Procesamiento Digital de Imágenes
|
|
|
- Sandra Rodríguez Alcaraz
- hace 9 años
- Vistas:
Transcripción
1 Procesamiento Digital de Imágenes Apuntes del curso impartido por el Dr. Boris Escalante Ramírez Agosto, Fundamentos de la Imagen Digital 2.1. Caracterización matemática de las imágenes Una imagen puede ser definida como una función de dos dimensiones f (x,y) donde x y y son las coordenadas espaciales (plano) y la amplitud de la función f en algún par de coordenadas (x,y) es llamada intensidad o nivel de gris de la imagen en ese punto. Cuando x, y y los valores de la amplitud de la función f son cantidades discretas finitas, a dicha imagen se le llama imagen digital. Una imagen digital está compuesta de un número finito de elementos y cada uno tiene una localidad y valor particulares. A éstos elementos se les llama, elementos de la imagen o pixels; siendo este último el término más usado para denotar los elementos de una imagen digital Muestreo y cuantización El muestreo es el proceso de convertir una señal (por ejemplo, una función continua en el tiempo o en el espacio) en una secuencia numérica (una función discreta en el tiempo o en el espacio). El teorema de muestreo señala que la reconstrucción (aproximadamente) exacta de una señal continua en el tiempo en banda base a partir de sus muestras es posible si la señal es limitada en banda y la frecuencia de muestreo es mayor que dos veces el ancho de banda de la señal. El teorema de muestreo es comúnmente llamado teorema de muestreo de Shannon y también conocido como teorema de muestreo de Nyquist-Shannon-Kotelnikov, Whittaker-Shannon-Kotelnikov, Whittaker-Nyquist- Kotelnikov-Shannon, WKS, etc. El proceso de muestreo sobre una señal continua que varía en el tiempo (o en el espacio como en una imagen u otra variable independiente en cualquier otra aplicación) es realizado midiendo simplemente los valores de la señal continua cada T unidades de tiempo (o espacio), llamado intervalo de muestreo. El resultado de este proceso es una secuencia de números, llamadas muestras, y son una representación de la imagen original. La frecuencia de muestreo f es el recíproco del intervalo de muestreo f = 1/T y se expresa en Hz. Las condiciones que se deben tomar en cuenta en el proceso de muestreo son: Limitar en banda a través de un filtro paso-bajas la señal a muestrear. Siguiendo el criterio de Nyquist, si conocemos el ancho de banda de la señal, entonces la frecuencia de muestreo f para lograr una reconstrucción casi perfecta de la señal original deberá ser f N 2WB donde WB es el ancho de banda de la señal original y la frecuencia de muestreo que sigue esta condición se le llama frecuencia de Nyquist. Si las condiciones de muestro no se satisfacen, entonces las frecuencias se pueden llegar a traslapar; es decir, las frecuencias superiores a la mitad de la frecuencia de muestreo serán reconstruidas y aparentarán ser frecuencias por debajo de la frecuencia de muestreo. El resultado sería una distorsión llamada aliasing. Aunque el teorema de muestreo esta formulado para funciones de una sola variable el teorema de muestreo puede ser extendido de la misma manera a funciones de varias variables arbitrarias. Por ejemplo, las imágenes en escala de grises son representadas frecuentemente como matrices de números reales representando las intensidades relativas de 1
2 Figura 1: Muestreo y cuantización de una imagen los pixels (elementos de la imagen) localizados en las intersecciones de renglones y columnas. Como resultado, las imágenes necesitan dos variables independientes o índices para especificar a cada pixel individualmente; una para los renglones y otra para las columnas. Las imágenes a color consisten regularmente de una composición de tres imágenes separadas en escala de grises, cada una representa los tres colores primarios; rojo, verde y azul; comúnmente conocido como RGB. Otros espacios de color que usan 3 vectores para colores son HSV, LAB, XYZ. Algunos espacios de color como el CMYK (cyan, magenta, yellow, black) son usados para procesos de impresión. Una imagen puede ser continua respecto al eje de coordenadas x y y, pero también puede ser continua en amplitud. Para convertir una imagen continua a su forma digital, como se vio anteriormente, a la digitalización de los valores de las coordenadas se le llama muestreo mientras que el proceso de digitalizar la amplitud es llamado cuantización[1]. Normalmente, el proceso de adquisición de la imagen se realiza usando una matriz de sensores. El número de sensores dentro la matriz establecen los límites del muestreo en ambas direcciones. La digitalización de la amplitud o cuantización la realiza cada sensor asignando un valor discreto a ciertos intervalos de amplitudes continuas. La siguiente figura muestra ese proceso: Claramente se ve que la calidad de la imagen esta determinada en gran medida por el número de muestras (resolución de la matriz) y los niveles discretos de gris usados durante el muestreo y cuantización respectivamente. De manera