Tema 10: Integral indenida

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tema 10: Integral indenida"

Transcripción

1 Tema 0: Integral indenida May 9, 07 Primitiva de una función Como hemos estudiado, la derivación nos permite encontrar la derivada de una función dada. Por ejemplo, si tenemos la función F () =, su derivada es la función f () = F () =. La integración es el camino contrario, es decir, dada la derivada f () = F () se trata de encontrar la función de la que procede la derivada dada, a esta función F () se le llama primitiva de f. Denición. Se llama función primitiva de f () a una función F () que cumple que F () = f (). Sabemos que la derivada de una constante es cero, por esta razón si F () es una función primitiva de f (), cualquier otra función F () también es primitiva de f (). La primitiva no es única, de hecho hay innitas que se diferencian en una constante. Integral indenida. Propiedades. Una función tiene innitas primitivas, al conjunto de todas ellas se le llama integral indenida de la función f. La integral indenida de una función f se representa por: f () d = F () C es un número cualquiera y se llama constante de integración. Integral de un número por una función. Es igual al número por la integral de la función: af () d = a f () d Integral de la suma de funciones. Es igual a la suma (diferencia) de las integrales de las funciones: [f () ± g ()] d = f () d ± g () d Métodos de integración El cálculo de la integral denida de una función depende del tipo de función que integramos. Eisten varios métodos y vamos a ver primero las de funciones elementales, y después los métodos de cambio de variable, por partes y de funciones racionales.. Integrales inmediatas Esta forma de integrar consiste en transformar la función que nos dan, mediante las propiedades anteriores, en una función cuya primitiva pueda calcularse, de forma inmediata, con la tabla siguiente. Esto no es siempre fácil, si es una función compuesta hay que asegurarse de que tenemos la derivada de todas las funciones. Recordad que para comprobar si lo hemos hecho bien, basta con derivar la primitiva que hayamos obtenido.

2 Tipo de función primitiva Potencial (n ) Eponencial Logarítmica Seno Coseno Tangente Cotangente rco seno rco tangente Primitiva n d = n+ n + e d = e a d = a ln a d = ln cos d = sin sin d = cos ( + tan ) d = cos d = tan ( + cot ) d = sin d = cot d = arcsin d = arctan + Ejemplo. e 7 d = 7 7e 7 d = 7 e7 Ejemplo. 7 + d = d = 7 6 ln +. Integración por partes Este método se basa en la derivada de un producto: si f () y g () son dos funciones: (f g) = f g + f g, integrando: (f g) d = f g d + f g d f g = f g d + f g d y despejando obtenemos la fórmula de integración por partes: f g d = f g f g d que nos permite transformar una integral en otra que nos sea más sencilla de resolver. En ocasiones hay que usar el método varias veces antes de poder integrar. Ejemplo. ln d hay que escoger f y g de forma que sea fácil integrar g. Si cogemos: f = ln f = g = g = d =, sustituyendo en la fórmula de integración por partes: f g d = f g f g d ln d = ln d = ln Se podrían quitar los paréntesis y hacer dos inte- ( Ejemplo. (Reserva -) Calcular: + ) ln d. grales, pero voy a intentar hacerlo directamente. Tomamos: f () = ln f () = g () = + g () = ( + ) d = + plicando la fórmula de integración por partes: ( + ) ln d = ln ( + ) ( ) ( ) + d = ln + ( ) + d ( + ) ln d = ( + ) ln 9

3 Ejemplo. En las integrales del tipo función trigonométrica por eponencial, haciéndolo por partes a veces vuelve a aparecer la integral inicial, lo que podemos utilizar para hallarla. Calcular I = cos e d Integramos por partes: u = e du = e d dv = cos v = sin I = cos e d = e sin e sin d Integrando nuevamente por partes: u = e du = e d dv = sin v = cos [ I = e sin e cos ] ( cos ) e d Operando tenemos: I = e sin + e cos I 5I = e sin + e cos, despejando tenemos la integral buscada: I = cos e d = e (sin + cos ) 5. Cambio de variable La integración por cambio de variable o método de sustitución consiste en denir una variable t como parte de la función en que queremos integrar. También tendremos que cambiar d por dt. Si = g (t) d = g (t) dt. Si sustituimos, la integral se transforma en otra, de variable t, más fácil de integrar. Lo difícil en este caso es encontrar el cambio de variable adecuado. Veamos cómo se integra. Ejemplo. ln d Primero. Hacemos el cambio de variable t = ln dt = d d = dt. Segundo. Sustituimos t y dt en la integral: ln d = t dt = t dt. Tercero. Resolvemos la integral: dt = ln t t Cuarto. Deshacemos el cambio: d = ln t = ln (ln ) ln Ejemplo. + d Primero. Hacemos el cambio de variable t = + tdt = 6d d = tdt 6. Segundo. Sustituimos t y dt en la integral: d = + Tercero. Resolvemos la integral: dt = t Cuarto. Deshacemos el cambio: tdt t = dt d = t + + = cos Ejemplo. (Reserva.) + sin d (Se puede ver como inmediata) Primero. Hacemos el cambio de variable t = sin dt = cos d d = dt cos. Segundo. Sustituimos t y dt cos en la integral: + sin d = cos dt + t cos = + t dt Tercero. Resolvemos la integral: dt = arctan t + t cos Cuarto. Deshacemos el cambio: + sin d = arctan t = arctan (sin )

