PRÁCTICA 4.- Integración de funciones de una variable real
|
|
|
- Ana Isabel Mora Prado
- hace 9 años
- Vistas:
Transcripción
1 PRÁCTICA.- Integración de funciones de una variable real.- Integración con Mathematica. Integrales indefinidas, integrales definidas Mathematica nos permite calcular integrales mediante la instrucciones: Integrate[expresión, variable] Calcula la integral indefinida de la expresión dada con respecto a la variable indicada Integrate[expresión,{variable,a,b}] Calcula la integral definida de la expresión dada con respecto a la variable indicada en el intervalo [a,b]. Ambas instrucciones pueden también indicarse directamente mediante los símbolos: Ÿ Ñ Ñ (integral indefinida) Ÿ Ñ Ñ Ñ Ñ (integral definida) que figuran en la paleta BasicInput. In[]:= Out[]= IntegrateAx x + 7, xe 7x x + x In[]:= Ix x + 7M x Out[]= In[]:= 7x x + x Integrate@Sin@xD, 8x, π, π<d Out[]= π In[]:= π Out[]= Sin@xD x. Integrales impropias Para calcular integrales impropias aplicamos la definición correspondiente.
2 Practica_Integracion.nb Ejemplo Calcular las siguientes integrales al -x x Aplicando la definición: t In[5]:= x x Out[5]= In[6]:= t LimitA t,t E Out[6]= Directamente con el Mathematica: In[7]:= x x Out[7]= La integral es convergente. bl x - x Aplicando la definición: In[8]:= Out[8]= In[9]:= Out[9]= t FullSimplifyB x, < t < F x ArcSin@tD Limit@ArcSin@tD, t, Direction D π Directamente con el Mathematica: In[]:= x x Out[]= π La integral es convergente. cl x - x Aplicando la definición : In[]:= t FullSimplifyB x, < t < F x Out[]= LogB t F
3 Practica_Integracion.nb In[]:= LimitBLogB t F,t, Direction F Out[]= La integral es divergente. Directamente con el Mathematica: In[]:= x x Integrate::idiv : Integral of Out[]= + x x does not converge on 8, <. à - + x. Valor aproximado de una integral Mathematica tiene sus limitaciones a la hora de calcular ciertas integrales. De hecho, no siempre es capaz de darnos el valor exacto de una integral y en ocasiones dicho resultado viene expresado en términos de ciertas funciones especiales que el programa tiene definidas. Sin embargo, en ambas situaciones podemos pedirle que nos dé un valor aproximado de la integral. Para que nos dé el valor aproximado de una integral podemos utilizar el comando N o la instrucción específica NIntegrate pero es importante saber que la forma de operar es muy distinta. Veamos unos ejemplos: Si intentamos hallar la siguiente integral In[]:= x x Out[]= π Erf@D El resultado exacto que nos devuelve Mathematica viene expresado en términos de la función especial Erf (función error) y está definida en la forma Erf(z)= Ÿ p z -z z Para obtener un valor aproximado usamos las dos instrucciones anteriores: In[5]:= NB Out[5]=.965 x xf In[6]:= NIntegrateA x, 8x,, <E Out[6]=.965 Aunque el resultado mostrado por las instrucciones anteriores es el mismo, hemos de indicar que la forma de operar es bien distinta: N[Ÿ - -x x] Fuerza al programa a calcular el valor exacto de la integral y a continuación nos muestra un valor aproximado. NIntegrate[ -x, 8x, -, <E Aplica fórmulas de integración numérica para calcular directamente un valor aproximado de la integral.
