Disecciones de Figuras
|
|
|
- María Ángeles Henríquez Espinoza
- hace 9 años
- Vistas:
Transcripción
1 Disecciones de Figuras Construcciones con regla y compás Actualmente se entiende por Matemáticas una amplia variedad de disciplinas: Álgebra, Cálculo Infinitesimal, Cálculo de Probabilidades, Estadística,... dentro de las cuales la Geometría ocupa un lugar destacado aunque no principal. En un principio no era así y era usual identificar Matemáticas y Geometría. En épocas como la griega, la demostración geométrica era la única posible y la única forma de razonar sobre un problema era que los pasos que debían darse para su solución pudieran simularse mediante la utilización de regla y compás. A base de trazar líneas rectas y transportar distancias mediante un compás se pueden empezar a hacer construcciones como: Recta paralela a una dada por un punto exterior, Recta perpendicular a una dada por un punto exterior, División de un ángulo en dos partes iguales, Obtención de un cuadrado de área doble de uno dado,... Cuando aparece el álgebra, siglos después, muchos de estos problemas simplifican su solución y se resuelven otros que habían permanecido abiertos mucho tiempo. Duplicar el área de un cuadrado dado se 2 hace equivalente a resolver la ecuación x = 2, esto es, hallar 2, operación que puede hacerse de forma sencilla con el número de decimales que se precise. De la misma forma, la duplicación del cubo 3 equivale a resolver la ecuación x = 2, esto es hallar 3 2 que se opera de forma análoga. En el primer caso la construcción puede hacerse con regla y compás. En el segundo no. Es más, hay que esperar al siglo XIX para que los trabajos de Abel y Galois demuestren la irresolubilidad del problema de duplicar el cubo con regla y compás. Es claro que la introducción del álgebra que permite asociar las soluciones de un problema con las raíces de un polinomio y los Métodos Numéricos que permiten hallar las raíces de cualquier polinomio con la precisión que se desee quitan algo de interés a las construcciones con regla y compás o a los razonamientos geométricos. Es evidente que se ha perdido el interés práctico pero a costa de perder la belleza que una demostración geométrica tenía. Veamos la elegancia de la resolución de los problemas de la disección del ángulo o la duplicación del cuadrado utilizando exclusivamente regla y compás. isección de un ángulo Tracemos un círculo con centro O para obtener los puntos M, N. Después trazamos círculos iguales centrados en M y N. El punto de corte P nos da la solución. 1
2 Duplicación de un cuadrado Trazamos un círculo de centro D y radio la diagonal del cuadrado dado. El punto obtenido a partir de A y C da la solución. Quizá se aprecie mejor la elegancia de una demostración geométrica dando dos pruebas de la conocida 2 2 igualdad Sin x + Cos x = 1 1 ) - La igualdad es cierta para x= Derivando la función f ( x) = Sen x + Cos x tenemos f '( x) = 2Sen xcos x 2Cos x Sen x = 0 - La función f(x) es pues constante y como f(0)=1 la igualdad queda demostrada 2
3 2 ) En el triángulo rectángulo AC de hipotenusa 1 se tiene a=1 c C x b A c= Senx ; b= Cosx y por el Teorema de Pitágoras sigue la igualdad El interés práctico de problemas como la duplicación del cuadrado si pensamos en reparto de terrenos es clara. Otro tipo de problemas como la duplicación del cubo tienen una componente mas lúdica. En un principio imperaban mas bien consideraciones de tipo místico o religioso El arquitecto romano Vitrubio ( Siglo I d.c.) cuenta en su obra la fascinación que sentía Platon ( ) por dos problemas de enunciados sencillos y que, sin embargo, rompieron las ideas sobre los números de la escuela pitagórica. Uno de ellos era el siguiente: dado un cuadrado, cómo construir otro cuadrado con un área doble? Se dice que Pericles (429 a.c) murió de la peste que se llevó también a una cuarta parte de la población ateniense. Para conjurar el peligro se envió una delegación al oráculo de Apolo en Delos para preguntarle cómo podría desaparecer la peste. El oráculo contestó que era necesario duplicar el altar cúbico dedicado a Apolo. Al parecer, los atenienses duplicaron diligentemente las dimensiones del altar, pero esto no sirvió para detener la peste. El oráculo había exigido la duplicación del volumen del altar, y los atenienses, al duplicar las tres dimensiones por separado, lo habían multiplicado por ocho. En la respuesta a estos dos problemas puede considerarse que se encuentra el origen de los números irracionales Hoy sabemos que muchos de los problemas clásicos no son resolubles con regla y compás, su solución se ha obtenido por otros métodos, quizá poco elegantes pero muy efectivos. En