4 Ejemplo. sin cos 5 d (Recordad fórmulas trigonométricas) Primero. Hacemos el cambio de variable t = cos dt = sin d d = dt sin. Segundo. Sustituimos t y dt en la integral: sin cos 5 d = sin t 5 dt sin = sin t 5 dt sin cos 5 d = ( cos ) t 5 dt = ( t ) t 5 dt Tercero. Resolvemos la integral: ( t ) t 5 dt = ( t 5 + t 7) dt = t6 6 + t8 8 Cuarto. Deshacemos el cambio: cos + sin d = t6 6 + t8 8 = cos6 + cos8 6 8 Ejemplo 5. d (½Recordad fórmulas trigonométricas!) Primero. Hacemos el cambio de variable = sin t d = cos tdt. Segundo. Sustituimos t y dt en la integral: d = sin cos tdt = cos cos tdt = cos t dt Tercero. Resolvemos la integral recordando cos + cos t t = : + cos t cos t dt = dt = t sin t + Cuarto. Deshacemos el cambio: cos t dt = t. Funciones racionales + sin t = arcsin + sin ( arcsin ) P () Para integrar funciones racionales d, se descompone la fracción en una suma de fracciones algebraicas Q () más sencillas de resolver. Depende si el grado del numerador es mayor o menor que el del denominador, y si el denominador tiene raíces simples, múltiples o complejas (este último caso no lo estudiamos).. Grado P () <Grado Q () En este caso no se puede dividir. El denominador sólo tiene raíces reales simples Descomponemos el denominador y obtenemos raíces reales diferentes, factorizando tenemos: Q () = ( a) ( b) ( c)... así la fracción se puede descomponer en suma de fracciones: P () Q () = a + B b + C c +... donde, B, C,... son números que tenemos que calcular. Y así la integral la descomponemos en suma de integrales sencillas (van a ser logaritmos) P () Q () d = Ejemplo. Calcular la integral + d a d + El denominador factorizado es: + = ( + ). Por lo tanto intentamos la siguiente descomposición: B b d + C d +... c

5 Operando en el segundo miembro: + = + B + ( + ) + B ( + B) + = = + ( + ) ( + ) Puesto que los denominadores son iguales, los numeradores tienen que ser iguales, igualando coeciente a coeciente de los términos de igual grado: = ( + B) + { = + B = = ; B = Sustituyendo e integrando: + d = d + d = ln + ln + + Ejemplo. Calcular la integral + d = ( ) + d = ln +. (Veis que si el numerador es la derivada del denominador, no hay que integrarla como una racional. Os pongo esto aquí para que no se os olvide) Ejemplo. Calcular la integral d Descomponemos el denominador en factores: = ( + ) ( ) Descomponemos la fracción: = + + B ( ) + B ( + ) = ( + ) ( ) Calculamos, B, en lugar de hacerlo como un sistema, jáos en esta forma que es más rápida: si = = 0 + B B = = ( ) + B ( + ) si = = ( ) = 5 Sustituimos e integramos: d = 5/ + d + / d = 5 ln + + ln El denominador tiene alguna raíz real múltiple Descomponemos el denominador y obtenemos raíces reales que se repiten, por ejemplo que tenga sólo una que se repita n veces, factorizando tenemos: Q () = ( a) n así la fracción se puede descomponer en suma de fracciones: P () Q () = a + B ( a) N ( a) n donde, B,... son los números que tenemos que calcular. Y así la integral se descompone en suma de integrales sencillas. Ejemplo. 5 + Veamos primero un caso muy sencillo, calcular d quí, como el denominador es un monomio, podemos directamente dividir: 5 + d = ( 5 + ) d = ln 5 + = ln

6 Ejemplo. + Calcular d (el denominador ya está factorizado: tiene la raíz = doble) ( ) Intentamos la descomposición: + ( ) = + B ( ) Operando en el segundo miembro: { + ( ) + B = ( ) ( ) + = + B = = 6 + B B = Sustituyendo e integrando: + d ( ) d = + d = ln + ( ) Ejemplo. Se puede dar el caso por ejemplo de tener una simple y una doble: d Factorizamos el denominador = ( ) Descomponemos: C Para = 0 = B Para = = C = + B = ( ) + B ( ) ( ) Para, por ejemplo, = = B = + = = ( )+B ( )+ Sustituyendo e integrando: d = d + d +.. Grado P () Grado Q () d = ln + ln + K = ln + K l efectuar la división daría lugar a la suma de un polinomio con una fracción cuyo numerador es de grado inferior al denominador, y estaríamos en el caso anterior. P () R () = C () + Q () Q () donde C () y R () son respectivamente el cociente y el resto de la división. Ejemplo. Calcular + d Hacemos la división (en este caso se puede por Runi), se obtiene C () = + y R () =. ( + d = + ) d = + + ln + + K Ejemplo. + d = ( ) d = ln + + K 6

1. PRIMITIVA DE UNA FUNCIÓN 2. PROPIEDADES DE LA INTEGRAL INDEFINIDA 3. INTEGRALES INMEDIATAS Ejemplos de integrales inmediatas tipo potencia

1. PRIMITIVA DE UNA FUNCIÓN 2. PROPIEDADES DE LA INTEGRAL INDEFINIDA 3. INTEGRALES INMEDIATAS Ejemplos de integrales inmediatas tipo potencia Cálculo de primitivas MATEMÁTICAS II. PRIMITIVA DE UNA FUNCIÓN. PROPIEDADES DE LA INTEGRAL INDEFINIDA. INTEGRALES INMEDIATAS.. Ejemplos de integrales inmediatas tipo potencia.. Ejemplos de integrales inmediatas

Más detalles

Integral indefinida. Integral indefinida es el conjunto de las infinitas primitivas que puede tener una función.

