONES Y SERIES INFINITAS Sergio Stive Solano Septiembre de 2012 de SUCESIONES Y SERIES INFINITAS Sergio Stive Solano Septiembre de 2012 de Una serie de potencia es aquella que tiene la forma c

Más detalles

Nombre y Apellidos: si x 0 f(x) = e x 1 1 si x = 0

Nombre y Apellidos: si x 0 f(x) = e x 1 1 si x = 0 Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Cálculo I Convocatoria de Diciembre 2 de Diciembre de 25 Nombre y Apellidos: DNI: (2.5 p.) ) Se considera la función f : R R definida

Más detalles

1. INTEGRALES DEFINIDAS E IMPROPIAS

1. INTEGRALES DEFINIDAS E IMPROPIAS . INTEGRALES DEFINIDAS E IMPROPIAS. Hallar el área de la región limitada por la parábola y = y el eje OX. Los cortes de la gráfica de y = con el eje OX son los valores de tales que =, esto es, = y =. El

Más detalles

ETSI de Topografía, Geodesia y Cartografía

ETSI de Topografía, Geodesia y Cartografía Temas y : Continuidad, derivabilidad y Fórmula de Taylor Prueba de Evaluación Continua -Octubre-08 SIN DERIVE (NI CALCULADORA).- Sean las funciones f (x) = arc tg (x ), g (x) = ln ( x ) a) Hallar g f (x)

Más detalles

Un resumen de la asignatura. Junio, 2015

Un resumen de la asignatura. Junio, 2015 Un resumen de la asignatura Departamento de Matemática Aplicada a las Tecnologías de la Información y las Comunicaciones ETSIT (UPM) Junio, 2015 1 Los Números Reales(R) Los números Irracionales Continuidad

Más detalles

CÁLCULO ELEMENTAL PROBLEMAS. Valor absoluto. Funciones y sus gráficas

CÁLCULO ELEMENTAL PROBLEMAS. Valor absoluto. Funciones y sus gráficas CÁLCULO ELEMENTAL PROBLEMAS Valor absoluto - Resolver las ecuaciones siguientes: (i) 2x 6 = x (ii) x + 8 = 3x 4 2- Resolver la inecuación 2x 3 4 Funciones y sus gráficas 3- Dada f(x) = 2x 2 x, hallar f(

Más detalles

Integrales indefinidas. Teoremas 2º Bachillerato. Editorial SM

Integrales indefinidas. Teoremas 2º Bachillerato. Editorial SM Integrales indefinidas. Teoremas º Bachillerato Editorial SM Esquema Primitiva de una función La función G(x) es una primitiva de la función f(x) en un intervalo I si G'(x) = f(x) para todo x del intervalo

Más detalles

Apuntes. Genius, a good idea in Maths Ximo Beneyto. Tema : Derivabilidad. Teorema de Taylor

Apuntes. Genius, a good idea in Maths Ximo Beneyto. Tema : Derivabilidad. Teorema de Taylor Apuntes Genius, a good idea in Maths Ximo Beneyto 1. Hallar el desarrollo de Taylor y la expresión del resto de Lagrange, para las siguientes funciones. 1.1 f(x) = sen x en a =, n = 3 1.2 f(x) = Ln x en

Más detalles

Y resolvemos esta indeterminación por L Hôpital, derivando arriba y abajo:

Y resolvemos esta indeterminación por L Hôpital, derivando arriba y abajo: 1.- Considerad la función: f(x) = ln x x a) Dad el dominio de f y estudiad si tiene una asíntota horizontal. b) Calculad una primitiva de f usando el método de integración por partes. Indicación: Fijaos

Más detalles

CÁLCULO DE PRIMITIVAS

CÁLCULO DE PRIMITIVAS 2 CÁLCULO DE PRIMITIVAS REFLEXIONA Y RESUELVE Concepto de primitiva NÚMEROS Y POTENCIAS SENCILLAS a) b) 2 c) 2 a) 2x b) x c) 3x 3 a) 7x b) c) x 4 a) 3x2 b) x2 c) 2x2 5 a) 6x 5 b) x5 c) 3x5 x 3 2 2 POTENCIAS

