El átomo de hidrógeno
|
|
|
- Gerardo Álvarez Ferreyra
- hace 9 años
- Vistas:
Transcripción
1 El átomo de hiógeno Antonio M. Márquez Departamento de Química Física Universidad de Sevilla Curso Problema 1 Calcule la probabilidad de que un electrón 1s del H se encuentre entre r r. La probabilidad de encontrar al electrón entre r r será P a θ φ θ a φ Y m l D 1s r 4 a 3 Ψ 1s r,θ,φ r sinθ dθ dφ sinθ dθ dφ a a r e r/ R 1s r a que los armónicos esféricos están normalizados. Usando r r e br b r b + b 3 e br con b / Tenemos P 4 a 3 r ra 4 a3 e r/a 8 r a + r + 1 e r/a [ 4a a + a + 1 e / a a + a ] + 1 e / [ e e ] 5 e 13 e Problema Calcule a qué distancias del núcleo se encuentran el máximo principal secundario de la función de distribución radial para un orbital s. La función de distribución radial viene dada por D nl r Ψ nmlr,θ,φψ nml r,θ,φr sinθ dθ dφ θ φ 1
2 sabiendo que el orbital s es Ψ 1 3/ 4 r e r/ π podemos calcular la función de distribución radial como D r θ 1 3π φ 1 3 r 16 π 3 r r e r/ e r/ r sinθ dθ dφ θ efectuando las integraciones sobre la variables angulares, tenemos es decir D r 1 3π 1 3π 1 8 la condición de máximo es 3 r r 3 r r 3 r r D r 1 8 e r/[ cosθ e r/ 4π e r/ 3 r r e r/ sinθ dθ dφ φ ] π [ ] π φ dd nlr 1 3 [ r r e r/ r 8 r r e ] r/a 1 8 r e r/ 3 r r [ e r/ r r r r ] simplificando 1 3 r r [ e r/ 4 6 r r ] + 8 con soluciones r, r, r 4 6 r r + r 3 ± 5 la primera, segunda tercera son mínimos claramente hacen que Dr. Los máximos pedidos son las dos soluciones r 3 ± 5 siendo la segunda el máximo principal la primera 3 5 el máximo secundario, a que los máximos en Dr van en orden creciente.
3 Una solución alternativa usa la función radial, R nl r, en términos de la cual la función de distribución radial es Dr R nlrr Para haar los máximos de esta función podemos utilizar la condición de máximo dd nl r R nl rr R nl r + r dr nlr ha tres posibles soluciones a esta ecuación: r R nl r R nl r + r dr nlr La primera la segunda no nos sirven, a que corresponden a mínimos en la función de distribución radial D nl r. Por tanto, los máximos que buscamos son las soluciones de R nl r + r dr nlr Para el orbital s R ρ 1 3/ ρe ρ/ con ρ r/n entonces Teniendo en cuenta que la ec. dr s dρ 1 3/ ρ 4 e ρ/ R s ρ ρ 4 es equivalente a sustituendo resolviendo R nl r + r dr nlr R nl ρ + ρ dr nlρ dρ ρ 4 R s + ρ R s ρ ρ + ρ ρ 4 ρ 6ρ + 4 que tiene como soluciones ρ 3 ± 5, por tanto, usando r n ρ las soluciones son r r 3 5. Problema 3 Calcule el valor esperado r r si la función de ondas del átomo de H es Ψ 1 r. 3
4 Si desarrollamos la expresión pedida r r r + r r r r r vemos que lo que nos están pidiendo es la varianza en el valor medio de r. Necesitamos calcular los valores esperados r r. Tenemos entonces que calcular las integrales para n 1, r n Ψ 1 r r n Ψ 1 rr sinθ dθ dφ r θ φ El orbital indicado es el orbital 1s de donde resulta Ψ 1 r Ψ 1s r 1 π 3/ e r/ r n Ψ 1 rr n Ψ 1 rr sinθ dθ dφ r θ φ r θ φ 3 1 π 1 3 π r 1 3 π π 1 π 3/ e r/ r n 1 π 3/ e r/ r sinθ dθ dφ r +n e r/ r θ sin θdθ dφ φ r +n e r/ [ cosθ ] π [ φ] π r r +n e r/ 3 4 r +n e r/ r A este mismo resultado se llega si utlizamos la función de distribución radial: r n D nl rr n la función de distribución radial para el orbital 1s es 3 D 1s r 4 r e r/ de donde resulta 3 r n 4 r +n e r/ la integral que nos queda es de la forma x m e qx dx m! q m+1 m > 1,q > utilizando esta integral definida nos queda 3 r n 4 a n n +! r +n e r/ 4 r n n +! / n+3
5 para n 1 tenemos para n el valor promedio pedido será r r r r r r 3 a 3! 3 a 4! 3 3 a a 3 Repita el problema anterior para el orbital p z para el que Ψ pz 1 5/ 4 r e r/ cosθ π Tenemos, de nuevo, que calcular las integrales a 3 4 a r n Ψ pz r r n Ψ pz rr sinθ dθ dφ r θ φ para n 1,. Sustituendo la expresión del orbital r n r θ 1 3π φ 5 1 3π r e r/ cos θ r n r sinθ dθ dφ 3π cos θ sinθ dθ θ 5 [ 1 3 cos3 θ ] π r 4+n e r/ r [ φ φ ] π la integral que nos queda es, de nuevo, de la forma con lo que nos queda r n 1 4 dφ r 4+n e r/ r r r 4+n e r/ x m e qx dx m! q m+1 m > 1,q > n! 4 + n! / 5+n 4 a n con lo que r 5! a 5 4 el valor promedio pedido será r 6! 4 a 3a r r r r 3a 5a 5a 5a Problema 4 La fuerza que actúa entre un electrón un protón en el átomo de H viene dada por F e /4πε r. Calcule F para los estados 1s p z del átomo de H. 5