Integral indefinida. Integral indefinida es el conjunto de las infinitas primitivas que puede tener una función. Integral indefinida 1. Integración Integrar es el proceso recíproco del de derivar, es decir, dada una función f(x), busca aquellas funciones F(x) que al ser derivadas conducen a f(x). Se dice, entonces,

Más detalles

Guía de Ejercicios: Métodos de Integración

Guía de Ejercicios: Métodos de Integración Guía de Ejercicios: Métodos de Integración Área Matemática Resultados de aprendizaje Resolver integrales usando diferentes métodos de integración Contenidos 1. Método de sustitución simple 2. Método de

Más detalles

Repaso de integración

Repaso de integración TABLA DE INTEGRALES INMEDIATAS Repaso de integración. Tabla de integrales inmediatas n d = n+ + C, si n n + f() n f () d = f()n+ n + + C, si n d = ln + C f() f () d = ln f() + C e d = e + C e f() f ()

Más detalles

Integrales indenidas

Integrales indenidas Integrales indenidas Adriana G. Duarte 7 de agosto de 04 Resumen Antiderivación. Integrales indenidas, propiedades. Técnicas de integración: inmediatas,por sustitución, por partes. Ejemplos y ejercicios.

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

ene 5 12:59 Está basado en la regla de la cadena. Si F(x) y g(x) son funciones derivables, la regla de la cadena nos dice que:

ene 5 12:59 Está basado en la regla de la cadena. Si F(x) y g(x) son funciones derivables, la regla de la cadena nos dice que: Métodos de integración: 1) Método de descomposición Para calcular una integral indefinida, usamos las propiedades de las integrales y las igualdades que conozcamos para descomponer la integral en otras

Más detalles

1. CÁLCULO DE PRIMITIVAS

1. CÁLCULO DE PRIMITIVAS . CÁLCULO DE PRIMITIVAS. Calcular las siguientes integrales indefinidas:. ( + Es inmediata. ( = (ln ln + + C +. + + + Descomponemos el integrando en fracciones parciales y obtenemos. + + = + arc tg + =

Más detalles

Tema 3. Cálculo de primitivas Conceptos generales.

Tema 3. Cálculo de primitivas Conceptos generales. Tema Cálculo de primitivas... Conceptos generales. Una primitiva de una función es otra función que la tiene como derivada y la operación que permite obtener esta primitiva a partir de la función original

Más detalles

UNIVERSIDAD DE SEVILLA CALCULO DE PRIMITIVAS. PRIMER CURSO

UNIVERSIDAD DE SEVILLA CALCULO DE PRIMITIVAS. PRIMER CURSO UNIVERSIDD DE SEVILL DEPRTMENTO DE ECONOMÍ PLICD I CLCULO DE PRIMITIVS. PRIMER CURSO CLCULO DE PRIMITIVS Conceptos generales. Definición. Dada f : D IR IR decimos que F : D IR IR es una primitiva de f

Más detalles

Tema 9: Cálculo integral

Tema 9: Cálculo integral Tema 9: Cálculo integral. Introducción El matemático inglés Isaac Barrow (60-677) fue el precursor del cálculo de integrales definidas, enunciando la regla que lleva su nombre y que conecta la integral

Más detalles

Integración por fracciones parciales

Integración por fracciones parciales Integración por fracciones parciales El cociente de dos polinomios se denomina función racional. La derivación de una función racional conduce a una nueva función racional que puede obtenerse por la regla

Más detalles

Métodos de integración

Métodos de integración Integración por partes Métodos de integración De la derivada del producto de dos funciones obtenemos la fórmula de la derivación por partes. (uu. vv) = uu vv + uu vv que se puede escribir dd(uu. vv) =

Más detalles

Tema 10: Cálculo Integral

Tema 10: Cálculo Integral . Introducción Tema 0: Cálculo Integral El matemático inglés Isaac Barrow (60-677) fue el precursor del cálculo de integrales definidas, enunciando la regla que lleva su nombre y que conecta la integral

Más detalles

Integral. F es primitiva de f F (x) = f(x)

Integral. F es primitiva de f F (x) = f(x) o Bachillerato, Matemáticas II. Integración. Integrales indefinidas. Métodos de integración. Primitiva de una función. Integral indefinida. Sean f y F dos funciones reales definidas en un mismo dominio.

Más detalles

Tema 3. Cálculo de primitivas Conceptos generales.

