4.2 Superficies en el espacio

Tamaño: px
Comenzar la demostración a partir de la página:

Download "4.2 Superficies en el espacio"

Transcripción

1 4. Sperficies en el espacio 4. a) Parametrización Definición: Una sperficie relar (de clase C m ) es la im. biy. en 3 de na reión bidim. mediante na fnc. relar (de clase C m ) / (,)Î (,)ÎS o sea, S := () ; O(,) := r(,) = x i (,)e i El par () se llama na parametrización de S; (,) se llaman coordenadas de sperficie del pnto P = (,) en esa parametrización; se llama dominio de la parametrización. Ejemplos Parametrización cartesiana de Mone: Si z = f(x,y), entonces S : {x =, y =, z = f(,)}. Así, el hiperboloide de ec. z = x y, será: {x =, y =, z = },... Parametrización crilínea: si se parametriza en nas coordenadas crilíneas: x i = x i (,). El cono del ejercicio PR3.3 parametrizado en cilíndricas: { = a, =, z = ; >0, [0, [}. 4. b) elementos eométricos de na sperficie b) Líneas coordenadas Definiciones: -línea y -línea coordenadas de S por n pnto ( 0, 0 ) L = ({ = t + 0, = 0 }) y L, análoa b) Bases de sperficie: Dada S por (, (,)), PS se definen:. Base natral de sperficie asociada a la parametrización { (P)}: (, ) (, r ) (, xi ) e i (es base tanencial a L y L en P). Matriz de Gram de sperficie de la base natral (será la matriz coa-coa de la Iª F.F.): E (, ) F (, ) (,) = (,) (,); G(,) = [ (,)] = (,) := det[g(,)] = (,) (,) F (, ) G (, ) 3. Vec. normal N y triedro de sperficie: L L N (, ) ;triedro de S:,, N 4. Plano tanente = plano por cada P, de ector característico N(P) 5. Recta normal = recta por P, de c. director N(P) 6. Base natral recíproca de sperficie {, } / 7. Campos de sperficie: = ó T = t N 0 = t y tamb. con componentes normales a S. N (, ) Métodos - matemáticas - ºC

2 Ejemplos: casos notables de parametrización Parametrización de Mone A partir de la ecación cartesiana, explícita {z = f(x, y)} o implícita {F(x, y, z) = 0}: Ejemplo con MatLab: paraboloide hiperbólico; PR3.6-3 Sperficies de reolción Definición eométrica conocida: eneratriz plana, eje de reolción, meridianos y paralelos Parametrización cilíndrica (en sistema de referencia con OZ = eje de reolción; es análoo en otros casos): { x = cos, y = sen, z = f(), a < < b, 0 }, donde f corresponde a la eneratriz (fira). líneas coordenadas: meridianos y paralelos (parametrización ortoonal de S) Alternatias: i) {x = f()cos, y = f()sen, z = }. ii) Otro eje de reolción. Ejemplos: El cono recto como sp. de re.; PR3.6-4 y 5, a, 3. Sperficies reladas Definición: directriz, X(); eneratriz de. director (), en cada pnto de la directriz (fi) P Parametrización relada: r(,) = X() + () () Sp. reladas desarrollables: caracterización analítica Líneas coordenadas de la parametrización relada Ejemplos: el cono recto como sperficie relada el helicoide recto (PR3.6-y); sp. cilíndricas enerales; PR3.7, los apartados señalados del PR3.6 El helicoide desarrollable: param., fira, fira, fira3. Otros casos: sperficies tblares Ejemplo, propesto en examen sept. 008; PR3.9, 9B X() O 3 4. c) Medir sobre S: la Iª Forma Fndamental (IFF) Los objetios a medir sobre na sperficie S módlos y ánlos de campos ectoriales de sperficie, lonitdes de arcos de cra sobre S, áreas de casqetes S* Ì S. en todos los casos se aplica directamente e te la Iª FF actando sobre c. de sp. Fndamento: tensor métrico de sperficie (,) := (,) E F ; G(,) = [ (,) ] = F G Cálclo de módlos y ánlos de ectores de sperficie Si los c.. f, h definidos sobre S / f(,) = f y h(,) = h entonces f = f f = f f = [f f f ] G f fh f h cosf, h = f h f f h h Si los campos tienen componente normal, se sa el triedro {, N} y el tensor E F 0 métrico correspondiente, o sea F G (, ) Métodos - matemáticas - ºC

3 Elemento diferencial de lonitd sobre na sperficie: ds cra C Ì S / r = r(t) está dada por = (t) (parametrización de sperf.) dr Por la r. de la cª.: t dr d d t r dt dt dt t r leo: ds = dr = d = d d E(d ) Fdd G(d ) Primera forma fndamental: la def. clásica (Gass ( )): (ds) = d d = E(d) +Fdd + G(d) := I(d,d) No depende de la parametrización (cambia como al c. de parámetros) Lonitd de arco de cra: Lon = P t ds d d P t donde se bsca expresar el arco P P como C = ({ = (t), t <t<t }) Elemento diferencial de área sobre na sperficie: ds ds = dd = det dd : EGF dd Área(S*) = Área((*)) = d S: dd S* * donde se bscará expresar S* = (*), con * = {(,) : a <<a, b ()<<b ()} o similar. S d ds d 5 Ejemplos de aplicación de la Iª.F.F. Ánlos y módlos de ectores de sperficie Ejemplo: Ánlo de la entana de Viiani con el paralelo de la sp. esférica en cada pnto. Bajo qé ánlo se corta la cra a sí misma sobre el ecador? Lonitdes de arcos de cra sobre sperficies Lonitd de la entana de Viiani (llear a na interal a aproximar) Área de n casqete de sperficie Expresar los elementos diferenciales de área de: i) na sperficie esférica; ii) na sperficie cilíndrica recta circlar; iii) na sperficie cónica Expresar S*=(*), S con * ={(,) :aa < < a, b () < < b ()} (o alternatia análoa) en los casos qe sien: Área encerrada por la entana de Viiani en el hemisferio sperior. Área abarcada por na pechina sobre na esfera de radio R: cálclo nota: en PR4: reaparecerán problemas de áreas de casqetes del Capítlo 5º Peden hacerse: PR3.8, 3.9, 3., 3., 3.7-y, 3.9a y 3.9b-y. 6 Métodos - matemáticas - ºC 3