6 El valor esperado de F puede expresarse como, dado que r sólo depende de r F e 4πε r e r 4πε r D nl rr donde D nl r es la función de distribución radial para el orbital correspondiente. Para el orbital 1s 3 D 1s 4 r e r/ r 1s 4 a 3 r e r/ r 4 a 3 e r/ usando x n e qx dx n! q n+1 con n q / D 1s 4 a 3 a a F 1s e 4πε a e πε a Para el orbital p z D pz D p 1 5 r 4 e r/ 4 r p 1 4a 5 r 4 e r/ r 1 4a 5 r e r/ usando tenemos x n e qx dx n! q n+1 con n q 1/ r p 1 4a 5 F p e 1 4πε 1a! 1/ 3 1 4a 5 a 3 1 1a e 48πε a Problema 5 Considere la función de ondas para el átomo de hiógeno Ψ 31 r,θ,φ π 3/ 6 ra r a e r/3 cosθ es función propia de algún otro operador? En ese caso, de cuáles? Cuáles son los valores propios? 6
7 Todas las funciones de onda de los átomos hiogenoides son funciones propias de los operadores Ĥ, ˆL ˆL z con valores propios E n 13.6/n ev, ll + 1 h m l h, respectivamente. En ese caso n 3, l 1 m l tenemos E n 13.6 ev ev L h L z n Problema 6 Compare el valor medio de la distancia r a que se encuentra un electrón 1s en H, He +, Li + Be 3+. El valor medio de la distancia entre el electrón el núcleo para un orbital 1s es con esto usando encontramos r 1s rd 1s r con 3 D 1s r 4 r e r/ 3 r 1s 4 r 3 e r/ x n e qx dx n! q n+1 con n 3 q / r 1s obteniéndose las soluciones indicadas. 3! / 4 4 3! 4 3 a 4 Problema 7 Calcule las energías de ionización de H, He +, Li + Be 3+ en su estado fundamental en unidades de ev. Los potenciales de ionización son las energías necesarias para llevar un electrón desde el átomo hasta el infinito con energía cinética cero. Por tanto son las energías del orbital que ocupe el electrón cambiadas de signo. En el caso de los átomos hiógenoides las energías de los niveles atómicos vienen dadas en ev por E n 13.6 n como nos indican que los átomos están en su estado fundamental n 1 I 13.6 ev obteniendose I H 13.6 ev, I He ev, I Li ev I Be ev 7
El átomo: sus partículas elementales
El átomo: sus partículas elementales Los rayos catódicos estaban constituidos por partículas cargadas negativamente ( a las que se llamo electrones) y que la relación carga/masa de éstas partículas era
Integración doble Integrales dobles sobre regiones no rectangulares
Nuestra intención es extender la definición de integral doble, de funciones continuas, sobre regiones más generales que el rectángulo. Para ello definiremos dos tipos de regiones en el plano, que llamaremos
Un Orbital Atómico 2px - Forma 1. Un Orbital Atómico 2px - Forma 2. Un Orbital Atómico 2px - Nodos 1. Un Orbital Atómico 2p x consta de:
Un Orbital Atómico 2px - Forma 1 Un Orbital Atómico 2p x consta de: Un lóbulo con signo positivo y otro con signo negativo Cuatro lóbulos sobre el plano XY Dos lóbulos con signo positivo y otros dos con
Electromagnetismo I. Semestre: TAREA 1 Y SU SOLUCIÓN Dr. A. Reyes-Coronado
Electromagnetismo I Semestre: 01- TAREA 1 Y SU SOLUCIÓN Dr. A. Reyes-Coronado Solución por Carlos Andrés Escobar Ruí 1.- Problema: (5pts) (a) Doce cargas iguales q se encuentran localiadas en los vérices
Apuntes de la asignatura Química Física II (Licenciatura en Química) Tema 7: El átomo de hidrógeno
Apuntes de la asignatura Química Física II (Licenciatura en Química) Tema 7: El átomo de hidrógeno Ángel José Pérez Jiménez Dept. de Química Física (Univ. Alicante) Índice 1. Partícula sometida a un potencial
1 Funciones de Varias Variables
EJECICIOS DE FUNDAMENTOS MATEMÁTICOS (DISEO) Funciones de Varias Variables. Dada f(x, y) ln ( x + ln(y) ). a) Calcular la derivada direccional en el punto (x, y) (, e 2 ) en la dirección del vector v (3,
