Matemáticas II. Segundo Curso, Grado en Ingeniería Electrónica Industrial y Automática Grado en Ingeniería Eléctrica. 24 de febrero de 2013

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Matemáticas II. Segundo Curso, Grado en Ingeniería Electrónica Industrial y Automática Grado en Ingeniería Eléctrica. 24 de febrero de 2013"

Transcripción

1 Matemáticas II Segundo Curso, Grado en Ingeniería Electrónica Industrial y Automática Grado en Ingeniería Eléctrica 4 de febrero de 0. Conteste las siguientes cuestiones: (a) (0. ptos.) Escriba en forma polar 6 i. Solución: Necesitamos el módulo de r yelargumento θ arctan 6 arctan arctan π 6 (ya que está en el cuarto cuadrante) (b) (0. ptos.) Calcula e para π 4 i y π i Solución: Por la definición de exponencial Entonces para π 4 i e e x+iy e x (cos y + i sen y) Re () x 0 Im () y π 4 por tanto ypara π i µ e π 4 i e 0 cos π 4 + i sen π cos π i sen π 4 + i por tanto Re () x 0 Im () y π µ e π i e 0 cos π + i sen π cos π + i sen π + i (c) (0. ptos.) Utilice la fórmula de Moivre para calcular las soluciones complejas de Solución: Utiliando la fórmula de Moivre π µ π cos + i sen cos 4 4 π π cos + i sen 4 4 µ π 4 + i sen µ π (cos(8π)+isen (8π)) 4

2 y la ecuación queda luego son las raíces cúbicas de la unidad que calculamos en forma polar. Para ello ponemos en forma polar o exponencial 0 e i0 y utiliaremos la expresión para el cálculo de raíces n ésimas de un número complejo. Tenemos raíces cúbicas cuyo módulo es k p y cuyos argumentos ϕ k son luego ϕ 0 0 π ϕ π ϕ π 0 0 e i 0 ϕ k θ +kπ kπ π e i π/ + i 4π e i 4π/ i. ( pto.) Resuelva en C la ecuación siguiente: sen() 0. k 0,, (calculado en el ejercicio anterior) (conjugado de, polinomio de coeficientes reales) Solución: Utiliamos la definición de sen en términos de la función exponencial para reescribir la ecuación µ e i e i 0 i Hacemos el cambio e i w ycomow6 0 e i e i w De esta forma se obtiene una ecuación en la variable w w w i 0 w wi 0 y multiplicando por wi obtenemos una ecuación de segundo grado w 4wi 0 w 4wi 0 que podemos resolver fácilmente mediante la correspondiente fórmula q ( 4i) 4 () ( ) w 4i ± obteniendo dos soluciones 4i ± w w + i i 4i ± 4i ± i ± i

3 Con estos valores para w y w y teniendo en cuenta el cambio que se hio al principio del ejercicio obtendremos, mediante la definición de logaritmo complejo e i w i logw, tenemos en cuenta además que w y w son dos números imaginarios puros, ambos con parte imaginaria positiva i log + i ln + π +kπ + i i ln + π +kπ + i log i ln π +kπ + i i ln π +kπ +. (. ptos.) Encuentre, demostrando su existencia, una función u(x, y), de manera que la función f() u(x, y)+iv(x, y) seaenteraysecumplaf(0) π.lafunciónv(x, y) se define mediante Im (f ()) v(x, y) x y xy Exprese f como función de x + iy. Solución: Como se dice en el enunciado que f (x, y) debe ser entera, su parte imaginaria v (x, y) debe ser una función armónica y debe cumplir la ecuación de Laplace Derivando v (x, y) respecto x e y, una ve yotra y al sustituir en v xx + v yy 0 () v x x y v y 6xy v xx 6x v yy 6x (6x) {} v xx +( 6x) { } v yy 0 luego v (x, y) es armónica. Para el cálculo de u (x, y), la parte real de f (x, y), tendremos que aplicar las ecuaciones de Cauchy- Riemann: u x v y u y v x De la primera de estas ecuaciones (aunque esta elección es indiferente para el resultado final): u x v y u x 6xy e integrando respecto a x obtenemos u (x, y) Z u ( 6xy) dx x x y + ϕ (y) ϕ (y) es constante para x y para encontrar su expresión derivamos respecto de y u y x + ϕ 0 (y) Por la segunda de las ecuaciones de Cauchy-Riemann, esta expresión debe coincidir con v x x y : x + ϕ 0 (y) x y

4 de donde se deduce que e integrando respecto a y se obtiene La expresión para u (x, y) será ϕ 0 (y) y ϕ (y) y + c R u (x, y) x x y + y + c y la función f (x, y) f (x, y) x x y + y + c + i x y xy Notar que si x + iy, entonces podemos expresar f (x, y) como función de de la forma f () i + c Como f (0) π/, podemos comprobar que c π/. 4. (. ptos.) Se considera la función racional f(). Calcule, justificando la valide de la región de ( i) convergencia, el desarrollo de Laurent de f convergente en el anillo A(0;, ) { C; > }. Solución: En primer lugar buscamos las raíces del denominador para descomponer la función en fracciones simples. Está claro que sólo hay una raíces i. Como estamos buscando potencias de, podemos expresar la función como: f () i donde la expresión entre paréntesis ya está expresada en potencias de. Para la fracción el desarrollo de Laurent en el conjunto indicado > es muy sencillo. Puesto que > i < y entonces i i n0 µ n i n0 i n + X i n con i > Donde se ha cambiado el contador en la última suma para que la potencia de sea la n ésima. La función tendrá el siguiente desarrollo f () i X i n i n X i n X i n X i n separamos las potencias negativas y positivas de forma que f () {} + {} i + n n i n X i n cambiamos el contador en el primer sumatorio (n n n n +) y podemos agrupar ambos sumatorios f () ( + i)+ f () ( + i)+ 4 i n+ µ i n+ X i n in

5 y sacamos factor común f () ( + i)+ i n i ( + i) in donde se ha tenido en cuenta que i. Existe otra forma alternativa de encontrar el desarrollo. En primer lugar hay que tener en cuenta que el grado del numerador es mayor que el grado del denominador, por tanto hay que hacer una división f () i Como ya conocemos el desarrollo de la fracción ( + i) ( + i) i i f () ( + i) i ( + i) X i n ( + i) X in y podemos comprobar que el desarrollo es el mismo que antes.. Calcule las siguientes integrales: (a) (0.7 ptos.) Z d; γ(t) r exp(it),r > y t [0, π]. γ ( +)( /) Solución: Es la integral de un cociente de funciones derivables a lo largo de una curva cerrada, por tanto utiliaremos el teorema de los residuos teniendo en cuenta solamente las singularidades que caen dentro de la curva. Las singularidades de la función son los números complejos que anulan el denominador de la función, por tanto que tiene por soluciones ( +)( /) 0 Teniendo en cuenta que r>, tanto como estándentrodelacurva,yaqueladistanciadecada k al centro de la circunferencia es: d (, 0) 0 <r d (, 0) 0 < <r La singularidad es evitable, puesto que es un cero simple del denominador, pero también anula al numerador, ya que sen (π ) sen ( π) 0 y podemos comprobar que el límite de la función existe en ese punto, aplicando L Hôpital: lím ( +)( /) lím π cos (π) +/ π 4/ π 4 C yportanto es una singularidad evitable y su residuo será por tanto 0.