Tema 3. Cálculo de primitivas Conceptos generales. Tema Cálculo de primitivas... Conceptos generales. Una primitiva de una función es otra función que la tiene como derivada y la operación que permite obtener esta primitiva a partir de la función original

Más detalles

Tema 10: Cálculo integral

Tema 10: Cálculo integral Tema 0: Cálculo integral. Introducción El matemático inglés Isaac Barrow (60-677) fue el precursor del cálculo de integrales definidas, enunciando la regla que lleva su nombre y que conecta la integral

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 05 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 5 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2017 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2017 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 7 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Funciones racionales. Tema 5: Integración. Integrales reducibles a racionales. Primera reducción. Primeros ejemplos. Definición

Funciones racionales. Tema 5: Integración. Integrales reducibles a racionales. Primera reducción. Primeros ejemplos. Definición Funciones racionales Funciones racionales Tema 5: Integración. Integrales racionales y reducibles a racionales Análisis Matemático Grado en Física Definición Una función f se dice que es racional si f

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 0 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 5 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Tabla de integrales inmediatas

Tabla de integrales inmediatas OFIMEGA INTEGRALES Pág. Tabla de integrales inmediatas Inmediatas Cuasi inmediatas d = n+ n n + k f () f'()d = f n+ () n k n + d ln + k f'() d = ln f() +k f() e f() f() d = e + k e f'()d = e + k a d =

Más detalles

Un i d a d 7. Objetivos. Al inalizar la unidad, el alumno:

Un i d a d 7. Objetivos. Al inalizar la unidad, el alumno: Un i d a d 7 métodos de integraión Objetivos Al inalizar la unidad, el alumno: Utilizará los métodos de sustitución directa en la resolución de integrales. Resolverá integrales de funciones trigonométricas,

Más detalles

Solución: a) Suprimiendo los factores comunes en numerador y denominador, resulta:

Solución: a) Suprimiendo los factores comunes en numerador y denominador, resulta: Simplifica las siguientes epresiones: 0y 8 y z 8( z + )( ) + Suprimiendo los factores comunes en numerador y denominador resulta: 5y z Sacando factor común en el denominador resulta: 8( + )( ) ( ) ( +

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

, se denomina primitiva de esta función a otra F(x)

, se denomina primitiva de esta función a otra F(x) 1. CONCEPTO DE INTEGRAL INDEFINIDA Definición: Dada una función f (x), se denomina primitiva de esta función a otra F(x) tal que F '( x) = f ( x) Esta definición indica que el cálculo de primitivas constituye

Más detalles

1 Repaso. Cálculo I. 1 o Matemáticas. Curso 2002/2003. Cálculo de Primitivas. (5x 6) f(x) 1 2 f (x) dx, que es inmediata: + 1 x 1

1 Repaso. Cálculo I. 1 o Matemáticas. Curso 2002/2003. Cálculo de Primitivas. (5x 6) f(x) 1 2 f (x) dx, que es inmediata: + 1 x 1 Cálculo I. o Matemáticas. Curso /. Cálculo de Primitivas Repaso (5 6) d = 5 (5 6) 5 d = 5 (5 6) + C. Nota: Si f() = 5 6 su derivada es 5. En la primera igualdad multiplicamos y dividimos por 5. Así tenemos

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 8. Introducción a la integración INTEGRAL INDEFINIDA

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 8. Introducción a la integración INTEGRAL INDEFINIDA INTEGRAL INDEFINIDA CONCEPTOS BÁSICOS: PRIMITIVA E INTEGRAL INDEFINIDA El cálculo de integrales indefinidas de una función es un proceso inverso del cálculo de derivadas ya que se trata de encontrar una

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

INTEGRACIÓN INDEFINIDA

INTEGRACIÓN INDEFINIDA 1. PRIMITIVA DE UNA FUNCIÓN Definición: Sean F(x) y f(x) dos funciones reales definidas en un mismo dominio D. Se dice, entonces, que F(x) es una primitiva de f(x) si se cumple quef'(x) = f(x), x. Dicho

Más detalles

Tema 10: Cálculo integral

Tema 10: Cálculo integral Tema 10: Cálculo integral 1. Introducción El matemático inglés Isaac Barrow (1630-1677) fue el precursor del cálculo de integrales definidas, enunciando la regla que lleva su nombre y que conecta la integral

Más detalles

CÁLCULO DE PRIMITIVAS

CÁLCULO DE PRIMITIVAS 2 CÁLCULO DE PRIMITIVAS REFLEXIONA Y RESUELVE Concepto de primitiva NÚMEROS Y POTENCIAS SENCILLAS a) b) 2 c) 2 a) 2x b) x c) 3x 3 a) 7x b) c) x 4 a) 3x2 b) x2 c) 2x2 5 a) 6x 5 b) x5 c) 3x5 x 3 2 2 POTENCIAS

Más detalles

5.1. Primitiva de una función. Reglas básicas

5.1. Primitiva de una función. Reglas básicas Tema 5 Integración Indefinida 5.1. Primitiva de una función. Reglas básicas En este tema estudiaremos lo que podríamos llamar el problema inverso de la derivación, es decir, dada una función f hallar otra

Más detalles

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN EJERCICIOS RESUELTOS Calcula una función real f : que cumple las condiciones siguientes: f (0) = 5, f (0) =, f (0) = 0 y f () = + Como f () = +, integremos esta

Más detalles

Cálculo de Primitivas

Cálculo de Primitivas . Primitivas de una función Sea I un intervalo y f : I IR. Se dice que f tiene tiene una primitiva en I si existe una función G : I IR, continua en I, derivable en el interior de I y verificando que G