Más detalles

Unidad 15 Integrales definidas. Aplicaciones

Unidad 15 Integrales definidas. Aplicaciones Unidad 15 Integrales definidas. Aplicaciones 3 SOLUCIONES 1. La suma superior es: La suma inferior es:. La suma superior es: s ( P) = ( 1) 3 + (3 ) 10 = 3 + 10 = 13 La suma inferior es: s ( P) = ( 1) 1+

Más detalles

Cálculo Integral Agosto 2015

Cálculo Integral Agosto 2015 Cálculo Integral Agosto 5 Laboratorio # Antiderivadas I.- Halle las siguientes integrales indefinidas. ) (x 5 8x + 3x 3 ) ) (y 3 6y 6 5 + 8) dy 3) (y 3 + 5)(y + 3) dy 4) (t 3 + 3t + ) (t 3 + 5) dt 5) (3y

Más detalles

EXAMEN DE MATEMÁTICAS I (Primer Parcial) 10 de febrero de 2010

EXAMEN DE MATEMÁTICAS I (Primer Parcial) 10 de febrero de 2010 CUESTIONES TIPO TEST Sólo una respuesta a cada cuestión es correcta. Respuesta correcta: 0. puntos. Respuesta incorrecta: -0.1 puntos Respuesta en blanco: 0 puntos 1.- En un triángulo esférico rectángulo,

Más detalles

Unidad 15 Integrales definidas. Aplicaciones

Unidad 15 Integrales definidas. Aplicaciones Unidad 15 Integrales definidas. Aplicaciones PÁGINA 363 SOLUCIONES 1. La solución: Lo que nos pide el problema es hallar el área del recinto rayado. Este recinto es un trapecio y su area es:. Queda: x

Más detalles

TERCER EXAMEN EJERCICIOS RESUELTOS

TERCER EXAMEN EJERCICIOS RESUELTOS MATEMÁTICAS II G. I. T. I.) TERCER EXAMEN 4 EJERCICIOS RESUELTOS EJERCICIO. ) Dibuja la región limitada por la circunferencia de ecuación r = r θ) = senθ) y la lemniscata de ecuación r = r θ) = cosθ).

Más detalles

Universidad de Puerto Rico. Recinto Universitario de Mayagüez Departamento de Ciencias Matemáticas Examen Final Mate de mayo de 2016

Universidad de Puerto Rico. Recinto Universitario de Mayagüez Departamento de Ciencias Matemáticas Examen Final Mate de mayo de 2016 Universidad de Puerto Rico. Recinto Universitario de Mayagüez Departamento de Ciencias Matemáticas Examen Final Mate 332 5 de mayo de 26 Nombre. Sección Número de Estudiante Profesor Número de puntos disponibles:

Más detalles

integración de funciones racionales

integración de funciones racionales VIII 1 / 6 Ejercicios sugeridos para : los temas de las clases del 26 de febrero y 2 de marzo de 2004. Tema : Integración de funciones racionales. 1.- Diga, justificando, cuales de las siguientes fórmulas

Más detalles

+ 1. La función del tercer tramo es un polinomio (una constante) que tampoco da problemas en ningún punto.

+ 1. La función del tercer tramo es un polinomio (una constante) que tampoco da problemas en ningún punto. 1.- Considerad la función: x + 4 x para x 0 + 1 f(x) = 12x 36 x para 0 < x < 3 9 2 para x 3 a) Estudiar, en todos los puntos del dominio, la continuidad de f. b) Estudiar, en todos los puntos donde sea

Más detalles

1. Para la función f(x) = x sen x, halle su polinomio de Taylor de orden 2 en a = 0. x x3 3! + x5

1. Para la función f(x) = x sen x, halle su polinomio de Taylor de orden 2 en a = 0. x x3 3! + x5 Cálculo I (Grado en Ingeniería Informática Problemas resueltos, -, -4 y 4-5 (tercera parte Preparado por los profesores de la asignatura: Pablo Fernández, Dragan Vukotić, Luis Guijarro (coordinadores,