6 El residuo para se puede calcular mediante límites por ser un polo simple µ Res ( +)( /), µ lím / ( +)( /) lím sen π/ / ( +) (/+) 4 8 ylaintegralserá Z γ µ d πires ( +)( /) ( +)( /), Ã πi! 8 π i 4 (b) (.7 ptos.) Calcule raonadamente, aplicando la teoría de variable compleja, la integral real Z π dt. +cost 0 Solución: Es una integral trigonométrica de una función racional en (sen t, cos t), por tanto haremos el cambio usual cos t + dt i d en este caso la función del integrando es dt +cost + + i d i + + d y la integral trigonométrica se transforma en Z π dt Z 0 +cost i γ + + d siendo γ la circunferencia unidad. γ (t) e it t [0, π] Utiliando el teorema de los residuos podremos resolver dicha integral. En primer lugar buscaremos los ceros del denominador de la función q + + ± 4 ± 0 4 ± 4 + Sólo está en la circunferencia den centro (0, 0) yradio, puesto que + < mientras que estará fuera puesto que + > Para la integral sólo tendremos en cuenta a Z π Ã dt πi +cost i Res! + +, + π π + 0 6

7 6. ( pto.) Aplique el teorema de los residuos para calcular la transformada inversa de Laplace de la función F () ( ) + Solución: Aplicando la fórmula de inversión de Bromwich mediante residuos tendremos f (t) L (F ()) (t) X Res e t F (), k siendo k las singularidades de la función F (). Estas singularidades son los ceros del denominador ( ) +0 ( ) ( ) ± i es decir + i i y los residuos buscados Res µ e t F (), Res e t ( )( ), e t e (+ i)t i i et cos t + i sen t El otro residuo es, por las características de la función empleada, su conjugado Res µ e t F (), Res e t ( )( ), e t e ( i)t i i et cos t i sen t ylasumadeambosnosdalafunciónf (t) buscada f (t) e t cos t a) ( pto.) Resuelva la ecuación en diferencias y n+ y n 0 n y 0 0 y b) (0. ptos.) Compruebe que la solución verifica las condiciones iniciales y la propia ecuación en diferencias. Solución: Para resolver la ecuación en diferencias y n+ y n 0 junto con las condiciones iniciales y 0 0,y, aplicaremos la transformada Z y sus propiedades: linealidad y desplaamiento Z [y n+ y n ]() Z [0] () Primero la linealidad Z [y n+ ]() Z [y n ]() Z [0] () y a continuación la propiedad de desplaamiento junto con las condiciones iniciales y 0 0, y Z [y n ]() Y () Z [y n+ ]() Z [y n ]() y 0 y Y () 7

8 Sustituyendo en la ecuación Y () Y () Z [0] () Y () Z [0] () y despejando Y () Z [0] ()+ ( ) El valor de Z [0] () es trivialmente la función nula, luego Y () ( ) + Para obtener el valor de y n tendremos que calcular la transformada Z inversa à y n Z! + Para calcular la transformada Z inversa, hay que encontrar las raíces del denominador y hacer la descomposición de la función racional en fracciones simples µ A + + B + A continuación desarrollamos cada fracción en series de Laurent dentro de conjuntos de la forma A (0,r, ), es decir en el exterior de bolas de centro 0 yradior, en todas hay que hacer la misma operación, transformar la fracción para poder emplear la suma de una serie geométrica Ã! n n n + > + + n0 n0 n0 Ã! n ( ) n n0 n ( ) n ( ) n n + > y sustituyendo en la expresión para F () à X A n B ( ) n n! F () + + A +( ) n B n > Los coeficientes de las potencias de son los elementos de la sucesión que buscamos y n A +( ) n B n n mientras que y 0 0 como se indicaba en las condiciones iniciales. Calculamos los valores de A y B. Para ello se tiene en cuenta que µ A + + B + 8

9 podemos sumar e identificar coeficientes ( )(+ ) ( ) A + + B + por tanto A + + B Dando a los valores de las raíces y A A B B y obtendremos el valor de y n y n n +( ) n y +( ) n n Podemos comprobar que para n, se obtienen el correspondiente valor para la segunda condición inicial +( ) Notar que también es válido para n 0 y 0 También se cumple la ecuación en diferencias y n+ y n y sumando, teniendo en cuenta que y n+ y n +( ) ( ) n+ n+ n n +( ) +( ) n+ n+ n+ n+ +( ) +( ) n n n n+ +( ) ysin luego n+ +( ) n n+ ( ) n+ ( ) n n+ ( ) ( ) n+ ( ) n ( ) ( ) n y n+ y n 0 9

Matemáticas II Grado Ingeniería Eléctrica/Electrónica Industrial y Automática. Examen de problemas, 5 de septiembre de f (z) = sen z

Matemáticas II Grado Ingeniería Eléctrica/Electrónica Industrial y Automática. Examen de problemas, 5 de septiembre de f (z) = sen z Matemáticas II Grado Ingeniería Eléctrica/Electrónica Industrial y Automática Examen de problemas, 5 de septiembre de 22..5 ptos. Encuentre en C las singularidades de la siguiente función e indique su

Más detalles

Matemáticas II Grado Ingeniería Eléctrica/Electrónica Industrial y Automática. Examen de problemas, 13 de junio de 2013.