similar a las señales discretas en el tiempo unidimensionales, las imágenes pueden sufrir del aliasing si la resolución de muestreo o densidad de pixels es inadecuada. Por ejemplo, una fotografía digital de una camisa rayada con bandas delgadas y de alta frecuencia, podría provocar el efecto de aliasing cuando sea capturada por el sensor (matriz de sensores) de la cámara. Una posible solución para mejorar el muestreo podría ser acercarse a la camisa o bien usar un sensor con mayor resolución Sistemas bidimensionales lineales e invariantes Podemos dividir la clase general de sistemas en dos categorías; sistemas invariantes en el tiempo y sistemas variantes en el tiempo. Un sistema es llamado invariante en el tiempo si las características del sistema no cambian con el tiempo. El análisis de sistemas bidimensionales es muy similar al de sistemas en una dimensión por lo que empezaremos con sistemas en una dimensión y luego extenderemos los conceptos a dos dimensiones. 2
3 Suponiendo que tenemos un sistema S en un estado relajado que cuando es excitado por una señal de entrada x(n) produce una señal de salida y(n)[2]. y(n) = S[x(n)] Ahora supongamos que la misma señal de entrada es retrasada k unidades de tiempo, es decir, x(n k) y de nuevo aplicamos el mismo sistema. Si las características del sistema no cambian con el tiempo, entonces la salida del sistema deberá ser y(n k), es decir, la salida será la misma como respuesta a x(n) excepto que estará retrasada por las mismas k unidades que fue retrasada la señal de entrada. Definición: Un sistema S es invariante en el tiempo si y solo si x(n) S y(n) se cumple que x(n k) S y(n k) para cualquier señal de entrada x(n) en cualquier tiempo k. Para determinar si un sistema dado es invariante al tiempo necesitamos hacer una prueba siguiendo la definición. Excitamos al sistema con una señal de entrada arbitraria x(n) que produce una salida denotada por y(n). Luego retrasamos la señal de entrada k unidades de tiempo y volvemos a calcular la salida. En general podemos escribir la salida como: y(n, k) = S[x(n k)] Entonces, si la salida y(n, k) = y(n k), para todos los valores posibles de k, el sistema es invariante en el tiempo. Por otro lado, si y(n, k) y(n k), incluso para un valor de k, el sistema es variante en el tiempo. Supongamos que tenemos un sistema lineal invariante en el tiempo como el de la siguiente figura: Figura 2: Sistema Lineal Invariante La señal de entrada al sistema es la función impulso y esta definida como: { 1 Si n = 0 δ(n) = 0 Si n 0 como se muestra en la siguiente figura: Figura 3: Función δ Y sea h(n) la respuesta al impulso del sistema. Entonces para que el sistema pertenezca a la clase de Sistemas Lineales Invariantes en el tiempo, si la respuesta al impulso esta dada por: δ(n) S h(n) 3
4 entonces se debe cumplir que sea invariante en el tiempo: δ(n m) S h(n m) y que además el sistema sea lineal. Un sistema lineal es aquel que satisface la homogeneidad y el principio de superposición. Supongamos ahora que la entrada al sistema invariante es una señal arbitraria f (n) y que la salida del sistema es g(n). Podemos ver que f (n) puede escribirse como: como se muestra en la figura. f (n) = Definición: El sistema debe satisfacer la homogeneidad si: f (m)δ(n m) f (m)δ(n m) S f (m)h(n m) Definición: El principio de superposición indica que la respuesta del sistema a una suma pesada de señales sea igual a la correspondiente suma pesada de las respuestas del sistema a cada una de las señales de entrada individuales, es decir: f (n) S g(n) f (m)δ(n m) S f (m)h(n m) Si el sistema cumple con estas condiciones entonces pertenece a la clase de Sistemas Lineales Invariantes en el Tiempo (SLI). La fórmula que da la respuesta g(n) = f (m)δ(n m) del SLI como una función de la señal de entrada f (n) y de la respuesta al impulso es llamada suma de convolución. Podemos decir que la señal de entrada x(n) se convoluciona con la respuesta al impulso del sistema h(n) para obtener la salida g(n): Propiedades de la convolución: g(n) = f (n) h(n) = f (m)h(n m) Conmutativa: Asociativa: Distributiva: f (n) h(n) = h(n) f (n) [ f (n) h 1 (n)] h 2 (n) = f (n) [h 1 (n) h 2 (n)] f (n) [h 1 (n) + h 2 (n)] = f (n) h 1 (n) + f (n) h 2 (n) Ejemplo: Sean f (m) y h(m) como se muestran en la siguiente figura: 4
5 h( m) se puede graficar como: Por lo que al encontrar queda: g(n) = 3 m=0 f (m)h(n m) 2.4. Convolución bidimensional Podemos extender el estudio de los SLI a dos dimensiones muy fácilmente y analizar el caso de manera muy similar a como se hace en una dimensión. Para ello, éstos sistemas deberán satisfacer los principios de homogeneidad, superposición y además de ser invariantes en el tiempo. En este caso la convolución bidimensional se define como [1]: g(x,y) = α= β= y además todas las propiedades se conservan. Ejemplo: Realizar la convolución f (α, β) h(α, β). Sea y sea f (α,β) = h(α,β) = f (α,β)h(x α,y β) para resolver el problema, primero elegimos un origen (las coordenadas en la imagen f y en el filtro h): f (α,β) =