4 4. d) Deriación del triedro de sperficie. d) Deriación de la base: símb. de Christoffel de sperficie. definiciones de los símbolos: son alores nominales de las componentes, en el triedro {, N} de S, de las deriadas de la propia base, o sea: 3 N : N ; 3 propiedades p :. Simetría: por teorema de Schwartz: k = k (ialdad de deriadas as crzadas). N = = cte. N N 3 3 = 0 3. los símbolos 3 := K son las componentes coas de n tensor de º orden, el tensor de cratra, K,de S, porqe cambian como lo hacen las componentes coariantes de los tensores: dem 4. Además, los símbolos 3 se relacionan con las comptes. K del mismo tensor K, pes se cmple: 3 = K = 3 : dem Así se define: K(,) )=K = K (,) K (, ) como el tensor de cratra de S en cada pnto. La forma coa se llama también IIFF. cálclo: se desprende de la definición y del modo de calclar comptes.: 3 N ; disposic. matricial N Ejemplo: Símbolos del helicoide recto (otros ejemplos en PR3.6: y en otros problemas de PR3, cando se pida sólo la IIFF, 7 como ejercicio, calclar todos los símbolos) na disposición matricial para los cálclos de los símbolos de Christoffel de S: k J J N J i J k f, ic ei N ei N ; K ; K ,, N De las dos matrices qe se obtenan (=, ) se peden extraer los símbolos: 3 := K = componentes coariantes de sperficie del tensor de cratra K de S; Salo el sino. También se obtienen las componentes mixtas del mismo K. 3 También peden calclarse directamente: N (sin J ) Los símbolos de Christoffel restantes,, se disponen matr. a coneniencia Métodos alternatios para calclar a partir de la matriz de Gram G(,) Si A := G= G/ ; B = [ cols. ª de las A's]; C = (B ) t : [ ] = f, = c = ½ G (A + B C ) [donde " ", prodcto matricial ordinario] [B También se peden disponer con = matriz: [ ] = f, = c = ½ G C A ] * [B C A ] 8 [donde "*" indica aloritmo combinación lineal de cajas] Métodos - matemáticas - ºC 4

5 d) Ejemplos de Símbolos de Christoffel y IIFF de sp. Sperficie de reolción Sperficie tórica de radios a b. Si (,) {x = cos, y = sen, z = f() ; 0<, 0<<}, calclar los símbolos de Christoffel de la sperficie en esa parametrización (PR3.7) solción: Ejemplo: PR3.8 (la catenoide) Una sperficie relada: el helicoide recto Si r(,) = X() + () = (R)cos i + (R)sen j + c k es la parametrización relada del helicoide recto [directriz, la hélice X(); eneratrices en la dirección de la normal principal de la hélice en cada pnto]. Calclar los símbolos de Christoffel de S en la forma [ k i] k=f, i=c, =m. solción: (er PR3.6) parm. cil.: {=, =}{x = cos, y = sen, z = ; >0, [0,]} IFF: (,) = + (+ ) (coas pras de sperficie) IIFF: K(,) = ( + ) (coas pras de sp.) 9 4. e) Cratª de na sperf.: tensor crª. y IIª FF. Concepto matemático : La cratra en 3ó de na cra C : {r = r(s) } es na manitd ectorial, qe inclye módlo (cantidad, el escalar ) y dirección (normal principal de C en cada P) y qe se da por el ector := ( ˆt )' s = (r)'' ss : ˆn La cr. de na sperficie es na man. tensorial, qe indica cánto dobla S en n pnto P en cada dir. tanencial, e : Eler ( ) considera para cada e la cra C(e) := S (P;e,N), la sec. plana S seún e (fi.); si ˆ ˆ ˆn es el c. crª. de C(e), se define la crª. norm. de S en la dir.epor: n (e) := ˆ (e, N) Obs.: En eneral, si C { = (s)} S, reslta: d ˆ d d d d ds ds ds ds ds N P L d d d d 3 d e N ds ds ds ds ds ˆ C(e) : ˆ : ˆ n n^ L 3 3 ˆ d d ˆ ˆ n ds ds N t K t N; K : n (de S ) S Teor.: todas las cras de S qe pasen por P en la misma dirección, e, comparten la misma cratra normal, n (e), qe se llama cr. normal de S en esa dirección, e, y en cada P relar. 0 Métodos - matemáticas - ºC 5

6 . Definición de tensor de cratra : Como ha resltado qe n (e) = e 3 e es na forma cadrática, pesto qe los 3 son las componentes coas de n tensor de sperficie ( 3ª propiedad ista de los símb. de Christoffel, ya ista) se define en cada pnto relar P(, ) = (, ) el campo tensorial de sperficie: α β K(, ) = K / K := 3 αβ(, ) (, ), llamado tensor de cratra de S. La forma cadrática n (e) = e K e, se llama IIª FF de S, en cada P y para cada dirección tanencial, e. 3. Análisis del tensor: K es simétrico admite base propia ortonormal. atoalores de K : se llaman cratras principales, k y k ; son la máxima y la mínima cratra normal de S en P. atoectores nitarios de K: se llaman direcs. principales de cratra, d y d ; son las dir. tanenciales en qe se obtienen las secciones normales de máxima y mínima cratra en el pnto; forman na base tanencial ortonrm. llamada base principal de S 3. la representación espectral de K en s base propia de las dir. ppales. Se llama representación principal de K : K(,) = k (,) d (,)d (,) + k (,) d (,)d (,) (con k = cr. ppales.) y reslta: Th. de Eler: e = cosd + send n (e) = k cos + k sen 4. na parametrización de S se dice parametrización principal si en ella la IIFF es diaonal la base natral normalizada es base principal de la sperficie. 4. Clasificación de los pntos de na sperficie Lamando: cr. media, K M := ½ tr(k) = ½(k +k ); cr. total o de Gass, K G := det(k) = k k, de S en P, se clasifican los pntos de S seún la IIFF, asociada intrínsecamente al tensor cratra K. Así: pntos elípticos: ªFF definida (estrict. pos. o ne.) K G > 0 crs. normales 0 y del mismo sino en toda direc. tan. e (S = sp. cóncaa o de n mismo lado del pl. tanente fira ª) pntos parabólicos: ªFF semidefinida K G = 0, K M 0 como antes, salo en na dir. ppal. d en qe k = n (d) = 0 (fira ª) pntos hiperbólicos: ªFF indefinida K G < 0! := dir. asintóticas de S en P / n ( ) = 0; son las dir. de la cra intersecc. de S con s propio plano tanente en P ( fira 3ª) pntos planos: K G = 0 = K M sperficie "achatada" contra s plano tanente (se presenta cando hay n contacto de orden mayor qe entre S y s plano tanente en P ( fira 4ª) nota: la indicatriz de Dpin explica n orien intitio de estos nombres Ejercicios: ) Clasificar los pntos del paraboloide de reolción z = x + y. ) Clasificar los pntos del helicoide recto Métodos - matemáticas - ºC 6

7 Ejemplos y ejercicios de sperficies Ejemplos de aplicación de la IFF y IIFF La sperficie tórica (sp. de re.): clasificar ss pntos. El helicoide recto (sp. relada): PR3.6 Problema: Dada S {z{ = f(x,y)} hallar los coeficientes de la IªFF y IIªFF en términos de las deriadas parciales de f, denotando: p = f' x, q = f' y, R = f'' xx, S = f'' xy, T = f'' yy Calclar ds, ds, K, K M y K G en dicha S. Otros ejercicios de sperficies qe se peden hacer: ) Los problemas de cras PR3.3 y 3.5 peden hacerse también tratando la cra incónita como cra de la sperficie cónica dada en el ennciado, en la forma { = (s) =?, = (s) =?} / t(s) e = cos ó t(s) k = cos ) Peden hacerse PR3.8, 3.0i y ii, 3.4, 3.5, 3.6i a, 3.8i a iii, En eneral, en PR3. a 3.5, los apartados de aplicaciones de la IFF y los qe piden la IIFF o la cratra normal de na cra dada, C S) o clasificar los pntos de S. 3 Firas sobre parametrización de sperficies parametrizaciópn relada pasrametrización de Mone parametrización de reolción 4 Métodos - matemáticas - ºC 7

8 Otras firas de sperficies Carl F. Gass ( ) Leonard Eler ( ) helicoide recto y líneas de cratra en n pnto helicoide tanencia (desarrollable) sperficie tblar de directriz parabólica 5 Sperficie tórica y ss pntos parabólicos sperficie esférica y entana de Viiani Catenoide de reolción y ss líneas principales de cratra Parametrización de na sperficie tblar de directriz dada, C. 6 Métodos - matemáticas - ºC 8

Lección 3. Cálculo vectorial. 4. Integrales de superficie.

