Razones trigonométricas.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Razones trigonométricas."

Transcripción

1 UNIDAD 1: UTILICEMOS LAS RAZONES TRIGONOMETRICAS. Razones trigonométricas. 5.1 Definición de razones trigonométricas. Un trianguo rectánguo es aque que tiene un ánguo recto (de 90 grados: 90º). En todo triánguo rectánguo, e ado mayor es a hipotenusa (c). Además, cada ánguo tiene un ado o cateto opuesto (enfrente) y uno adyacente (cercano). Para e ánguo mostrado, b es e ado opuesto; y a es e ado adyacente. Y para, a es e ado opuesto; y b es e ado adyacente. Además, en todo triánguo a suma de os ánguos internos es 180º: 90º + + = 180º. Y recordando a Pitágoras, se tiene que: a 2 + b 2 = c 2 a c 90º b Las razones trigonométricas son 6: seno (Sen), coseno (Cos), tangente (Tan), cotangente (Cot), secante (Sec) y cosecante (Csc). Cada razón trigonométrica es a división de un ado entre otro. Para e ánguo se tiene que: Sen = opuesto/hipotenusa = b/c Cos = 1 / Sec Tan = opuesto/adyacente = b/a Cot = 1 / Tan Sec = hipotenusa/adyacente = c/a Csc = 1 / Sen Cos = adyacente/hipotenusa = a/c Cot = adyacente/opuesto = a/b Csc = hipotenusa/opuesto = c/b Si tomamos e ánguo, obtenemos: Sen = opuesto/hipotenusa = a/c Tan = opuesto/adyacente = a/b Sec = hipotenusa/adyacente = c/b Cos = adyacente/hipotenusa = b/c Cot = adyacente/opuesto = b/a Csc = hipotenusa/opuesto = c/a 5.2 Razones trigonométricas para ánguos de 30 o, 45 o y 60 o. Una razón trigonométrica sóo depende de a abertura de ánguo. Para e caso, e seno de 30º será siempre 0.5 sin importar as dimensiones de opuesto y de a hipotenusa. Partiendo de esto, cacuemos as razones trigonométricas de 30º, 45º y 60º. Lo haremos a partir de un triánguo equiátero (aque que tiene sus tres ados iguaes) Atura 30º A un triánguo equiátero, a atura o divide en 2 triánguos rectánguos iguaes, como puede verse. A apicar Pitágoras, resuta que a atura es 3 / 2. Tengamos presente que a atura es un cateto de triánguo rectánguo; así como o es /2. 60

2 2 60º 60º /2 /2 Sen30º = opuesto/hipotenusa = (/2) / = ½ = 0.5 Cos30º = adyacente/hipotenusa = 3 = 3 = Tan30º = opuesto/adyacente = (/2) / ( 3 /2) = 1/ 3 Cot30º = adyacente/opuesto = ( 3 /2) / (/2) = 3 Cot = 1 / Tan Sec30º = hipotenusa/adyacente = () / ( 3 /2) = 2/ 3. Equivae a 2 3 /3 Sec = 1 / Cos Csc30º = hipotenusa/opuesto = () / (/2) = 2. Csc = 1 / Sen Por un proceso semejante egamos a que: Sen60º = opuesto/hipotenusa = 3 2 Cos60º = adyacente/hipotenusa = 1/2. Tan60º = opuesto/adyacente = 3 Cot60º = adyacente/opuesto = 3 /3 Sec60º = hipotenusa/adyacente = 2. Csc60º = hipotenusa/opuesto = 2/ 3. Equivae a 2 3 /3. Para 45º construyamos un triánguo rectánguo con 45º. 45º 2 Puede observarse que si un ánguo es de 45º, e otro obigadamente es de 45º. Además, por Pitágoras se cacua que a hipotenusa es 2. 90º 45º

3 Sen45º = opuesto/hipotenusa = / 2 = 1/ 2. Equivae a 2/2 Cos45º = adyacente/hipotenusa = / 2 = 1/ 2. Equivae a 2/2 Tan45º = opuesto/adyacente = / = 1 Cot45º = adyacente/opuesto = / = 1 Sec45º = hipotenusa/adyacente = 2 / = 2. Csc 45º = hipotenusa/opuesto = 2 / = 2. Ejempos. 1. Para e triánguo siguiente cacua as 6 razones trigonométricas para. 2. Se sabe que sen Ω = 7/10, cacua as otras razones trigonométricas de Ω. 4 cm 3 cm Soución. Apiquemos Pitágoras para encontrar a hipotenusa: (hipotenusa) 2 = = = 25 Saquemos raíz cuadrada en ambos ados: (hipotenusa) 2 = 25 hipotenusa = 5 Sen = opuesto / hipotenusa = 3/5 Cos = adyacente / hipotenusa = 4/5 Tan = opuesto / adyacente = 3/4 Cot = adyacente / opuesto = 4/3 Sec = hipotenusa / adyacente = 5/4 Csc = hipotenusa / opuesto = 5/3 Sen Ω = 7 / 10. Como seno = opuesto / hipotenusa, se tiene que:

4 Opuesto = 7 e Hipotenusa = 10. Necesitamos conocer e otro ado: e adyacente. Apiquemos Pitágoras. Hipotenusa 2 = a 2 + b = b 100 = 49 + b = b 2 51 = b 2 51 = b b = 7.14 Cos Ω = adyacente / hipotenusa = 7.14 / 10 = Tan Ω = opuesto / adyacente = 7 / 7.14 = 0.98 Cot Ω = adyacente / opuesto = 7.14 / 7 = 1.04 Sec Ω = hipotenusa / adyacente = 10 / 7.14 = 1.4 Csc Ω = hipotenusa / opuesto = 10 / 7 = 1.43 Actividad cm 1. Cacua as razones trigonométricas para y. Sen = Cos = Tan = Cot = Sec = Csc = Sen = Cos = Tan = Cot = Sec = Csc = 8 cm 2. Se sabe que Cot = 2/5. Cacua as razones trigonométricas para y e otro ánguo. Sen = Cos = Tan = Cot = 0.4 Sec = - Csc = Cos = Sen = Cot = Tan = Sec = Csc = - discusión Se sabe que Sen = Cacuen as otras razones trigonométricas para. Sec = Csc = Cos = Tan = Cot = 2. Por qué a expresión Sen = 20/15 no tiene ógica matemática? 3. Se sabe que en un triánguo rectánguo e opuesto de es e dobe de adyacente. Cacua as razones trigonométricas. Sen = Cos = Tan = Cot = Sec = - Csc = 4. Se sabe que en un triánguo rectánguo e opuesto de es de 3 cm. Además, Sen = Cacuen os otros ados de triánguo. Adyacente = Hipotenusa =