6 h(α,β) = y encontramos h( α, β). La forma gráfica de hacerlo es girar a los elementos de h de derecha a izquierda y luego de abajo hacia arriba como se muestra a continuación: Giro Giro por lo que h( α, β) = y realizamos la convolución superponiendo el origen de h( α, β) en el origen de f (α,β). El proceso se muestra en a siguiente figura: Figura 4: Convolución bidimensional Realizando las multiplicaciones y sumas correspondientes sobre el resto del renglón, entonces tendremos lo siguiente: Figura 5: Convolución bidimensional El cálculo final involucraría realizar las multiplicaciones y las sumas sobre los renglones y columnas. La siguiente 6
7 matriz muestra el resultado de algunos elementos fila-columna; se deja al lector completar los que hacen falta g(x,y) = Nota: se puede elegir otro origen, a veces será más conveniente por la simetría del filtro tomarlo en el centro. Referencias [1] Gonzalez, R. C., and Woods, P., Digital Image Processing, Addison Wesley, 2002 [2] Proakis, John G., and Manolakis, Dimitris G., Digital Signal Processing: Principles, Algorithms and applications, Prentice-Hall, Inc,
Introducción a las imágenes digitales. Segunda parte
Introducción a las imágenes digitales Segunda parte Introducción a las imágenes digitales Herramientas matemáticas. Transformaciones de intensidad. Histograma de una imagen. Imágenes a color. Modelos de
Tratamiento de imágenes Adquisición y Digitalización
Tratamiento de imágenes Adquisición y Digitalización [email protected] http://scfi.uaemex.mx/hamontes Advertencia No use estas diapositivas como referencia única de estudio durante este curso. La información
Realzado de Imagen. 11 de junio de El histograma de una imagen digital con niveles de gris en la amplitud de [0, L 1], es función discreta
Realzado de Imagen 11 de junio de 2001 Una operación clásica en el procesado de imagen es realzar una imagen de entrada de alguna manera para que la imagen de salida sea más fácil de interpretarla. La
Sistema de ecuaciones algebraicas
Sistema de ecuaciones algebraicas Curso: Métodos Numéricos en Ingeniería Profesor: Dr. José A. Otero Hernández Correo: [email protected] web: http://metodosnumericoscem.weebly.com Universidad: ITESM CEM
Filtros digitales dominio del espacio dominio de la frecuencia
Tema 3: Filtros 1 Filtros digitales Los filtros digitales constituyen uno de los principales modos de operar en el procesamiento de imágenes digitales. Pueden usarse para distintos fines, pero en todos
FUNCIONES. Definición de función. Ejemplos.
FUNCIONES. Definición de función. Una función es una relación entre un conjunto de salida llamado dominio y un conjunto de llegada llamado codominio, tal relación debe cumplir que cada elemento del dominio
Guía Práctica N 11 ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA
Fuente: PreUniversitario Pedro de Valdivia Guía Práctica N 11 ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA Una ecuación de segundo grado es una ecuación susceptible de llevar a la forma a + b + c = 0,
Cálculo de la matriz asociada a una transformación lineal (ejemplos)
Cálculo de la matriz asociada a una transformación lineal ejemplos Objetivos Estudiar con ejemplos cómo se calcula la matriz asociada a una transformación lineal Requisitos Transformación lineal, definición
Figura 1.3.1. Sobre la definición de flujo ΔΦ.
1.3. Teorema de Gauss Clases de Electromagnetismo. Ariel Becerra La ley de Coulomb y el principio de superposición permiten de una manera completa describir el campo electrostático de un sistema dado de
4. " $#%&' (#) para todo $#* (desigualdad triangular).
10 Capítulo 2 Espacios Métricos 21 Distancias y espacios métricos Definición 211 (Distancia) Dado un conjunto, una distancia es una aplicación que a cada par le asocia un número real y que cumple los siguientes
Una matriz es un arreglo rectangular de números. Los números en el arreglo se llaman elementos de la matriz. ) ( + ( ) ( )
MATRICES Una matriz es un arreglo rectangular de números. Los números en el arreglo se llaman elementos de la matriz. Ejemplo 1. Algunos ejemplos de matrices ( + ( ) ( + ( ) El tamaño o el orden de una
Transformadas de la imagen
Transformadas de la imagen Digital Image Processing, Gonzalez, Woods, Addison Wesley, ch 3 Transformadas de la imagen 1 Transformada de Fourier en el caso continuo Transformada de Fourier de una funcion
PROBABILIDAD Y ESTADÍSTICA. Sesión 5 (En esta sesión abracamos hasta tema 5.8)
PROBABILIDAD Y ESTADÍSTICA Sesión 5 (En esta sesión abracamos hasta tema 5.8) 5 DISTRIBUCIONES DE PROBABILIDAD CONTINUAS Y MUESTRALES 5.1 Distribución de probabilidades de una variable aleatoria continua
Conversión Analógica a Digital
Índice Conversión analógica a digital Señales básicas de tiempo discreto Relación Exponencial Discreta con sinusoides Relación Exponencial discreta con sinusoides Propiedades exponenciales complejas continuas
MA3002. Matemáticas Avanzadas para Ingeniería: Series de Fourier. Departamento de Matemáticas. Intro. Serie de. Fourier. S k. Convergencia.