cualquier caso, los intentos de resolución se han plasmado a lo largo de los siglos en la introducción de nuevos conceptos que tenían a su vez su propia problemática. Es típico el estudio e introducción de curvas como herramientas de solución del algún tipo de problemas y cuyas características y belleza les ha hecho tomar carta de naturaleza y vida propia independiente del problema que las introdujo. Veamos como ejemplo la resolución de Arquímedes del problema de la trisección del ángulo mediante el uso de la espiral La Espiral de Arquímedes es la curva formada por los puntos del plano que giran alrededor del origen de forma que se alejan del él una distancia proporcional al ángulo girado. Es la trayectoria que seguiría una persona que avanza con velocidad uniforme desde el centro de un tiovivo hasta su periferia. 3
4 A Trisección del ángulo mediante la Espiral de Arquimedes Espiral de P Arquímedes - Se coloca el ángulo AO a trisecar en unos ejes como los indicados. - Se dibuja una Espiral de Arquímedes partiendo del origen. - Se divide el segmento OP en tres partes iguales - Los puntos M,N dan la trisección de AO P1 P2 N O M Una serie de problemas de tipo geométrico y que, de momento, sólo tienen soluciones de tipo geométrico son los problemas de disección de figuras. Estos problemas relacionados con las teselaciones y las diferentes maneras de cubrir espacios planos tienen un interés al menos lúdico aunque, es claro, que no se deben descartar sus posibles aplicaciones. Veamos alguno. Se trata de diseccionar un cuadrado y reorganizar los trozos obtenidos para formar otra figura: Una cruz Griega, una cruz latina, un octógono,... 4
5 Disección de un cuadrado en una T La disección del cuadrado MNFH da la te ACDEFGH A M H G D C N F E Como vemos en el ejercicio anterior, la solución es puramente artesanal. Los ejemplos que siguen sistematizan un poco más la búsqueda de solución a base de considerar cubriciones del plano Disección de un cuadrado en un octógono regular 5
6 cuadrado en Disección una cruz de un griega cuadrado en una cruz griega Disección de un cuadrado en una cruz latina - El cuadrado equivalente a la cruz tiene área 6 y su lado será raiz de seis A Q M P N C A' P' Q' ' C' M' N' 6
Construcciones con regla y compás
Universidad de Buenos Aires - CONICET Semana de la Matemática - 2009 Algunos ejemplos Vamos a hacer algunos dibujos usando un papel, un lápiz, un compás y una regla sin medidas marcadas. Algunos ejemplos
ORIGAMI. Herramienta didáctica para la enseñanza de la Geometría. Carmen Alexandra Reyes P. I Foro Internacional de Matemáticas
ORIGAMI Herramienta didáctica para la enseñanza de la Geometría Carmen Alexandra Reyes P. I Foro Internacional de Matemáticas Universidad SurUnUniversidad Sur Colombiana. Neiva Pensamiento espacial y sistemas
PRUEBA EXTAORDINAORIA DE SEPTIEMBRE DE 2014 CONTENIDOS MÍNIMOS DE MATEMÁTICAS
IES SAN BENITO PRUEBA EXTAORDINAORIA DE SEPTIEMBRE DE 2014 CONTENIDOS MÍNIMOS DE MATEMÁTICAS MATEMÁTICAS 1º ESO *SISTEMA DE NUMERACIÓN DECIMAL. N OS NATURALES. POTENCIAS Y RAICES Ordenación de los números
I.E.S. El Galeón Curso CONTENIDOS MÍNIMOS MATEMÁTICAS 1º E.S.O.
Números naturales y enteros: -Comparar y ordenar números. -Representar en la recta. MATEMÁTICAS 1º E.S.O. -Realización de las cuatro operaciones (suma, resta, multiplicación y división) -Potencias con
Números. 1. Definir e identificar números primos y números compuestos.
MINIMOS DE MATEMÁTICAS DE 2º DE E.S.O. 1. Divisibilidad Números 1. Definir e identificar números primos y números compuestos. 2. Manejar con soltura el vocabulario propio de la divisibilidad: a es múltiplo/divisor
001. Interpreta correctamente códigos (teléfonos, matrículas, NIF ).
1.6 Criterios específicos de evaluación. 001. Interpreta correctamente códigos (teléfonos, matrículas, NIF ). 002. Calcula el total de elementos que se puedan codificar con una determinada clave. 003.
TRISECCIÓN DEL ÁNGULO RECTO
Introducción Los tres problemas que más preocuparon a los griegos desde que aquella ciencia empezó a Construirse racionalmente; son: la duplicación del cubo, la trisección del ángulo y la cuadratura del
Unidad didáctica 2. Trazados básicos
Unidad didáctica 2. Trazados básicos 2.1 Paralelas, perpendiculares y ángulos 2.1.1 Trazado de paralelas 1. Se coloca la hipotenusa de la escuadra sobre la línea a la que se quieren trazar paralelas. 2.
relacionados con la vida cotidiana en los que intervenga la proporcionalidad directa o inversa.
OBJETIVOS MÍNIMOS 1. Identificar los múltiplos y divisores de un número. 2. Descomponer un número en factores primos. Calcular el M.C.D. y el M.C.M. 3. Realizar operaciones aritméticas con números enteros.