Lección 3. Cálculo vectorial. 4. Integrales de superficie. GRAO E INGENIERÍA AEROEPACIAL CURO 0 MATEMÁTICA II PTO E MATEMÁTICA APLICAA II 4 Integrales de sperficie Nestro último paso en la etensión del concepto de integral es el estdio de las integrales de sperficie,

Más detalles

INTEGRALES DE SUPERFICIE.

INTEGRALES DE SUPERFICIE. INTEGALE DE UPEFICIE. 31. Encontrar el área de la sperficie definida como intersección del plano x + y + z 1 con el sólido x + y 1. olción La sperficie dada se pede parametrizar por x cos v : y (/ ) sen

Más detalles

Superficies paramétricas

Superficies paramétricas SESIÓN 7 7.1 Introducción En este curso ya se han estudiando superficies S que corresponden a gráficos de funciones de dos variables con dos tipos de representaciones: Representación explícita de S, cuando

Más detalles

NOMBRE: VECTORES EN EL PLANO. Ángel de la Llave Canosa

NOMBRE: VECTORES EN EL PLANO. Ángel de la Llave Canosa NOMBRE: VECTORES EN EL PLANO Ángel de la Llave Canosa 1 VECTORES EN EL PLANO VECTOR FIJO Un vector fijo AB es n segmento orientado, qe está definido por dos pntos: Un pnto origen y n pnto extremo. Los

Más detalles

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n )

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n ) Tema 3 Formas cuadráticas. 3.1. Definición y expresión matricial Definición 3.1.1. Una forma cuadrática sobre R es una aplicación q : R n R que a cada vector x = (x 1, x 2,, x n ) R n le hace corresponder

Más detalles

Superficies cuádricas

Superficies cuádricas Superficies cuádricas Jana Rodriguez Hertz GAL2 IMERL 9 de noviembre de 2010 definición superficie cuádrica definición (forma cuadrática) una superficie cuádrica está dada por la ecuación: definición superficie

Más detalles

TEMA 5 VECTORES EN EL ESPACIO MATEMÁTICAS II 2º Bach. 1

TEMA 5 VECTORES EN EL ESPACIO MATEMÁTICAS II 2º Bach. 1 TEMA 5 VECTORES EN EL ESPACIO MATEMÁTICAS II º Bach. TEMA 5 VECTORES EN EL ESPACIO 5. LOS VECTORES Y SUS OPERACIONES DEINICIÓN Un ector es n segmento orientado. Un ector extremo B. Elementos de n ector:

Más detalles

TEMA 5. VECTORES EN EL ESPACIO

TEMA 5. VECTORES EN EL ESPACIO TEMA 5. VECTORES EN EL ESPACIO ÍNDICE 1. INTRODUCCIÓN... 2 2. VECTORES EN EL ESPACIO.... 3 2.1. CONDICIONES INICIALES.... 3 2.2. PRODUCTO DE UN VECTOR POR UN NÚMERO.... 3 2.3. VECTORES UNITARIOS.... 3

Más detalles

4. Espacios Vectoriales

4. Espacios Vectoriales 4. Espacios Vectoriales 4.. Definición de espacio, sbespacio ectorial y ss propiedades n ector es na magnitd qe consta de módlo, dirección y sentido. Algnos sin embargo; más teóricos, explicarían qe n

Más detalles

VECTORES EN EL PLANO

VECTORES EN EL PLANO VECTORES EN EL PLANO.- PRIMERO DE BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. 1 VECTORES EN EL PLANO Vector fijo. Es n segmento orientado. Lo representamos por AB o por. El pnto A es el origen y el pnto B

Más detalles

Se puede considerar una superficie, como una lámina infinitamente delgada, que recubre un cuerpo, separa dos medios o dos regiones del espacio.

Se puede considerar una superficie, como una lámina infinitamente delgada, que recubre un cuerpo, separa dos medios o dos regiones del espacio. SUPERFICIES SUPERFICIES Se puede considerar una superficie, como una lámina infinitamente delgada, que recubre un cuerpo, separa dos medios o dos regiones del espacio. Una Superficie puede estar engendrada

Más detalles

ACADEMIA DE FÍSICO-MATEMÁTICAS MATEMÁTICAS III CICLO ESCOLAR TERCER SEMESTRE G E O M É T R Í A GUÍA A N A L Í T I C A

ACADEMIA DE FÍSICO-MATEMÁTICAS MATEMÁTICAS III CICLO ESCOLAR TERCER SEMESTRE G E O M É T R Í A GUÍA A N A L Í T I C A CENTRO DE ESTUDIOS DE BACHILLERATO LIC. JESÚS REYES HEROLES ACADEMIA DE FÍSICO-MATEMÁTICAS MATEMÁTICAS III CICLO ESCOLAR TERCER SEMESTRE GEOMETRÍA G E O M É T R Í A GUÍA ANALÍTICA A N A L Í T I C A G U

Más detalles

6 La semejanza en el plano

6 La semejanza en el plano TIVIS MPLIIÓN 6 La semejanza en el plano 1. alcla las medidas de los segmentos,, z, t en la sigiente figra, sabiendo qe las medidas de los segmentos conocidos están epresadas en metros. 4 G z t. ibja n

Más detalles

8. Geometrías no euclidianas. Modelo de Poincaré de la Geometría Hiperbólica

8. Geometrías no euclidianas. Modelo de Poincaré de la Geometría Hiperbólica LECTURA N 14 Capítulo 8 de LA GEOMETRÍA EN LA FORMACIÓN DE PROFESORES de Luis SANTALÓ - Red Olímpica. Buenos Aires. 1993 8. Geometrías no euclidianas. Modelo de Poincaré de la Geometría Hiperbólica Bibliografía:

Más detalles

VECTORES EN EL ESPACIO

VECTORES EN EL ESPACIO VECTORES EN EL ESPACIO Para poder isalizar los elementos de R 3 ={(x,y,z)/x,y,z R}, primero fijamos n sistema de coordenadas, eligiendo n pnto en el espacio llamado el origen qe denotaremos por O, y tres