Series Serie Series MA3002 Series Serie Las Series trigonométricas, o simplemente series fueron sarrolladas por el matemático francés Jean-Baptiste Joseph (21 marzo 1768 en Auxerre - 16 mayo 1830 en París).
ÁLGEBRA LINEAL Y GEOMETRÍA ANALÍTICA (0250)
Universidad Central de Venezuela Facultad de Ingeniería Ciclo Básico Departamento de Matemática Aplicada ÁLGEBRA LINEAL Y GEOMETRÍA ANALÍTICA (0250) Semestre 1-2011 Mayo 2011 Álgebra Lineal y Geometría
TRA NSFORMACIO N ES LIN EA LES
TRA NSFORMACIO N ES LIN EA LES C o m p uta c i ó n G r á fica Tipos de Datos Geométricos T Un punto se puede representar con tres números reales [x,y,z] que llamaremos vector coordenado. Los números especifican
Muestreo y cuantificación de señales (digitalización)
Muestreo y cuantificación de señales (digitalización) Señales en el mundo real La mayoría de las magnitudes físicas son continuas (velocidad, temperatura ) Normalmente los sistemas de medición son digitales
Cardinalidad. Teorema 0.3 Todo conjunto infinito contiene un subconjunto infinito numerable.
Cardinalidad Dados dos conjuntos A y B, decimos que A es equivalente a B, o que A y B tienen la misma potencia, y lo notamos A B, si existe una biyección de A en B Es fácil probar que es una relación de
Una matriz es una tabla ordenada (por filas y columnas) de escalares a i j de la forma: ... ... a... ...
MATRICES Las matrices se utilizan en el cálculo numérico, en la resolución de sistemas de ecuaciones lineales, de las ecuaciones diferenciales y de las derivadas parciales. Tienen también muchas aplicaciones
Aplicaciones de las integrales dobles
Aplicaciones de las integrales dobles Las integrales dobles tienen multiples aplicaciones en física en geometría. A continuación damos una relación de alguna de ellas.. El área de una región plana R en
Tabla de Derivadas. Función Derivada Función Derivada. f (x) n+1. f (x) y = f (x) y = ln x. y = cotg f (x) y = ( 1 cotg 2 f (x)) f (x) = f (x)
Matemáticas aplicadas a las CCSS - Derivadas Tabla de Derivadas Función Derivada Función Derivada y k y 0 y y y y y f ) y f ) f ) y n y n n y f ) n y n f ) n f ) y y n y y f ) y n n+ y f ) n y f ) f )
Definición de vectores
Definición de vectores Un vector es todo segmento de recta dirigido en el espacio. Cada vector posee unas características que son: Origen O también denominado Punto de aplicación. Es el punto exacto sobre
Ing. Ramón Morales Higuera
MATRICES. Una matriz es un conjunto ordenado de números. Un determinante es un número. CONCEPTO DE MATRIZ. Se llama matriz a un conjunto ordenado de números, dispuestos en filas y Las líneas horizontales
UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 3
UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 3 Matriz unitaria "I" de base con variables artificiales. Cuando el problema de programación lineal se expresa en la forma canónica de maximizar, las variables de holgura
Espacios vectoriales con producto interior
Espacios vectoriales con producto interior Longitud, norma o módulo de vectores y distancias entre puntos Generalizando la fórmula pitagórica de la longitud de un vector de R 2 o de R 3, definimos la norma,
UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA
C u r s o : Matemática Material N 6 GUÍA TEÓRICO PRÁCTICA Nº UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA Una ecuación de segundo grado es una ecuación de la forma, o que
Tema 2. Grupos. 3. El conjunto de matrices de orden 2 con coeficientes enteros (o reales) con la suma es un grupo conmutativo.
Tema 2. Grupos. 1 Grupos Definición 1 Un grupo es una estructura algebraica (G, ) tal que la operación binaria verifica: 1. * es asociativa 2. * tiene elemento neutro 3. todo elemento de G tiene simétrico.
Herramientas digitales de auto-aprendizaje para Matemáticas
real de con Herramientas digitales de auto-aprendizaje para Matemáticas, Grupo de Innovación Didáctica Departamento de Matemáticas Universidad de Extremadura real de con Índice real de con real de con.