Triplicar un ángulo. Triplicar un ángulo con regla y compas es posible, veamos, sea XOY un ángulo
Triplicar un ángulo Los Griegos fueron los primeros en utilizar la regla y el compás como instrumentos de trazo en las construcciones geométricas, aunque fueron rápidamente detenidos por problemas de construcción
La Geometría del triángulo TEMA 4
La Geometría del triángulo TEMA 4 Teoremas de Triángulos Rectángulos Diana Barredo Blanco Profesora de Matemáticas I.E.S. Luis de Camoens (CEUTA) En este tema vamos a estudiar los teoremas o resultados
CONTENIDOS MÍNIMOS MATEMÁTICAS 2º Y 4º E.S.O.
CONTENIDOS MÍNIMOS MATEMÁTICAS 2º Y 4º E.S.O. Matemáticas 2º E.S.O. a) Contenidos comunes. Utilizar estrategias y técnicas sencillas en la resolución de problemas. b) Números. Conocer los conceptos de
MATEMÁTICAS Y SU DIDÁCTICA
MATEMÁTICAS Y SU DIDÁCTICA ESCUELA UNIVERSITARIA DE MAGISTERIO SAGRADO CORAZÓN UNIVERSIDAD DE CÓRDOBA Curso académico: 2011 2012 ACTIVIDADES DE GEOMETRÍA TRABAJO EN GRUPO Las siguientes actividades se
Cuadriláteros y circunferencia
CLAVES PARA EMPEZAR Un triángulo isósceles tiene dos lados iguales: b c. Como es rectángulo, se cumple el teorema de Pitágoras: 10 2 b 2 b 2 100 2b 2 b 7,07. Los dos lados miden 7,07 cm cada uno. r A C
Departamento de Álgebra, Universidad de Málaga. Ejercicios de. Relación 3. Extensiones finitas y algebraicas. 18 de octubre de 2010.
Departamento de Álgebra, Geometría y Topología. Universidad de Málaga. Ejercicios de Álgabra lásica Relación 3. Extensiones finitas y algebraicas. 8 de octubre de 200. Profesor de la asignatura: José ntonio
Introducción a la geometría
Introducción a la geometría Este curso cubre los siguientes temas. Usted puede personalizar la gama y la secuencia de este curso para satisfacer sus necesidades curriculares. Plan de estudios (217 temas)
Guía didáctica 1º TRIMESTRE CRITERIOS DE EVALUACIÓN
Guía didáctica 1º TRIMESTRE BL2.1. Interpretar los números naturales, enteros, fraccionarios, decimales y porcentajes sencillos, y sus propiedades (orden, recta real, divisibilidad, etc.) y utilizarlos
Proyecto. Tema 6 sesión 2: Generación de Rectas, Circunferencias y Curvas. Geometría Analítica. Isidro Huesca Zavaleta
Geometría Analítica Tema 6 sesión 2: Generación de Rectas, Circunferencias y Curvas Isidro Huesca Zavaleta La Integración de dos Ciencias La Geometría Analítica nació de la integración de dos ciencias
1º ESO B Contenidos para la convocatoria extraordinaria de septiembre
1º ESO B 2011-2012 Contenidos para la convocatoria extraordinaria de septiembre U1 Los números naturales Lectura y escritura de números Aproximación por redondeo Resolver problemas con números naturales
Modulo de aprendizaje de matemática. Semejanza de figuras planas.
Modulo de aprendizaje de matemática. Semejanza de figuras planas. Concepto de semejanza. EJEMPLO. Dos polígonos convexos son semejantes si tienen la misma forma con diferentes dimensiones. Diremos que
TEMA 6 SEMEJANZA. APLICACIONES -
TEMA 6 SEMEJANZA. APLICACIONES - 1. SEMEJANZA: ESCALAS LECCIÓN I ESCALA: es el cociente entre cada longitud de reproducción (mapa, plano, maqueta) y la correspondiente longitud en la realidad. Es, por
MATERIA: MATEMÁTICAS CURSO: CONTENIDOS MÍNIMOS EXTRACTO DE LA PROGRAMACIÓN DIDÁCTICA IES VEGA DEL TÁDER 2º ESO
MATERIA: MATEMÁTICAS CURSO: 2º ESO CONTENIDOS MÍNIMOS NÚMEROS. Relación de divisibilidad. Descomposición de un número natural en factores primos y cálculo del máximo común divisor y del mínimo común múltiplo
1. Definir e identificar números primos y números compuestos.
1. Divisibilidad 1. Definir e identificar números primos y números compuestos. 2. Manejar con soltura el vocabulario propio de la divisibilidad: a es múltiplo/ divisor de b, a es divisible por b, a divide
MATEMÁTICAS Y SU DIDÁCTICA
MATEMÁTICAS Y SU DIDÁCTICA ESCUELA UNIVERSITARIA DE MAGISTERIO SAGRADO CORAZÓN UNIVERSIDAD DE CÓRDOBA Curso académico: 2009 2010 ACTIVIDADES DE GEOMETRÍA TRABAJO EN GRUPO Las siguientes actividades se
Gobierno de La Rioja MATEMÁTICAS CONTENIDOS
CONTENIDOS MATEMÁTICAS 1.- Números reales Distintas ampliaciones de los conjuntos numéricos: números enteros, números racionales y números reales. Representaciones de los números racionales. Forma fraccionaria.
Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales.
Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Los segmentos se determinan por su longitud. Supongamos que tenemos dos
Contenidos Mínimos de Taller de Matemáticas de Primer Curso. - Concepto y definición del número natural como cardinal de conjuntos coordinables.
Contenidos Mínimos de Taller de Matemáticas de Primer Curso Bloque 2. Números Números naturales. - Concepto y definición del número natural como cardinal de conjuntos coordinables. - Números naturales
Contenidos mínimos 1º ES0. 1. Contenidos. Bloque I: Aritmética y álgebra.
Contenidos mínimos 1º ES0. 1. Contenidos. Bloque I: Aritmética y álgebra. 1. Resolver expresiones con números naturales con paréntesis y operaciones combinadas. 2. Reducir expresiones aritméticas y algebraicas
CONTENIDOS MÍNIMOS BLOQUE 2. NÚMEROS
CONTENIDOS Y CRITERIOS DE EVALUACIÓN DE MATEMÁTICAS 1º DE ESO. Bloque 1: Contenidos Comunes Este bloque de contenidos será desarrollado junto con los otros bloques a lo largo de todas y cada una de las
13Soluciones a los ejercicios y problemas PÁGINA 250
PÁGINA 50 Pág. 1 Á REAS Y PERÍMETROS DE FIGURAS SENCILLAS Halla el área y el perímetro de las figuras coloreadas de los siguientes ejercicios: 1 a) b) 5 dm 4 cm cm 5 cm 8 cm a) 5 5 dm b) 8 8 cm P 5 4 0
1. Los números racionales. 2. Operaciones con racionales. 3. Clasificación de los decimales. 4. Irracionales. (representación, orden).
EJES ARTICULADORES Y PRODUCTIVOS DEL AREA SISTEMA DE CONOCIMIENTOS GRADO: 8 9 1. Los números racionales. 2. Operaciones con racionales. 3. Clasificación de los decimales. 1. Los números reales. 2. Notación
GEOMETRÍA PLANA 3º E.S.O. Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados.
GEOMETRÍA PLANA 3º E.S.O. POLÍGONO.- Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados. El triángulo (tres lados), el cuadrilátero (cuatro lados), el
Ámbito Científico-Tecnológico Módulo III Bloque 4 Unidad 6 Eres mi semejante?
Ámbito Científico-Tecnológico Módulo III Bloque 4 Unidad 6 Eres mi semejante? Cuántas veces nos hemos parado a pensar, esas dos personas mira que se parecen, casi son igualitas! De igual manera, cuando
III Congreso Iberoamericano de Cabri IBEROCABRI
III Congreso Iberoamericano de Cabri IBEROCABRI - 2006 NÚMEROS CONSTRUÍBLES Carlos Mario Cárdenas Mazenet Universidad Nacional de Colombia - Sede Medellín Resumen Desde la época clásica de los griegos,
01. Identifica, en un conjunto de números, los que son enteros.
3.3.4 Criterios específicos de evaluación. 01. Identifica, en un conjunto de números, los que son enteros. 02. Coloca distintos números naturales y enteros en un diagrama que representa a los conjuntos
INDICE Capitulo 1. Expresiones y Ecuaciones: Suma y Resta Actividad con calculadora Matemática mental De los números al álgebra Matemática mental
INDICE Capitulo 1. Expresiones y Ecuaciones: Suma y Resta 1.1. Variables y expresiones 2 1.2. Solución de problema: planteamiento de expresiones. Traducción de 6 frases a expresiones algebraicas 1.3. Propiedades
MYP (MIDDLE YEARS PROGRAMME)
MYP (MIDDLE YEARS PROGRAMME) 2014-2015 Fecha 19/05/2015 APUNTES DE GEOMETRÍA 2º ESO 1. EL TEOREMA DE PITÁGORAS El teorema de Pitágoras establece que en todo triángulo rectángulo, el cuadrado de la hipotenusa
CURSO CONTENIDOS MÍNIMOS U1: NÚMEROS NATURALES. U2: POTENCIA Y RAÍCES.