Más detalles

MATEMÁTICASII Curso académico BLOQUE GEOMETRÍA. TEMA 1: VECTORES

MATEMÁTICASII Curso académico BLOQUE GEOMETRÍA. TEMA 1: VECTORES MATEMÁTICASII Curso académico 2015-2016 BLOQUE GEOMETRÍA. TEMA 1: VECTORES 1.1 VECTORES DEL ESPACIO. VECTORES LIBRES DEL ESPACIO Sean y dos puntos del espacio. Llamaremos vector (fijo) a un segmento orientado

Más detalles

TORRE DE CONTROL DEL AEROPUERTO DE ABU DHABI

TORRE DE CONTROL DEL AEROPUERTO DE ABU DHABI 11 de diciembre del 2009 يبظوبأ TORRE DE CONTROL DEL AEROPUERTO DE ABU DHABI Proyecto primer cuatrimestre Pablo Navarro Aguirre ÍNDICE ENTREGA 1 3 -> Previsualización del proyecto y planificación de las

Más detalles

ALGEBRA Y GEOMETRÍA I DPTO. DE MATEMÁTICA ESCUELA DE FORMACIÓN BÁSICA F.C.E.I.A U.N.R

ALGEBRA Y GEOMETRÍA I DPTO. DE MATEMÁTICA ESCUELA DE FORMACIÓN BÁSICA F.C.E.I.A U.N.R ALGEBRA Y GEOMETRÍA I DPTO. DE MATEMÁTICA ESCUELA DE FORMACIÓN BÁSICA F.C.E.I.A U.N.R SUPERFICIES ING. RICARDO F. SAGRISTÁ -2006- SUPERFICIES.- 1.- Ecuaciones de superficies. Ya hemos estudiado la superficie

Más detalles

Elementos de Cálculo en Varias Variables

Elementos de Cálculo en Varias Variables Elementos de Cálculo en Varias Variables Departamento de Matemáticas, CSI/ITESM 5 de octubre de 009 Índice Introducción Derivada parcial El Jacobiano de una Función 5 Derivadas Superiores 5 5 Derivada

Más detalles

GEOMETRÍA ANALÍTICA AB CD CD AB CD

GEOMETRÍA ANALÍTICA AB CD CD AB CD GEOMETRÍA ANALÍTICA.- Vectores..- Vectores fijos en el plano Llamaremos ector fijo a todo par ordenado de pntos del plano. Si los pntos son A y B conendremos en representar por AB el ector fijo qe determinan;

Más detalles

( ), está dada por: g ( x) = log 2 ( x),x > 0. # % 3x log 2 ( 5), x 1 & + -, . log 2. log 2 ( x 3

( ), está dada por: g ( x) = log 2 ( x),x > 0. # % 3x log 2 ( 5), x 1 & + -, . log 2. log 2 ( x 3 ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS CURSO DE NIVELACIÓN 05 S SEGUNDA EVALUACIÓN DE MATEMÁTICAS PARA INGENIERÍAS Y EDUCACIÓN

Más detalles

8.4. CRITERIO DE ESTABILIDAD POR EL METODO DIRECTO DE LIAPUNOV

8.4. CRITERIO DE ESTABILIDAD POR EL METODO DIRECTO DE LIAPUNOV 8.4. CRITERIO DE ESTAB.: METODO DE LIAPUNOV 309 8.4. CRITERIO DE ESTABILIDAD POR EL METODO DIRECTO DE LIAPUNOV Consideremos el sistema autónomo dx = F (x, y) dt (8.32) dt = G(x, y), y supongamos que tiene

Más detalles

3.2 EL PRODUCTO ESCALAR Y LAS PROYECCIONES EN R 2

3.2 EL PRODUCTO ESCALAR Y LAS PROYECCIONES EN R 2 34 CAPÍTULO 3 Vectores en R R 3 ais sqare a=ais; ais([min(a([1,3])),ma(a([,4])),min(a([1,3])),ma(a([,4]))]) % hold off Una ez qe se haa escrito la fnción en n archio con nombre lincomb.m, dé el comando

Más detalles

Superficies Curvas. Guía de clase elaborada por Ing. Guillermo Verger

Superficies Curvas. Guía de clase elaborada por Ing. Guillermo Verger Superficies Curvas Guía de clase elaborada por Ing. Guillermo Verger www.ingverger.com.ar Superficie cilíndrica Es aquella generada por una recta llamada generatriz que se mueve en el espacio manteniendose

Más detalles

Tercera Parte: Producto Vectorial y Producto Mixto entre vectores

Tercera Parte: Producto Vectorial y Producto Mixto entre vectores Tercera Parte: Prodcto Vectorial Prodcto Mito entre ectores Introdcción Retomemos el caso los dos pintores: Carlos Jan. Finaliada la tarea de moer el escritorio, el arqitecto qe coordina la obra, indica

Más detalles

1. Producto escalar. Propiedades Norma de un vector. Espacio normado. 1.2.Ortogonalidad. Ángulos. 1.4.Producto escalar en V 3.

1. Producto escalar. Propiedades Norma de un vector. Espacio normado. 1.2.Ortogonalidad. Ángulos. 1.4.Producto escalar en V 3. . Producto escalar. Propiedades... Norma de un vector. Espacio normado...ortogonalidad. Ángulos..3.Producto escalar en V..4.Producto escalar en V 3.. Producto vectorial de dos vectores de V 3...Expresión

Más detalles

LA CIRCUNFERENCIA. La circunferencia es la sección producida por un plano perpendicular al eje.

LA CIRCUNFERENCIA. La circunferencia es la sección producida por un plano perpendicular al eje. LA CIRCUNFERENCIA La circunferencia es la sección producida por un plano perpendicular al eje. β = 90º La circunferencia es un caso particular de elipse. Se llama circunferencia al lugar geométrico de

Más detalles

Magnitudes escalares, son aquellas que quedan definidas por una sola cantidad que denominaremos valor del escalar.

Magnitudes escalares, son aquellas que quedan definidas por una sola cantidad que denominaremos valor del escalar. +34 9 76 056 - Fa: +34 9 78 477 Vectores: Vamos a distingir dos tipos de magnitdes: Magnitdes escalares, son aqellas qe qedan definidas por na sola cantidad qe denominaremos valor del escalar. Ej: Si decimos

Más detalles

VECTORES EN EL ESPACIO

VECTORES EN EL ESPACIO VECTORES EN EL ESPACIO (,4,3) MATEMÁTICAS II º Bachillerato Alfonso Gonále IES Fernando de Mena Dpto. de Matemáticas I. DEFINICIONES 1 Módlo: Indica la intensidad, iene dado por la longitd de la flecha

Más detalles

Tema 2.- Formas Cuadráticas.