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 4 de Julio de 2002 Primera parte

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 4 de Julio de 2002 Primera parte CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 4 de Julio de Primera parte Ejercicio. Se considera el recinto plano R := ½(x, y) R : x 3, y x3 3 Otener los volúmenes de los sólidos

Más detalles

Grado en Química Bloque 1 Funciones de una variable

Grado en Química Bloque 1 Funciones de una variable Grado en Química Bloque Funciones de una variable Sección.7: Aproximación de funciones. Desarrollo de Taylor. Aproximación lineal. La aproximación lineal de una función y = f(x) en un punto x = a es la

Más detalles

LA INTEGRAL DEFINIDA. APLICACIONES

LA INTEGRAL DEFINIDA. APLICACIONES 13 LA INTEGRAL DEFINIDA. APLICACIONES REFLEXIONA Y RESUELVE Dos trenes Un Talgo y un tren de mercancías salen de la misma estación, por la misma vía y en idéntica dirección, uno tras otro, casi simultáneamente.

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 8 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio,

Más detalles

F es primitiva de f ya que:

F es primitiva de f ya que: T.2: INTEGRACIÓN 2.1 Primitiva de una función. Integral Indefinida. Propiedades. Sean f y F dos funciones reales definidas en el mismo dominio. La función F es una función primitiva de f, si F tiene por

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 3 de Julio de 2001 Primera parte

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 3 de Julio de 2001 Primera parte ÁLULO Primer curso de ngeniero de Telecomunicación Examen Final. de Julio de Primera parte Ejercicio. Se considera la función definida por la determinación principal del arco tangente, es decir f (x) =

Más detalles

Universidad Icesi Departamento de Matemáticas y Estadística

Universidad Icesi Departamento de Matemáticas y Estadística Universidad Icesi Departamento de Matemáticas y Estadística Solución del segundo examen parcial del curso Cálculo de una variable Grupo: Once Período: Inicial del año 000 Prof: Rubén D. Nieto C. PUNTO.

Más detalles

EXÁMENES PARCIALES Y FINALES DE ANÁLISIS MATEMÁTICO I ANÁLISIS MATEMÁTICO I ANUAL - Primer Parcial TURNO MAÑANA APELLIDO NOMBRE:...CURSO:...

EXÁMENES PARCIALES Y FINALES DE ANÁLISIS MATEMÁTICO I ANÁLISIS MATEMÁTICO I ANUAL - Primer Parcial TURNO MAÑANA APELLIDO NOMBRE:...CURSO:... EXÁMENES PARCIALES Y FINALES DE ANÁLISIS MATEMÁTICO I ANÁLISIS MATEMÁTICO I ANUAL - Primer Parcial TURNO MAÑANA APELLIDO NOMBRE:CURSO: 4 5 NOTA Condición mínima de aprobación (4 puntos): 5% del eamen correctamente

Más detalles

1 Repaso. Cálculo I. 1 o Matemáticas. Curso 2002/2003. Cálculo de Primitivas. (5x 6) f(x) 1 2 f (x) dx, que es inmediata: + 1 x 1

1 Repaso. Cálculo I. 1 o Matemáticas. Curso 2002/2003. Cálculo de Primitivas. (5x 6) f(x) 1 2 f (x) dx, que es inmediata: + 1 x 1 Cálculo I. o Matemáticas. Curso /. Cálculo de Primitivas Repaso (5 6) d = 5 (5 6) 5 d = 5 (5 6) + C. Nota: Si f() = 5 6 su derivada es 5. En la primera igualdad multiplicamos y dividimos por 5. Así tenemos

Más detalles

Integrales indenidas

Integrales indenidas Integrales indenidas Adriana G. Duarte 7 de agosto de 04 Resumen Antiderivación. Integrales indenidas, propiedades. Técnicas de integración: inmediatas,por sustitución, por partes. Ejemplos y ejercicios.