Física cuántica I - Colección de ejercicios cortos
Física cuántica I - Colección de ejercicios cortos http://teorica.fis.ucm.es En las siguientes cuestiones una y sólo una de las cuatro respuestas ofrecidas es correcta. Dígase cuál. Es conveniente hacer
UAM CSIC Grupo 911 Febrero Ejercicios Resueltos del Tema Asignatura de Matemáticas Grado en Química
UAM I Grupo 911 Febrero 213 Ejercicios Resueltos del Tema 2.2.6 Asignatura de Matemáticas Grado en Química Lista de ejercicios en estas páginas: 1 7 y 9 12. Nota: Los ejercicios pueden contener errores,
Geometría de masas: Cálculos del tensor de Inercia
Departamento: Física Aplicada Mecánica acional (ngeniería ndustrial) Curso 007-08 eometría de masas: Cálculos del tensor de nercia Tensor de inercia de una varilla delgada. Calculo del tensor de inercia
Introducción al Estado Sólido: El amarre fuerte (tight-binding, en inglés)
Introducción al Estado Sólido: El amarre fuerte (tight-binding, en inglés) R. Baquero Departamento de Física Cinvestav setiembre 2008 amarre fuerte 1 Por qué estudiamos el método de amarre fuerte? Uno
1 Universidad de Castilla La Mancha Septiembre 2015 SEPTIEMRE 2015 Opción A Problema 1.- Tenemos tres partículas cargadas q 1 = -20 C, q 2 = +40 C y q 3 = -15 C, situadas en los puntos de coordenadas A
Cambio de variables. ISABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna 1.
Cambio de variables IABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna [email protected] Índice 1. Introducción 1 2. Cambio de variables 1 2.1. El teorema del cambio de variables
Solucionario Cuaderno Estrategias y Ejercitación Modelo atómico de la materia II: números cuánticos y configuración electrónica
Solucionario Cuaderno Estrategias y Ejercitación Modelo atómico de la materia II: números cuánticos y configuración electrónica Química Técnico Profesional Intensivo SCUACTC002TC83-A16V1 Ítem Alternativa
PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO
PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO 1. Una onda transversal se propaga en una cuerda según la ecuación (unidades en el S.I.) Calcular la velocidad de propagación de la onda y el estado de vibración
ESTRUCTURA ATÓMICA Y PROPIEDADES PERIÓDICAS
ESTRUCTURA ATÓMICA Y PROPIEDADES PERIÓDICAS 1.- Escriba la configuración electrónica de los siguientes iones o elementos: 8 O -2, 9 F - y 10 Ne, e indique el período y grupo de los elementos correspondientes.
N está formado por 7 protones y 8 neutrones, luego su masa teórica debería ser:
01. Calcular la energía de enlace por nucleón del isótopo 15 N sabiendo que su masa es 15,0001089 u. Datos: 1 u = 1, 10-2 g ; m p = 1,002 u; m n = 1,0085 u El núcleo 15 N está formado por protones y 8
Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo
Resistencia de Materiales 1A Profesor Herbert Yépez Castillo 2014-2 2 Capítulo 5. Torsión 5.4 Ángulo 3 Un par es un momento que tiende a hacer girar respecto a su eje longitudinal. Su efecto es de interés
Estados cuánticos para átomos polielectrónicos y espectroscopía atómica
Estados cuánticos para átomos polielectrónicos y espectroscopía atómica Antonio M. Márquez Departamento de Química Física Universidad de Sevilla Ultima actualización 3 de febrero de 205 Índice. Aproximación
EXTRUCTURA ATOMICA ACTUAL
ATOMOS Y ELEMENTOS TEMA 4 Química ATOMOS EXTRUCTURA ATOMICA ACTUAL PARTICULA UBICACION CARGA MASA PROTON NUCLEO + SI NEUTRON NUCLEO 0 SI ELECTRON ORBITAS - DESPRECIABLE La masa del átomo reside en el núcleo.
GEOMETRÍA. que pasa por el punto P y es paralelo a π. (0,9 puntos) b) Determinar la ecuación del plano π
GEOMETRÍA 1.- Se considera la recta r : ( x, y, z) = ( t + 1, t,3 t), el plano π: x y z = 0y el punto P (1,1,1). Se pide: a) Determinar la ecuación del plano π 1 que pasa por el punto P y es paralelo a
Ejercicios Resueltos de Cálculo III.