Tema 2.- Formas Cuadráticas. Álgebra. 004 005. Ingenieros Industriales. Departamento de Matemática Aplicada II. Universidad de Sevilla. Tema.- Formas Cuadráticas. Definición y representación matricial. Clasificación de las formas

Más detalles

ACTIVIDADES INICIALES. b) ( 1, 6) d) (0, 3) (0, 1) (0, 2) f) ( 8, 4) (24, 6) (16, 2) h) ( 5, 3) (2, 2) ( 3, 1) EJERCICIOS PROPUESTOS

ACTIVIDADES INICIALES. b) ( 1, 6) d) (0, 3) (0, 1) (0, 2) f) ( 8, 4) (24, 6) (16, 2) h) ( 5, 3) (2, 2) ( 3, 1) EJERCICIOS PROPUESTOS Solcionario 4 Vectores TIVIDDES INIILES 4.I. Efectúa las sigientes operaciones: a) (5, 3) (, 4) c) 5(3, ) (, 4) e) (7, 4) (, ) g) (3, 6) 3 (, ) b) (6, 4) (7, ) d) 3(0, ) (0, 3) f) 4(, ) 6(4, ) h) (5, 3)

Más detalles

CONCEPTOS PRELIMINARES

CONCEPTOS PRELIMINARES CONCEPTOS PRELIMINARES Matemáticas II En R un conjunto abierto es la unión de intervalos abiertos. Tanto el concepto de conjunto abierto como de intervalo abierto se generaliza en el plano y en el espacio.

Más detalles

CBC. Matemática (51) universoexacto.com 1

CBC. Matemática (51) universoexacto.com 1 CBC Matemática (51) universoexacto.com 1 PROGRAMA ANALÍTICO 1 :: UNIDAD 1 Números Reales y Coordenadas Cartesianas Representación de los números reales en una recta. Intervalos de Distancia en la recta

Más detalles

ALGEBRA. Escuela Politécnica Superior de Málaga

ALGEBRA. Escuela Politécnica Superior de Málaga ALGEBRA. Escuela Politécnica Superior de Málaga Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Espacio vectorial. Espacios vectoriales R n. Dependencia e independencia lineal. Base. Matrices y determinantes.

Más detalles

Expresiones de velocidad y aceleración en distintas coordenadas

Expresiones de velocidad y aceleración en distintas coordenadas Apéndice B Expresiones de velocidad y aceleración en distintas coordenadas Índice B.1. Coordenadas cartesianas............... B.1 B.2. Coordenadas cilíndricas y polares......... B.2 B.3. Coordenadas esféricas................

Más detalles

1. Coordenadas en el plano. (Sistema de coordenadas, ejes de coordenadas, abcisas, ordenadas, cuadrantes)

1. Coordenadas en el plano. (Sistema de coordenadas, ejes de coordenadas, abcisas, ordenadas, cuadrantes) Bloque 7. VECTORES. ECUACIONES DE LA RECTA. (En el libro Tema 9, página 159) 1. Coordenadas en el plano. 2. Definiciones: vector libre, módulo, dirección, sentido, vectores equipolentes, vector fijo, coordenadas

Más detalles

Apuntes de dibujo de curvas

Apuntes de dibujo de curvas Apuntes de dibujo de curvas El objetivo de estas notas es dar unas nociones básicas sobre dibujo de curvas definidas por medio de ecuaciones cartesianas explícitas o paramétricas y polares: 1. Curvas en

Más detalles

Colegio Internacional Torrequebrada. Departamento de Matemáticas

Colegio Internacional Torrequebrada. Departamento de Matemáticas Geometría. Problema 1: Calcula la distancia del punto P(1, 1, 1) a la recta Problema 2: Dadas las rectas, se pide: a) Analiza su posición relativa. b) Halla la ecuación general del plano π que contiene

Más detalles

Integral de superficie.

Integral de superficie. Tema 4 Integral de superficie. 4.1 uperficies. Definición 4.1 ean IR 2 un conjunto conexo y κ: IR 3 una función continua. La imagen = κ se llama superficie descrita por κ. También se dice que κ es una

Más detalles

Translaciones, giros, simetrías.

Translaciones, giros, simetrías. Translaciones, giros, simetrías. Transformaciones geométricas Transformación geométrica es una aplicación del plano en el plano tal que a cada punto de un plano le hace corresponder otro punto del mismo

Más detalles

Las anteriores fórmulas suelen expresarse matricialmente como

Las anteriores fórmulas suelen expresarse matricialmente como Capítulo III Teoría de las curvas 1. Clasificación de curvas en R 3 En esta sección veremos que, esencialmente, la curvatura y la torsión determinan las curvas de R 3. Para ello necesitaremos las conocidas

Más detalles

Dos matrices son iguales cuando tienen la misma dimensión y los elementos que ocupan el mismo lugar en ambas son iguales

Dos matrices son iguales cuando tienen la misma dimensión y los elementos que ocupan el mismo lugar en ambas son iguales Introducción Las matrices aparecen por primera vez hacia el año 1850, introducidas por J.J. Sylvester. El desarrollo inicial de la teoría se debe al matemático W.R. Hamilton en 1853. En 1858, A. Cayley

Más detalles

10. 1 Definición de espacio euclídeo.

10. 1 Definición de espacio euclídeo. ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA MATEMATICAS 10. ESPACIOS EUCLÍDEOS 10. 1 Definición de espacio euclídeo. Producto escalar

Más detalles

Ejercicios resueltos.

Ejercicios resueltos. E.T.S. Arquitectura Curvas y super cies. Ejercicios resueltos.. Sea la curva intersección de la super cie z = xy con el cilindro parabólico y = x. Se pide: (a) En el punto P de coordenadas (0; 0; 0), obtener

Más detalles

Tema 2: Vectores libres

Tema 2: Vectores libres Tema 2: Vectores libres FISICA I, 1º Grado en Ingeniería Aeroespacial Escuela Técnica Superior de Ingeniería Universidad de Sevilla 1 Índice Magnitudes escalares y vectoriales Definición de vector Vectores

Más detalles

Problemas de Espacios Vectoriales

Problemas de Espacios Vectoriales Problemas de Espacios Vectoriales 1. Qué condiciones tiene que cumplir un súbconjunto no vacío de un espacio vectorial para que sea un subespacio vectorial de este? Pon un ejemplo. Sean E un espacio vectorial

Más detalles

Academia de Matemáticas T.M Geometría Analítica Página 1

Academia de Matemáticas T.M Geometría Analítica Página 1 INSTITUTO POLITECNICO NACIONAL CENTRO DE ESTUDIOS CIENTIFICOS Y TECNOLOGICOS 10. CARLOS VALLEJO MÁRQUEZ PROBLEMARIO DE GEOMETRIA ANALITICA Distancia entre puntos 1.- Determina la distancia entre los puntos

Más detalles

12.2 Vectores Algunos de los factores que medimos están determinados simplemente por sus magnitudes. Por

12.2 Vectores Algunos de los factores que medimos están determinados simplemente por sus magnitudes. Por . Vectores 665. Vectores Algnos de los factores qe medimos están determinados simplemente por ss magnitdes. Por ejemplo, para registrar la masa, la longitd o el tiempo sólo necesitamos escribir n número