Matemáticas II Grado Ingeniería Eléctrica/Electrónica Industrial y Automática. Examen de problemas, 13 de junio de 2013. Matemáticas II Grado Ingeniería Eléctrica/Electrónica Industrial y Automática Examen de problemas, 3 de junio de 23..5 ptos. Encuentre en C las singularidades de la siguiente función e indique su tipo:

Más detalles

ysecumple 1 = = =0 = 3 ± 5 2 = 1 = Ã = 2 = 2

ysecumple 1 = = =0 = 3 ± 5 2 = 1 = Ã = 2 = 2 Matemáticas II Grado en Ingeniería Eléctrica/Grado en Ingeniería Electrónica y Automática Convocatoria febrero 06. Resuelva en C la ecuación siguiente: 3+cos() 0 Solución: Usamos la definición de cos en

Más detalles

AMPLIACIÓN DE MATEMÁTICAS. Curso 2015/16 Examen final Análisis Complejo

AMPLIACIÓN DE MATEMÁTICAS. Curso 2015/16 Examen final Análisis Complejo AMPLIACIÓN DE MATEMÁTICAS. Curso 015/16 Examen final. 14 6 016 Análisis Complejo Nombre y apellidos: DNI: No está permitido el uso de calculadora programable. Los cálculos deben ser exactos y los ángulos

Más detalles

Curso 2018/2019 Grado en Ingeniería Química Industrial Matemáticas I - Soluciones problemas Tema 1 Concepto básicos Números complejos

Curso 2018/2019 Grado en Ingeniería Química Industrial Matemáticas I - Soluciones problemas Tema 1 Concepto básicos Números complejos Curso 08/09 Grado en Ingeniería Química Industrial Matemáticas I - Soluciones problemas Tema Concepto básicos Números complejos. Escribe en lenguaje matemático las siguientes afirmaciones: a) Sea una aplicación

Más detalles

MATEMATICAS ESPECIALES I PRACTICA 9 Singularidades - Series de Laurent - Teorema de los residuos. a n (z z 0 ) n + n 1

MATEMATICAS ESPECIALES I PRACTICA 9 Singularidades - Series de Laurent - Teorema de los residuos. a n (z z 0 ) n + n 1 MATEMATICAS ESPECIALES I - 207 PRACTICA 9 Singularidades - Series de Laurent - Teorema de los residuos Teorema. Sean r y R números reales tales que 0 < r < R

Más detalles

Problemas para la materia de Cálculo IV

Problemas para la materia de Cálculo IV Universidad Michoacana de San Nicolás de Hidalgo Facultad de Ingeniería Eléctrica Problemas para la materia de álculo IV Febrero de 5 ompilación de problemas propuestos como parte de exámenes parciales

Más detalles

Funciones de Variable Compleja

Funciones de Variable Compleja Capítulo 2 Funciones de Variable Compleja Se trata en este capítulo de estudiar las relaciones que se establecen entre conjuntos de números complejos a través de funciones entre ambos. Se definirá el concepto

Más detalles

Problemas resueltos. 1. Expresa en forma binómica los siguientes números complejos: b) w = 1+i3 (1 i) 3 c) u = 1. = 5 5i. 1 3i 3i 2 i 3 = 1 i

Problemas resueltos. 1. Expresa en forma binómica los siguientes números complejos: b) w = 1+i3 (1 i) 3 c) u = 1. = 5 5i. 1 3i 3i 2 i 3 = 1 i Problemas resueltos 1. Expresa en forma binómica los siguientes números complejos: a) z = ( + i)(1 i) +i b) w = 1+i (1 i) c) u = 1 1+i + 1 1 i a) z = ( + i)(1 i) +i = 5 5i +i (5 5i)( i) = ( + i)( i) =

Más detalles

Práctica 6. ; hallar el desarrollo en serie de Laurent de f en cada uno z(z 1)(z 2) de los siguientes anillos:

Práctica 6. ; hallar el desarrollo en serie de Laurent de f en cada uno z(z 1)(z 2) de los siguientes anillos: MATEMATICA 4 Primer Cuatrimestre 2004 Práctica 6. Sea f entera y tal que lím f() = 0. Probar que f 0. b) Hallar todas las f enteras tales que lím f() = 5. 2. Sea f() = ; hallar el desarrollo en serie de

Más detalles

Tema 3. Cálculo de primitivas Conceptos generales.

Tema 3. Cálculo de primitivas Conceptos generales. Tema Cálculo de primitivas... Conceptos generales. Una primitiva de una función es otra función que la tiene como derivada y la operación que permite obtener esta primitiva a partir de la función original

Más detalles

1. Conjuntos de números

1. Conjuntos de números 1.2. Números complejos 1.2.1. FORMA BINÓMICA Números complejos en forma binómica Se llama número complejo a cualquier expresión de la forma z = x + yi donde x e y son números reales cualesquiera e i =

Más detalles

N Ú M E R O S C O M P L E J O S

N Ú M E R O S C O M P L E J O S N Ú M E R O S C O M P L E J O S. N Ú M E R O S C O M P L E J O S E N F O R M A B I N Ó M I C A Al intentar resolver la ecuación x 6x 0, obtenemos como soluciones + y que carecen de sentido porque no es

Más detalles

Matemáticas II. Segundo Curso, Grado en Ingeniería Electrónica Industrial y Automática Grado en Ingeniería Eléctrica. 17 de febrero de

Matemáticas II. Segundo Curso, Grado en Ingeniería Electrónica Industrial y Automática Grado en Ingeniería Eléctrica. 17 de febrero de Matemátcas II Segundo Curso, Grado en Ingenería Electrónca Industral y Automátca Grado en Ingenería Eléctrca 7 de febrero de 0. Conteste las sguentes cuestones: Ã! 0 (a) (0.5 ptos.) Escrba en forma bnómca

Más detalles

Tema 3. Cálculo de primitivas Conceptos generales.

Tema 3. Cálculo de primitivas Conceptos generales. Tema Cálculo de primitivas... Conceptos generales. Una primitiva de una función es otra función que la tiene como derivada y la operación que permite obtener esta primitiva a partir de la función original

Más detalles

MATEMATICAS ESPECIALES I PRACTICA 10 Aplicaciones de la Teoría de funciones analíticas.

MATEMATICAS ESPECIALES I PRACTICA 10 Aplicaciones de la Teoría de funciones analíticas. MATEMATICAS ESPECIALES I - 17 PRACTICA 1 Aplicaciones de la Teoría de funciones analíticas. Aplicaciones del Teorema de los residuos para calcular integrales reales. 1. Integrales del tipo π R(cos t, sin

Más detalles

1. Para la función f(x) = x sen x, halle su polinomio de Taylor de orden 2 en a = 0. x x3 3!, x x3

1. Para la función f(x) = x sen x, halle su polinomio de Taylor de orden 2 en a = 0. x x3 3!, x x3 Cálculo I (Grado en Ingeniería Informática) Problemas resueltos, - y -4 (tercera parte) Preparado por los profesores de la asignatura: Pablo Fernández, Dragan Vukotić (coordinadores), Luis Guijarro, Kazaros

Más detalles

PROBLEMA 1 *( ) + SOLUCIÓN: Sea la superficie de la parte esférica superior, parametrizada con coordenadas cilíndricas de la siguiente manera:

PROBLEMA 1 *( ) + SOLUCIÓN: Sea la superficie de la parte esférica superior, parametrizada con coordenadas cilíndricas de la siguiente manera: PROBLEMA 1 A una esfera maciza de radio unidad se le hace una perforación cilíndrica siguiendo un eje diametral de la esfera. Suponiendo que el cilindro es circular de radio, con y que el eje que se usa

Más detalles

Funciones de Variable Compleja

Funciones de Variable Compleja Capítulo 2 Funciones de Variable Compleja Se estudian en este tema las relaciones que se puedan establecer entre conjuntos de números complejos, extendiendo a C el concepto de función, como aplicación

Más detalles

La transformada de Laplace

La transformada de Laplace Capítulo 5 La transformada de Laplace 5.. Funciones continuas a trozos. Función de Heaviside Definición 5. Dados R, con. Diremos que :[ ] C es una función continuaatrozos Existe una partición del intervalo

Más detalles

AMPLIACIÓN DE MATEMÁTICAS. Curso 2014/15 Examen final Análisis Complejo

AMPLIACIÓN DE MATEMÁTICAS. Curso 2014/15 Examen final Análisis Complejo AMPLIACIÓN DE MATEMÁTICAS. Curso 04/5 Examen final. 0 7 05 Análisis Complejo Nombre y apellidos: DNI: En los ejercicios prácticos se valorará que estén explicados, indicando qué resultado o propiedad se

Más detalles

1. CONJUNTOS DE NÚMEROS

1. CONJUNTOS DE NÚMEROS Águeda Mata Miguel Rees, Dpto. de Matemática Aplicada, FI-UPM. 1 1.2.1. Definición 1. CONJUNTOS DE NÚMEROS 1.2. NÚMEROS COMPLEJOS Se llama número complejo a cualquier epresión de la forma z = + i donde

Más detalles

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos Cálculo I (Grado en Ingeniería Informática) - Problemas adicionales resueltos Calcula el ĺımite lím ( n + n + n + ) n Racionalizando el numerador, obtenemos L lím ( n + n + n (n + n + ) (n + ) + ) lím

Más detalles

(a, 0) + (b, 0) = (a + b, 0), (a, 0) (b, 0) = (ab, 0),

(a, 0) + (b, 0) = (a + b, 0), (a, 0) (b, 0) = (ab, 0), NÚMEROS COMPLEJOS 1. Preliminares Definición. Se llama número complejo a todo par ordenado de números reales. Si z = (a, b) es un número complejo, se dice que a es la parte real de z y b es la parte imaginaria

Más detalles

VARIABLE COMPLEJA Y ANÁLISIS FUNCIONAL

VARIABLE COMPLEJA Y ANÁLISIS FUNCIONAL VARIABLE COMPLEJA Y ANÁLISIS FUNCIONAL (Curso 00-00) HOJA Ejercicio. Determina en qué recintos es holomorfa la siguiente función: f(x + iy) x + ay + i(bx + cy) En este caso consideramos: u(x, y) x + ay

Más detalles

(a) z 1 + i = 1, (b) z + i 3, (c) Re(z i) = 2, (d) 2z i = 4. i 2 2i, z k = 1 zn+1 1 z

(a) z 1 + i = 1, (b) z + i 3, (c) Re(z i) = 2, (d) 2z i = 4. i 2 2i, z k = 1 zn+1 1 z Demostrar que Re z + Im z z para todo z C. Encontrar las soluciones de z = z. 3 Representar cada uno de los siguientes conjuntos: (a) z + i =, (b) z + i 3, (c) Re(z i) =, (d) z i = 4. 4 Demostrar que si

Más detalles

CÁLCULO DE PRIMITIVAS

CÁLCULO DE PRIMITIVAS 2 CÁLCULO DE PRIMITIVAS REFLEXIONA Y RESUELVE Concepto de primitiva NÚMEROS Y POTENCIAS SENCILLAS a) b) 2 c) 2 a) 2x b) x c) 3x 3 a) 7x b) c) x 4 a) 3x2 b) x2 c) 2x2 5 a) 6x 5 b) x5 c) 3x5 x 3 2 2 POTENCIAS

Más detalles

EL NÚMERO COMPLEJO. Los números complejos. Distintas expresiones del número complejo. Operaciones con números complejos.

EL NÚMERO COMPLEJO. Los números complejos. Distintas expresiones del número complejo. Operaciones con números complejos. EL NÚMERO COMPLEJO. Los números complejos. Distintas expresiones del número complejo. Operaciones con números complejos. 1. Introducción Los números complejos o imaginarios nacen de la necesidad de resolver

Más detalles

16. Ejercicios resueltos sobre cálculo de residuos.

16. Ejercicios resueltos sobre cálculo de residuos. 7 Funciones de variable compleja. Eleonora Catsigeras. 3 Junio 26. 6. Ejercicios resueltos sobre cálculo de residuos. En esta sección se dan ejemplos de cálculo de integrales de funciones reales, propias

Más detalles

Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos:

Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: 1 CONOCIMIENTOS PREVIOS. 1 Números complejos. 1. Conocimientos previos. Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: Trigonometría. Sería conveniente realizar un ejercicio

Más detalles

LA FORMA TRIGONOMETRICA DE LOS NUMEROS COMPLEJOS Y EL TEOREMA DE MOIVRE. Capítulo 7 Sec. 7.5 y 7.6

LA FORMA TRIGONOMETRICA DE LOS NUMEROS COMPLEJOS Y EL TEOREMA DE MOIVRE. Capítulo 7 Sec. 7.5 y 7.6 LA FORMA TRIGONOMETRICA DE LOS NUMEROS COMPLEJOS Y EL TEOREMA DE MOIVRE Capítulo 7 Sec. 7.5 y 7.6 El Plano Complejo Se puede utilizar un plano de coordenadas para representar números complejos. Si cada

Más detalles

AMPLIACIÓN DE MATEMÁTICAS. Curso 2013/14 Examen final de junio Teoría y Problemas

AMPLIACIÓN DE MATEMÁTICAS. Curso 2013/14 Examen final de junio Teoría y Problemas AMPLIACIÓN DE MATEMÁTICAS. Curso 23/4 Examen final de junio. 8 6 24 Teoría y Problemas. Contestar a las siguientes cuestiones: (a) (.5 puntos) Dada una función :[ ) R de clase,demostrarlafórmula L[ ]()