5 5. Se sabe que Sen = Cacuen e vaor de ado X y e vaor de a hipotenusa. 52 X 3cm X = Hipotenusa = 6. Discutan cuá puede ser e mínimo y e máximo que puede acanzar a razón trigonométrica Sen. Mínimo = Máximo = 5.3 Cácuo de vaor de una razón trigonométrica para un ánguo agudo (uso de cacuadora). Un ánguo agudo es aque menor de 90º. Para cacuar as razones trigonométricas en una cacuadora, debemos primero cuidarnos de estar trabajando en grados. Luego escribimos e vaor de grado: 10, 15, 60, y oprimimos a razón trigonométrica deseada. Aparecerá e vaor respectivo. En a actuaidad se han popuarizado cacuadoras que operan de diferente forma: primero se oprime a razón trigonométrica, uego se escribe e grado y finamente se oprime EXE. En otras se escribe a abreviatura de a razón trigonométrica y uego e grado. Para cacuar e seno de 45º se opera así: S I N 4 5 EXE SIN es a abreviatura en ingés de seno Muchas cacuadoras sóo traen seno, coseno y tangente. Entonces se hace necesario saber que: Cotangente = 1/ tangente, cosecante = 1/seno y secante = 1/coseno. En todo caso, este es un tema que se entenderá mejor con cacuadora en mano y con e auxiio de maestr@. Actividad 18. Usando a cacuadora, ena a taba siguiente: Sen Cos Tan 0º 10º 20º 30º 40º 50º 60º 70º 80º 90º discusión En a útima fia, escriban e resutado de dividir e seno entre e coseno. Qué observan? Podemos afirmar que a tangente es seno / coseno?

6 2. Tomen de a taba 2 ánguos: y, de manera que sumen 90º. Puede afirmarse que sen = cos? 5.4 Cácuo de ánguo correspondiente a vaor de una razón trigonométrica (uso de cacuadora). Si sabemos que e seno de un ánguo es 0.966, surge a pregunta: cuá es e vaor de ánguo? Se tiene que: Si Sen = k, entonces = (Sen) -1 K (Sen) 1 es e inverso de seno. (Cos) 1 es e inverso de coseno. (Tan) 1 es e inverso de a tangente. Escritos así se encuentran en muchas cacuadoras. En as modernas se debe escribir: ASN: inverso de seno, ACS: inverso de coseno, ATN: inverso de a tangente. Luego se escribe e ánguo y se oprime EXE. De nuevo este tema se comprenderá mejor cacuadora en mano. Ejempos. Se sabe que Sen = Cacuemos os ánguos y. Si Sen = 0.342, con a cacuadora resuta que = 20º. Por o tanto = 70º. Recuerda que... en un triánguo rectánguo, os ánguos menores suman 90º. E astrónomo y matemático Caudio Toomeo vivió hace muchos sigos. Sus teorías y expicaciones astronómicas dominaron e pensamiento científico hasta e sigo XVI. Toomeo también contribuyó sustanciamente a as matemáticas a través de sus estudios en trigonometría y apicó sus teorías a a construcción de astroabios y reojes de so. En su Tetrabibon, apicó a astronomía a a astroogía y a creación de horóscopos. Amagesto es a primera y más famosa obra de Toomeo. En esta obra, Toomeo panteó una teoría geométrica para expicar matemáticamente os movimientos y posiciones aparentes de os panetas, e So y a Luna contra un fondo de estreas inmóvies. En os tiempos de Toomeo, se tomaba como cierto que a Tierra no se movía, sino que estaba en e centro de Universo. Por razones fiosóficas, se consideraba que os panetas y as estreas se movían con movimiento uniforme en órbitas perfectamente circuares.

7 Toomeo comenzó por aceptar a teoría mantenida de forma generaizada en aque entonces de que a Tierra no se movía, sino que estaba en e centro de Universo. Por razones fiosóficas, se consideraba que os panetas y as estreas se movían con movimiento uniforme en órbitas perfectamente circuares. Posibemente, Toomeo nació en Grecia, pero su nombre verdadero, Caudius Ptoemaeus, refeja todo o que reamente se sabe de é: Ptoemaeus indica que vivía en Egipto y Caudius significa que era ciudadano romano. De hecho, fuentes antiguas nos informan de que vivió y trabajó en Aejandría, Egipto, durante a mayor parte de su vida. En a pintura vemos a astrónomo y matemático sosteniendo una esfera armiar. Este aparato están compuestas por varios círcuos, con una pequeña esfera en e centro, que representa a tierra.

Trigonometría del círculo. Sección 5.3

Trigonometría del círculo. Sección 5.3 Trigonometría de círcuo Sección 5.3 Un círcuo con centro en e origen de un sistema de coordenadas rectanguares y con radio igua a 1 se ama un círcuo unitario. Side 6.3 - Si e punto (x,y) pertenece a círcuo

Más detalles

1.4. Proporcionalidad de perímetros, áreas y volúmenes en objetos semejantes Si dos figuras son semejantes, entonces se verifica que: V = 3

1.4. Proporcionalidad de perímetros, áreas y volúmenes en objetos semejantes Si dos figuras son semejantes, entonces se verifica que: V = 3 TEMA 8: SEMEJANZA Y TRIGONOMETRÍA. Teorema de Thales.. Teorema de Thales Si se trazan un conjunto de rectas paralelas entre sí: L, L, L, que cortan a dos rectas r y s, los segmentos que determinan sobre

Más detalles

OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Rectas y puntos notables en un triángulo.

OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Rectas y puntos notables en un triángulo. 653 _ 0337-0344.qxd 7/4/07 13:9 Página 337 Figuras panas INTRODUCCIÓN Las figuras panas y e cácuo de áreas son ya conocidos por os aumnos de cursos anteriores. Conviene, sin embargo, señaar a presencia

Más detalles

Triángulos Rectángulos y Ángulos Agudos

Triángulos Rectángulos y Ángulos Agudos Triángulos Rectángulos y Ángulos Agudos Un ángulo agudo es un ángulo con una medida mayor que 0º y menor que 90º. Se utilizan letras griegas (alpha), (beta), (gamma), (theta), and (phi) para nombrar ángulos,

Más detalles

TRIGONOMETRIA DEL TRIANGULO RECTO. Copyright 2009 Pearson Education, Inc.