Más detalles

Introducción La Circunferencia Parábola Elipse Hiperbola. Conicas. Hermes Pantoja Carhuavilca

Introducción La Circunferencia Parábola Elipse Hiperbola. Conicas. Hermes Pantoja Carhuavilca Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Matematica I Contenido 1 Introducción 2 La Circunferencia 3 Parábola 4 Elipse 5 Hiperbola Objetivos Se persigue que el estudiante:

Más detalles

1.2 TÉCNICAS DE LA DERIVACIÓN.

1.2 TÉCNICAS DE LA DERIVACIÓN. . TÉCNICAS DE LA DERIVACIÓN... DERIVACIÓN DE FUNCIONES ALGEBRAICAS Generalmente la derivación se lleva acabo aplicando fórmlas obtenidas mediante la regla general de la derivación y qe calclaremos a continación,

Más detalles

Integrales dobles. Integrales dobles

Integrales dobles. Integrales dobles Integrales dobles Integrales iteradas b g2 (x) a g 1 (x) f(x, y) dydx ó d h2 (y) c h 1 (y) f(x, y) dxdy Los límites interiores de integración pueden ser variables respecto a la variable exterior de integración,

Más detalles

TEMARIO DE PROFESORES DE ENSEÑANZA SECUNDARIA MATEMÁTICAS

TEMARIO DE PROFESORES DE ENSEÑANZA SECUNDARIA MATEMÁTICAS HOJA INFORMATIVA A.5.2.33 TEMARIO DE PROFESORES DE ENSEÑANZA SECUNDARIA MATEMÁTICAS Publicado en el B.O.E. de 21 de Septiembre de 1.993 MARZO 1998 MATEMÁTICAS 1. Números naturales. Sistemas de numeración.

Más detalles

TRIGONOMETRÍA ESFÉRICA 2001 Kepler C k Ikastegia

TRIGONOMETRÍA ESFÉRICA 2001 Kepler C k Ikastegia TRIGNMETRÍ ESFÉRI 2001 Kepler k Ikastegia 2 1.1 Introducción La Trigonometría es una rama de la Matemática en la que se analiza la medida de las partes de los triángulos, tanto de los triángulos planos

Más detalles

ESCALARES Y VECTORES

ESCALARES Y VECTORES ESCALARES Y VECTORES MAGNITUD ESCALAR Un escalar es un tipo de magnitud física que se expresa por un solo número y tiene el mismo valor para todos los observadores. Se dice también que es aquella que solo

Más detalles

PLAN DE ESTUDIOS DE MS

PLAN DE ESTUDIOS DE MS PLAN DE ESTUDIOS DE MS Temario para desarrollar a lo largo de las clases 11 y 12. CLASE 11: I. ELEMENTOS DE ÁLGEBRA LINEAL. a) Revisión de conceptos Estructura de espacio vectorial. Propiedades de los

Más detalles

Definición matemática de Relación y de Función

Definición matemática de Relación y de Función Fecha: 05/0 Versión: DOCENTE: ANTONIO ELI CASTILLA Definición matemática de Relación de Función En matemática, Relación es la correspondencia de un primer conjunto, llamado Dominio, con un segundo conjunto,

Más detalles

CAMPOS ELÉCTRICOS DEBIDOS A DISTRIBUCIONES CONTINUAS DE CARGA

CAMPOS ELÉCTRICOS DEBIDOS A DISTRIBUCIONES CONTINUAS DE CARGA CAMPOS ELÉCTRICOS DEBIDOS A DISTRIBUCIONES CONTINUAS DE CARGA Este documento enuncia de forma más detallada la formulación matemática que permite el estudio de campos eléctricos debido a distribuciones

Más detalles

Matemáticas TRABAJO. Funciones Trigonométricas

Matemáticas TRABAJO. Funciones Trigonométricas Matemáticas TRABAJO Funciones Trigonométricas 2 En este trabajo trataremos de mostrar de una forma práctica las funciones trigonométricas, con sus formas de presentación, origen y manejos. También se incluirán

Más detalles

VELOCIDAD Y ACELERACION. RECTA TANGENTE.

VELOCIDAD Y ACELERACION. RECTA TANGENTE. VELOCIDAD Y ACELERACION. RECTA TANGENTE. 3. Describir la trayectoria y determinar la velocidad y aceleración del movimiento descrito por las curvas siguientes: (a) r (t) = i 4t 2 j + 3t 2 k. (b) r (t)

Más detalles

Integración sobre superficies

Integración sobre superficies Problemas propuestos con solución Integración sobre superficies IABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ull.es Índice 1. Parametrizaciones 1 2. Área de una superficie

Más detalles

TEMA 1. MAGNITUDES FÍSICAS

TEMA 1. MAGNITUDES FÍSICAS TEMA 1. MAGNITUDES FÍSICAS 1. Definición de magnitd física 2. Magnitdes físicas fndamentales deriadas. Sistema Internacional de Unidades (SI) 3. Cambio de nidades: Método de las fracciones nitarias 4.

Más detalles

MATEMÁTICAS 3º ESO PENDIENTES HOJA 1 GEOMETRÍA PLANA. 1.- Calcular el área y el perímetro de los siguientes polígonos:

MATEMÁTICAS 3º ESO PENDIENTES HOJA 1 GEOMETRÍA PLANA. 1.- Calcular el área y el perímetro de los siguientes polígonos: MATEMÁTICAS º ESO PENDIENTES HOJA GEOMETRÍA PLANA.- Calcular el área y el perímetro de los siguientes polígonos: a) Un cuadrado de lado 5 cm de lado b) Un cuadrado de diagonal 0 cm. c) Un rectángulo de

Más detalles

Teoría Tema 6 Ecuaciones de la recta

Teoría Tema 6 Ecuaciones de la recta página 1/14 Teoría Tema 6 Ecuaciones de la recta Índice de contenido Base canónica en dos dimensiones como sistema referencial...2 Ecuación vectorial de la recta...4 Ecuación paramétrica de la recta...6

Más detalles

95 EJERCICIOS de RECTAS

95 EJERCICIOS de RECTAS 9 EJERCICIOS de RECTAS Forma paramétrica: 1. Dado el punto A(,3) y el vector director ur = (1, ), se pide: a) Hallar las ecuaciones paramétricas de la recta r que determinan. b) Obtener otros tres puntos

Más detalles

Derivadas parciales Derivadas direccionales Derivadas parciales de orden superior. Derivadas parciales y direccionales

Derivadas parciales Derivadas direccionales Derivadas parciales de orden superior. Derivadas parciales y direccionales Derivadas parciales y direccionales 1 Derivadas parciales 2 Derivadas direccionales 3 Derivadas parciales de orden superior Derivadas parciales (de campos escalares de dos variables) Sea A = [a 1, b 1

Más detalles

Mecánica de Fluidos. Análisis Diferencial

Mecánica de Fluidos. Análisis Diferencial Mecánica de Fluidos Análisis Diferencial Análisis Diferencial: Descripción y caracterización del flujo en función de la descripción de una partícula genérica del flujo. 1. Introducción 2. Movimiento de

Más detalles

SISTEMAS DE REFERENCIA SISTEMAS DE COORDENADAS PROYECCIONES

SISTEMAS DE REFERENCIA SISTEMAS DE COORDENADAS PROYECCIONES SISTEMAS DE REFERENCIA PROYECCIONES 1 INTRODUCCIÓN GEODESIA Ciencia que estudia la forma y dimensiones de la tierra Determinación de coordenadas para punto de su superficie Imprescindible para una correcta

Más detalles

Modelización por medio de sistemas

Modelización por medio de sistemas SISTEMAS DE ECUACIONES DIFERENCIALES LINEALES. Modelización por medio de sistemas d y dy Ecuaciones autónomas de segundo orden: = f ( y, ) Una variable independiente. Una variable dependiente. La variable

Más detalles

No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano.