Más detalles

1. Para la función f(x) = x sen x, halle su polinomio de Taylor de orden 2 en a = 0. x x3 3! + x5

1. Para la función f(x) = x sen x, halle su polinomio de Taylor de orden 2 en a = 0. x x3 3! + x5 Cálculo I (Grado en Ingeniería Informática Problemas resueltos, -, -4 y 4-5 (tercera parte Preparado por los profesores de la asignatura: Pablo Fernández, Dragan Vukotić, Luis Guijarro (coordinadores,

Más detalles

FUNCIONES ANALITICAS (Curso 2011) Práctica 7. Clase 1 - Desarrollo de Laurent - Clasificación de singularidades aisladas

FUNCIONES ANALITICAS (Curso 2011) Práctica 7. Clase 1 - Desarrollo de Laurent - Clasificación de singularidades aisladas FUNCIONES ANALITICAS (Curso 2) Práctica 7 Clase - Desarrollo de Laurent - Clasificación de singularidades aisladas. Hallar los desarrollos de Laurent de + en > en las distintas coronas alrededor del origen

Más detalles

0 (0) = 0 (0) = 0. L [ 00 + ]( ) = L [ ( )] ( ) (Linealidad) L [ 00 ]( )+L[ ]( ) = L [ ( )] ( ) (Derivación) 2 ( )+ ( ) =L [ ( )] ( )

0 (0) = 0 (0) = 0. L [ 00 + ]( ) = L [ ( )] ( ) (Linealidad) L [ 00 ]( )+L[ ]( ) = L [ ( )] ( ) (Derivación) 2 ( )+ ( ) =L [ ( )] ( ) Ampliación de Matemáticas II Grado en Ingeniería en Tecnologías Industriales 8 de junio 6. Dado el siguiente problema de valor inicial: ()+() = () () = () = a) (.5 puntos) Resuelve el problema utilizando

Más detalles

Cálculo de Primitivas

Cálculo de Primitivas . Primitivas de una función Sea I un intervalo y f : I IR. Se dice que f tiene tiene una primitiva en I si existe una función G : I IR, continua en I, derivable en el interior de I y verificando que G

Más detalles

UNIDAD 1 NUMEROS COMPLEJOS

UNIDAD 1 NUMEROS COMPLEJOS UNIDAD 1 NUMEROS COMPLEJOS El conjunto de los números complejos fue creado para poder resolver algunos problemas matemáticos que no tienen solución dentro del conjunto de los números reales. Por ejemplo

Más detalles

El primer asomo de la raíz cuadrada de un número negativo se presentó en la stereometría de Herón de Alejandría (año 50), y más tarde en la

El primer asomo de la raíz cuadrada de un número negativo se presentó en la stereometría de Herón de Alejandría (año 50), y más tarde en la El primer asomo de la raíz cuadrada de un número negativo se presentó en la stereometría de Herón de Alejandría (año 50), y más tarde en la aritmética de Diofanto (año 275). 56 8i 14 + 10i 1. Trata la

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II CASTILLA Y LEÓN CONVOCATORIA SEPTIEMBRE 9 SOLUCIÓN DE LA PRUEBA DE ACCESO AUTOR: José Luis Pérez Sanz Prueba A Problemas a) f(x) x El denominador de f(x) nunca se anula; por

Más detalles

FUNCIONES MEROMORFAS. EL TEOREMA DE LOS RESIDUOS Y ALGUNAS DE SUS CONSECUENCIAS

FUNCIONES MEROMORFAS. EL TEOREMA DE LOS RESIDUOS Y ALGUNAS DE SUS CONSECUENCIAS FUNCIONES MEROMORFAS. EL TEOREMA DE LOS RESIDUOS Y ALGUNAS DE SUS CONSECUENCIAS. FUNCIONES MEROMORFAS Definición.. Se dice que una función es meromorfa en un abierto Ω de C si f es holomorfa en Ω excepto

Más detalles

Tema 10: Cálculo integral

Tema 10: Cálculo integral Tema 10: Cálculo integral 1. Introducción El matemático inglés Isaac Barrow (1630-1677) fue el precursor del cálculo de integrales definidas, enunciando la regla que lleva su nombre y que conecta la integral

Más detalles

Funciones de Variable Compleja

Funciones de Variable Compleja U Contenido Facultad de Ingeniería Escuela de Ingeniería Eléctrica Departamento de Electrónica, Computación y Control Variable Compleja y Cálculo Operacional Funciones de Variable Compleja (Continuidad,

Más detalles

2xy 3x 2 y 2 y(0) = 1

2xy 3x 2 y 2 y(0) = 1 ESCUELA UNIVERSITARIA POLITÉCNICA DE SEVILLA DEPARTAMENTO DE MATEMÁTICA APLICADA II Ingeniería Técnica Industrial. Especialidad en Mecánica Soluciones al Primer Parcial de Ampliación de Matemáticas. Curso

Más detalles

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIONES CURSO CERO DE MATEMATICAS Apuntes elaborados por Domingo Pestana Galván y José Manuel Rodríguez García UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica

Más detalles

MATEMÁTICA D y D 1 Módulo I: Análisis de Variable Compleja

MATEMÁTICA D y D 1 Módulo I: Análisis de Variable Compleja Matemática D y D MATEMÁTICA D y D Módulo I: Análisis de Variable Compleja Unidad 0 Números Complejos Mag. María Inés Baragatti Números complejos. Generalidades Un número complejo es un par ordenado de

Más detalles

Contenido. Números Complejos 3

Contenido. Números Complejos 3 Números Complejos Universidad Central de Venezuela Facultad de Ingeniería Escuela de Ingeniería Eléctrica Departamento de Electrónica, Computación y Control Variable Compleja y Cálculo Operacional Marzo,

Más detalles

a f af= 3. a) Clasificar las singularidades de la función: f z sen x Universidad de Las Palmas de Gran Canaria

a f af= 3. a) Clasificar las singularidades de la función: f z sen x Universidad de Las Palmas de Gran Canaria E.T.S.I.T. º CURSO CONVOCATORIA ORDINARIA 8.. Profesor A. Plaa TIEMPO ESTIMADO:. Horas. Los que se examinan de toda la asignatura deben responder a las 4 primeras preguntas. Las personas que liberaron

Más detalles

ene 5 12:59 Está basado en la regla de la cadena. Si F(x) y g(x) son funciones derivables, la regla de la cadena nos dice que:

ene 5 12:59 Está basado en la regla de la cadena. Si F(x) y g(x) son funciones derivables, la regla de la cadena nos dice que: Métodos de integración: 1) Método de descomposición Para calcular una integral indefinida, usamos las propiedades de las integrales y las igualdades que conozcamos para descomponer la integral en otras