SISTEMAS DE ECUACIONES LINEALES
1 SISTEMAS DE ECUACIONES LINEALES Una ecuación es un enunciado o proposición que plantea la igualdad de dos expresiones, donde al menos una de ellas contiene cantidades desconocidas llamadas variables
Conceptos Básicos para el Procesamiento Digital de Imágenes
ELO 313 Procesamiento Digital de Señales con Aplicaciones Conceptos Básicos para el Procesamiento Digital de Imágenes Matías Zañartu, Ph.D. Departamento de Electrónica Universidad Técnica Federico Santa
Expresiones algebraicas
Expresiones algebraicas Expresiones algebraicas Las expresiones algebraicas Elementos de una expresión algebraica Números de cualquier tipo Letras Signos de operación: sumas, restas, multiplicaciones y
Proyecciones. Producto escalar de vectores. Aplicaciones
Proyecciones La proyección de un punto A sobre una recta r es el punto B donde la recta perpendicular a r que pasa por A corta a la recta r. Con un dibujo se entiende muy bien. La proyección de un segmento
Ecuaciones diferenciales lineales con coeficientes constantes
Tema 4 Ecuaciones diferenciales lineales con coeficientes constantes Una ecuación diferencial lineal de orden n tiene la forma a 0 (x)y (n) + a 1 (x)y (n 1) + + a n 1 (x)y + a n (x)y = b(x) (41) Vamos
Una sucesión infinita es una función cuyo dominio es el conjunto de los enteros positivos. Podemos denotar una sucesión como una lista
Cap 9 Sec 9.1 9.3 Una sucesión infinita es una función cuyo dominio es el conjunto de los enteros positivos. Podemos denotar una sucesión como una lista a 1, a 2, a 3, a n, Donde cada a k es un término
a).- Si el número de los valores en un conjunto de datos no agrupados es impar, La mediana es determinada de la siguiente manera:
La mediana de un conjunto de valores es el valor del elemento central del conjunto. Para encontrar la mediana, Primero arreglar los valores en el conjunto de acuerdo a su magnitud; es decir arreglar los
Conceptos Básicos para el Procesamiento Digital de Imágenes
ELO 313 Procesamiento Digital de Señales con Aplicaciones Conceptos Básicos para el Procesamiento Digital de Imágenes Matías Zañartu, Ph.D. Departamento de Electrónica Universidad Técnica Federico Santa
Objetivos: Al inalizar la unidad, el alumno:
Unidad 1 Matrices y determinantes Objetivos: Al inalizar la unidad, el alumno: Identiicará qué es una matriz y cuáles son sus elementos. Distinguirá los principales tipos de matrices. Realizará operaciones
SESIÓN 1 PRE-ALGEBRA, CONCEPTOS Y OPERACIONES ARITMÉTICAS BÁSICAS
SESIÓN 1 PRE-ALGEBRA, CONCEPTOS Y OPERACIONES ARITMÉTICAS BÁSICAS I. CONTENIDOS: 1. Introducción: de la aritmética al álgebra. 2. Números reales y recta numérica. 3. Operaciones aritméticas básicas con
Tema 1 Las Funciones y sus Gráficas
Tema Las Funciones y sus Gráficas..- Definición de Función y Conceptos Relacionados Es muy frecuente, en geometría, en física, en economía, etc., hablar de ciertas magnitudes que dependen del valor de
MENORES, COFACTORES Y DETERMINANTES
MENORES, COFACTORES Y DETERMINANTES 1. Introducción. 2. Determinante de una matriz de 3 x 3. 3. Menores y cofactores. 4. Determinante de una matriz de n x n. 5. Matriz triangular. 6. Determinante de una
Lección 10: Representación gráfica de algunas expresiones algebraicas
LECCIÓN Lección : Representación gráfica de algunas epresiones algebraicas En la lección del curso anterior usted aprendió a representar puntos en el plano cartesiano y en la lección del mismo curso aprendió
Anexo C. Introducción a las series de potencias. Series de potencias
Anexo C Introducción a las series de potencias Este apéndice tiene como objetivo repasar los conceptos relativos a las series de potencias y al desarrollo de una función ne serie de potencias en torno
Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática (0081714)
Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática (0081714) UNIDAD N 1 (FUNCIONES) Profesora: Yulimar Matute Octubre 2011 Función Constante: Se
Tema 5. Derivación Matricial.
Tema 5. Derivación Matricial. Análisis Matemático I 1º Estadística Universidad de Granada Noviembre 2012 1 / 24 Producto de Kronecker Definición Dadas dos matrices A M m n y B M p q, el producto de Kronecker
En la Clase 3, se demostró que cualquier señal discreta x[n] puede escribirse en términos de impulsos como sigue:
SISTEMAS LINEALES INVARIANTES EN EL TIEMPO (SISTEMAS LTI) Un sistema lineal invariante en el tiempo, el cual será referido en adelante por la abreviatura en inglés de Linear Time Invariant Systems como
DISTORSION ARMONICA FICHA TECNICA. REA00410. senoidales, esta señal no senoidal está compuesta por armónicas.