No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano. FUNCIONES GRAFICAS No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano. INTÉRVALOS Un intervalo es el conjunto de todos los números reales entre dos números

Más detalles

Secciones cónicas. Tema 02: Cónicas, cuádricas, construcción de conos y cilindros. Secciones Cónicas. Aplicaciones de las cónicas

Secciones cónicas. Tema 02: Cónicas, cuádricas, construcción de conos y cilindros. Secciones Cónicas. Aplicaciones de las cónicas Secciones cónicas Tema 02: Cónicas, cuádricas, construcción de conos y cilindros Juan Ignacio Del Valle Gamboa Sede de Guanacaste Universidad de Costa Rica Ciclo I - 2014 Las secciones cónicas toman su

Más detalles

Elementos de análisis

Elementos de análisis Elementos de análisis El estudio universitario del electromagnetismo en Física II requiere del uso de elementos de análisis en varias variables que el alumno adquirirá en la asignatura Análisis Matemático

Más detalles

Apéndice sobre ecuaciones diferenciales lineales

Apéndice sobre ecuaciones diferenciales lineales Apéndice sobre ecuaciones diferenciales lineales Juan-Miguel Gracia 10 de febrero de 2008 Índice 2 Determinante wronskiano. Wronskiano de f 1 (t), f 2 (t),..., f n (t). Derivada de un determinante de funciones.

Más detalles

Guía n 0: Herramientas de Física y Matemáticas

Guía n 0: Herramientas de Física y Matemáticas Guía n 0: Herramientas de Física y Matemáticas Problema Dadas dos partículas en el espacio ubicadas en los puntos de coordenadas p = (0,5, 2) y p 2 = (2,3,). Hallar el vector posición de la partícula respecto

Más detalles

DISTANCIA ENTRE DOS PUNTOS EN EL PLANO CARTESIANO.

DISTANCIA ENTRE DOS PUNTOS EN EL PLANO CARTESIANO. RAZONAMIENTO Y DEMOSTRACIÓN Determina la distancia entre pares de puntos. Calcula las coordenadas del punto medio del segmento cuyos extremos son dos puntos dados. Halla la pendiente de una recta. COMUNICACIÓN

Más detalles

El subconjunto en el que se define la función se llama dominio o campo existencia de la función. Se designa por D.

El subconjunto en el que se define la función se llama dominio o campo existencia de la función. Se designa por D. Concepto de función Función real de variable real es toda correspondencia f que asocia a cada elemento de un determinado subconjunto de números reales, llamado dominio, otro número real (uno y sólo uno).

Más detalles

Dibujo Técnico Curvas cónicas-parábola

Dibujo Técnico Curvas cónicas-parábola 22. CURVAS CÓNICAS-PARÁBOLAS 22.1. Características generales. Las curvas cónicas son las secciones planas de un cono de revolución. El cono de revolución es la superficie que genera una recta r al girar

Más detalles

Matemáticas II Bachillerato Ciencias y Tecnología 2º Curso. Espacio vectorial. 4.2. Espacio vectorial... - 2 -

Matemáticas II Bachillerato Ciencias y Tecnología 2º Curso. Espacio vectorial. 4.2. Espacio vectorial... - 2 - 4.1. Introducción: los conjuntos Espacio ectorial R y R.... - - 4.. Espacio ectorial.... - - 4.. Vectores libres del espacio tridimensional.... - - 4.4. Producto escalar... - 4-4.5. Producto ectorial....

Más detalles

Tema 2 Datos multivariantes

Tema 2 Datos multivariantes Aurea Grané Máster en Estadística Universidade Pedagógica 1 Aurea Grané Máster en Estadística Universidade Pedagógica 2 Tema 2 Datos multivariantes 1 Matrices de datos 2 Datos multivariantes 2 Medias,

Más detalles

Una viga se encuentra sometida a Flexión Pura cuando el momento Flector es la única fuerza al interior de la sección.

Una viga se encuentra sometida a Flexión Pura cuando el momento Flector es la única fuerza al interior de la sección. 3. FLEXÓ E VGS RECTS 3.1.- Conceptos Báscos Una ga se encentra sometda a Fleón Pra cando el momento Flector es la únca fera al nteror de la seccón. Ejemplo: Una ga smplemente apoada de l L solctada por

Más detalles

1. Halla la ecuación de la recta r, sabiendo que pasa por A(1,-2) y B(-1,2)

1. Halla la ecuación de la recta r, sabiendo que pasa por A(1,-2) y B(-1,2) 1. Halla la ecuación de la recta r, sabiendo que pasa por A(1,-2) y B(-1,2) 2. Halla la ecuación de la recta r, sabiendo que es paralela a y=2x-3 y pasa por el punto (1,3). 3. Halla la ecuación de la recta

Más detalles

VECTORES. Copia en un papel cuadriculado los cuatro vectores siguientes:

VECTORES. Copia en un papel cuadriculado los cuatro vectores siguientes: a c VECTORES Página REFLEXIONA Y RESUELVE Mltiplica vectores por números Copia en n papel cadriclado los catro vectores sigientes: d Representa: a a c Expresa el vector d como prodcto de no de los vectores

Más detalles

Problemas de exámenes de Aplicaciones Lineales y Matrices

Problemas de exámenes de Aplicaciones Lineales y Matrices 1 Problemas de exámenes de Aplicaciones Lineales y Matrices 1. Consideramos f End(R n ), que tiene matriz A respecto la base canónica. Cuál de las siguientes afirmaciones es incorrecta? a) Si v es un vector

Más detalles

VECTORES EN EL ESPACIO

VECTORES EN EL ESPACIO VECTORES EN EL ESPACIO (,4,3) MATEMÁTICAS II º Bachillerato Alfonso Gonále IES Fernando de Mena Dpto. de Matemáticas I. DEFINICIONES Módlo: Indica la intensidad, iene dado por la longitd de la flecha

Más detalles

1. Distancia entre puntos y rectas en el espacio. 3. Calcula la distancia existente entre las rectas: Solución: d(r, s) =

1. Distancia entre puntos y rectas en el espacio. 3. Calcula la distancia existente entre las rectas: Solución: d(r, s) = 7 Espacio métrico. Distancia entre puntos y rectas en el espacio Piensa y calcula Dados los puntos A, 4, ) y B5,, 4), halla las coordenadas del vector: AB AB,5,) Aplica la teoría. Calcula la distancia