Más detalles

Análisis Matemático para Estadística. Hoja 1

Análisis Matemático para Estadística. Hoja 1 Análisis Matemático para Estadística. Hoja Funciones de variable compleja. Teoremas básicos.. Describe el conjunto de puntos del plano complejo que cumplen la ecuación: (a) Im(z + 5i) = ; (b) Re(z + 3

Más detalles

15. Teoría de los residuos.

15. Teoría de los residuos. 162 Funciones de variable compleja. Eleonora Catsigeras. 12 Julio 2006. 15. Teoría de los residuos. 15.1. Residuos. Definición 15.1.1. Residuo de una función en una singularidad aislada. Dada una función

Más detalles

NÚMEROS COMPLEJOS. Página 147 REFLEXIONA Y RESUELVE. Extraer fuera de la raíz. Potencias de. Cómo se maneja k 1? Saca fuera de la raíz:

NÚMEROS COMPLEJOS. Página 147 REFLEXIONA Y RESUELVE. Extraer fuera de la raíz. Potencias de. Cómo se maneja k 1? Saca fuera de la raíz: NÚMEROS COMPLEJOS Página 7 REFLEXIONA Y RESUELVE Extraer fuera de la raíz Saca fuera de la raíz: a) b) 00 a) b) 00 0 Potencias de Calcula las sucesivas potencias de : a) ( ) ( ) ( ) b) ( ) c) ( ) 5 a)

Más detalles

PRÁCTICA 5. #1: LOAD(C:\Derive\Complejos.mth) #2: true EJERCICIO 1. k #3: (z - a) f. 1 d k - 1. #5: ((z - a) f) (k - 1)! dz

PRÁCTICA 5. #1: LOAD(C:\Derive\Complejos.mth) #2: true EJERCICIO 1. k #3: (z - a) f. 1 d k - 1. #5: ((z - a) f) (k - 1)! dz #1: LOAD(C:\Derive\Complejos.mth) #2: true EJERCICIO 1 k #3: (z - a) f d k - 1 k #4: ((z - a) f) dz PRÁCTICA 5 1 d k - 1 k #5: ((z - a) f) (k - 1)! dz 1 d k - 1 k #6: lim ((z - a) f) z a (k - 1)! dz 1

Más detalles

Apellidos y Nombre: Hoja 1

Apellidos y Nombre: Hoja 1 Hoja 1 1 Hallar dos números complejos tales que su suma sea 1+6i y su cociente imaginario puro. Suponer, además que la parte real del que se tome como divisor al calcular el cociente es 1. Hallar los números

Más detalles

ETS Minas: Métodos matemáticos Ejercicios resueltos Tema 1 Preliminares

ETS Minas: Métodos matemáticos Ejercicios resueltos Tema 1 Preliminares ETS Minas: Métodos matemáticos Ejercicios resueltos Tema Preliminares Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Curso 006/07 Agosto 006,

Más detalles

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO 5

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO 5 ALGEBRA y ALGEBRA LINEAL 520142 Primer Semestre CAPITULO 5 DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición: Números Complejos Se define el conjunto de los

Más detalles

Contenidos. Importancia del tema. Conocimientos previos para este tema?

Contenidos. Importancia del tema. Conocimientos previos para este tema? Transformación conforme Contenidos Unidad I: Funciones de variable compleja. Operaciones. Analiticidad, integrales, singularidades, residuos. Funciones de variable real a valores complejos. Funciones de

Más detalles

2. El conjunto de los números complejos

2. El conjunto de los números complejos Números complejos 1 Introducción El nacimiento de los números complejos se debió a la necesidad de dar solución a un problema: no todas las ecuaciones polinómicas poseen una solución real El ejemplo más

Más detalles

Unidad 15 Integrales definidas. Aplicaciones

Unidad 15 Integrales definidas. Aplicaciones Unidad 15 Integrales definidas. Aplicaciones 3 SOLUCIONES 1. La suma superior es: La suma inferior es:. La suma superior es: s ( P) = ( 1) 3 + (3 ) 10 = 3 + 10 = 13 La suma inferior es: s ( P) = ( 1) 1+

Más detalles

4i ± (1 + 1) = w = (2 ± 2)

4i ± (1 + 1) = w = (2 ± 2) POBLEMA esolver la siguiente ecuación en variable compleja Se utilian las siguientes identidades Se realia el cambio de variable Se multiplica ambos lados por w w cos + sen 2 cos ei + e i 2 sen ei e i

Más detalles

Determinación de la trasformada inversa mediante el uso de las fracciones parciales

Determinación de la trasformada inversa mediante el uso de las fracciones parciales 3.6. Determinación de la trasformada inversa mediante el uso de las fracciones parciales 95 3.6. Determinación de la trasformada inversa mediante el uso de las fracciones parciales Transformadas de Ecuaciones

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD. CURSO SOLUCIONES (Modelo 5)

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD. CURSO SOLUCIONES (Modelo 5) CURSO 04 05 SOLUCIONES (Modelo 5) JUNIO Opción A Ejercicio.- ['5 puntos] Se quiere vallar un campo rectangular que está junto a un camino. Si la valla del lado del camino cuesta 80 euros/metro y la de

Más detalles

5.1. Primitiva de una función. Reglas básicas

5.1. Primitiva de una función. Reglas básicas Tema 5 Integración Indefinida 5.1. Primitiva de una función. Reglas básicas En este tema estudiaremos lo que podríamos llamar el problema inverso de la derivación, es decir, dada una función f hallar otra

Más detalles

ETS Minas: Métodos matemáticos Tema 1 Preliminares

ETS Minas: Métodos matemáticos Tema 1 Preliminares ETS Minas: Métodos matemáticos Tema 1 Preliminares Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Septiembre 2008, versión 1.7 Contenido 1.

Más detalles

1. dejar a una lado de la igualdad la expresión que contenga una raíz.

1. dejar a una lado de la igualdad la expresión que contenga una raíz. 1. Resuelve las siguientes ecuaciones reales: Solución x 1 + x = 0 ; 3 x = 3 ; ln(x 1) + 4 = ln 3 Ecuaciones con raíces: No todas las ecuaciones de este tipo son sencillas de resolver, pero podemos intentar

Más detalles

Tema 2: Funciones anaĺıticas. Conjuntos abiertos y conjuntos cerrados. Ejemplos. Marisa Serrano. 6 de octubre de 2009

Tema 2: Funciones anaĺıticas. Conjuntos abiertos y conjuntos cerrados. Ejemplos. Marisa Serrano. 6 de octubre de 2009 Índice Universidad de Oviedo 6 de octubre de 2009 1 2 3 4 email: mlserrano@uniovi.es Conjuntos abiertos y conjuntos cerrados B(a, ɛ) = {z C : z a < ɛ} = D(a, ɛ). Dado A C se dice que un punto a C es interior

Más detalles

Soluciones de los ejercicios del examen de Cálculo del 29 de junio de 2007 Primero de Ingeniería de Telecomunicación

Soluciones de los ejercicios del examen de Cálculo del 29 de junio de 2007 Primero de Ingeniería de Telecomunicación Soluciones de los ejercicios del examen de del 29 de junio de 27 Primero de Ingeniería de Telecomunicación Ejercicio a Justifica que la ecuación x 2 = x sen x+ cos x tiene exactamente dos soluciones reales.