Más detalles

CÁLCULO INTEGRAL INTEGRAL INDEFINIDA

CÁLCULO INTEGRAL INTEGRAL INDEFINIDA CÁLCULO INTEGRAL INTEGRAL INDEFINIDA Función primitiva : Una función F( se dice que es primitiva de otra función f( cuando F'( f( Por ejemplo F( es primitiva de f( Otra primitiva de f( podría ser F( +

Más detalles

ACTIVIDAD 4.0 DEL PARCIAL 2

ACTIVIDAD 4.0 DEL PARCIAL 2 CECTEM ACTIVIDAD 4.0 DEL PARCIAL 2 En esta actividad trabajaremos con las integrales por partes, para lo cual definiremos u y dv, la u se derivara y la dv se integrara, para lo cual se utilizara la siguiente

Más detalles

1. Algunas primitivas inmediatas (o casi inmediatas)

1. Algunas primitivas inmediatas (o casi inmediatas) Cálculo o del grado de Matemáticas y doble grado MAT-IngINF. Curso /. Apuntes sobre integración y cálculo de primitivas. Algunas primitivas inmediatas (o casi inmediatas) (5 6) d 5 (5 6) 5 d 5 (5 6) Nota:

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

TEMA 12.- CÁLCULO DE PRIMITIVAS

TEMA 12.- CÁLCULO DE PRIMITIVAS TEMA.- CÁLCULO DE PRIMITIVAS.-.- PRIMITIVA DE UNA FUNCIÓN Definición de Función Primitiva Una función F() se dice que es primitiva de otra función f() cuando F'() f() Ejemplos: F() es primitiva de f()

Más detalles

Integral indefinida (CCSS)

Integral indefinida (CCSS) ntegral indeinida SS achillerato SS ntegral indeinida (SS). Primitiva de una unción Deinición: Sea () una unción deinida en el intervalo (a,b), llamaremos primitiva de la unción () a toda unción real de

Más detalles

INTEGRAL INDEFINIDA. CÁLCULO DE PRIMITIVAS

INTEGRAL INDEFINIDA. CÁLCULO DE PRIMITIVAS urso 07-08 TEMA 0 INTEGRAL INDEFINIDA. ÁLULO DE PRIMITIVAS ÍNDIE I. INTRODUIÓN II. PRIMITIVA DE UNA FUNIÓN. INTEGRAL INDEFINIDA III. INTEGRALES INMEDIATAS IV. MÉTODOS DE INTEGRAIÓN A. MÉTODO DE SUSTITUIÓN.

Más detalles

MATEMÁTICAS VI. CÁLCULO INTEGRAL UNIDAD II MÉTODOS DE INTEGRACIÓN

MATEMÁTICAS VI. CÁLCULO INTEGRAL UNIDAD II MÉTODOS DE INTEGRACIÓN MÉTODOS DE INTEGRACIÓN UNIDAD II MÉTODOS DE INTEGRACIÓN No todas las funciones en un integrando se pueden resolver mediante reglas inmediatas de integración, y requieren ser tratadas con técnicas especiales.

Más detalles

ECUACIONES NO POLINÓMICAS CON UNA INCÓGNITA

ECUACIONES NO POLINÓMICAS CON UNA INCÓGNITA Unidad didáctica. Ecuaciones, inecuaciones y sistemas de ecuaciones e inecuaciones ECUACIONES NO POLINÓMICAS CON UNA INCÓGNITA Una ecuación no polinómica es, en general, más difícil de resolver que una

Más detalles

METODO DE FRACCIONES PARCIALES

METODO DE FRACCIONES PARCIALES METODO DE FRACCIONES PARCIALES Este método consiste en epresar una fracción propia como la suma de fracciones más simples que puedan integrarse en forma inmediata o casi inmediata. Para convertir una fracción

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 6 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Tema 9: Cálculo de primitivas

Tema 9: Cálculo de primitivas Tema 9: Cálculo de primitivas. Primeras definiciones y propiedades Sea unintervalodelarectarealysean : dos funciones, con derivable. Se dice que es una primitiva de en cuando 0 () =() Al conjunto de todas

Más detalles

La integral indefinida

La integral indefinida Apuntes Matemáticas º de bachillerato Leibniz Tema 7 La integral indefinida Matemáticas º de bachillerato 7. Introducción Def.: Dadas dos funciones, F() y f(), si se verifica que: F () f(), para un cierto

Más detalles

Las soluciones son los valores que deben tomar las letras para que la igualdad sea cierta.

Las soluciones son los valores que deben tomar las letras para que la igualdad sea cierta. TEMA ECUACIONES, INECUACIONES Y SISTEMAS- 1. ECUACIONES Una ecuación es una igualdad matemática entre dos epresiones algebraicas, denominadas miembros, en las que aparecen valores conocidos o datos, desconocidos

Más detalles

DERIVADAS (1) (para los próximos días)

DERIVADAS (1) (para los próximos días) DERIVADAS (1) (para los próimos días) Derivada de una constante K K F ( ) 0 LA DERIVADA DE UNA CONSTANTE es cero. Ejercicio nº 1) Ejercicio nº 2) Ejercicio nº 3) Ejercicio nº 4) Ejercicio nº 5) Ejercicio

Más detalles

DERIVADAS (1) Derivada de una constante. LA DERIVADA DE UNA CONSTANTE es cero. Derivada de una función potencial: Forma simple.