FICHA TECNICA. REA41 DISTORSION ARMONICA En México, el sistema eléctrico de potencia está diseñado para generar y operar con una señal senoidal de tensión y de corriente a una frecuencia de 6 Hz (frecuencia
3. Métodos clásicos de optimización lineal
3. Métodos clásicos de optimización lineal Uso del método Simplex El problema que pretende resolverse es un problema de optimización lineal sujeto a restricciones. Para el modelo construido para el problema
Matrices escalonadas y escalonadas reducidas
Matrices escalonadas y escalonadas reducidas Objetivos. Estudiar las definiciones formales de matrices escalonadas y escalonadas reducidas. Comprender qué importancia tienen estas matrices para resolver
Sucesiones y series de números reales
Capítulo 2 Sucesiones y series de números reales 2.. Sucesiones de números reales 2... Introducción Definición 2... Llamamos sucesión de números reales a una función f : N R, n f(n) = x n. Habitualmente
Capítulo II Límites y Continuidad
(Apuntes en revisión para orientar el aprendizaje) INTRODUCCIÓN Capítulo II Límites y Continuidad El concepto de límite, después del de función, es el fundamento matemático más importante que ha cimentado
Sistemas Lineales. Tema 7. Problemas
Sistemas Lineales ema 7. Problemas. Se sabe que una señal de valor real x(t) ha sido determinada sólo por sus muestras cuando la frecuencia de muestreo es s = 0 4 π. Para qué valores de se garantiza que
Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos
Tema 3: Repaso de Álgebra Lineal Parte I Virginia Mazzone Contenidos Vectores y Matrices Bases y Ortonormailizaciòn Norma de Vectores Ecuaciones Lineales Algenraicas Ejercicios Vectores y Matrices Los
Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2011 - Propuesta B
Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2011 - Propuesta B 1. Queremos invertir una cantidad de dinero en dos tipos
Matriz asociada a una transformación lineal respecto a un par de bases
Matriz asociada a una transformación lineal respecto a un par de bases Objetivos Definir la matriz asociada a una transformación lineal respecto a un par de bases y estudiar la representación matricial
Introducción al Tema 9
Tema 2. Análisis de datos univariantes. Tema 3. Análisis de datos bivariantes. Tema 4. Correlación y regresión. Tema 5. Series temporales y números índice. Introducción al Tema 9 Descripción de variables
Polinomios. 1.- Funciones cuadráticas
Polinomios 1.- Funciones cuadráticas Definición 1 (Función polinomial) Sea n un entero no negativo y sean a n, a n 1,..., a, a 1, a 0 número s reales con a n 0. La función se denomina función polinomial
Alan Kevin Piarpussan Alfonso Carlo federici Algebra Profesor: Ricardo
Alan Kevin Piarpussan Alfonso Carlo federici Algebra Profesor: Ricardo A pesar de que Descartes originalmente usaba el término números imaginarios para referirse a lo que hoy en día se conoce como números
Computación Gráfica Silvia Castro 1
2D 3D ACM SIGGRAPH VyGLab Lab. de Investigación y Desarrollo en Visualización y Dpto. de Ciencias e Ingeniería de la Computación Universidad Nacional del Sur Qué es una Imagen? Qué es una Imagen Digital?
Derivadas Parciales y Derivadas Direccionales
Tema 3 Derivadas Parciales y Derivadas Direccionales En este tema y en el siguiente presentaremos los conceptos fundamentales del Cálculo Diferencial para funciones de varias variables. Comenzaremos con
MATEMÁTICAS I SUCESIONES Y SERIES
MATEMÁTICAS I SUCESIONES Y SERIES. Sucesiones En casi cualquier situación de la vida real es muy frecuente encontrar magnitudes que varían cada cierto tiempo. Por ejemplo, el saldo de una cuenta bancaria
TRANSFORMACIONES DE f (x) = x 2 9.1.1 9.1.2. Ejemplo 1
Capítulo 9 TRANSFORMACIONES DE f () = 2 9.1.1 9.1.2 A fin de lograr un buen dominio de la modelación de datos relaciones en situaciones cotidianas, los alumnos deben ser capaces de reconocer transformar
Tema 5: Sistemas de Ecuaciones Lineales
Tema 5: Sistemas de Ecuaciones Lineales Eva Ascarza-Mondragón Helio Catalán-Mogorrón Manuel Vega-Gordillo Índice 1 Definición 3 2 Solución de un sistema de ecuaciones lineales 4 21 Tipos de sistemas ecuaciones
El cuerpo de los números reales
Capítulo 1 El cuerpo de los números reales 1.1. Introducción Existen diversos enfoques para introducir los números reales: uno de ellos parte de los números naturales 1, 2, 3,... utilizándolos para construir
Técnica: Que es un histograma, como se analiza e interpreta
Técnica: Que es un histograma, como se analiza e interpreta Nota importante: Las capturas y ejemplos de histogramas de este artículo están basados en la herramienta Photoshop Elements. No obstante la mayoría
Ejemplo 1. Ejemplo introductorio
. -Jordan. Ejemplo 1. Ejemplo introductorio. -Jordan Dos especies de insectos se crían juntas en un recipiente de laboratorio. Todos los días se les proporcionan dos tipos de alimento A y B. 1 individuo
Funciones de varias variables.