Más detalles

, se denomina primitiva de esta función a otra F(x)

, se denomina primitiva de esta función a otra F(x) 1. CONCEPTO DE INTEGRAL INDEFINIDA Definición: Dada una función f (x), se denomina primitiva de esta función a otra F(x) tal que F '( x) = f ( x) Esta definición indica que el cálculo de primitivas constituye

Más detalles

Matemáticas I. Curso Exámenes

Matemáticas I. Curso Exámenes Matemáticas I. Curso 010-011. Exámenes 1. Logaritmos y radicales Ejercicio 1. Racionalizar los denominadores: 5 45 4 7 7 8 7 5 5 + 5 5 5 = = 45 9 5 5 = 1 4 7 = 4 + 7) 4 7)4 + 7) = 4 + 7) = 4 + 7) = 4 +

Más detalles

1. Ceros y singularidades de una función

1. Ceros y singularidades de una función TEMA 6 TEORÍA DE RESIDUOS. Ceros y singularidades de una función. Ceros de una función.2 Singularidades de una función.3 Relaciones entre ceros y singularidades.4 Singularidades y el punto del infinito

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 8. Introducción a la integración INTEGRAL INDEFINIDA

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 8. Introducción a la integración INTEGRAL INDEFINIDA INTEGRAL INDEFINIDA CONCEPTOS BÁSICOS: PRIMITIVA E INTEGRAL INDEFINIDA El cálculo de integrales indefinidas de una función es un proceso inverso del cálculo de derivadas ya que se trata de encontrar una

Más detalles

RESOLVIENDO PROBLEMAS DE MATEMÁTICA

RESOLVIENDO PROBLEMAS DE MATEMÁTICA RESOLVIENDO PROBLEMAS DE MATEMÁTICA RESOLUCIÓN DE LOS PROBLEMAS PROPUESTOS PROBLEMA 14 (16115) Probar que, 3, 5 no pueden ser términos de una misma progresión aritmética. Sean a m, a n 3, a p 5, siendo

Más detalles

S2: Polinomios complejos

S2: Polinomios complejos S: Polinomios complejos Un polinomio complejo de grado n es un polinomio de la forma: p x = a 0 + a 1 x + a x + + a n x n Donde los a i C se llaman coeficientes y a n 0. Observa que como R C los coeficientes

Más detalles

Se suponen conocidos los siguientes conceptos previos desarrollados en las secciones 1, 2, 3.1 y 3.2:

Se suponen conocidos los siguientes conceptos previos desarrollados en las secciones 1, 2, 3.1 y 3.2: 112 Funciones de variable compleja. Eleonora Catsigeras. 15 Mayo 2006. TERCERA PARTE. SINGULARIDADES Y TEORÍA DE LOS RESIDUOS. Resumen Se estudian las singularidades aisladas: evitables, polos y esenciales

Más detalles

Comenzamos recordando algunos conceptos de la topología de l - R 2. Dado a lc y ɛ > 0 se llama bola abierta de centro a y radio ɛ al conjunto

Comenzamos recordando algunos conceptos de la topología de l - R 2. Dado a lc y ɛ > 0 se llama bola abierta de centro a y radio ɛ al conjunto Capítulo 2 Funciones analíticas. Funciones armónicas. En este capítulo iniciamos el estudio de las funciones de variable compleja. Comenzamos con los conceptos de límite y continuidad en lc, conceptos

Más detalles

SERIES DE POTENCIAS. Curso

SERIES DE POTENCIAS. Curso Ampliación de Matemáticas (Ingeniería de Telecomunicación) Curso 200/ Curso 2 o. Ingeniero de Telecomunicación. Ampliación de Matemáticas. Lección 9. SERIES DE POTENCIAS. Curso 200- Las series de potencias

Más detalles

Números Complejos. Prof. Johnny Rengifo

Números Complejos. Prof. Johnny Rengifo Números Complejos Prof. Johnny Rengifo 22 de octubre de 2010 Capítulo 1 Números Complejos Existen muchas ecuaciones cuadráticas que no tienen solución en los números reales (R). Por ejemplo x 2 + 1 = 0

Más detalles

ANÁLISIS DE FUNCIONES

ANÁLISIS DE FUNCIONES ANÁLISIS DE FUNCIONES.- Calcula f() de manera que f () = Ln( + ) y que f(0) = 0. (nota: Ln significa logaritmo neperiano). Universidad de Andalucía Se trata de resolver la integral que hemos de hacerlo

Más detalles

Laboratorio de Simulación. Trimestre 08P Grupo CC03A Pablo Lonngi. Lección 4

Laboratorio de Simulación. Trimestre 08P Grupo CC03A Pablo Lonngi. Lección 4 Laboratorio de Simulación Trimestre 08P Grupo CC03A Pablo Lonngi Lección 4 Números Complejos. IIª parte. Representación polar de un complejo En la forma polar, llamada también forma trigonométrica, un

Más detalles

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIONES CURSO CERO DE MATEMATICAS Apuntes elaborados por Domingo Pestana Galván y José Manuel Rodríguez García UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica

Más detalles

2. Derivación y funciones holomorfas.

2. Derivación y funciones holomorfas. 18 Funciones de variable compleja. Eleonora Catsigeras. 24 Abril 2006. 2. Derivación y funciones holomorfas. 2.1. Derivación de funciones complejas y funciones holomorfas. Sea Ω abierto contenido en C,

Más detalles

Contenidos de los preliminares

Contenidos de los preliminares Preliminares del tema Contenidos de los preliminares Propiedades de los logaritmos Un par de primitivas elementales Algunas ideas sobre la función arcotangente Funciones hiperbólicas Descomposición en

Más detalles

Capítulo 4 Desarrollos en Serie de Taylor y de Laurent.