TRIGONOMETRIA DEL TRIANGULO RECTO. Copyright 2009 Pearson Education, Inc. TRIGONOMETRIA DEL TRIANGULO RECTO Copyright 2009 Pearson Education, Inc. Triángulos Rectángulos y Ángulos Agudos Un triángulo recto es un triángulo con un ángulo de 90º y dos ángulos agudos (menor que

Más detalles

GUIA DE TRIGONOMETRÍA

GUIA DE TRIGONOMETRÍA GUIA DE TRIGONOMETRÍA Los ángulos se pueden medir en grados sexagesimales y radianes Un ángulo de 1 radián es aquel cuyo arco tiene longitud igual al radio - 60º = radianes (una vuelta completa) - Un ángulo

Más detalles

RESOLUCIÓN DE TRIÁNGULOS RECTÁNGULOS Y OBLICUÁNGULOS

RESOLUCIÓN DE TRIÁNGULOS RECTÁNGULOS Y OBLICUÁNGULOS RESOLUCIÓN DE TRIÁNGULOS RECTÁNGULOS Y OBLICUÁNGULOS www.cedicaped.com CENTRO DE ESTUDIOS, DIDÁCTICA Y CAPACITACIÓN RESOLUCIÓN DE TRIÁNGULOS RECTÁNGULOS 1. DEFINICIÓN Se dice que un triángulo es rectángulo

Más detalles

MÓDULO DE MATEMÁTICA 3º MEDIO P.G. UNIDAD N 5: RELACIONES MÉTRICAS DEL TRIÁNGULO RECTÁNGULO. Nombre:... Curso: 3º Fecha:..

MÓDULO DE MATEMÁTICA 3º MEDIO P.G. UNIDAD N 5: RELACIONES MÉTRICAS DEL TRIÁNGULO RECTÁNGULO. Nombre:... Curso: 3º Fecha:.. 0 MÓULO E MTEMÁTI º MEIO P.G. UNI N : RELIONES MÉTRIS EL TRIÁNGULO RETÁNGULO Nombre:....... urso: º Fecha:.. I. Teorema de Euclides onsideramos el triángulo, rectángulo en, donde: c es la. h es altura.

Más detalles

94' = 1º 34' 66.14'' = 1' 6.14'' +

94' = 1º 34' 66.14'' = 1' 6.14'' + UNIDAD : Trigonometría I. INTRODUCCIÓN. SISTEMAS DE MEDIDAS DE ÁNGULOS Trigonometría proviene del griego: trigonos (triángulo) y metrón (medida). También a veces se usa el término Goniometría, que proviene

Más detalles

7.1 RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO

7.1 RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO Tema 7: Trigonometría Matemáticas B 4º ESO TEMA 7 TRIGONOMETRÍA 7.0 UNIDADES DE MEDIDAS DE ÁNGULOS 4º 7.0. GRADOS SEXAGESIMALES Grados, minutos y segundos : grado 60 minutos, minuto 60 segundos 4º 7.0.

Más detalles

- Ángulos positivos. Los que tienen el sentido de giro en contra de la agujas del reloj.

- Ángulos positivos. Los que tienen el sentido de giro en contra de la agujas del reloj. Ángulos. TRIGONOMETRÍA - Ángulo en el plano. Dos semirrectas con un origen común dividen al plano, en dos regiones, cada una de las cuales determina un ángulo ( α, β ). Al origen común se le llama vértice.

Más detalles

2.6 Prismas y paralelepípedos

2.6 Prismas y paralelepípedos UNIDAD Geometría.6 Prismas y paraeepípedos 5.6 Prismas y paraeepípedos OBJETIVOS Cacuar e área atera y e área tota de prismas rectos. Cacuar e voumen de prismas rectos. Resover probemas de voúmenes en

Más detalles

Colegio Universitario Boston Trigonometría Trigonometría 262

Colegio Universitario Boston Trigonometría Trigonometría 262 262 Ángulos. Ángulos en posición estándar o posición normal. Son aquellos ángulo cuyo lado inicial esta sobre el semi-eje x positivo. Lado terminal Lado inicial Podemos tener ángulos en posición estándar

Más detalles

El filósofo y matemático griego Tales de Mileto fue uno de los siete sabios más grandes de la antigüedad.

El filósofo y matemático griego Tales de Mileto fue uno de los siete sabios más grandes de la antigüedad. GEOMETRÍA BÁSICA 14. Teorema de Tales Corresponde a la sesión de GA 2.14 BUENA TRIANGULACIÓN El filósofo y matemático griego Tales de Mileto fue uno de los siete sabios más grandes de la antigüedad. El

Más detalles

RESUMEN DE TRIGONOMETRÍA

RESUMEN DE TRIGONOMETRÍA RESUMEN DE TRIGONOMETRÍA Definición: Un ángulo es la región del plano comprendida entre dos semirrectas con origen común. A las semirrectas se las llama lados del ángulo. El origen común es el vértice.

Más detalles

MATEMATICAS GRADO DECIMO

MATEMATICAS GRADO DECIMO MATEMATICAS GRADO DECIMO TERCER PERIODO TEMAS Funciones Trigonométricas. Funciones trigonométricas. Son relaciones angulares; guardan relación con el estudio de la geometría de los triángulos y son de

Más detalles

3. Un triángulo rectángulo es semejante a otro cuyos catetos miden 3 cm y 4 cm. Su hipotenusa vale 2,5 cm. Halla las medidas de sus catetos.

3. Un triángulo rectángulo es semejante a otro cuyos catetos miden 3 cm y 4 cm. Su hipotenusa vale 2,5 cm. Halla las medidas de sus catetos. RELACIÓN DE ACTIVIDADES MATEMÁTICAS º ESO TEMA 7: RESOLUCIÓN DE TRIÁNGULOS Y TRIGONOMETRÍA Contesta razonadamente a las siguientes preguntas:. Halla la incógnita en los siguientes triángulos rectángulos:

Más detalles

Apuntes Trigonometría. 4º ESO.