CURSO 2015-2016. ASIGNATURA: MATEMATICAS CURSO-NIVEL: 1º ESO CONTENIDOS MÍNIMOS U1: NÚMEROS NATURALES. Origen y evolución de los números. Sistemas de numeración aditivos y posicionales. El conjunto de
El curso está dividido en tres evaluaciones, de acuerdo con la programación general del Colegio, temporalizados así:
b) Distribución temporal de las unidades didácticas El curso está dividido en tres evaluaciones, de acuerdo con la programación general del Colegio, temporalizados así: 1ª EVALUACIÓN Tema 1 Tema 2 Tema
Seminario de problemas Curso Soluciones HOJA 4
Seminario de problemas Curso 04-5 Soluciones HOJA 4. Sea ABCD un trapecio cuya base mayor es AB. Las diagonales AC y BD se cortan en el punto P. Si llamamos respectivamente A, A, A y A a las áreas de los
Geometría Conceptos básicos Elementos de Geometría. 1. Por un punto fuera de una recta pasa una única paralela a esa recta.
Geometría Conceptos básicos Elementos de Geometría Debido a que los conceptos de Geometría están siempre presente en Matemáticas, Física e Ingeniería, se hará un repaso de estas materias y se presentará
PROGRAMACIÓN DE AULA WEB TALLER DE MATEMÁTICAS 1º ESO
PROGRAMACIÓN DE AULA WEB TALLER DE MATEMÁTICAS 1º ESO Unidad 1: Operaciones con números naturales La suma de números naturales. La resta de números naturales. La multiplicación de números naturales. La
1. Divisibilidad y números enteros
CURSO 2015-2016. ASIGNATURA: MATEMATICAS CURSO-NIVEL: 2º ESO CONTENIDOS MÍNIMOS 1. Divisibilidad y números enteros La relación de divisibilidad. - Múltiplos y divisores: - Los múltiplos de un número. -
Preparación para Álgebra 1 de Escuela Superior
Preparación para Álgebra 1 de Escuela Superior Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios institucionales
CRITERIOS DE EVALUACIÓN
DEPARTAMENTO DE MATEMATICAS IES ROSA CHACEL (Colmenar Viejo) Criterios de evaluación y criterios de calificación Recuperación de Matemáticas. 2º de E.S.O. CRITERIOS DE EVALUACIÓN RESOLUCIÓN DE PROBLEMAS
Matemáticas Currículum Universal
Matemáticas Currículum Universal Índice de contenidos 08-11 años 2013-2014 Matemáticas 08-11 años USOS DE LOS NÚMEROS NATURALES Reconocer la utilidad de los números naturales para contar y ordenar elementos.
Juegos Matemáticos. Introducción
Juegos Matemáticos CUADRATURAS DE POLÍGONOS REGULARES Introducción Si nos remontamos en la historia de la matemática hasta llegar a los antiguos griegos, nos encontramos con que en esa época los maestros
Introducción. Este trabajo será realizado con los siguientes fines :
Introducción Este trabajo será realizado con los siguientes fines : Aprender mas sobre la geometría analítica. Tener mejores conceptos sobre ella ; los cuales me pueden ayudar con las pruebas ICFES. Otro
Criterios de evaluación Matemáticas - B de 4º de ESO
UNIDAD Criterios de evaluación Matemáticas - B de 4º de ESO CRITERIOS GENERALES Unidad 1: Números reales - Dominar la expresión decimal de un número o una cantidad y calcular o acotar los errores absoluto
Colegio Militar Eloy Alfaro Nombre Del Macroproceso: GESTION EDUCATIVA COLEGIO MILITAR ELOY ALFARO UNIDAD EDUCATIVA EXPERIMENTAL
Colegio Militar Eloy Alfaro Nombre Del Macroproceso: GESTION EDUCATIVA Nombre Del Proceso PLANIFICACIÓN Fecha: 1-09-2008 Código: C01-2.1-02-00-00-P01 Versión:1.0 Página: 1 de 13 UNIDAD DIDACTICA No. 1
CONTENIDOS DIAGNÓSTICO DE ADMISIÓN 5º BÁSICO
CONTENIDOS DIAGNÓSTICO DE ADMISIÓN 5º BÁSICO Números Naturales Leer, escribir y ordenar Descomponer en forma aditiva. Operatoria básica en los naturales (suma resta, multiplicación y división) Resolución
Tutoría Completa - Curso de Matemática para 1, 2 y 3 Básico
Tutoría Completa - Curso de Matemática para 1, 2 y 3 Básico Contenido 1 Básico 1. Proposiciones y cuantificadores a. Proposiciones b. Negación c. Conjunción d. Disyunción e. Condicional f. Doble condicional
El ejercicio de la demostración en matemáticas
El ejercicio de la demostración en matemáticas Demostración directa En el tipo de demostración conocido como demostración directa(hacia adelante) se trata de demostrar que A B partiendo de A y deduciendo
PÁGINA 88. Pág. 1. Unidad 9. Problemas métricos en el plano
Soluciones a las actividades de cada epígrafe PÁGINA 88 1 En los siguientes triángulos rectángulos, se dan dos catetos y se pide la hipotenusa (si su medida no es eacta, dala con una cifra decimal): a)
ÁREA DE MATEMÁTICAS 2º CURSO DE LA E.S.O.