Más detalles

Convocatoria de Septiembre 9 de Septiembre de Nombre y Apellidos: (6 p.) 1) Se considera la función f : R R definida por

Convocatoria de Septiembre 9 de Septiembre de Nombre y Apellidos: (6 p.) 1) Se considera la función f : R R definida por Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Cálculo I Convocatoria de Septiembre 9 de Septiembre de 26 Nombre y Apellidos: DNI: (6 p. Se considera la función f : R R definida

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II CASTILLA Y LEÓN CONVOCATORIA SEPTIEMBRE 9 SOLUCIÓN DE LA PRUEBA DE ACCESO AUTOR: José Luis Pérez Sanz Prueba A Problemas a) f(x) x El denominador de f(x) nunca se anula; por

Más detalles

Universidad Carlos III de Madrid

Universidad Carlos III de Madrid Universidad Carlos III de Madrid Ejercicio 1 2 3 4 5 6 Total Puntos Departmento de Economía Matematicas I Examen Final 16 enero 2019 APELLIDOS: Duración: 2 horas. NOMBRE: ID: GRADO: GRUPO: (1) Sea la función

Más detalles

Análisis Matemático I

Análisis Matemático I Universidad Nacional de La Plata Facultad de Ciencias Exactas Departamento de Matemática Análisis Matemático I Evaluación Final - Agosto de 26. Nombre: Dirección correo electrónico: Ejercicio. Sea f una

Más detalles

EXAMEN DE MATEMÁTICAS I. Test

EXAMEN DE MATEMÁTICAS I. Test Primer Parcial 16 de febrero de 005 Test Sólo una respuesta a cada cuestión es correcta. Respuesta correcta: 0. puntos. Respuesta incorrecta: -0.1 puntos Respuesta en blanco: 0 puntos 1.- Considerando

Más detalles

ANÁLISIS MATEMÁTICO IES A SANGRIÑA 2016/2017

ANÁLISIS MATEMÁTICO IES A SANGRIÑA 2016/2017 ANÁLISIS MATEMÁTICO 4. INTEGRACIÓN INDEFINIDA UN POCO DE HISTORIA El símbolo de integración fue introducido por el matemático alemán Gottfried Leibniz en 1675, basándose en la palabra latina summa, suma,

Más detalles

Funciones de Una Variable Real I. Derivadas

Funciones de Una Variable Real I. Derivadas Contents : Derivadas Universidad de Murcia Curso 2010-2011 Contents 1 Funciones derivables Contents 1 Funciones derivables 2 Contents 1 Funciones derivables 2 3 Objetivos Funciones derivables Definir,

Más detalles

du = ln u + NOTA: En las integrales 11, 12, 17 y 18 α significa la raíz cuadrada positiva de α 2. Escribimos

du = ln u + NOTA: En las integrales 11, 12, 17 y 18 α significa la raíz cuadrada positiva de α 2. Escribimos CÁLCULO I CÁLCULO DE PRIMITIVAS: Integrales Inmediatas 3 5 7 9 3 5 7 u m du = um+ + C, m m + du = ln u + C u u du = u + C 4 a u du = au + C, a > 0, a ln a sen u du = cos u + C 6 cos u du = sen u + C cos

Más detalles

Matemáticas Empresariales I. Cálculo de Primitivas

Matemáticas Empresariales I. Cálculo de Primitivas Matemáticas Empresariales I Lección 7 Cálculo de Primitivas Manuel León Navarro Colegio Universitario Cardenal Cisneros M. León Matemáticas Empresariales I 1 / 45 Concepto de Integral Indefinida Definición

Más detalles

1. Algunas primitivas inmediatas (o casi inmediatas)

1. Algunas primitivas inmediatas (o casi inmediatas) Cálculo o del grado de Matemáticas y doble grado MAT-IngINF. Curso /. Apuntes sobre integración y cálculo de primitivas. Algunas primitivas inmediatas (o casi inmediatas) (5 6) d 5 (5 6) 5 d 5 (5 6) Nota:

Más detalles

Análisis Matemático 1 para estudiantes de Ingeniería

Análisis Matemático 1 para estudiantes de Ingeniería Alejandro E. García Venturini - Mónica Scardigli Análisis Matemático 1 para estudiantes de Ingeniería EDICIONES COOPERATIVAS , INDICE 505 NOCIONES PREVIAS... 7 Los conjuntos numéricos... 9 Conjuntos de

Más detalles

2. Continuidad y derivabilidad. Aplicaciones

2. Continuidad y derivabilidad. Aplicaciones Métodos Matemáticos (Curso 2013 2014) Grado en Óptica y Optometría 7 2. Continuidad y derivabilidad. Aplicaciones Límite de una función en un punto Sea una función f(x) definida en el entorno de un punto

Más detalles

Problemas de AMPLIACIÓN DE MATEMÁTICAS

Problemas de AMPLIACIÓN DE MATEMÁTICAS Problemas de AMPLIACIÓN DE MATEMÁTICAS Ingeniería Industrial. Curso 3-4. Departamento de Matemática Aplicada II. Universidad de Sevilla. Tema : Series. Problema. Halle la representación en serie de McLaurin

Más detalles

ysecumple 1 = = =0 = 3 ± 5 2 = 1 = Ã = 2 = 2

ysecumple 1 = = =0 = 3 ± 5 2 = 1 = Ã = 2 = 2 Matemáticas II Grado en Ingeniería Eléctrica/Grado en Ingeniería Electrónica y Automática Convocatoria febrero 06. Resuelva en C la ecuación siguiente: 3+cos() 0 Solución: Usamos la definición de cos en

Más detalles

Universidad Carlos III de Madrid

Universidad Carlos III de Madrid Universidad Carlos III de Madrid Ejercicio 1 3 4 5 6 Total Puntos Departamento de Economía Examen Final de Matemáticas I 0 de Enero de 015 APELLIDOS: Duración del Examen: horas NOMBRE: DNI: Titulación:

Más detalles

e x 1 + kx b) Halla los intervalos de crecimiento, decrecimiento, concavidad, así como los extremos y puntos de inflexión de la función:

e x 1 + kx b) Halla los intervalos de crecimiento, decrecimiento, concavidad, así como los extremos y puntos de inflexión de la función: Matemáticas Convocatoria Extraordinaria 4 de junio de 14 1 3 puntos) a) Estudia el ite: en función del valor del parámetro real k e x 1 + kx x 1 cos x b) Halla los intervalos de crecimiento, decrecimiento,

Más detalles

10.2. Soluciones desarrolladas

10.2. Soluciones desarrolladas 1.. DESARROLLADAS CAPÍTULO 1. SOLUCIONES 1.. Soluciones desarrolladas Nada se aprende mirando las soluciones sin haber estudiado antes la teoría e intentado los problemas. En algunos casos estas soluciones

Más detalles

CÁLCULO. Ingeniería Industrial. Curso Departamento de Matemática Aplicada II. Universidad de Sevilla.

CÁLCULO. Ingeniería Industrial. Curso Departamento de Matemática Aplicada II. Universidad de Sevilla. CÁLCULO Ingeniería Industrial. Curso 2009-2010. Departamento de Matemática Aplicada II. Universidad de Sevilla. Lección 1. Derivadas. Polinomios de Taylor. Resumen de la lección. 1.1. La derivada y la

Más detalles

AUTOEVALUACIÓN DE CÁLCULO I - SOLUCIONES. Para Grados en Ingeniería. Capítulo 2: Cálculo diferencial de una variable

AUTOEVALUACIÓN DE CÁLCULO I - SOLUCIONES. Para Grados en Ingeniería. Capítulo 2: Cálculo diferencial de una variable AUTOEVALUACIÓN DE CÁLCULO I - SOLUCIONES Para Grados en Ingeniería Capítulo 2: Cálculo diferencial de una variable Domingo Pestana Galván José Manuel Rodríguez García Soluciones del Examen de Autoevaluación