Apuntes Trigonometría. 4º ESO. Apuntes Trigonometría. 4º ESO. Conceptos previos: Notación: En un triángulo, los vértices se denotan con letras mayúsculas (A, B y C). Los lados se denotan con la letra minúscula del vértice opuesto al

Más detalles

UNIDAD II. FUNCIONES TRIGONOMÉTRICAS. Tema. Funciones trigonométricas

UNIDAD II. FUNCIONES TRIGONOMÉTRICAS. Tema. Funciones trigonométricas UNIDAD II. FUNCIONES TRIGONOMÉTRICAS Tema. Funciones trigonométricas FUNCIONES TRIGONOMÉTRICAS Introducción: Las funciones trigonométricas surgen de una forma natural al estudiar el triángulo rectángulo

Más detalles

b 11 cm y la hipotenusa

b 11 cm y la hipotenusa . RESOLUCIÓN DE TRIÁNGULOS RECTÁNGULOS UNIDAD : Trigonometría II Resolver un triángulo es conocer la longitud de cada uno de sus lados y la medida de cada uno de sus ángulos. En el caso de triángulos rectángulos,

Más detalles

Razones trigonométricas en triangulo rectángulo EJEMPLO Nº 1 Solución: Se tienen los siguientes datos:

Razones trigonométricas en triangulo rectángulo EJEMPLO Nº 1 Solución: Se tienen los siguientes datos: Razones trigonométricas en triangulo rectángulo La trigonometría, enfocada en sus inicios solo al estudio de los triángulos, se utilizó durante siglos en topografía, navegación y astronomía. Esta rama

Más detalles

RAZONES TRIGONOMÉTRICAS

RAZONES TRIGONOMÉTRICAS RAZONES TRIGONOMÉTRICAS Razones trigonométricas de los ángulos de un triángulo rectángulo eran esas relaciones entre los lados de dicho triángulo rectángulo. Seno: Se define el seno del ángulo como el

Más detalles

AREA Y PERIMETRO DE LAS FIGURAS GEOMETRICAS

AREA Y PERIMETRO DE LAS FIGURAS GEOMETRICAS AREA Y PERIMETRO DE LAS FIGURAS GEOMETRICAS Figura geométrica Consiste de una línea o de un conjunto de líneas que representarán un objeto dado. Polígono Es una poligonal cerrada (el origen del primer

Más detalles

RAZONES TRIGONOMÉTRICAS

RAZONES TRIGONOMÉTRICAS RAZONES TRIGONOMÉTRICAS Las Razones trigonométricas se definen comúnmente como el cociente entre dos lados de un triangulo rectángulo asociado a sus ángulos. SENO, COSENO Y TANGENTE Recordarás que eisten

Más detalles

Pre-PAES 2016 Teorema de Pitágoras y Razones Trigonométrica

Pre-PAES 2016 Teorema de Pitágoras y Razones Trigonométrica Pre-PAES 2016 Teorema de Pitágoras y Razones Trigonométrica Nombre: Sección: Un ángulo es la abertura formada entre dos semirectas o rayos, unidas en un punto común llamado vértice. Los lados del ángulo

Más detalles

II. TRIGONOMETRÍA. A. ÁNGULOS Y SUS MEDIDAS Un ángulo es la abertura que existe ebtre dos líneas que se cortan.

II. TRIGONOMETRÍA. A. ÁNGULOS Y SUS MEDIDAS Un ángulo es la abertura que existe ebtre dos líneas que se cortan. II. TRIGONOMETRÍA La trigonometría se encarga del estudio de la medida de los triángulos, es decir de la medida de sus ángulos y sus lados. A. ÁNGULOS Y SUS MEDIDAS Un ángulo es la abertura que eiste ebtre

Más detalles

Introducción a la trigonometría

Introducción a la trigonometría UNIDAD 9: UTILICEMOS LA TRIGONOMETRIA. Introducción Introducción a la trigonometría La trigonometría es el método analítico para estudiar los triángulos y otras figuras. El estudio de la trigonometría

Más detalles

Trigonometría y problemas métricos

Trigonometría y problemas métricos Trigonometría y problemas métricos 1) En un triángulo rectángulo, los catetos miden 6 y 8 centímetros. Calcula la medida de la altura sobre la hipotenusa y la distancia desde su pie hasta los extremos.

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 3. Trigonometría

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 3. Trigonometría TRIGONOMETRÍA La trigonometría se inicia estudiando la relación entre los ángulos y los lados de un triángulo, surgiendo las razones trigonométricas de un ángulo y a partir de ellas las funciones trigonométricas.

Más detalles

180º 36º 5. rad. rad 7. rad

180º 36º 5. rad. rad 7. rad ÁNGULOS: Usaremos dos unidades para expresar los ángulos: grados sexagesimales (MODE: DEG en la calculadora) y radianes (MODE: RAD en la calculadora). El radián es la unidad de ángulo plano en el Sistema

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE # 25

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE # 25 MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE # 5 La Trigonometría es el estudio de la relación entre las medidas de los lados y los ángulos del triángulo. Ángulos En este

Más detalles

"Unidad II" Razones trigonométricas. Ing. Arnoldo Campillo Borrego.

Unidad II Razones trigonométricas. Ing. Arnoldo Campillo Borrego. "Unidad II" Razones trigonométricas Ing. Arnoldo Campillo Borrego. 1 ÍNDICE Definición de funciones trigonométricas.pag. 3 Conversión de ángulos..pag. 3 Conversión de grados a radianes pag. 3 Conversión

Más detalles

Conceptos Básicos. Las líneas rectas podemos encontrarlas en el doblez de una hoja de papel, en un hilo estirado, en la arista de una puerta, etc.

Conceptos Básicos. Las líneas rectas podemos encontrarlas en el doblez de una hoja de papel, en un hilo estirado, en la arista de una puerta, etc. 3. Geometría Desde el jardinero que traza un jardín, el navegante que fija y traza la ruta del próximo viaje, el arquitecto que hace los planos para la construcción de un grandioso edificio, el ingeniero

Más detalles

El radián se define como el ángulo que limita un arco cuya longitud es igual al radio del arco.

El radián se define como el ángulo que limita un arco cuya longitud es igual al radio del arco. Trigonometría Radianes Los grados sexagesimales, que son los más frecuentes, se utilizan para dividir a la circunferencia en 360 partes iguales. Si colocamos el eje de coordenadas en la circunferencia

Más detalles

Un ángulo es una porción de plano limitada por dos semirrectas, los lados, que parten de un mismo punto llamado vértice.