Funciones de varias variables. Definición. Hasta ahora se han estudiado funciones de la forma y = f (x), f :D Estas funciones recibían el nombre de funciones reales de variable real ya que su valor y dependía
Método de fórmula general
Método de fórmula general Ahora vamos a utilizar el método infalible. La siguiente fórmula, que llamaremos «fórmula general» nos ayudará a resolver cualquier ecuación cuadrática. Fórmula General La fórmula
Tema 1. Álgebra lineal. Matrices
1 Tema 1. Álgebra lineal. Matrices 0.1 Introducción Los sistemas de ecuaciones lineales aparecen en un gran número de situaciones. Son conocidos los métodos de resolución de los mismos cuando tienen dos
Los números enteros. > significa "mayor que". Ejemplo: 58 > 12 < significa "menor que". Ejemplo: 3 < 12 Cualquier número positivo siempre es mayor
Los números enteros Los números enteros Los números enteros son aquellos que permiten contar tanto los objetos que se tienen, como los objetos que se deben. Enteros positivos: precedidos por el signo +
Números enteros. 1. En una recta horizontal, se toma un punto cualquiera que se señala como cero.
Números enteros Son el conjunto de números naturales, sus opuestos (negativos) y el cero. Se dividen en tres partes: enteros positivos o números naturales (+1, +2, +3,...), enteros negativos (-1, -2, -3,.)
Análisis de Señales en Geofísica
Análisis de Señales en Geofísica 14 Clase Transformada Bidimensional de Fourier Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Argentina Introducción: La extensión de
UNIDAD II FUNCIONES. Ing. Ronny Altuve Esp.
República Bolivariana de Venezuela Universidad Alonso de Ojeda Administración Mención Gerencia y Mercadeo UNIDAD II FUNCIONES Ing. Ronny Altuve Esp. Ciudad Ojeda, Septiembre de 2015 Función Universidad
Conceptos Básicos de Funciones
Conceptos Básicos de Funciones Definición. Una función es una relación entre un conjunto de salida llamado dominio y un conjunto de llegada llamado codominio, tal relación debe cumplir que cada elemento
CLASE Nº7. Patrones, series y regularidades numéricas
CLASE Nº7 Patrones, series y regularidades numéricas Patrón numérico en la naturaleza Regularidades numéricas Patrones Espiral con triángulos rectángulos Series numéricas REGULARIDADES NUMÉRICAS Son series
ANÁLISIS DE DATOS MULTIDIMENSIONALES
ANÁLISIS DE DATOS MULTIDIMENSIONALES INTRODUCCIÓN DISTRIBUCIÓN DE FRECUENCIAS MULTIDIMENSIONAL DISTRIBUCIONES MARGINALES DISTRIBUCIONES CONDICIONADAS INDEPENDENCIA ESTADÍSTICA ESTUDIO ANALÍTICO DE DISTRIBUCIONES
Curso de Álgebra Lineal
Curso de Álgebra Lineal 1. NÚMEROS COMPLEJOS 1.1 Definición, origen y operaciones fundamentales con números complejos Definición. Un número complejo, z, es una pareja ordenada (a, b) de números reales
JUNIO 2010. Opción A. 1 1.- Dada la parábola y = 3 área máxima que tiene un lado en la recta y los otros dos vértices en la gráfica de la parábola.
Junio 00 (Prueba Específica) JUNIO 00 Opción A.- Dada la parábola y 3 área máima que tiene un lado en la recta y los otros dos vértices en la gráfica de la parábola., y la recta y 9, hallar las dimensiones
Sumar es reunir varias cantidades en una sola.
------ Fichas de trabajo 01-A-1/18 Cálculo. Suma (+) Sumar es reunir varias cantidades en una sola. Signo. Es una cruz griega (+) que se lee más. + = 5 + = Términos. Los números que se suman se llaman
Universidad Alonso de Ojeda. Facultad de Ingeniería GUIA DE ESTUDIO ALGEBRA LINEAL.
UNIDAD IV: VECTORES EN R2 Y R3 VECTOR Se puede considerar un vector como un segmento de recta con una flecha en uno de sus extremos. De esta forma lo podemos distinguir por cuatro partes fundamentales:
Unidad 1. Las fracciones.
Unidad 1. Las fracciones. Ubicación Curricular en España: 4º, 5º y 6º Primaria, 1º, 2º y 3º ESO. Objetos de aprendizaje. 1.1. Concepto de fracción. Identificar los términos de una fracción. Escribir y
No tienen componente en continua: Lo que implica todas las ventajas mencionadas anteriormente.