2. Reconocer y plantear situaciones susceptibles de ser formuladas en términos matemáticos, elaborar y utilizar diferentes estrategias para abordarlas y analizar los resultados utilizando los recursos
- Resolver problemas que involucren probabilidad clásica, unión e intersección de dos eventos
ANGLO AMERICAN INTERNATIONAL SCHOOL ÁREA DE CIENCIAS, MATEMÁTICAS Y SALUD La formulación de un problema, es más importante que su solución Los Refugios del Arrayan 1653. Fonos 23215497-23215480 [email protected]
UNIDAD 7. SISTEMA MÉTRICO DECIMAL
UNIDAD 7. SISTEMA MÉTRICO DECIMAL Reconocer la necesidad de medir, apreciar la utilidad de los instrumentos de medida y conocer los más importantes. Definir el metro como la unidad principal de longitud,
IES FONTEXERÍA MUROS. 18-X-2013 Nombre y apellidos:...
IES FONTEXERÍA MUROS MATEMÁTICAS 2º E.S.O-A (Desdoble 1) 1º Examen (1ª Evaluación) 18-X-201 Nombre y apellidos:... 1. Contesta estas cuestiones: a) Qué es un monomio?. Un monomio es una expresión algebraica
Criterios de evaluación 3º de ESO. Matemáticas Orientadas a las Enseñanzas Aplicadas
CONCRECCIÓN de los CRITERIOS de EVALUACIÓN MATEMÁTICAS APLICADAS º ESO Teniendo en cuenta los criterios de evaluación correspondientes a esta materia, se realizan a continuación una concreción de dichos
CONTENIDOS MINIMOS DE REFUERZO DE MATEMATICAS DE 2º DE ESO 1 Los números naturales
CONTENIDOS MINIMOS DE REFUERZO DE MATEMATICAS DE 2º DE ESO 1 Los números naturales Los números naturales El sistema de numeración decimal : Órdenes de unidades. Equivalencias. números grandes. Millones.
EJERCICIOS DE LOS TEMAS 9 y 10.GEOMETRÍA
1.- Dos triángulos ABC y A C son semejantes y la razón de semejanza entre el primero y el segundo es,4. Calcula las longitudes de los lados que faltan sabiendo que AB = 0 cm, BC = 15 cm y A C = 10 cm.
GEOMETRIA Y TRIGONOMETRÍA PRIMER PARCIAL
GEOMETRIA Y TRIGONOMETRÍA PRIMER PARCIAL INVESTIGAR LOS SIGUIENTES CONCEPTOS Y DEFINICIONES UTILIZADOS EN LA GEOMETRIA PLANA 1.- Explicar Qué es la demostración en geometría? 2.- Explicar Qué es un Teorema?
RESPUESTAS. Examen UNI 2015 I. Matemática
RESPUESTAS Examen UNI 05 I Matemática Pregunta 0 Semanalmente, un trabajador ahorra cierta cantidad en soles, y durante 0 semanas ahorra las siguientes cantidades: 5 9 8 8 5 6 7 7 7 9 9 6 8 6 6 0 8 9 5
CURSO CONTENIDOS MÍNIMOS. Los números naturales. Operaciones y problemas. Cálculo y operaciones de potencias y raíces cuadradas.
CURSO 2009-2010 DEPARTAMENTO: MATEMÁTICAS CURSO: 1º ESO ÁREA: MATEMÁTICAS Los números naturales. Operaciones y problemas. Cálculo y operaciones de potencias y raíces cuadradas. Cálculo del m.c.d. y m.c.m.
Academia de Matemáticas T.M Geometría Analítica Página 1
INSTITUTO POLITECNICO NACIONAL CENTRO DE ESTUDIOS CIENTIFICOS Y TECNOLOGICOS 10. CARLOS VALLEJO MÁRQUEZ PROBLEMARIO DE GEOMETRIA ANALITICA Distancia entre puntos 1.- Determina la distancia entre los puntos
RAZONAMIENTO GEOMÉTRICO
RAZONAMIENTO GEOMÉTRICO Fundamentos de Matemáticas I Razonamiento geométrico Video Previo a la actividad: Áreas y perímetros de cuerpos y figuras planas Video Previo a la actividad: Áreas y perímetros
Cuadratura. Cuadratura del Rectángulo
Denición 1. : en Geometría, determinación de un cuadrado equivalente en supercie a una gura geométrica dada. del Rectángulo Lema 1. el segmento CD de la gura es la media geométrica de AC y CB, es decir
Aplicarán conocimientos básicos de probabilidad
Materia: MATEMÁTICA Año: 10º AÑO DE EDUCACIÓN BÁSICA BREVE DESCRIPCIÓN DE LA CLASE: Formar entre el profesor y los alumnos una comunidad de trabajo por medio de la creatividad y estructura de los conocimientos
La Geometría del triángulo TEMA 5
La Geometría del triángulo TEMA 5 Teoremas de Triángulos No Rectángulos Diana Barredo Blanco Profesora de Matemáticas I.E.S. Luis de Camoens (CEUTA) En este tema vamos a estudiar resultados que pueden
GEOMETRIA Y TRIGONOMETRÍA PRIMER PARCIAL
GEOMETRIA Y TRIGONOMETRÍA PRIMER PARCIAL INVESTIGAR LOS SIGUIENTES CONCEPTOS Y DEFINICIONES UTILIZADOS EN LA GEOMETRIA PLANA 1.- Explicar Qué es la demostración en geometría? 2.- Explicar Qué es un Teorema?