Un ángulo es una porción de plano limitada por dos semirrectas, los lados, que parten de un mismo punto llamado vértice. 6. Trigonometría 37 6 Trigonometría Un ángulo es una porción de plano limitada por dos semirrectas, los lados, que parten de un mismo punto llamado vértice. A efectos representativos y de medición, el

Más detalles

RAZONES TRIGONOMÉTRICAS. Razones trigonométricas en un triángulo rectángulo

RAZONES TRIGONOMÉTRICAS. Razones trigonométricas en un triángulo rectángulo RAZONES TRIGONOMÉTRICAS Razones trigonométricas en un triángulo rectángulo Seno El seno del ángulo B es la razón entre el cateto opuesto al ángulo y la hipotenusa. Se denota por sen B. Coseno El coseno

Más detalles

Unidad 2: Resolución de triángulos

Unidad 2: Resolución de triángulos Ejercicio 1 Unidad : Resolución de triángulos En las siguientes figuras, calcula las medidas de los segmentos desconocidos indicados por letras (ambos triángulos son rectángulos en A): cm 16'5 7'5 cm a

Más detalles

INTRODUCCIÓN 1. CLASIFICACIÓN DE LOS TRIÁNGULOS 2. DEFINICIÓN DE ÁNGULO 3. MEDIDAS DE ÁNGULOS 4. RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO

INTRODUCCIÓN 1. CLASIFICACIÓN DE LOS TRIÁNGULOS 2. DEFINICIÓN DE ÁNGULO 3. MEDIDAS DE ÁNGULOS 4. RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO TRIGONOMETRÍA INTRODUCCIÓN 1. CLASIFICACIÓN DE LOS TRIÁNGULOS. DEFINICIÓN DE ÁNGULO 3. MEDIDAS DE ÁNGULOS 4. RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO Interpretación geométrica de las razones trigonométricas

Más detalles

rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos:

rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos: Trigonometría 1.- Ángulos En la medida de ángulos, y por tanto en trigonometría, se emplean dos unidades, si bien la más utilizada en la vida cotidiana es el grado sexagesimal, en matemáticas es el radián

Más detalles

TRIGONOMETRÍA. CONVERSIÓN DE UN SISTEMA A OTRO Tomando como base la equivalencia de un sistema a otro, podemos establecer la siguiente fórmula:

TRIGONOMETRÍA. CONVERSIÓN DE UN SISTEMA A OTRO Tomando como base la equivalencia de un sistema a otro, podemos establecer la siguiente fórmula: Cursos ALBERT EINSTEIN ONLINE Calle Madrid Esquina c/ Av La Trinidad LAS MERCEDES 9937172 9932305! www. a-einstein.com TRIGONOMETRÍA SISTEMAS DE MEDIDAS DE ÁNGULOS SISTEMA SEXAGESIMAL: Es el que considera

Más detalles

UNIDAD III. Funciones Trigonométricas.

UNIDAD III. Funciones Trigonométricas. UNIDAD III. Funciones Trigonométricas. El estudiante: Resolverá problemas de funciones trigonométricas teóricos o prácticos de distintos ámbitos, mediante la aplicación y el análisis crítico y reflexivo

Más detalles

Ejercicios resueltos de trigonometría

Ejercicios resueltos de trigonometría Ejercicios resueltos de trigonometría 1) Convierte las siguientes medidas de grados en radianes: a) 45º b) 60º c) 180º d) 270º e) 30º f) 225º g) 150º h) 135º i) -90º j) 720º 2) Expresa las siguientes razones

Más detalles

Funciones Trigonométricas

Funciones Trigonométricas Capítulo 6 Funciones Trigonométricas Otros ejemplos de funciones numéricas muy importantes son las funciones trigonométricas. Frecuentemente en la escuela secundaria se definen las razones trigonométricas

Más detalles

Matemáticas. Grado 10º. Unidad 1. Circulo unitario y funciones trigonométricas

Matemáticas. Grado 10º. Unidad 1. Circulo unitario y funciones trigonométricas 1 Franklin Eduardo Pérez Quintero Licenciado en Matemáticas y Física Universidad de Antioquia Matemáticas Grado 10º Unidad 1 Circulo unitario y funciones trigonométricas 1 2 Franklin Eduardo Pérez Quintero

Más detalles

UNIDAD III TRIGONOMETRIA

UNIDAD III TRIGONOMETRIA UNIDAD III TRIGONOMETRIA 1 UNIDAD III TRIGONOMETRIA TEMARIO. 1. Relación del par ordenado en un plano bidimensional. 1.1. El plano coordenado 1.2. Localización de puntos en los cuatro cuadrantes 2. Ángulos

Más detalles

metros) de la realidad. La expresión 1:300 también puede escribirse como, que es la

metros) de la realidad. La expresión 1:300 también puede escribirse como, que es la FIGURAS SEMEJANTES Son figuras son semejantes si tienen la misma forma, pero distinto tamaño. Una figura es semejante a otra si has multiplicado a todos y cada uno de los lados de la primera por el mismo

Más detalles

Tema 7: Trigonometría.

Tema 7: Trigonometría. Tema 7: Trigonometría. Ejercicio 1. Sabiendo que cos α = 0, 63, calcular s = sen α y t = tg α. Mediante la igualdad I, conocido sen α obtenemos cos α, y viceversa. s + 0,63 = 1 s = 1 0,63 = 0,6031 s =

Más detalles

Funciones trigonométricas de un ángulo agudo

Funciones trigonométricas de un ángulo agudo APITULO 3 Funciones trigonométricas de un ánguo agudo FUNIONES TRIGONOMETRIAS DE UN ANGULO AGUDO. A trabajar con un triánguo rectánguo cuaquiera, es conveniente (véase Fig. 3-A) designar os vértices de

Más detalles

UTILIZAMOS LA TRIGONOMETRÍA.