Ejercicios Resueltos de Cálculo III. 1.- Considere y. a) Demuestre que las rectas dadas se cortan. Encuentre el punto de intersección. b) Encuentre una ecuación del plano que contiene a esas rectas. Como
Departamento de Física Aplicada III
Departamento de Física Aplicada III Escuela Superior de Ingenieros Camino de los Descubrimientos s/n 4109 Sevilla Examen de Campos electromagnéticos. o Curso de Ingeniería Industrial. Septiembre de 011
La cuerda vibrante. inicialmente se encuentra sobre el eje de abscisas x la posición de un punto de la cuerda viene descrita por su posición vertical
la cuerda es extensible La cuerda vibrante inicialmente se encuentra sobre el eje de abscisas x la posición de un punto de la cuerda viene descrita por su posición vertical y(x, t) la posición depende
Corteza atómica: Estructura electrónica
Corteza atómica: Estructura electrónica Aunque los conocimientos actuales sobre la estructura electrónica de los átomos son bastante complejos, las ideas básicas son las siguientes: 1. Existen 7 niveles
Geometría del Espacio. Física Geográfica. Licenciatura de Humanidades. Febrero-Mayo,
Geometría del Espacio. Física Geográfica. Licenciatura de Humanidades. Febrero-Mayo, 2007. 42 Índice. 1. Superficies. 2. El espacio eucĺıdeo tridimensional. Coordenadas Cartesianas. 3. Distancia entre
Ejercicio 3.1. Sea el campo de velocidades de un escurrimiento definido por : v = x 2 yē x + x 2 tē y (3.1)
Ejercicio 3.1. Sea el campo de velocidades de un escurrimiento definido por : Se pide: v = x yē x + x tē y (3.1) a. A qué tipo de formalismo corresponde este análisis del escurrimiento, lagrangeano o eulereano?
1 Curvas planas. Solución de los ejercicios propuestos.
1 Curvas planas. Solución de los ejercicios propuestos. 1. Se considera el lugar geométrico de los puntos del plano tales que la suma del cuadrado de las distancias a los puntos P 1 = (, 0) y P = (, 0)
Sistema Periódico de los elementos. 2º Bachillerato
Sistema Periódico de los elementos 2º Bachillerato Índice 1. Clasificación de los elementos 2. Núcleo atómico 3. Configuración electrónica 4. La tabla periódica 5. Propiedades periódicas Tamaño y radio
PROBLEMAS RESUELTOS DE DISTRIBUCIÓN ELECTRONICA EN NIVELES, SUBNIVELES Y ORBITALES ATÓMICOS.
PROBLEMAS RESUELTOS DE DISTRIBUCIÓN ELECTRONICA EN NIVELES, SUBNIVELES Y ORBITALES ATÓMICOS. 1. Explique que indica el número cuántico magnético y el número cuántico de espín. Número cuántico magnético:
PRUEBAS DE ACCESO A LA UNIVERSIDAD MATERIAS DE MODALIDAD: FASES GENERAL Y ESPECÍFICA
PRUEBAS DE ACCESO A LA UNIVERSIDAD MATERIAS DE MODALIDAD: FASES GENERAL Y ESPECÍFICA CURSO 013 014 CONVOCATORIA: PROBLEMAS OPCIÓN A MATERIA: FÍSICA De las dos opciones propuestas, sólo hay que desarrollar
Áreas entre curvas. Ejercicios resueltos
Áreas entre curvas Ejercicios resueltos Recordemos que el área encerrada por las gráficas de dos funciones f y g entre las rectas x = a y x = b es dada por Ejercicios resueltos b a f x g x dx Ejercicio
Tabla Periódica y Propiedades Periódicas
Tabla Periódica y Propiedades Periódicas 1. Las configuraciones electrónicas de los elementos nitrógeno y vanadio son respectivamente: Lo primero que debemos hacer es buscar en la Tabla Periódica los números
Introducción. Flujo Eléctrico.