4 Practica_Integracion.nb.- Aplicaciones de la integral. Cálculo de áreas de recintos planos Mathematica permite visualizar al área limitada por dos curvas y = f (x) e y = g(x) en el intervalo [a,b], mediante la instrucción FilledPlot, cuya sintaxis es la siguiente: FilledPlot[{f[x],g[x]},{x,a,b}] Visualiza el área limitada por las curvas y = f (x) e y = g(x) en el intervalo [a,b]. FilledPlot[f[x],{x,a,b}] Visualiza el área limitada por las curva y = f (x) y el eje OX en el intervalo [a,b]. Para utilizar al instrucción FilledPlot hay que cargar el paquete Graphics`FilledPlot` << Graphics`FilledPlot` Ejemplo a) Calcular el área limitada por la parábola y = x - xyel eje OX en el D Definimos la función y cargamos el paquete Graphics`FilledPlot` In[7]:= Clear@"Global` "D f@x_d := x x << Graphics`FilledPlot` General::obspkg : Graphics`FilledPlot` is now obsolete. The legacy version being loaded may conflict with current Mathematica functionality. See the Compatibility Guide for updating information. à t::shdw : Symbol t appears in multiple contexts 9Graphics`FilledPlot`, Global`=; definitions in context Graphics`FilledPlot` may shadow or be shadowed by other definitions. à Visualizamos el área que queremos calcular In[]:= FilledPlot@f@xD, 8x,, <D Out[]= Calculamos los puntos de corte con el eje OX
5 Practica_Integracion.nb 5 In[]:= Solve@f@xD D Out[]= 88x <, 8x << Calculamos el área In[]:= Out[]= AbsB 9 6 f@xd xf + AbsB f@xd xf + AbsB f@xd xf Mathematica puede calcular directamente la integral anterior en la forma In[]:= Out[]= 9 6 Abs@f@xDD x b) Determinar el área limitada por las curvas y = x - x, y = -x + x en el D Definimos las funciones In[]:= Clear@"Global` "D f@x_d := x x g@x_d := x + x Visualizamos el área que queremos calcular
6 6 Practica_Integracion.nb In[7]:= 8x,, <, PlotRange All, AspectRatio AutomaticD Out[7]= Calculamos los puntos de corte de ambas gráficas In[8]:= Solve@f@xD g@xdd Out[8]= 88x <, 8x << Calculamos el área In[9]:= Out[9]= 8 s = AbsB Hf@xD g@xdl xf + AbsB Hf@xD g@xdl xf + AbsB Hf@xD g@xdl xf También en este caso podríamos haber calculado el área directamente en la forma In[]:= Out[]= 8 Abs@f@xD g@xdd x. Longitud de un arco de curva Si f es una función de clase en el intervalo [a,b], entonces la longitud del arco de curva y = f(x) en dicho intervalo viene dada por
7 Practica_Integracion.nb 7 L = Ÿ a b + H f ' HxLL x Ejemplo Calcular la longitud del arco de curva y = sen x en el pd In[]:= Clear@"Global` "D f@x_d := Sin@xD In[]:= Plot@Sin@xD, 8x,, π<d..5 Out[]= π In[]:= + Hf '@xdl x Out[]= EllipticEB F Mathematica nos devuelve el valor exacto en términos de la función especial EllipticE. Para obtener un valor aproximado podemos utilizamos el comando N In[5]:= π NB + Hf '@xdl x F Out[5]= 7.6 EJERCICIOS PROPUESTOS.-Calcular las siguientes integrales o un valor aproximado de las mismas cuando sea necesario: (a) Ÿ π x cos HxL x (b) Ÿ π sen Ix e x M x
8 8 Practica_Integracion.nb.-Estudiar el carácter de las siguientes integrales impropias, representando también la función en el intervalo de integración: (a) Ÿ x x (b) Ÿ H x+l x (c) Ÿ x x (d) Ÿ x x +9 x.-calcular el área limitada por la curva y = x - x y la recta y = x -. Dibujar el área del recinto limitado por ambas..-calcular la longitud de la curva y = x + x en el intervalo [,]. Representar gráficamente la curva.
Práctica 5 Cálculo integral y sus aplicaciones
Práctica 5 Cálculo integral y sus aplicaciones 5.1.- Integración con Mathematica o Integrales indefinidas e integrales definidas Mathematica nos permite calcular integrales mediante la instrucciones: Integrate[expresión
Práctica 7. Integración de funciones de dos variables
Práctica 7. Integración de funciones de dos variables Integración con Mathematica Recuerda que Mathematica nos permite calcular integrales mediante la instrucciones: Integrate[expresión, variable] Calcula
PROBLEMAS DE INTEGRALES INDEFINIDAS
PROBLEMAS DE INTEGRALES INDEFINIDAS Integración por partes. Mediante la integración por partes, hallar una primitiva de la función y = Ln (1 + x) Calcular una primitiva de una función, es hallar su
1. INTEGRALES DEFINIDAS E IMPROPIAS
. INTEGRALES DEFINIDAS E IMPROPIAS. Hallar el área de la región limitada por la parábola y = y el eje OX. Los cortes de la gráfica de y = con el eje OX son los valores de tales que =, esto es, = y =. El
EJERCICIOS RESUELTOS DE INTEGRAL DEFINIDA
EJERCICIOS RESUELTOS DE INTEGRAL DEFINIDA. Calcular las siguientes integrales definidas: b) d e d c) + d d) d e) sen d f) + d d ( ) En primer lugar se ha calculado una primitiva de f() Barrow. y después
Práctica 7. Integración de funciones de dos variables. Teorema de Fubini. Cambio de variable a coordenadas polares.