UTILIZAMOS LA TRIGONOMETRÍA. UTILIZAMOS LA TRIGONOMETRÍA. RAZONAMIENTO Y DEMOSTRACIÓN Determina las demás razones trigonométricas a través de un dato. Aplica las definiciones de razones trigonométricas en la solución de ejercicios

Más detalles

rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos:

rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos: Trigonometría 1.- Ángulos En la medida de ángulos, y por tanto en trigonometría, se emplean dos unidades, si bien la más utilizada en la vida cotidiana es el grado sexagesimal, en matemáticas es el radián

Más detalles

TRIGONOMETRÍA. Es el estudio de los elementos de un triángulo; de sus lados y sus triángulos. Deducimos las razones trigonométricas como:

TRIGONOMETRÍA. Es el estudio de los elementos de un triángulo; de sus lados y sus triángulos. Deducimos las razones trigonométricas como: TRIGONOMETRÍA. Es el estudio de los elementos de un triángulo; de sus lados y sus triángulos. Dado el siguiente triángulo rectángulo: Deducimos las razones trigonométricas como: Seno α = cateto opuesto

Más detalles

A.1 Razones trigonométricas de un triángulo rectángulo: Las razones trigonométricas de un triángulo rectángulo son las siguientes funciones:

A.1 Razones trigonométricas de un triángulo rectángulo: Las razones trigonométricas de un triángulo rectángulo son las siguientes funciones: MATEMÁTICAS EJERCICIOS RESUELTOS DE TRIGONOMETRÍA Juan Jesús Pascual TRIGONOMETRÍA A. Introducción teórica A. Razones trigonométricas de un triángulo rectángulo. A.. Valores del seno, coseno tangente para

Más detalles

RAZONES TRIGONOMÉTRICAS

RAZONES TRIGONOMÉTRICAS RAZONES TRIGONOMÉTRICAS.- PRIMERAS DEFINICIONES Se denomina ángulo en el plano a la porción de plano comprendida entre dos semirrectas con un origen común denominado vértice. Ángulo central es el ángulo

Más detalles

Capitulo I. Trigonometría

Capitulo I. Trigonometría Capitulo I. Trigonometría Objetivo. El alumno reforzará los conceptos de trigonometría para lograr una mejor comprensión del álgebra. Contenido: 1.1 Definición de las funciones trigonométricas para un

Más detalles

Lección 3.1. Funciones Trigonométricas de Ángulos. 21/02/2014 Prof. José G. Rodríguez Ahumada 1 de 21

Lección 3.1. Funciones Trigonométricas de Ángulos. 21/02/2014 Prof. José G. Rodríguez Ahumada 1 de 21 Lección 3. Funciones Trigonométricas de Ángulos /0/0 Prof. José G. Rodríguez Ahumada de Actividades 3. Referencia Texto: Seccíón 6. Ángulo; Ejercicios de Práctica: Problemas impares -33 página 09 (375

Más detalles

Razones trigonométricas DE un ángulo agudo de un triángulo

Razones trigonométricas DE un ángulo agudo de un triángulo RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO RAZONAMIENTO Y DEMOSTRACIÓN Calcula razones trigonométricas en un triángulo rectángulo. Demuestra identidades trigonométricas elementales Demuestra identidades

Más detalles

Guía para maestro. Representación de funciones trigonométricas. Compartir Saberes.

Guía para maestro. Representación de funciones trigonométricas. Compartir Saberes. Guía para maestro Guía realizada por Nury Yolanda Espinosa Baracaldo Profesional en Matemáticas [email protected] La trigonometría es la ciencia encargada de estudiar la relación que hay

Más detalles

TRIGONOMETRÍA 1. ÁNGULO

TRIGONOMETRÍA 1. ÁNGULO UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE ODONTOLOGÍA CURSO: FÍSICA MATEMÁTICA DOCENTE: Dr. Edwin López Año 2017 Documento de apoo a la docencia 1. ÁNGULO TRIGONOMETRÍA Ángulo es la porción de

Más detalles

Trigonometría. 1. Ángulos:

Trigonometría. 1. Ángulos: Trigonometría. Ángulos: - Ángulos en posición estándar: se ubican en un sistema de coordenadas XY. El vértice será el origen (0,0) y el lado inicial coincide con el eje X positivo. - Ángulos positivos:

Más detalles

TEMARIO DEL CURSO UTILIZAS TRIÁNGULOS: ÁNGULOS Y RELACIONES MÉTRICAS. TEOREMA DE PITÁGORAS.

TEMARIO DEL CURSO UTILIZAS TRIÁNGULOS: ÁNGULOS Y RELACIONES MÉTRICAS. TEOREMA DE PITÁGORAS. UNIDAD DE COMPETENCIA I Ángulos: Por su abertura Por la posición entre dos rectas paralelas y una secante (transversal) Por la suma de sus medidas. Complementarios Suplementarios Triángulos: Por la medida

Más detalles

CUADERNILLO DE TRIGONOMETRÍA I.- SUBRAYE EL INCISO CORRESPONDIENTE A LA RESPUESTA CORRECTA

CUADERNILLO DE TRIGONOMETRÍA I.- SUBRAYE EL INCISO CORRESPONDIENTE A LA RESPUESTA CORRECTA CUADERNILLO DE TRIGONOMETRÍA I.- SUBRAYE EL INCISO CORRESPONDIENTE A LA RESPUESTA CORRECTA 1.- CIENCIA QUE ESTUDIA LAS RELACIONES EXISTENTES ENTRE LOS ÁNGULOS Y LOS LADOS DE UN TRIÁNGULO: A) GEOMETRÍA

Más detalles

TALLER NIVELATORIO DE TRIGONOMETRIA

TALLER NIVELATORIO DE TRIGONOMETRIA TALLER NIVELATORIO DE TRIGONOMETRIA TEOREMA DE PITAGORAS En todo triangulo rectángulo el cuadrado de la longitud de la hipotenusa es igual al cuadrado de la longitud de los catetos. Entonces la expresión

Más detalles

Para que un punto P(x, y) pertenezca a la circunferencia unitaria debe cumplir con la ecuación x 2 + y 2 = 1.

Para que un punto P(x, y) pertenezca a la circunferencia unitaria debe cumplir con la ecuación x 2 + y 2 = 1. GUIA FUNCIONES TRIGONOMETRICAS GRADO DECIMO FUNCIOENES TRIGONOMETRICAS El estudio de la trigonometría se puede realizar por medio de las relaciones entre los ángulos y los lados de un triángulo rectángulo,

Más detalles

OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA - UCR - TEC - UNED - MEP - MICIT. Geometría. III Nivel I Eliminatoria

OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA - UCR - TEC - UNED - MEP - MICIT. Geometría. III Nivel I Eliminatoria OLIMPID OSTRRIENSE DE MTEMÁTI UN - UR - TE - UNED - MEP - MIIT Geometría III Nivel I Eliminatoria Marzo 2016 Índice 1. Presentación. 2 2. Temario 3 3. Teorema de Pitágoras 4 4. Triángulos Especiales 7

Más detalles

Para medir ángulos pueden adoptarse distintas unidades. Uno de los sistemas más usados es el:

Para medir ángulos pueden adoptarse distintas unidades. Uno de los sistemas más usados es el: TRIGONOMETRÍA La palabra trigonometría proviene del griego: trigonos (triángulo) y metria (medida). En sus orígenes esta rama de la matemática se utilizó para resolver problemas de agrimensura y astronomía,

Más detalles

Las funciones trigonométricas

Las funciones trigonométricas Funciones trigonométricas de ángulos Las funciones trigonométricas Las funciones trigonométricas de ángulos se originaron de triángulos rectángulos que son los que tienen dos ángulos agudos y uno recto.