Introducción La descripción cualitativa del campo eléctrico mediante las líneas de fuerza, está relacionada con una ecuación matemática llamada Ley de Gauss, que relaciona el campo eléctrico sobre una
Estudio del átomo: 1. Átomos e isótopos 2. Modelos Atómicos 3. Teoría cuántica. Ing. Sol de María Jiménez González
Estudio del átomo: 1. Átomos e isótopos 2. Modelos Atómicos 3. Teoría cuántica 1 Núcleo: protones y neutrones Los electrones se mueven alrededor. Característica Partículas Protón Neutrón Electrón Símbolo
Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n )
Tema 3 Formas cuadráticas. 3.1. Definición y expresión matricial Definición 3.1.1. Una forma cuadrática sobre R es una aplicación q : R n R que a cada vector x = (x 1, x 2,, x n ) R n le hace corresponder
Marzo 2012
Marzo 2012 http:///wpmu/gispud/ Para determinar la carga transferida a través del tiempo a un elemento, es posible hacerlo de varias formas: 1. Utilizando la ecuación de carga, evaluando en los tiempos
GEOMETRIA ANALITICA- GUIA DE EJERCICIOS DE LA RECTA Y CIRCUNFERENCIA PROF. ANNA LUQUE
Ejercicios resueltos de la Recta 1. Hallar la ecuación de la recta que pasa por el punto (4. - 1) y tiene un ángulo de inclinación de 135º. SOLUCION: Graficamos La ecuación de la recta se busca por medio
Tarea 9. H ds = E ds (2)
Tarea 9. ea una supercie con frontera y suponga que E es un campo eléctrico que es perpendicular a - Muestre que el ujo magnético inducido a través de es constante en el tiempo. (Use la Ley de Faraday)
Ecuaciones de la tangente y la normal
Ecuaciones de la tangente la normal Ahora que sabemos cómo calcular la pendiente de una recta tangente a una curva dada su ecuación, independientemente de que ésta sea una función o no lo sea, podemos
Actividad: Cómo son las configuraciones electrónicas?
Cómo son las configuraciones electrónicas de los elementos que forman una familia? Nivel: 2º Medio Subsector: Ciencias químicas Unidad temática: Actividad: Cómo son las configuraciones electrónicas? En
JUNIO Bloque A
Selectividad Junio 009 JUNIO 009 Bloque A 1.- Estudia el siguiente sistema en función del parámetro a. Resuélvelo siempre que sea posible, dejando las soluciones en función de parámetros si fuera necesario.
Tabla Periódica de los elementos.
Tabla Periódica de los elementos. La Tabla Periódica postulada originalmente en 1869 por el químico ruso Dmitri I. Mendeléiev y en 1870 por el alemán Julius Lothar Meyer, es una representación ordenada
Parámetros de antenas
1/43 Tema 3 Parámetros de antenas Lorenzo Rubio Arjona ([email protected]) Departamento de Comunicaciones. ETSI de Telecomunicación 1 /43 3. Parámetros de antenas 3.1. Introducción y justificación del
ALGEBRA I, ALGEBRA Y TRIGONOMETRIA , Segundo Semestre CAPITULO 6: POLINOMIOS.
ALGEBRA I, ALGEBRA Y TRIGONOMETRIA 520135, 522115 Segundo Semestre CAPITULO 6: POLINOMIOS. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición: Polinomio Sea K
Campo de velocidades se puede representar mediante una función potencial φ, escalar
Flujo Potencial Campo de velocidades se puede representar mediante una función potencial φ, escalar Condición necesaria flujo irrotacional, V=0. Hipótesis: Flujo irrotacional, incompresible y permanente
MODELOS ATOMICOS. Solución Å; Ultravioleta; 1106 m/s
MODELOS ATOMICOS 1. Calcular el valor del radio de la órbita que recorre el electrón del hidrogeno en su estado normal. Datos. h = 6 63 10 27 erg s, m(e ) = 9 1 10 28 gr, q(e ) = 4 8 10-10 u.e.e. Solución.
Configuración Electrónica
Configuración Electrónica La configuración electrónica de un átomo indica la forma como están distribuidos los electrones entre los distintos orbitales atómicos. Según el Principio de Exclusión de Pauli,
Universidad Técnica Federico Santamaría
Integral de uperficie - Mate 4 UPEFICIE PAAMÉTICA e forma similar a como se describe una curva mediante una función vectorial r(t), en función de un parámetro t,se puede describir una superficie mediante
MATERIA MOLÉCULAS ÁTOMOS PARTÍCULAS SUBATÓMICAS. Partícula Masa (g) Carga (Coulombs) Carga unitaria. Electrón
MATERIA MOLÉCULAS ÁTOMOS PARTÍCULAS SUBATÓMICAS Partícula Masa (g) Carga (Coulombs) Carga unitaria Electrón 9.10939 10-28 -1.6022 10-19 -1 Protón 1.67262 10-24 +1.6022 10-19 +1 Neutrón 1.67493 10-24 0
Puntos de ebullición.