Práctica 7. Integración de funciones de dos variables. Teorema de Fubini. Cambio de variable a coordenadas polares. Análisis Matemático II. Departamento de Matemáticas. Diplomatura en Estadística / Ingeniería
Cálculo diferencial y aplicaciones
PRÁCTICA 3 Cálculo diferencial y aplicaciones En esta práctica utilizaremos, entre otras, las órdenes específicas Limit, Series y Normal, del programa Mathematica para estudiar límites, continuidad y derivabilidad
CAPÍTULO 6 APLICACIONES AL CÁLCULO
CAPÍTULO 6 APLICACIONES AL CÁLCULO 1.- CÁLCULO DE LÍMITES.- CÁLCULO DIFERENCIAL 3.- CÁLCULO INTEGRAL 4.- SERIES NUMÉRICAS 5.- FÓRMULA DE TAYLOR 6.- TRANSFORMADA DE LAPLACE CAPÍTULO 6 13 14 1.- CÁLCULO
Práctica 4 Límites, continuidad y derivación
Práctica 4 Límites, continuidad y derivación En esta práctica utilizaremos el programa Mathematica para estudiar límites, continuidad y derivabilidad de funciones reales de variable real, así como algunas
Cálculo Integral LA INTEGRAL DEFINIDA DE RIEMANN: UNA APROXIMACIÓN CON DERIVE.
Cálculo Integral 85 6. CÁLCULO INTEGRAL. 6.. LA INTEGRAL DEFINIDA DE RIEMANN: UNA APROXIMACIÓN CON DERIVE. La integral definida de Riemann surge a partir del problema del cálculo de áreas de superficies
PLAN DE CURSO PC-01 FO-TESE-DA-09 DIRECCIÓN ACADÉMICA DIVISIÓN DE INGENIERÍA ELECTRÓNICA. Según Corresponda CALCULO INTEGRAL TURNO: 1201/1 251
No. DE EMPLEADO: SEMANA: 5 NO. DE ALUMNOS: O PROPOSITO GENERAL DE LA 1. Teorema fundamental del cálculo. - Contextualizar el concepto de - Visualizar la relación entre cálculo diferencial y el cálculo
PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad
PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad Sea f : R R la función definida por f() = e /. (a) En qué punto de la gráfica de f la recta tangente a ésta pasa por el origen de coordenadas?
LA INTEGRAL DEFINIDA Y EL CÁLCULO DE ÁREAS
LA INTEGRAL DEFINIDA 001. Calcula la integral de f() =, en el intervalo [1, ] 00. Calcula 0 ( + ) d LA INTEGRAL DEFINIDA Y EL CÁLCULO DE ÁREAS 01 ACTIVIDAD PROPUESTA Calcula el área limitada por la función
OPCIÓN A. La empresa A (x) tiene 30 trabajadores, la B (y) 20 trabajadores y la C (z) 13 trabajadores.
PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA EL ALUMNADO DE BACHILLERATO. 159 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES. JUNIO 16 EXAMEN RESUELTO POR JAVIER SUÁREZ CABALLERO (@javiersc9) OBSERVACIONES IMPORTANTES:
Práctica 02 Gráficos 2D con Mathematica
Práctica 0 Gráficos D con Mathematica Mathematica dispone de varias instrucciones para representar gráficamente funciones,curvas o elementos geométricos en el plano.la instrucción Plot nos permite representar
APÉNDICE 2: GRÁFICOS 2D y 3D.