Capítulo 4 Desarrollos en Serie de Taylor y de Laurent. Capítulo 4 Desarrollos en Serie de Taylor y de Laurent. El desarrollo en serie de potencias, que comúnmente se restringe a potencias positivas en el campo real toma forma definitiva en el campo complejo

Más detalles

Funciones reales de varias variables

Funciones reales de varias variables PROBLEMAS DE CÁLCULO II Curso 2-22 2 Funciones reales de varias variables. Dibuja las curvas de niveles,,..., 5 y la representación gráfica de las siguientes funciones a) f(x, y) = 5 x y b) f(x, y) = x

Más detalles

Tema 3 Algebra. Ecuaciones. Sistemas de ecuaciones: Inecuaciones Índice

Tema 3 Algebra. Ecuaciones. Sistemas de ecuaciones: Inecuaciones Índice Tema 3 Algebra. Ecuaciones. Sistemas de ecuaciones: Inecuaciones Índice 1. ECUACIONES... 2 1.1. Ecuaciones de primer grado... 2 1.2. Ecuaciones de segundo grado... 3 1.2.1. Ecuación de segundo grado completa...

Más detalles

1. Álgebra de Números Complejos.

1. Álgebra de Números Complejos. 1. Álgebra de Números Complejos. Los números complejos se pueden introducir en el proceso de búsqueda de soluciones para ecuaciones polinomiales como x 2 + 1 = 0 ó x 2 + 4x + 13 = 0. En general un valor

Más detalles

Funciones de Variable Compleja

Funciones de Variable Compleja f es univaluada (multivaluada) si f(z) es único (múltiple) Función inversa: Límite de una función: Curso 2016/2017 (1er cuatrimestre) Métodos Matemáticos de la Física I 15 Lema 1 Lema 2 Caracterización

Más detalles

Examen de Funciones de Variable Compleja. Soluciones.

Examen de Funciones de Variable Compleja. Soluciones. Examen de Funciones de Variable Compleja. Soluciones. 5 de febrero de 0. Ejercicio. Sean a b dos complejos fijos no nulos, ambos con el mismo argumento igual a π/4, y tales que a < b. Parte a): Encontrar

Más detalles

CAPITULO 8. LA TRANSFORMADA DE LAPLACE La transformada de Laplace

CAPITULO 8. LA TRANSFORMADA DE LAPLACE La transformada de Laplace CAPITULO 8. LA TRANSFORMADA DE LAPLACE 8.1. La transformada de Laplace Definición 1.Sea f (t) una función definida para t 0. Se define la transformada de Laplace de f (t) de la forma, - s es un parámetro

Más detalles

2 + 5i. b) Hallar todas las raíces de raíz cúbica de -27. Dar el resultado en binómica y polar.

2 + 5i. b) Hallar todas las raíces de raíz cúbica de -27. Dar el resultado en binómica y polar. 1.- Números complejos: a) Realizad la operación: 3 + ı 2 + 5i Proporcionad el resultado en forma binómica. b) Hallar todas las raíces de raíz cúbica de -27. Dar el resultado en binómica y polar. a) Poner

Más detalles

UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO SUBPROGRAMA DE DISEÑO ACADÉMICO ÁREA MATEMATICA PLAN DE CURSO

UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO SUBPROGRAMA DE DISEÑO ACADÉMICO ÁREA MATEMATICA PLAN DE CURSO UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO SUBPROGRAMA DE DISEÑO ACADÉMICO ÁREA MATEMATICA PLAN DE CURSO I. Identificación Nombre: MATEMÁTICA V Código: 739 U.C: 05 Carreras: Ingeniería de Sistemas

Más detalles

L [1] ( ) = 1 L [ ( )] ( ) =2 L[1] ( )+L[( 3) 3 ( )] ( ) = 2 + 3

L [1] ( ) = 1 L [ ( )] ( ) =2 L[1] ( )+L[( 3) 3 ( )] ( ) = 2 + 3 Ampliación de Matemáticas II Grado en Ingeniería en Tecnologías Industriales Convocatoria 9 Junio 5. ( puntos) Resolver utilizando la transformada de Laplace la ED ( + + +( 3) 3 (), (), (). Determinar

Más detalles

Integral indefinida. Integral indefinida es el conjunto de las infinitas primitivas que puede tener una función.

Integral indefinida. Integral indefinida es el conjunto de las infinitas primitivas que puede tener una función. Integral indefinida 1. Integración Integrar es el proceso recíproco del de derivar, es decir, dada una función f(x), busca aquellas funciones F(x) que al ser derivadas conducen a f(x). Se dice, entonces,

Más detalles

(MAT021) 1 er Semestre de z + e = (x + iy) + (e 1 + ie 2 ) = (x + e 1 ) + i(y + e 2 ) = x + iy

(MAT021) 1 er Semestre de z + e = (x + iy) + (e 1 + ie 2 ) = (x + e 1 ) + i(y + e 2 ) = x + iy (MAT01) 1 er Semestre de 010 1 Números Complejos Se define el conjunto de los números complejos como: C = {a + bi / a, b R, i = 1} Definición 1.1. Sea z, w C tal que z = x + iy en donde x, y R. Se define:

Más detalles

Tema 10: Integral indenida

Tema 10: Integral indenida Tema 0: Integral indenida May 9, 07 Primitiva de una función Como hemos estudiado, la derivación nos permite encontrar la derivada de una función dada. Por ejemplo, si tenemos la función F () =, su derivada

Más detalles

PROBLEMAS PROPUESTOS. TEMAS 5 Y 6 SOLUCIONES

PROBLEMAS PROPUESTOS. TEMAS 5 Y 6 SOLUCIONES Grado en Ingeniería Mecánica Teoría de Sistemas PROBLEMAS PROPUESTOS. TEMAS 5 Y 6 SOLUCIONES Transformada Z. Función de transferencia discreta. Modelado de sistemas discretos. PROBLEMA 1. Sistema discreto

Más detalles

Examen ordinario de Matemáticas E.T.S.I. de Telecomunicación

Examen ordinario de Matemáticas E.T.S.I. de Telecomunicación Examen ordinario de Matemáticas E.T.S.I. de Telecomunicación 27 de Enero de 29 1. Enunciados 1.1. Ejercicio 1 1.1.1. Problema 1. (3 puntos) (1) Calcule C(i,2) (cos z + sin z)/(z 1)n dz, donde C(i, 2) denota

Más detalles

Laboratorio #1 Ecuaciones Cuadráticas I. II.- Resolver las ecuaciones siguientes usando el método Completando Cuadrados.

Laboratorio #1 Ecuaciones Cuadráticas I. II.- Resolver las ecuaciones siguientes usando el método Completando Cuadrados. Laboratorio #1 Ecuaciones Cuadráticas I I.- Resolver las ecuaciones siguientes utilizando el método de Factorización. 1) 121 25x = 0 2) 27az 2 75a 3 = 0 3) 15y 2 = 21y II.- Resolver las ecuaciones siguientes

Más detalles