UNIDAD 1: DIVISIBILIDAD Y NÚMEROS ENTEROS
UNIDAD 1: DIVISIBILIDAD Y NÚMEROS ENTEROS 1. *Representar números enteros sobre la recta numérica, compararlos y ordenarlos. 2. *Sumar y restar números enteros teniendo en cuenta el signo que presentan.
TEMARIO EXAMEN DIAGNÓSTICO INICIAL ADMISIÓN MATEMÁTICA
POSTULACIÓN A PRIMER AÑO MEDIO N 1.- Resolver operaciones con números, ecuaciones y potencias. N 2.- Aplicar transformaciones isométricas y teselaciones. N 3.- Evaluar problemas de cálculo de perímetro
Colegio Nacional Rafael Hernández
Programa de Matemática de 3º año Ciclo lectivo 2014 HILOS CONDUCTORES Colegio Nacional Rafael Hernández Ángulos entre rectas, nuevos ángulos? El álgebra y la geometría: dos caras de una misma moneda. Más
MATEMÁTICAS 1º ESO CRITERIOS DE EVALUACIÓN
MATEMÁTICAS 1º ESO CRITERIOS DE EVALUACIÓN Números naturales Escribir números en el sistema de numeración romano. Aplicar las propiedades fundamentales de la multiplicación. Diferenciar entre división
Colegio Decroly Americano Matemática 7th Core, Contenidos I Período
Matemática 7th Core, 2015-2016 Contenidos I Período 1. Sentido Numérico a. Identificar y escribir patrones. b. Escribir números en forma de exponentes. c. Escribir cantidades en notación científica. d.
Á REAS Y PERÍMETROS DE FIGURAS SENCILLAS
Pág. 1 Á REAS Y PERÍMETROS DE FIGURAS SENCILLAS Halla el área y el perímetro de las figuras coloreadas de los siguientes ejercicios: 1 a) b) 5 dm 4 cm 2 cm 5 cm 8 cm 2 a) b) 5 m 8 m 17 m 15 m 3 a) b) 5
Indicadores Operaciones básicas
EDUCACIÓN PRIMARIA Nivel primero Ciclo I de Educación Primaria 1. Series crecientes. 2. Series decrecientes. 3. Completar series. 4. Ordenar series de números (menor a mayor). 5. Ordenar series de números
DEPARTAMENTO DE MATEMATICAS IES ROSA CHACEL (Colmenar Viejo) Criterios de evaluación y criterios de calificación Matemáticas. 1º de E.S.O.
DEPARTAMENTO DE MATEMATICAS IES ROSA CHACEL (Colmenar Viejo) Criterios de evaluación y criterios de calificación Matemáticas. 1º de E.S.O. CRITERIOS DE EVALUACIÓN Los siguientes criterios de evaluación
PROGRAMA DE REFUERZO 3º Evaluación
COLEGIO INTERNACIONAL SEK EL CASTILLO DEPARTAMENTO DE MATEMÁTICAS PROGRAMA DE REFUERZO 3º Evaluación MATEMÁTICAS 3º de E.S.O. ALUMNO: Ref E3.doc3 Página 1 Matemáticas 3º ESO MATEMÁTICAS 3º E.S.O. (010/011)
13. Utilizar la fórmula del término general y de la suma de n términos consecutivos
Contenidos mínimos 3º ESO. 1. Contenidos. Bloque I: Aritmética y álgebra. 1. Utilizar las reglas de jerarquía de paréntesis y operaciones, para efectuar cálculos con números racionales, expresados en forma
Cuadratura. Cuadratura del Rectángulo
Introducción 1 Cuadratura Denición 1. Cuadratura: en Geometría, determinación de un cuadrado equivalente en supercie a una gura geométrica dada. Cuadratura del Rectángulo Lema 1. el segmento CD de la gura
Remedial Unidad N 3 Matemática Octavo Básico 2017
Remedial Unidad N 3 Matemática Octavo Básico 2017 GUÍA DE TRABAJO REMEDIAL N 1 UNIDAD N 3 Nombre Curso 8 año básico Fecha Objetivo Comprender el Teorema de Pitágoras y lo aplica en la resolución de problemas
MATEMÁTICA 1º año. UNIDAD Nº 1 : Números Naturales y Números Enteros.