DERIVADAS (1) Derivada de una constante. LA DERIVADA DE UNA CONSTANTE es cero. Derivada de una función potencial: Forma simple. DERIVADAS (1) Derivada de una constante f ( ) K K F ( ) 0 LA DERIVADA DE UNA CONSTANTE es cero. nº 1) nº ) nº 3) nº 4) nº 5) nº 6) Derivada de una función potencial: Forma simple r f ( ) r f ( ) r. r 1

Más detalles

5. Métodos de integración y aplicaciones de la integral denida 5.5 Fracciones parciales. Métodos de Integración. Integración por fracciones parciales

5. Métodos de integración y aplicaciones de la integral denida 5.5 Fracciones parciales. Métodos de Integración. Integración por fracciones parciales Métodos de Integración Integración por fracciones parciales P x) Consideremos la función racional donde P, Q son polinomios. Si derivamos una función racional Qx) obtenemos una funciòn racional. Si integramos

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

INTEGRALES INMEDIATAS

INTEGRALES INMEDIATAS INTEGRALES INMEDIATAS Hay casos en los que la integral indeinida se calcula de orma inmediata, ya que la unción integrando es la derivada de una unción conocida. Se llaman integrales inmediatas a aquellas

Más detalles

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIONES CURSO CERO DE MATEMATICAS Apuntes elaborados por Domingo Pestana Galván y José Manuel Rodríguez García UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica

Más detalles

LA DERIVADA DE UNA CONSTANTE

LA DERIVADA DE UNA CONSTANTE DERIVADAS ( Derivada de una constante K K R F ( 0 LA DERIVADA DE UNA CONSTANTE es cero. nº nº nº nº 4 nº 5 nº 6 Derivada de una función potencial: Forma simple r r R r. r LA DERIVADA DE UNA FUNCIÓN POTENCIAL

Más detalles

Unidad 5 - Trabajo Práctico 5 Parte 1 Elementos de Matemática

Unidad 5 - Trabajo Práctico 5 Parte 1 Elementos de Matemática 06 Unidad 5 - Trabajo Práctico 5 Parte Unidad 5 Integral indefinida. Primitivas inmediatas. Uso de tablas de integrales. Integración por descomposición, por sustitución y por partes. Integral definida:

Más detalles

Cálculo Integral: Guía II

Cálculo Integral: Guía II 00 Cálculo Integral: Guía II Profr. Luis Alfonso Rondero García INSTITUTO POLITÉCNICO NACIONAL Departamento de Unidades de Aprendizaje del Área Básica /0/00 Integración de Potencias de Funciones Trigonométricas.

Más detalles

IES Fernando de Herrera Curso 2013/14 Primer Examen 2ª evaluación 4º ESO 5 de febrero de 2014 NOMBRE

IES Fernando de Herrera Curso 2013/14 Primer Examen 2ª evaluación 4º ESO 5 de febrero de 2014 NOMBRE IES Fernando de Herrera Curso 0/4 Primer Eamen ª evaluación 4º ESO de febrero de 04 NOMBRE ) Resolver: 4 (, puntos) ) Resolver: 4 + + (, puntos) ) Resolver: log log ( + 4) (, puntos) 8 ( 4) 4) Resuelva

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Junio, Ejercicio, Opción A Reserva, Ejercicio, Opción A Reserva, Ejercicio,

Más detalles

Ejercicios de Integrales resueltos

Ejercicios de Integrales resueltos Ejercicios de Integrales resueltos. Resuelve la integral: Ln Ln Llamemos I Ln u du Aplicamos partes: dv v I Ln t t 4 t t t 4 t t 4 t 4 4 4t 4 t t t A t B t A( t) B( t) A ; B 4 t t Ln t Ln t t C Deshaciendo

Más detalles

INTEGRACIÓN DE RACIONALES. Siendo p(x) y q(x) dos polinomios. Nos podemos encontrar dos casos:

INTEGRACIÓN DE RACIONALES. Siendo p(x) y q(x) dos polinomios. Nos podemos encontrar dos casos: INTEGRACIÓN DE RACIONALES Nos hallamos ante una racional cuando estamos atacando un problema y nos encontramos con un cociente de polinomios que tenemos que integrar. Hemos de resolver: f(x) = p(x) q(x)

Más detalles

Y al reducir a común denominador y eliminar los denominadores nos encontramos con:

Y al reducir a común denominador y eliminar los denominadores nos encontramos con: .- Considerad la función definida por f(x) =. a) Descomponed la función en fracciones simples. b) Calculad una primitiva de la función f(x). c) Calculadel área de la región limitada por la gráfica de la

Más detalles

RESUMEN DE INTEGRALES. Concepto de Función primitiva: La función F es una función primitiva de f, si la derivada de F es f, es decir: = x 2

RESUMEN DE INTEGRALES. Concepto de Función primitiva: La función F es una función primitiva de f, si la derivada de F es f, es decir: = x 2 RESUMEN DE INTEGRALES Concepto de Función primitiva: La función F es una función primitiva de f, si la derivada de F es f, es decir: F(x) es una función primitiva de f(x) F (x)=f(x) Ejemplo: f(x)=x 2 F(x)=