1.-Indica el tipo de enlace de los siguientes hidruros. Ayundándote de la siguiente tabla comenta la polaridad de los enlaces. Hidruro % carácter iónico HF 43 HCl 17 HBr 11 HI 6 Representa gráficamente
Slide 1 / 71. Movimiento Armónico Simple
Slide 1 / 71 Movimiento Armónico Simple Slide 2 / 71 MAS y Movimiento Circular Hay una profunda conexión entre el Movimiento armónico simple (MAS) y el Movimiento Circular Uniforme (MCU). Movimiento armónico
2 Unidad II: Ecuaciones Diferenciales de Orden Superior
ITESM, Campus Monterrey Departamento de Matemáticas MA-41: Ecuaciones Diferenciales Lectura # Profesor: Victor Segura Flores Unidad II: Ecuaciones Diferenciales de Orden Superior.1 Ecuaciones Diferenciales
GEOMETRÍA ANALÍTICA LA CIRCUNFERENCIA
LA CIRCUNFERENCIA CONTENIDO. Ecuación común de la circunferencia Ejemplos. Ecuación general de la circunferencia. Análisis de la ecuación. Ejercicios Estudiaremos cuatro curvas que por su importancia aplicaciones
PAEG UCLM SEPTIEMBRE 2015 FÍSICA OPCIÓN A - PROBLEMA 1
OPCIÓN A - PROBLEMA 1 Tenemos tres partículas cargadas q 1 = - 20 C, q 2 = + 40 C y q 3 = - 15 C, situadas en los puntos de coordenadas A (2,0), B (4,0) y C (0,3), respectivamente. Calcula, sabiendo que
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 QUÍMICA TEMA 2: LA ESTRUCTURA DEL ÁTOMO Junio, Ejercicio 2, Opción A Reserva 1, Ejercicio 2, Opción A Reserva 2, Ejercicio 3, Opción B Reserva 3, Ejercicio
! Parte I. " Introducción " Bases experimentales de la Mecánica Cuántica. ! Parte II
Módulo 865- Enlace Químico y Estructura de la Materia Responsable: Juan José Borrás ([email protected]) Curso 7-8 Grupo D- Aula F9 http://www.uv.es/~borrasj Tema Estructura electrónica del átomo Parte
El Modelo Moderno y resultados de nuestro interés
CLASES 3 Y 4 ESTRUCTURA ELECTRÓNICA DE LOS ELEMENTOS AL ESTADO FUNDAMENTAL. TABLA PERIÓDICA. ELECTRONEGATIVIDAD. El Modelo Moderno y resultados de nuestro interés Así es como el Modelo Moderno (MM) reemplazó
Ordenando Electrones. De qué forma? 2do Medio > Química Configuración Electrónica. Analiza la siguiente situación:
do Medio > Química Ordenando Electrones Analiza la siguiente situación: Uno de los mayores logros de la ciencia de la primera mitad del siglo XX se dio en el área de la física, y fue el desarrollo de la
Qué estudiamos en Química Orgánica? ÁTOMOS Y ELECTRONES! ENLACE QUÍMICO
Química Orgánica I Qué estudiamos en Química Orgánica? Cómo los compuestos orgánicos reaccionan: Rompimiento y formación de enlaces. Enlaces que se forman cuando átomos comparten electrones, enlaces que
Estructura de la materia y Sistema Periódico
Estructura de la materia y Sistema Periódico 1 - Respecto el número cuántico «n» que aparece en el modelo atómico de Bohr indicar de manera razonada cuáles de las siguientes frases son correctas y cuáles
CAMPOS: CIRCULACIÓN Y FLUJO
AMPO: IRULAIÓN Y FLUJO Dado el vector a ( x + y) i ˆ + xy ˆ j calcular su circulación a lo largo de la recta y x+ desde el punto A (, ) al B (, 2). olución: I.T.I. 99, 5, I.T.T. 2 En la trayectoria que
Capacidad de combinación. Capacidad de combinación La última capa de electrones de un átomo, se le conoce como capa de electrones de valencia
Capacidad de combinación Para los elementos representativos, se define que el número de electrones de valencia de un elemento es igual al de la familia a la que pertenece Y está relacionado a la manera
Materia: Matemática de Octavo Tema: Raíces de un polinomio. Marco teórico
Materia: Matemática de Octavo Tema: Raíces de un polinomio Y si tuvieras una ecuación polinómica como? Cómo podrías factorizar el polinomio para resolver la ecuación? Después de completar esta lección
Practica nº n 5: Fenómenos de Difracción.