MATEMÁTICA 1º año Departamento: Ciencias Exactas Profesora: Patricia I. Lastra O. de Castro y Rojas Año: 2013 OBJETIVOS DE LA ASIGNATURA: Que los alumnos conozcan las propiedades de los números enteros
CONTENIDOS: ALGEBRA. 1. SISTEMA DE LOS NÚMEROS REALES
UNIVERSIDAD TÉCNICA DE MANABÍ FACULTAD DE CIENCIAS INFORMÁTICAS CARRERA DE INGENIERÍA EN SISTEMAS INFORMÁTICOS CONTENIDOS DE MATEMÁTICAS PARA LA PRUEBA DE CONOCIMIENTOS OBJETIVO: Diagnosticar los conocimientos
HOJA DE TRABAJO 2. Construyendo las identidades Pitagóricas
INSTITUCIÓN EDUCATIVA RURAL GIOVANNI MONTINI Vereda Colombia Km 41 GUIA DIDÁCTICA CÓDIGO VERSIÓN PÁGINA GAPP01 01 1 de 5 HOJA DE TRABAJO 2. Construyendo las identidades Pitagóricas Nombre del estudiante:
FICHAS DE PRÁCTICAS 1ºBACHILLERATO MATEMÁTICAS
FICHAS DE PRÁCTICAS 1ºBACHILLERATO MATEMÁTICAS UNIDAD DIDÁCTICA : ÁLGEBRA Y ARITMÉTICA 04.- Inecuaciones Duración Estimada: 1,5 h Capacidad Terminal Comprender plantear y solucionar inecuaciones de primer
4. UNIDAD DIDÁCTICA 4: FORMAS GEOMÉTRICAS II
4. UNIDAD DIDÁCTICA 4: FORMAS GEOMÉTRICAS II En el tema anterior empezamos a conocer lo más básico de las formas geométricas. En este tema vamos a aprender a trazar otras formas un poco más complejas,
Unidad Didáctica 8. Dibujo Geométrico
Unidad Didáctica 8 Dibujo Geométrico 1.- Tazados Geométricos Básicos Trazados Rectas Paralelas Rectas paralelas. Las que no llegan nunca a cortarse, o se cortan en el infinito. Con Escuadra y Cartabón:
DISTANCIA ENTRE DOS PUNTOS EN EL PLANO CARTESIANO.
RAZONAMIENTO Y DEMOSTRACIÓN Determina la distancia entre pares de puntos. Calcula las coordenadas del punto medio del segmento cuyos extremos son dos puntos dados. Halla la pendiente de una recta. COMUNICACIÓN
Contenidos Mínimos de 1º ESO Matemáticas 1º E.S.O.
Contenidos Mínimos de 1º ESO Matemáticas 1º E.S.O. - Realizar operaciones básicas con números naturales. - Resolver problemas aritméticos con números naturales. - Calcular potencias y raíces cuadradas
El teorema de Euclides tiene dos enunciados que conocemos con los nombres de teorema del cateto y teorema de la altura.
El teorema de Euclides tiene dos enunciados que conocemos con los nombres de teorema del cateto y teorema de la altura. Teorema del cateto: El cateto de un triángulo rectángulo es media proporcional entre
TEOREMA DE PITÁGORAS
TEOREMA DE PITÁGORAS 1. Triángulos rectángulos. Teorema de Pitágoras.. Demostraciones visuales del Teorema de Pitágoras. 3. Ternas pitagóricas. 4. Aplicaciones del teorema de Pitágoras. 4.1.Conocidos los
ACTIVIDADES DE GEOMETRÍA PARA 4º ESO DE EPV Nombre y apellidos:
ACTIVIDADES DE GEOMETRÍA PARA 4º ESO DE EPV Nombre y apellidos: Curso: TEMA 1: TRAZADOS BÁSICOS. 1. RECTAS PARALELAS Las rectas paralelas son aquellas que por mucho que las prolongues nunca se van a cortar.
ÍNDICE RECUPERACIÓN DE MATEMÁTICAS 1º ESO..1 RECUPERACIÓN DE MATEMÁTICAS 2º ESO..4 RECUPERACIÓN DE MATEMÁTICAS 3º ESO..8
ÍNDICE RECUPERACIÓN DE MATEMÁTICAS 1º ESO..1 RECUPERACIÓN DE MATEMÁTICAS 2º ESO..4 RECUPERACIÓN DE MATEMÁTICAS 3º ESO..8 RECUPERACIÓN DE MATEMÁTICAS 1º ESO CONTENIDOS Números, medidas y operaciones Números
UNIDAD 6: ECUACIONES OBJETIVOS
UNIDAD 6: ECUACIONES Conocer los conceptos de ecuación, así como la terminología asociada. Identificar y clasificar los distintos tipos de ecuaciones polinómicas en función de su grado y número de incógnitas.
Los elementos básicos de la Geometría Plana son el punto, la línea, y el plano.
GEOMETRÍA PLANA Dibujo Geométrico La geometría es la parte de las matemáticas que estudia las propiedades y las medidas de las figuras planas y tridimensionales en el espacio. La palabra procede de dos