Más detalles

UNIDAD 2.- Polinomios (tema 2 del libro)

UNIDAD 2.- Polinomios (tema 2 del libro) UNIDAD.- Polinomios tema del libro). OPERACIONES CON POLINOMIOS n Un monomio en la indeterminada es toda epresión de la forma a donde a se llama coeficiente y n grado del monomio. Dos monomios se dicen

Más detalles

TEMA 2. Álgebra. Si la ecuación es del tipo, sacamos factor común x:

TEMA 2. Álgebra. Si la ecuación es del tipo, sacamos factor común x: TEMA. Álgebra Ecuaciones de segundo grado. Dada la ecuación de segundo grado incompleta incógnita despejamos de la siguiente forma:, para hallar el valor de la Si la ecuación es del tipo, sacamos factor

Más detalles

Tema 3 Algebra. Ecuaciones. Sistemas de ecuaciones: Inecuaciones Índice

Tema 3 Algebra. Ecuaciones. Sistemas de ecuaciones: Inecuaciones Índice Tema 3 Algebra. Ecuaciones. Sistemas de ecuaciones: Inecuaciones Índice 1. ECUACIONES... 2 1.1. Ecuaciones de primer grado... 2 1.2. Ecuaciones de segundo grado... 3 1.2.1. Ecuación de segundo grado completa...

Más detalles

sobre un intervalo si para todo de se tiene que. Teorema 1 Sean y dos primitivas de la función en. Entonces,

sobre un intervalo si para todo de se tiene que. Teorema 1 Sean y dos primitivas de la función en. Entonces, Integral indefinida Primitiva e integral indefinida. Cálculo de primitivas: métodos de integración. Integración por cambio de variable e integración por partes. Integración de funciones racionales e irracionales.

Más detalles

TEMA. 29 Cálculo de primitivas * ( ) = ( ) ( ) + ( ) ( ) Primitivas de las funciones racionales. P x Q x C x R x

TEMA. 29 Cálculo de primitivas * ( ) = ( ) ( ) + ( ) ( ) Primitivas de las funciones racionales. P x Q x C x R x TEMA 9 álculo de primitivas * Primitivas de las funciones racionales. omo ya sabemos ver tema ) una función racional es una función de la forma P f =, Q 0 Q donde P y Qson funciones polinómicas. omo ya

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 8 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio,

Más detalles

Matemáticas Empresariales I. Cálculo de Primitivas

Matemáticas Empresariales I. Cálculo de Primitivas Matemáticas Empresariales I Lección 7 Cálculo de Primitivas Manuel León Navarro Colegio Universitario Cardenal Cisneros M. León Matemáticas Empresariales I 1 / 45 Concepto de Integral Indefinida Definición

Más detalles

Técnicas de Integración, preparado por: Gil Sandro Gómez

Técnicas de Integración, preparado por: Gil Sandro Gómez Tema II. Técnicas de Integración. Integración por partes. La integración por partes surge del producto de una función trascendente y una algebraica, una inversa trigonométrica y una algébrica, una trigonométrica

Más detalles

TEMA 5: INTEGRAL INDEFINIDA.

TEMA 5: INTEGRAL INDEFINIDA. TEMA : INTEGRAL INDEFINIDA.. Primitivas: propiedades. Integral indefinida.. Integración por partes.. Integración de funciones racionales (denominador con raíces reales simples y múltiples, denominador

Más detalles

Unidad 10 Integrales definidas. Aplicaciones

Unidad 10 Integrales definidas. Aplicaciones Unidad Integrales definidas. Aplicaciones PÁGINA 5 SOLUCIONES. Las áreas quedan: A u A u A 5 u. El área del recinto viene dada por : ( ) ( ) Área d,5 u PÁGINA 9 SOLUCIONES. La solución queda: Directo:

Más detalles

1. Algunas primitivas inmediatas (o casi inmediatas).

1. Algunas primitivas inmediatas (o casi inmediatas). Cálculo I. o Matemáticas. Curso 00/0. Cálculo de Primitivas. Algunas primitivas inmediatas (o casi inmediatas). (5x 6) = 5 (5x 6) 5 = 5 (5x 6) + C. Nota: Si f(x) = 5x 6 su derivada es 5. En la primera

Más detalles

MÉTODOS DE INTEGRACION

MÉTODOS DE INTEGRACION MÉTODOS DE INTEGRACION En este tema se continúa con los métodos de integración iniciados en el capítulo anterior, en el que a partir del concepto de primitiva y de las derivadas de las funciones elementales

Más detalles

TEMA 4: Ecuaciones y sistemas de ecuaciones. Tema 4: Ecuaciones y sistemas de ecuaciones 1

TEMA 4: Ecuaciones y sistemas de ecuaciones. Tema 4: Ecuaciones y sistemas de ecuaciones 1 TEMA : Ecuaciones sistemas de ecuaciones Tema : Ecuaciones sistemas de ecuaciones ESQUEMA DE LA UNIDAD.- Ecuaciones de primer grado..- Ecuaciones de segundo grado completas..- Ecuaciones de segundo grado

Más detalles

DERIVADAS (1) LA DERIVADA DE UNA CONSTANTE es cero. Derivada de una función potencial: Forma simple

DERIVADAS (1) LA DERIVADA DE UNA CONSTANTE es cero. Derivada de una función potencial: Forma simple DERIVADAS Derivada de una constante K K F 0 LA DERIVADA DE UNA CONSTANTE es cero. nº nº nº nº nº 5 nº Derivada de una unción potencial Forma simple r r r. r LA DERIVADA DE UNA FUNCIÓN POTENCIAL es igual

Más detalles

Unidad II. Si una función f(x) tiene primitiva, tiene infinitas primitivas, diferenciándose todas ellas en unaconstante.