Facultad de Farmacia Universidad de Granada Departamento de Química Física Practica nº n 5: Fenómenos de Difracción. OBJETIVOS 1.Observar los fenómenos de difracción Rendija simple Rendija doble 2.Calcular
Tema 5: Interacción Radiación-Materia
Tema 5: Interacción Radiación-Materia 1. Interacción de partículas cargadas pesadas con la materia Partículas cargadas: excitación o ionización de los átomos del medio. Partículas pesadas (respecto al
4. ANÁLISIS DE FUNCIONES DE UNA VARIABLE
Análisis de funciones de una variable 49 4. ANÁLISIS DE FUNCIONES DE UNA VARIABLE En esta sección realizaremos algunos ejercicios sobre el estudio de funciones de una variable: En la parte final hay ejercicios
COLEGIO PEDAGOGICO DE LOS ANDES. Asignatura: QUIMICA. Docente: Lic. Karina Díaz Pacheco Estudiante:
COLEGIO PEDAGOGICO DE LOS ANDES Grado: 9 Periodo: Tercer Fecha : / / / / Asignatura: QUIMICA. Docente: Lic. Karina Díaz Pacheco Estudiante: Utiliza la tabla periódica. Selección múltiple con única respuesta
ECUACIONES EN DIFERENCIAS LINEALES CON COEFICIENTES CONSTANTES
ECUACIONES EN DIFERENCIAS LINEALES CON COEFICIENTES CONSTANTES Alejandro Lugon 008-1 1. Ecuaciones De Segundo Orden Consideremos la ecuación: x t+ + ax t+1 + bx t = 0 (1) la cual podemos escribir como:
MECÁNICA DE FLUIDOS I GUÍA DE EJERCICIOS TEMA 4 SOLUCIÓN
Ejercicio 1 Un campo de velocidades viene dado por MECÁNICA DE FUIDOS I GUÍA DE EJERCICIOS TEMA 4 SOUCIÓN V = 4txi 2t 2 yj + 4xzk Es el flujo estacionario o no estacionario? Es bidimensional o tridimensional?
Ayudantía 4. Ignacio Reyes Dinámica, Trabajo y Energía
P. Universidad Católica de Chile Facultad de Física Estática y Dinámica Profesor Rafael Benguria Ayudantía 4 Ignacio Reyes ([email protected]). Prob. 2/I--200 Dinámica, Trabajo y Energía Una partícula de masa
Movimiento Armónico Simple
Movimiento Armónico Simple Ejercicio 1 Una partícula vibra con una frecuencia de 30Hz y una amplitud de 5,0 cm. Calcula la velocidad máxima y la aceleración máxima con que se mueve. En primer lugar atenderemos
NÚMEROS COMPLEJOS: C
NÚMEROS COMPLEJOS: C Alejandro Lugon 21 de mayo de 2010 Resumen Este es un pequeño estudio de los números complejos con el objetivo de poder usar las técnicas de solución de ecuaciones y sistemas diferenciales
METODO DE LOS COEFICIENTES INDETERMINADOS 1 METODO DE COEFICIENTES INDETERMINADOS
METODO DE LOS COEFICIENTES INDETERMINADOS 1 METODO DE COEFICIENTES INDETERMINADOS Para encontrar la solución de la Ecuacion diferencial de orden n definida por Donde los son constantes y f(x) es un función
Problemas de Química (1ero Grado de Química). Tema 2. ESTRUCTURA ATÓMICA Y PROPIEDADES PERIÓDICAS
Problemas de Química (1ero Grado de Química). Tema 2. ESTRUCTURA ATÓMICA Y PROPIEDADES PERIÓDICAS 1. Para el isótopo del elemento con Z = 36 y número másico 84 indique: (a) su número de protones; (b) su
TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS
TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS 1.- POLINOMIOS Recordemos que un monomio es una expresión algebraica (combinación de letras y números) en la que las únicas operaciones que aparecen entre las
TEMA I.4. Descripción Matemática de una Onda. Dr. Juan Pablo Torres-Papaqui
TEMA I.4 Descripción Matemática de una Onda Dr. Juan Pablo Torres-Papaqui Departamento de Astronomía Universidad de Guanajuato DA-UG (México) [email protected] División de Ciencias Naturales y Exactas,
Solución a Problemas de tipo Dirichlet usando Análisis
Solución a Problemas de tipo Dirichlet usando Análisis Armónico Marysol Navarro Burruel UNISON 17 Abril, 2013 Marysol Navarro Burruel (UNISON) Análisis Armónico y problemas de tipo Dirichlet 17 Abril,
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 QUÍMICA TEMA 2: LA ESTRUCTURA DEL ÁTOMO
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 QUÍMICA TEMA 2: LA ESTRUCTURA DEL ÁTOMO Junio, Ejercicio 3, Opción B Reserva 1, Ejercicio 2, Opción B Reserva 2, Ejercicio 2, Opción A Reserva 3, Ejercicio
Coordenadas Polares y graficas polares
REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DE LA DEFENSA UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA NACIONAL NÚCLEO BARINAS UNEFA Complemento para evaluar parte de la Unidad III
Apuntes de dibujo de curvas
Apuntes de dibujo de curvas El objetivo de estas notas es dar unas nociones básicas sobre dibujo de curvas definidas por medio de ecuaciones cartesianas explícitas o paramétricas y polares: 1. Curvas en
CAMPO ELÉCTRICO ÍNDICE
CAMPO ELÉCTRICO ÍNDICE 1. Introducción 2. Ley de Coulomb 3. Campo eléctrico 4. Líneas de campo eléctrico 5. Distribuciones continuas de carga eléctrica 6. Flujo del campo eléctrico. Ley de Gauss 7. Potencial
UNIVERSIDAD LIBRE FACULTAD DE INGENIERÌA DEPARTAMENTO DE CIENCIAS BÁSICAS GUIA DE CLASE No 4
UNIVERSIDAD LIBRE FACULTAD DE INGENIERÌA DEPARTAMENTO DE CIENCIAS BÁSICAS GUIA DE CLASE No 4 NOMBRE DE LA ASIGNATURA: TÍTULO: DURACIÓN: BIBLIOGRAFÍA SUGERIDA: DOCENTES: Química General La Tabla Periódica
Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales
Grado en Ingeniería agrícola y del medio rural Tema 8 José Barrios García Departamento de Análisis Matemático Universidad de La Laguna [email protected] 2016 Licencia Creative Commons 4.0 Internacional J.