No tienen componente en continua: Lo que implica todas las ventajas mencionadas anteriormente. Detección de errores: Se pueden detectar errores si se observa una ausencia de transición esperada en mitad
Julio Deride Silva. 27 de agosto de 2010
Estadística Descriptiva Julio Deride Silva Área de Matemática Facultad de Ciencias Químicas y Farmcéuticas Universidad de Chile 27 de agosto de 2010 Tabla de Contenidos Estadística Descriptiva Julio Deride
Colegio Universitario Boston. Funciones
70 Concepto de Función Una función es una correspondencia entre dos conjuntos, tal que relaciona, a cada elemento del conjunto A con un único elemento del conjunto Para indicar que se ha establecido una
TEMA 4: DERIVADAS. En símbolos, la pendiente de la curva en P = lim Q P (pendiente de P Q).
TEMA 4: DERIVADAS 1. La derivada de una función. Reglas de derivación 1.1. La pendiente de una curva. La pendiente de una curva en un punto P es una medida de la inclinación de la curva en ese punto. Si
ENDOMORFISMOS Y DIAGONALIZACIÓN.
ENDOMORFISMOS Y DIAGONALIZACIÓN. En lo que resta de este tema, nos centraremos en un tipo especial de aplicaciones lineales: los endomorfismos. Definición: Endomorfismo. Se llama endomorfismo a una aplicación
El espacio n Consideremos el conjunto de todas las n adas ordenadas de números reales, denotado por n : 8. 1(x 1, x 2,, x n ) = (x 1, x 2,, x n )
El espacio n Consideremos el conjunto de todas las n adas ordenadas de números reales, denotado por n : n = {(x 1,x,, x n ) / x 1,x,, x n } A cada uno de los números reales x 1,x,, x n que conforman la
4. Método Simplex de Programación Lineal
Temario Modelos y Optimización I 4. Método Simplex de Programación Lineal A- Resolución de problemas, no particulares, con representación gráfica. - Planteo ordenado de las inecuaciones. - Introducción
[email protected]
Titulo: CENTRO DE GRAVEDAD, CENTRO DE MASA Y CENTROIDE. Año escolar: Estática - Ingeniería Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela Correo
Curso Propedéutico de Cálculo Sesión 2: Límites y Continuidad
y Laterales Curso Propedéutico de Cálculo Sesión 2: y Joaquín Ortega Sánchez Centro de Investigación en Matemáticas, CIMAT Guanajuato, Gto., Mexico y Esquema Laterales 1 Laterales 2 y Esquema Laterales
La función cuadrática
La función cuadrática En primer semestre estudiamos las ecuaciones cuadráticas. También resolvimos estas ecuaciones por el método gráfico. Para esto, tuvimos que convertir la ecuación en una función igualándola
PRÁCTICA 3: CONVOLUCIÓN Y CORRELACIÓN
PRÁCTICA 3: CONVOLUCIÓN Y CORRELACIÓN Objetivo Específico El alumno utilizará los conceptos de la Convolución discreta y de la Correlación en el procesamiento de señales adquiridas. Introducción Dos operaciones
CAPÍTULO. Conceptos básicos
CAPÍTULO 1 Conceptos básicos 1.3 Soluciones de ecuaciones diferenciales 1.3.1 Soluciones de una ecuación Ejemplo 1.3.1 Resolver la ecuación: D 0. H Resolver esta ecuación significa encontrar todos los
LUGAR GEOMÉTRICO DE LAS RAICES (LGR)
LUGAR GEOMÉTRICO DE LAS RAICES (LGR) DEFINICIÓN: El lugar geométrico de las raíces es la trayectoria formada por las raíces de una ecuación polinómica cuando un parámetro de ésta varía. En el caso de Sistemas
SESIÓN 5 RELACIÓN ENTRE LOS VALORES NUMÉRICOS
SESIÓN 5 RELACIÓN ENTRE LOS VALORES NUMÉRICOS I. CONTENIDOS: 1. Relación entre valores numéricos.. Cálculo de media, mediana y moda en datos agrupados y no agrupados. 3. La media, mediana y moda en variable
TEMA N 2 RECTAS EN EL PLANO
2.1 Distancia entre dos puntos1 TEMA N 2 RECTAS EN EL PLANO Sean P 1 (x 1, y 1 ) y P 2 (x 2, y 2 ) dos puntos en el plano. La distancia entre los puntos P 1 y P 2 denotada por d = esta dada por: (1) Demostración
Lección 5.1: Matrices y determinantes. Primeros conceptos. Objetivos de esta lección
Matemáticas Tema 5: Conceptos básicos sobre matrices y vectores Objetivos Lección 5.: y determinantes Philippe Bechouche Departamento de Matemática Aplicada Universidad de Granada 3 4 [email protected] 5 Qué
Tema 9. Espacio de Estados : Representación y propiedades importantes
Ingeniería de Control Tema 9. Espacio de Estados : Representación y propiedades importantes Daniel Rodríguez Ramírez Teodoro Alamo Cantarero Esquema del tema 9.1. Representación de sistemas discretos en
Controlabilidad y observabilidad
Controlabilidad p. 1/16 Controlabilidad y observabilidad En las próximas clases discutiremos dos conceptos fundamentales de la teoría de sistemas: controlabilidad y observabilidad. Esos dos conceptos describen