Más detalles

Guía de Reforzamiento N o 2

Guía de Reforzamiento N o 2 Guía de Reforzamiento N o Teorema de Pitágoras y Trigonometría María Angélica Vega Guillermo González Patricio Sepúlveda 19 de Enero de 011 1 TEOREMA DE PITÁGORAS B a c C b A El Teorema de Pitágoras afirma

Más detalles

4.- Un triángulo de hipotenusa unidad. Teorema fundamental de la trigonometría.

4.- Un triángulo de hipotenusa unidad. Teorema fundamental de la trigonometría. - Un triángulo de hipotenusa unidad Teorema fundamental de la trigonometría Puesto que el valor de las razones trigonométricas en un triángulo rectángulo no dependen del tamaño de los lados, puede elegirse

Más detalles

Razones trigonométricas

Razones trigonométricas RESUMEN TRIGONOMETRIA Para medir ángulos se utilizan las siguientes unidades: 1Grado sexagesimal ( ): Si se divide la circunferencia en 360 partes iguales, el ángulo central correspondiente a cada una

Más detalles

TEMA 3. TRIGONOMETRÍA

TEMA 3. TRIGONOMETRÍA TEMA 3. TRIGONOMETRÍA Este documento tiene como propósito que conozcas las funciones trigonométricas y las reglas que los norman. Para facilitar la comprensión del tema, se incluyen algunos ejemplos. Subtema

Más detalles

Trigonometría. 1. Ángulos

Trigonometría. 1. Ángulos Trigonometría Ángulos Hasta ahora se han considerado los ángulos como la porción del plano comprendida entre dos semirrectas con el origen común De esta manera, la medida de un ángulo está comprendida

Más detalles

Ejercicios de Trigonometría

Ejercicios de Trigonometría Ejercicios de Trigonometría. Halla la altura de un edificio que proyecta una sombra de 56 m a la misma hora que un árbol de m proyecta una sombra de m.. En un mapa, la distancia entre La Coruña y Lugo

Más detalles

TEMA 6. TRIGONOMETRÍA

TEMA 6. TRIGONOMETRÍA TEMA 6. TRIGONOMETRÍA 1. LOS ÁNGULOS Y SU MEDIDA. La trigonometría es la parte de las matemáticas que se encarga de la medida de los lados y los ángulos de un triángulo. ÁNGULO Un ángulo en el plano es

Más detalles

Los Modelos Trigonométricos

Los Modelos Trigonométricos Los Modelos Trigonométricos Eliseo Martínez, Manuel Barahona 1. Introducción Normalmente, por motivos históricos, y de acuerdo al itinerario seguido por la humanidad en la invención de la trigonometría,

Más detalles

Módulo 3-Diapositiva 20 Trigonometría. Universidad de Antioquia. Facultad de Ciencias Exactas y Naturales

Módulo 3-Diapositiva 20 Trigonometría. Universidad de Antioquia. Facultad de Ciencias Exactas y Naturales Módulo 3-Diapositiva 20 Trigonometría Facultad de Ciencias Exactas y Naturales Temas Ángulos Medidas de ángulos Razones trigonométricas Ángulos Ángulos Un ángulo es la figura geométrica formada por dos

Más detalles

RESUMEN Y EJERCICIOS DE TRIGONOMETRÍA II

RESUMEN Y EJERCICIOS DE TRIGONOMETRÍA II RESUMEN Y EJERCICIOS DE TRIGONOMETRÍA II Como ya sabemos, uno de los objetivos es que, conocidas las razones trigonométricas (a partir de ahora RT) de unos pocos ángulos, obtener las RT de una gran cantidad

Más detalles

EL PÉNDULO SIMPLE. 1. Objetivo de la práctica. 2. Material. Laboratorio de Física de Procesos Biológicos. Fecha: 13/12/2006

EL PÉNDULO SIMPLE. 1. Objetivo de la práctica. 2. Material. Laboratorio de Física de Procesos Biológicos. Fecha: 13/12/2006 Laboratorio de Física de Procesos Bioógicos EL PÉNDULO SIMPLE Fecha: 13/12/2006 1. Objetivo de a práctica Estudio de pénduo simpe. Medida de a aceeración de a gravedad, g. 2. Materia Pénduo simpe con transportador

Más detalles

Clasificación de ángulos. a) Por su magnitud los ángulos se clasifican en: Nombre y definición Figura Característica Ángulo agudo.

Clasificación de ángulos. a) Por su magnitud los ángulos se clasifican en: Nombre y definición Figura Característica Ángulo agudo. I.- INSTRUCCIONES: Define cada concepto de la tabla y dibuja la figura que representa el ángulo que se menciona. Ángulos. DEFINICIÓN FIGURA OBSERVACIONES Ángulo. Donde: = Ángulo O = Vértice OA = Lado inicial

Más detalles

Capítulo 7. Trigonometría del triángulo rectángulo. Contenido breve. Presentación. Módulo 17 Medición de ángulos. Módulo 18 Ángulos notables

Capítulo 7. Trigonometría del triángulo rectángulo. Contenido breve. Presentación. Módulo 17 Medición de ángulos. Módulo 18 Ángulos notables Capítulo 7 Trigonometría del triángulo rectángulo Contenido breve Módulo 17 Medición de ángulos Módulo 18 Ángulos notables La trigonometría se utiliza para realizar medidas indirectas de posición y distancias.