Unidad II. Si una función f(x) tiene primitiva, tiene infinitas primitivas, diferenciándose todas ellas en unaconstante. Unidad II Integral indefinida y métodos de integración. 2.1 Definición de integral indefinida. Integrar es el proceso recíproco del de derivar, es decir, dada una función f(x), busca aquellas funciones

Más detalles

DERIVADAS (1) LA DERIVADA DE UNA CONSTANTE es cero. Sol: Sol: Sol: Sol: Derivada de una función potencial: Forma simple

DERIVADAS (1) LA DERIVADA DE UNA CONSTANTE es cero. Sol: Sol: Sol: Sol: Derivada de una función potencial: Forma simple DERIVADAS ( Derivada de una constante K K R F ( 0 LA DERIVADA DE UNA CONSTANTE es cero. nº nº nº nº 4 nº 5 nº 6 Derivada de una función potencial: Forma simple r r R r. r LA DERIVADA DE UNA FUNCIÓN POTENCIAL

Más detalles

tiene por límite L cuando la variable independiente x tiende a x , y se nota por L, cuando al acercarnos todo lo que queramos a x lím( x

tiene por límite L cuando la variable independiente x tiende a x , y se nota por L, cuando al acercarnos todo lo que queramos a x lím( x UNIDAD 8: LÍMITES DE FUNCIONES. CONTINUIDAD. LÍMITE DE UNA FUNCIÓN Diremos que una función y f () tiene por ite L cuando la variable independiente tiende a, y se nota por f ( ) L, cuando al acercarnos

Más detalles

1. Función primitiva e integral indefinida

1. Función primitiva e integral indefinida Entrenamiento Matemático Sesión 0 (4 -Octubre-00) Cálculo elemental de Primitivas GRUPO:. Función primitiva e integral indefinida Dada una función f: R-->R, se dice que una función derivable F es primitiva

Más detalles

5.1 Primitiva de una función. Reglas básicas

5.1 Primitiva de una función. Reglas básicas Tema 5 Integración Indefinida 5.1 Primitiva de una función. Reglas básicas En este tema estudiaremos lo que podríamos llamar el problema inverso de la derivación, es decir, dada una función f hallar otra

Más detalles

Repartido 4. Profesor Fernando Díaz Matemática A 3ro E.M.T. Iscab 2016

Repartido 4. Profesor Fernando Díaz Matemática A 3ro E.M.T. Iscab 2016 Repartido 4 Profesor Fernando Díaz Matemática A 3ro E.M.T. Iscab 2016 6. Estudiar los límites laterales de las siguientes funciones en los puntos que anulan al denominador: A) B) 7. Estudiar la existencia

Más detalles

El proceso de calcular la derivada se denomina derivación. Se dice que ( ) es derivable en c si existe ( ), es decir, lim. existe

El proceso de calcular la derivada se denomina derivación. Se dice que ( ) es derivable en c si existe ( ), es decir, lim. existe DEFINICIÓN DE LA DERIVADA DE UNA FUNCIÓN La derivada de una función () respecto de (x) es la función () (se lee f prima de (x) y está dada por: ()=lim (+h) () h El proceso de calcular la derivada se denomina

Más detalles

ANÁLISIS DE FUNCIONES

ANÁLISIS DE FUNCIONES ANÁLISIS DE FUNCIONES.- Calcula f() de manera que f () = Ln( + ) y que f(0) = 0. (nota: Ln significa logaritmo neperiano). Universidad de Andalucía Se trata de resolver la integral que hemos de hacerlo

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 004 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

Capítulo 3: Cálculo integral

Capítulo 3: Cálculo integral (Fundamentos Matemáticos de la Biotecnología) Departamento de Matemáticas Universidad de Murcia Contenidos La integral indefinida Propiedades básicas de la integral indefinida Métodos de integración: por

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 4 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

du = ln u + NOTA: En las integrales 11, 12, 17 y 18 α significa la raíz cuadrada positiva de α 2. Escribimos

du = ln u + NOTA: En las integrales 11, 12, 17 y 18 α significa la raíz cuadrada positiva de α 2. Escribimos CÁLCULO I CÁLCULO DE PRIMITIVAS: Integrales Inmediatas 3 5 7 9 3 5 7 u m du = um+ + C, m m + du = ln u + C u u du = u + C 4 a u du = au + C, a > 0, a ln a sen u du = cos u + C 6 cos u du = sen u + C cos

Más detalles

Prof. J. Contreras S. Prof. C. del Pino O. Método de cambio de variable. U de Talca

Prof. J. Contreras S. Prof. C. del Pino O. Método de cambio de variable. U de Talca Sesión Temas Método de sustitución o cambio de variable.. Introducción Capacidades Conocer y comprender el método de cambio de variable. Calcular integrales indefinidas que se pueden obtener aplicando

Más detalles