Los números complejos
Universidad Autónoma de Madrid Actualización en Análisis Matemático, abril de 2012 Cardano (1501 1576) Dividir un segmento de longitud 10 en dos trozos tales que el rectángulo cuyos lados tienen la longitud
Operador Diferencial y Ecuaciones Diferenciales
Operador Diferencial y Ecuaciones Diferenciales. Operador Diferencial Un operador es un objeto matemático que convierte una función en otra, por ejemplo, el operador derivada convierte una función en una
Inecuaciones con valor absoluto
Inecuaciones con valor absoluto El valor absoluto de un número real a se denota por a y está definido por: Propiedades a a si a si a 0 a < 0 i a y b son números reales y n es un número entero, entonces:
PRUEBAS DE ACCESO A LA UNIVERSIDAD MATERIAS DE MODALIDAD: FASES GENERAL Y ESPECÍFICA
PRUEBAS DE ACCESO A LA UNIVERSIDAD MATERIAS DE MODALIDAD: FASES GENERAL Y ESPECÍFICA CURSO 2012-2013 CONVOCATORIA: JULIO MATERIA: FÍSICA De las dos opciones propuestas, sólo hay que desarrollar una opción
3.1. Estructura atómica
3.1. Estructura atómica Átomo Protones (+) Núcleo Neutrones (sin carga) Corteza Electrones (-) *Z Número atómico = Número de protones. Cuando el átomo está en estado neutro, Z también es equivalente al
Clase N 1. Modelo Atómico I
Pre-Universitario Manuel Guerrero Ceballos Clase N 1 Modelo Atómico I ICAL ATACAMA Módulo Plan Común Modelos Atómicos Teoría Atómica De Dalton Los elementos están formados por partículas extremadamente
Circunferencia. Circunferencia centrada en el origen C(0,0)
Circunferencia Se llama circunferencia al lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado centro. El radio de la circunferencia es la distancia de un punto cualquiera de
2. El conjunto de los números complejos
Números complejos 1 Introducción El nacimiento de los números complejos se debió a la necesidad de dar solución a un problema: no todas las ecuaciones polinómicas poseen una solución real El ejemplo más
Thompson (1898) Rutherford (1911) Bohr (1913) Schrödinger (1926) NUMEROS CUANTICOS
Thompson (1898) Modelo Atómico Rutherford (1911) Bohr (1913) Propiedad corpuscular de las onda (PLANCK) Propiedad ondulatoria de las partículas (De Broglie) Schrödinger (1926) Números cuánticos 1 NUMEROS
Capitulo IV - Inecuaciones
Capitulo IV - Inecuaciones Definición: Una inecuación es una desigualdad en las que hay una o más cantidades desconocidas (incógnita) y que sólo se verifica para determinados valores de la incógnita o
JUNIO Opción A
Junio 010 (Prueba Específica) JUNIO 010 Opción A 1.- Discute y resuelve según los distintos valores del parámetro a el siguiente sistema de ecuaciones: a x + a y + az 1 x + a y + z 0.- Una panadería se
Unidad 2: Ecuaciones, inecuaciones y sistemas.
Unidad 2: Ecuaciones, inecuaciones y sistemas 1 Unidad 2: Ecuaciones, inecuaciones y sistemas. 1.- Factorización de polinomios. M. C. D y m.c.m de polinomios. Un número a es raíz de un polinomio es 0.
Campo Magnético en un alambre recto.
Campo Magnético en un alambre recto. A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (133268) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. Se hizo pasar
PORTAFOLIO DE EVIDENCIAS QUÍMICA I DE SEGUNDA OPORTUNIDAD I LEE DETENIDAMENTE CADA ENUNCIADO Y CONTESTA SEGÚN SE TE PIDA.
PORTAFOLIO DE EVIDENCIAS QUÍMICA I DE SEGUNDA OPORTUNIDAD I LEE DETENIDAMENTE CADA ENUNCIADO Y CONTESTA SEGÚN SE TE PIDA. 1.- Ciencia que estudia las características y la composición de los materiales,