Más detalles

1. Trace la curva definida por las ecuaciones paramétricas y elimine el parámetro para deducir la ecuación cartesiana de la curva:

1. Trace la curva definida por las ecuaciones paramétricas y elimine el parámetro para deducir la ecuación cartesiana de la curva: 1. Trace la curva definida por las ecuaciones paramétricas y elimine el parámetro para deducir la ecuación cartesiana de la curva: a) x = senθ, y = cosθ, 0 θ π t b), t x = e y = e + 1 c) x = senθ, y =

Más detalles

ANÁLISIS VECTORIAL. Contenido. Magnitudes escalares y vectoriales Definiciones Escalar Vector Sistemas de Coordenadas

ANÁLISIS VECTORIAL. Contenido. Magnitudes escalares y vectoriales Definiciones Escalar Vector Sistemas de Coordenadas ANÁLISIS VECTORIAL Contenido Magnitudes escalares y vectoriales Definiciones Escalar Vector Sistemas de Coordenadas Álgebra vectorial Definiciones Suma/Resta de vectores Producto/Cociente de un escalar

Más detalles

1. Extremos de funciones 2. 2. Parametrización, Triedro de Frenet 21. 3. Coordenadas curvilíneas 34. 4. Integrales de trayectoria y de línea 41

1. Extremos de funciones 2. 2. Parametrización, Triedro de Frenet 21. 3. Coordenadas curvilíneas 34. 4. Integrales de trayectoria y de línea 41 Índice general 1. Extremos de funciones. Parametrización, Triedro de Frenet 1 3. Coordenadas curvilíneas 34 4. Integrales de trayectoria y de línea 41 5. Integrales Iteradas 5 6. Teoremas Integrales 57

Más detalles

TEMA 9 CUERPOS GEOMÉTRICOS

TEMA 9 CUERPOS GEOMÉTRICOS Tel: 98 9 6 91 Fax: 98 1 89 96 TEMA 9 CUERPOS GEOMÉTRICOS Objetivos / Criterios de evaluación O.1.1 Conocer las fórmulas de áreas y volúmenes de figuras geométricas sencillas de D. O.1. Resolver problemas

Más detalles

CÁLCULO VECTORIAL I. B, es un nuevo vector que se define del siguiente modo: Si A ybson (LI), entonces el vector A. B se caracteriza por:

CÁLCULO VECTORIAL I. B, es un nuevo vector que se define del siguiente modo: Si A ybson (LI), entonces el vector A. B se caracteriza por: PRODUCTO VECTORIAL DE DOS VECTORES El producto vectorial de dos vectores A y, y escribimos A, es un nuevo vector que se define del siguiente modo: Si A yson (LI), entonces el vector A se caracteriza por:

Más detalles

Teoría Tema 9 Ecuaciones del plano

Teoría Tema 9 Ecuaciones del plano página 1/11 Teoría Tema 9 Ecuaciones del plano Índice de contenido Determinación lineal de un plano. Ecuación vectorial y paramétrica...2 Ecuación general o implícita del plano...6 Ecuación segmentaria

Más detalles

Espacios vectoriales reales.

Espacios vectoriales reales. Tema 3 Espacios vectoriales reales. 3.1 Espacios vectoriales. Definición 3.1 Un espacio vectorial real V es un conjunto de elementos denominados vectores, junto con dos operaciones, una que recibe el nombre

Más detalles

Sobre funciones reales de variable real. Composición de funciones. Función inversa

Sobre funciones reales de variable real. Composición de funciones. Función inversa Sobre funciones reales de variable real. Composición de funciones. Función inversa Cuando en matemáticas hablamos de funciones pocas veces nos paramos a pensar en la definición rigurosa de función real

Más detalles

Sistem as de ecuaciones lineales

Sistem as de ecuaciones lineales Sistem as de ecuaciones lineales. Concepto, clasificación y notación Un sistema de m ecuaciones lineales con n incógnitas se puede escribir del siguiente modo: a x + a 2 x 2 + a 3 x 3 + + a n x n = b a

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 5 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

Dpto. Física y Mecánica. Sistemas de coordenadas y sistemas de referencia

Dpto. Física y Mecánica. Sistemas de coordenadas y sistemas de referencia Dpto. Física y Mecánica Sistemas de coordenadas y sistemas de referencia La descripción del movimiento de un cuerpo requiere la introducción de un sistema de coordenadas espaciales que identifiquen unívocamente

Más detalles

Ejercicios Resueltos de Cálculo III.

Ejercicios Resueltos de Cálculo III. Ejercicios Resueltos de Cálculo III. 1.- Considere y. a) Demuestre que las rectas dadas se cortan. Encuentre el punto de intersección. b) Encuentre una ecuación del plano que contiene a esas rectas. Como

Más detalles

Tema 4.2 Proyecciones cartográficas: planas. Cartografía I 2º Curso de IT en Topografía 1 er Cuatrimestre 2008/09 EPS Jaén

Tema 4.2 Proyecciones cartográficas: planas. Cartografía I 2º Curso de IT en Topografía 1 er Cuatrimestre 2008/09 EPS Jaén Tema 4.2 Proyecciones cartográficas: planas Cartografía I 2º Curso de IT en Topografía 1 er Cuatrimestre 2008/09 EPS Jaén 1. Concepto 2. Propiedades 3. Clasificación 4. Proyecciones planas 5. Otras proyecciones

Más detalles

NIVEL : 1er. AÑO PROF. L. ALTIMIRAS R. CARRERA : GEOGRAFÍA AYUD. C. ESCOBEDO C. AÑO : 2009 GEOMETRÍA ANALÍTICA

NIVEL : 1er. AÑO PROF. L. ALTIMIRAS R. CARRERA : GEOGRAFÍA AYUD. C. ESCOBEDO C. AÑO : 2009 GEOMETRÍA ANALÍTICA UNIVERSIDAD DE CHILE FACULTAD DE ARQUITECTURA Y URBANISMO ESCUELA DE GEOGRAFÍA DEPARTAMENTO DE CIENCIAS DE LA CONSTRUCCIÓN ASIGNATURA : MATEMATICAS MATERIAL DE APOYO NIVEL : 1er. AÑO PROF. L. ALTIMIRAS

Más detalles

Tarea 1 - Vectorial 201420

Tarea 1 - Vectorial 201420 Tarea - Vectorial 040. Part :. - 3... Hacer parametrización de la curva de intersección del cilindro x + y = 6 y el plano x + z = 5. Encontrar las coordenadas de los puntos de la curva donde la curvatura

Más detalles

1 Curvas planas. Solución de los ejercicios propuestos.

1 Curvas planas. Solución de los ejercicios propuestos. 1 Curvas planas. Solución de los ejercicios propuestos. 1. Se considera el lugar geométrico de los puntos del plano tales que la suma del cuadrado de las distancias a los puntos P 1 = (, 0) y P = (, 0)

Más detalles