Más detalles

Introducción a la actividad Material Didáctico: Tiempo (1hr.45min)

Introducción a la actividad Material Didáctico: Tiempo (1hr.45min) Código/Título de la Unidad Didáctica: CALCULOS TRIGONOMETRICOS Actividad nº/título: A1. TRIGONOMETRÍA FORMULAS GENERALES Introducción a la actividad Material Didáctico: Tiempo (1hr.45min) 1. OBJETIVO El

Más detalles

1 ÁNGULO 2 FUNCIÓN SENO Y FUNCIÓN COSENO 3 FUNCIÓN TANGENTE 4 VALORES DE FUNCIONES TRIGONOMÉTRICAS PARA ÁNGULOS

1 ÁNGULO 2 FUNCIÓN SENO Y FUNCIÓN COSENO 3 FUNCIÓN TANGENTE 4 VALORES DE FUNCIONES TRIGONOMÉTRICAS PARA ÁNGULOS ÁNGULO FUNCIÓN SENO Y FUNCIÓN COSENO FUNCIÓN TANGENTE 4 VALORES DE FUNCIONES TRIGONOMÉTRICAS PARA ÁNGULOS CONOCIDOS 5 IDENTIDADES TRIGONOMÉTRICAS. Eisten epresiones algebraicas que contienen funciones

Más detalles

1. Ángulos Referencia angular. TRIGONOMETRÍA La palabra, TRI-GONO-METRÍA, etimológicamente significa relación entre los lados

1. Ángulos Referencia angular. TRIGONOMETRÍA La palabra, TRI-GONO-METRÍA, etimológicamente significa relación entre los lados IES Joan Ramon Benaprès TRIGNMETRÍA La palabra, TRI-GN-METRÍA, etimológicamente significa relación entre los lados y ángulos de un triángulo 1 Ángulos Definición 1 (Ángulo) Un ángulo es la abertura de

Más detalles

El seno del ángulo agudo es la razón entre las longitudes del cateto opuesto al mismo y la

El seno del ángulo agudo es la razón entre las longitudes del cateto opuesto al mismo y la T.7: TRIGONOMETRÍA 7.1 Medidas de ángulos. El radián. Ángulo reducido. Las unidades más comunes que se utilizan para medir los ángulos son el grado sexagesimal y el radián: Grado sexageximal: es cada una

Más detalles

; b) Calcular el resultado de las siguientes operaciones lo más simplificado posible: ; b) 2

; b) Calcular el resultado de las siguientes operaciones lo más simplificado posible: ; b) 2 MATEMÁTICAS - SEPTIEMBRE TAREA DE VERANO 4º E.S.O.-B 4 1. Simplificar potencias: a) 4 ( ) 5 5 81 9 ; b) 4 0 5 9 5 4 ; c) 4 0 15 5 5 4 ; d) 9000 0'000000006 6000000 0'0007. Calcular el resultado de las

Más detalles

INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA

INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA Lo peor no es cometer un error, sino tratar de justificarlo, en vez de aprovecharlo como aviso providencial de nuestra ligereza

Más detalles

EJERCICIOS RESUELTOS DE TRIGONOMETRÍA

EJERCICIOS RESUELTOS DE TRIGONOMETRÍA EJERCICIOS RESUELTOS DE TRIGONOMETRÍA 1. Escribir las razones trigonométricas del ángulo de 3456º en función de las de un ángulo positivo menor que 45º. Al representar el ángulo de 3456º en la circunferencia

Más detalles

Ejercicios sobre Ángulos de Referencia

Ejercicios sobre Ángulos de Referencia www.matebrunca.com Prof. Waldo Márquez González TRIGONOMETRÍA: ÁNGULOS 1 Ejercicios sobre Ángulos de Referencia 1. Localizar los siguientes puntos en un sistema de coordenadas rectangulares y encontrar

Más detalles

Héctor W. Pagán Profesor de Matemáticas Mate 4105 Geometría para maestros de escuela elemental

Héctor W. Pagán Profesor de Matemáticas Mate 4105 Geometría para maestros de escuela elemental Héctor W. Pagán Profesor de Matemáticas Mate 405 Geometría para maestros de escuea eementa Lección # Líneas paraeas y perpendicuares Objetivos Definir Líneas paraeas y perpendicuares Líneas trasversaes

Más detalles

Tema 10. Geometría plana

Tema 10. Geometría plana Tema 10. Geometría plana Contenido 1. Relaciones angulares... 2 1.1. Ángulos en una circunferencia... 2 1.2. Ángulos opuestos por el vértice... 3 1.3. Ángulos formados por lados paralelos y perpendiculares...

Más detalles

B) dado un lado y dos ángulos,el triángulo queda determinado.

B) dado un lado y dos ángulos,el triángulo queda determinado. En un triángulo distinguimos: -3 vértices: A, B y C -3 lados: a, b y c -3 ángulos: α, β y γ Je vous conseille de douter de tout, excepté que les trois angles d un triangle sont égaux à deux droit Voltaire

Más detalles

Unidad 5 ELEMENTOS DE TRIGONOMETRIA

Unidad 5 ELEMENTOS DE TRIGONOMETRIA Unidad 5 ELEMENTOS DE TRIGONOMETRIA Competencias a desarrollar: Convertir medidas de ángulos en radianes a grados y viceversa. Aplicar las funciones trigonométricas, para resolver problemas que se puedan

Más detalles

Nota: Como norma general se usan tantos decimales como los que lleven los datos

Nota: Como norma general se usan tantos decimales como los que lleven los datos 1. Sea ABC un triángulo rectángulo en A, si sen B 1/3 y que el lado AC es igual a 10cm. Calcular los otros lados de este triángulo. Mediante la definición de sen Bˆ, se calcula el lado c. b b 10 sen Bˆ

Más detalles

TEMA2: TRIGONOMETRÍA I

TEMA2: TRIGONOMETRÍA I TEMA: Trigonometría (del griego trigonon, triángulo y métron, medida). MEDIDA DE ÁNGULOS Para medir los ángulos y los ar de circunferencia se usan fundamentalmente dos sistemas de medida:. Sistema Sexagesimal:

Más detalles

ÁNGULO TRIGONOMÉTRICO

ÁNGULO TRIGONOMÉTRICO ÁNGULO TRIGONOMÉTRICO EL ÁNGULO TRIGONOMÉTRICO SE OBTIENE GIRANDO UN RAYO ALREDEDOR DE SU ORIGEN. B O < A OA : LADO INICIAL OB : LADO FINAL O: VÉRTICE SENTIDO DE GIRO ANTIHORARIO < POSITIVO SENTIDO DE

Más detalles

UNIDAD 2 ELEMENTOS BASICOS DE TRIGONOMETRÍA.

UNIDAD 2 ELEMENTOS BASICOS DE TRIGONOMETRÍA. UNIDAD 2 ELEMENTOS BASICOS DE TRIGONOMETRÍA http://www.uaeh.edu.mx/virtual ELEMENTOS BASICOS DE TRIGONOMETRÍA. Introducción. La trigonometría es el área de las matemáticas que se encarga de calcular los

Más detalles