Más detalles

FÓRMULA DE TAYLOR Prueba de Evaluación

FÓRMULA DE TAYLOR Prueba de Evaluación FÓRMULA DE TAYLOR Prueba de Evaluación 6 11 09 Tipo 1 Ejercicio 1: Dada la función f(x) =arctan x, se pide: a. Escribir la fórmula de Taylor de la función f(x) para n=4 y a=1 b. Hallar el valor aproximado

Más detalles

, se denomina primitiva de esta función a otra F(x)

, se denomina primitiva de esta función a otra F(x) 1. CONCEPTO DE INTEGRAL INDEFINIDA Definición: Dada una función f (x), se denomina primitiva de esta función a otra F(x) tal que F '( x) = f ( x) Esta definición indica que el cálculo de primitivas constituye

Más detalles

Función Logaritmo y exponencial. Función logaritmo natural

Función Logaritmo y exponencial. Función logaritmo natural Función Logaritmo y exponencial Función logaritmo natural En términos matemáticos la función logaritmo natural es una herramienta de mayor utilidad que el logaritmo del álgebra elemental, el cual está

Más detalles

Soluciones de los ejercicios del segundo examen parcial

Soluciones de los ejercicios del segundo examen parcial Matemáticas II (GIC, curso 5 6 Soluciones de los ejercicios del segundo examen parcial EJERCICIO. Halla el área que encierra la curva C dada en polares por r = + sen(θ. Solución: Primero debemos hallar

Más detalles

ETSII Febrero Análisis Matemático.

ETSII Febrero Análisis Matemático. Departamento de Análisis Matemático ETSII Febrero 2000. Análisis Matemático. Problema 1. (1 punto) Calcular los siguientes ites: e x e senx x 0 x senx x π/4 (tgx)tg2x Problema 2. (2 puntos) Considérese

Más detalles

Solución Tercera Prueba Intermedia (11/04/2018) Curso 2017/18

Solución Tercera Prueba Intermedia (11/04/2018) Curso 2017/18 Problema 1. Indica si los siguientes enunciados son VERDADEROS o FALSOS, justicando la respuesta. (a) Dos curvas de nivel diferentes de un mismo campo escalar f(x, y) no pueden tener puntos en común. (b)

Más detalles

S O L U C I Ó N y R Ú B R I C A

S O L U C I Ó N y R Ú B R I C A ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS AÑO 08 PERÍODO PRIMER TÉRMINO MATERIA Cálculo de una variable PROFESORES EVALUACIÓN SEGUNDA

Más detalles

RESUMEN DE ANÁLISIS MATEMÁTICAS II

RESUMEN DE ANÁLISIS MATEMÁTICAS II RESUMEN DE ANÁLISIS MATEMÁTICAS II 1. DOMINIO DE DEFINICIÓN Y CONTINUIDAD 1.1. FUNCIONES ELEMENTALES (No tienen puntos angulosos) Tipo de función f (x) Dom (f) Continuidad Polinómicas P(x) R Racional P(x)/Q(x)

Más detalles

Soluciones a los problemas del segundo parcial

Soluciones a los problemas del segundo parcial Soluciones a los problemas del segundo parcial José M. Mira 29 de junio de 2007 Introducción Este documento persigue dar a conocer soluciones a los problemas del examen de Análisis I en la licenciatura

Más detalles

UNIVERSIDAD NACIONAL EXPERIMENTAL DE GUAYANA VICERRECTORADO ACADÉMICO COORDINACION DE PRE-GRADO PROYECTO DE CARRERA DE lngenlería INDUSTRIAL

UNIVERSIDAD NACIONAL EXPERIMENTAL DE GUAYANA VICERRECTORADO ACADÉMICO COORDINACION DE PRE-GRADO PROYECTO DE CARRERA DE lngenlería INDUSTRIAL VICERRECTORADO ACADÉMICO COORDINACION DE PRE-GRADO PROYECTO DE CARRERA DE lngenlería INDUSTRIAL PROGRAMA: MATEMATICAS II CÓDIGO ASIGNATURA: 115-09 PRE-REQUISITO: 115-101 SEMESTRE: II UNIDADES DE CRÉDITO:

Más detalles

Matemáticas II. Segundo Curso, Grado en Ingeniería Electrónica Industrial y Automática Grado en Ingeniería Eléctrica. 24 de febrero de 2013

Matemáticas II. Segundo Curso, Grado en Ingeniería Electrónica Industrial y Automática Grado en Ingeniería Eléctrica. 24 de febrero de 2013 Matemáticas II Segundo Curso, Grado en Ingeniería Electrónica Industrial y Automática Grado en Ingeniería Eléctrica 4 de febrero de 0. Conteste las siguientes cuestiones: (a) (0. ptos.) Escriba en forma

Más detalles

IES Fco Ayala de Granada Modelo 5 del Solución Germán-Jesús Rubio Luna. Opción A. Ejercicio 1 de la opción A del modelo 5 de 1999.

IES Fco Ayala de Granada Modelo 5 del Solución Germán-Jesús Rubio Luna. Opción A. Ejercicio 1 de la opción A del modelo 5 de 1999. IES Fco Ayala de Granada Modelo 5 del 999. Germán-Jesús Rubio Luna Opción A Ejercicio de la opción A del modelo 5 de 999. [ 5 puntos] Haciendo el cambio de variable t = e x, calcula Calculamos primero

Más detalles

PRIMER PARCIAL 8 de febrero de 2007

PRIMER PARCIAL 8 de febrero de 2007 PRIMER PARCIAL 8 de febrero de 7 Sólo una respuesta a cada cuestión es correcta. Respuesta correcta:. puntos. Respuesta incorrecta: -. puntos Respuesta en blanco: puntos.- La suma de los ángulos de un

Más detalles

1 El número x = 0, es irracional. Encontrar una sucesión de números racionales x n cuyo límite sea x.

1 El número x = 0, es irracional. Encontrar una sucesión de números racionales x n cuyo límite sea x. El número x =,... es irracional. Encontrar una sucesión de números racionales x n cuyo límite sea x. Si x =, x =, x 3 =, x 4 =,... entonces cada x n es racional y (x x n ) n tiende a cero, es decir, lim

Más detalles

Universidad Carlos III de Madrid

Universidad Carlos III de Madrid Universidad Carlos III de Madrid Ejercicio 1 2 3 4 5 6 Total Puntos Departamento de Economía Examen Final de Matemáticas I 21 de Enero de 2014 Duración del Examen: 2 horas. APELLIDOS: NOMBRE: DNI: Titulación:

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Método de integración por fracciones parciales

Método de integración por fracciones parciales Método de integración por fracciones parciales Temas Fracciones parciales. Método de integración por fracciones parciales. Capacidades Descomponer una fracción en suma de fracciones parciales. Conocer

Más detalles

Funciones reales. Números complejos

Funciones reales. Números complejos Funciones reales. Números complejos Funciones reales 1. Encuentra todos los números reales x que verifican: a) (x 1)(x 3) > 1 b) x + 1 > 1 1 x c) x 1 + x + 1 < 1 d) 5 < x 2 14x + 5 < 26 2. Si la gráfica

Más detalles

Universidad de Chile Integración por partes. Ingeniería Matemática SEMANA 6: PRIMITIVAS

Universidad de Chile Integración por partes. Ingeniería Matemática SEMANA 6: PRIMITIVAS FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencial e Integral 08- Ingeniería Matemática SEMANA 6: PRIMITIVAS 3.3. Integración por partes Proposición 3. (Fórmula de integración

Más detalles

TEMA 4. Series de potencias

TEMA 4. Series de potencias TEMA 4 Series de potencias. Introducción En el tema anterior hemos estudiado la aproximación polinómica local de funciones mediante el polinomio de Taylor correspondiente. En particular, vimos para la

Más detalles

Universidad Politécnica de Cartagena Departamento de Matemática Aplicada y Estadística. Cálculo diferencial de una variable

Universidad Politécnica de Cartagena Departamento de Matemática Aplicada y Estadística. Cálculo diferencial de una variable Universidad Politécnica de Cartagena Departamento de Matemática Aplicada y Estadística Cálculo diferencial de una variable. Calcula el dominio máimo de las siguientes funciones. Determina en cada caso

Más detalles

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos Cálculo I (Grado en Ingeniería Informática) - Problemas adicionales resueltos Calcula el ĺımite lím ( n + n + n + ) n Racionalizando el numerador, obtenemos L lím ( n + n + n (n + n + ) (n + ) + ) lím

Más detalles

Apellidos:... Nombre:... Examen

Apellidos:... Nombre:... Examen Cálculo Numérico I. Grado en Matemáticas y doble grado Física/Matemáticas. 16 de junio de 017 Curso 016/017. Apellidos:... Nombre:... Examen 1. Explicar razonadamente si las siguientes afirmaciones son

Más detalles

Universidad Carlos III de Madrid

Universidad Carlos III de Madrid Universidad Carlos III de Madrid Ejercicio 2 3 4 5 6 Total Puntos Departamento de Economía Examen Final de Matemáticas I 24 de Junio de 26 Duración del Examen: 2 horas. APELLIDOS: NOMBRE: DNI: Titulación:

Más detalles

1 Método de la bisección. 1.1 Teorema de Bolzano Teorema 1.1 (Bolzano) Contenido

1 Método de la bisección. 1.1 Teorema de Bolzano Teorema 1.1 (Bolzano) Contenido E.T.S. Minas: Métodos Matemáticos Resumen y ejemplos Tema 3: Solución aproximada de ecuaciones Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña

Más detalles

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales Grado en Ingeniería agrícola y del medio rural Tema 8 José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es 2016 Licencia Creative Commons 4.0 Internacional J.

Más detalles

MATEMÁTICAS II - EXAMEN SEGUNDO PARCIAL - 17/01/2013

MATEMÁTICAS II - EXAMEN SEGUNDO PARCIAL - 17/01/2013 MATEMÁTICAS II - EXAMEN SEGUNDO PARCIAL - 7// Código: Grado: Ing. Electrónica Rob. y Mec. Ing. Energía Ing. Organización Ind. Nombre y Apellidos: Ejercicio. Considera la región R del primer cuadrante que

Más detalles

Escuela Universitaria Politécnica Examen de Cálculo - Febrero - Curso 01/02

Escuela Universitaria Politécnica Examen de Cálculo - Febrero - Curso 01/02 Escuela Universitaria Politécnica Examen de Cálculo - Febrero - Curso 0/02 x 2 + y 4. (a) Comprueba que el siguiente límite no existe lim (x,y) (0,0) x 2 + y. 2 (b) Busca una trayectoria a través de la

Más detalles

a) Estudiad, en todos los puntos del dominio, la continuidad y la derivabilidad de la función:

a) Estudiad, en todos los puntos del dominio, la continuidad y la derivabilidad de la función: 1.- Resolved: a) Estudiad, en todos los puntos del dominio, la continuidad y la derivabilidad de la función: 2x 1 para x 2 f(x) x + 15x 16 para x > 2 b) Calculad el área de la región deitada per el eje

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 5 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

ANÁLISIS REAL Y COMPLEJO. INGENIERÍA TELEMÁTICA EXAMEN FEBRERO 2003

ANÁLISIS REAL Y COMPLEJO. INGENIERÍA TELEMÁTICA EXAMEN FEBRERO 2003 EXAMEN FEBRERO 23 La ecuación e x 1 x = admite la raíz real x =. Probar que no puede tener otra. Justi car porqué es impropia y calcular la integral Z 2 1 dx x p ln x Estudiar la continuidad y las derivadas

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Boletín I. Cálculo diferencial de funciones de una variable

Boletín I. Cálculo diferencial de funciones de una variable CÁLCULO Boletín I. Cálculo diferencial de funciones de una variable 1. Demuestra que la ecuación x + sin x = Ejercicios básicos 1 x + 3 tiene al menos una raíz en [0, π]. 2. Justifica la existencia de

Más detalles