98 Cálculo avanzado con Mathematica.nb ToCharacterCode "hola\nhola" 104, 111, 108, 97, 10, 104, 111, 108, 97 FromCharacterCode hola hola LISTA DE CARACTERES DE UNA CADENA Characters[string] devuelve las
3. COMANDOS BÁSICOS PARA EL CÁLCULO DIFERENCIAL.
Prácticas de Matemáticas I y Matemáticas II con DERIVE-5 4 3. COMANDOS BÁSICOS PARA EL CÁLCULO DIFERENCIAL. En esta sección vamos a mostrar una breve relación de las RUTINAS BASICAS del cálculo contenidas
3. COMANDOS BÁSICOS PARA EL CÁLCULO DIFERENCIAL.
Prácticas de Matemáticas I y Matemáticas II con DERIVE 36 3. COMANDOS BÁSICOS PARA EL CÁLCULO DIFERENCIAL. En esta sección vamos a mostrar una breve relación de las RUTINAS BASICAS del cálculo contenidas
Funciones de varias variables. Extremos relativos y condicionados
Derivadas_extremos.nb Funciones de varias variables. Extremos relativos y condicionados Práctica de Cálculo, E.U.A.T, 8 En esta práctica veremos cómo derivar funciones de varias variables y hallar extremos
PAU Madrid. Matemáticas II. Año Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos.
PAU Madrid. Matemáticas II. Año 22. Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos. Se considera una varilla AB de longitud 1. El extremo A de esta varilla recorre completamente la circunferencia
Profesor: Fernando Ureña Portero
MATEMÁTICAS º BACH CC. Y TECNOL. CURSO 13-14 1.-Dada la función a) (3p.) Dominio de f() b) (3 p.) Calcular. Es posible calcular? Por qué? c) (4p.) Calcular.- Estudiar la continuidad de la función: { 3.-a)
Práctica 3. Derivadas parciales
Práctica 3. Derivadas parciales Análisis Matemático II. Departamento de Matemáticas. Diplomatura en Estadística / Ingeniería Técnica de Informática de Gestión 1.- DERIVADAS PARCIALES Dada f@x, yd una función
Práctica 2ª : OPERADORES LÓGICOS Y RELACIONALES. CICLOS Y ESTRUCTURAS DE CONTROL. MÉTODOS DE RESOLUCIÓN DE UNA ECUACIÓN NO LINEAL.
practica2sr.nb 1 Apellidos y Nombre: Práctica 2ª : OPERADORES LÓGICOS Y RELACIONALES. CICLOS Y ESTRUCTURAS DE CONTROL. MÉTODOS DE RESOLUCIÓN DE UNA ECUACIÓN NO LINEAL. Operadores lógicos y relacionales
LA INTEGRAL DEFINIDA IES MURILLO
LA INTEGRAL DEFINIDA IES MURILLO Un poco de Historia El concepto de integral definida surge para resolver el problema del área de figuras limitadas por arcos de curva. Algunos matemáticos que trabajaron
La fórmula secreta de la Coca Cola
La fórmula secreta de la Coca Cola por José Luis Gómez Muñoz http://www.globalcomputing.com.mx/ Graficando y modificando funciones Los siguientes comandos sirven para para definir una función f HxL =x
Tema 13 La integral definida. Aplicaciones
Tema La integral definida. Aplicaciones. Integral definida. Calcula la integral. ( ) d 4 Calculamos una primitiva de la función f ( ) : G( ) ( ) d Según la regla de Barrow: 4 4 ( ) d G(4) G() 4 8 4 Ahora
1 Método de la bisección. 1.1 Teorema de Bolzano Teorema 1.1 (Bolzano) Contenido
E.T.S. Minas: Métodos Matemáticos Resumen y ejemplos Tema 3: Solución aproximada de ecuaciones Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 004 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 5 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad
2 ln x dx. Solución: Resolvemos la integral por partes. Si hacemos u = ln x y dv = dx, entonces u =ln x du = 1 x dx dv = dx v = x y por tanto
Tema 6 Integración Definida Ejercicios resueltos Ejercicio Calcular la integral definida ln x dx Solución: Resolvemos la integral por partes. Si hacemos u = ln x y dv = dx, entonces u =ln x du = x dx dv
CBC. Matemática (51) universoexacto.com 1
CBC Matemática (51) universoexacto.com 1 PROGRAMA ANALÍTICO 1 :: UNIDAD 1 Números Reales y Coordenadas Cartesianas Representación de los números reales en una recta. Intervalos de Distancia en la recta
4. ANÁLISIS DE FUNCIONES DE UNA VARIABLE
Análisis de funciones de una variable 49 4. ANÁLISIS DE FUNCIONES DE UNA VARIABLE En esta sección realizaremos algunos ejercicios sobre el estudio de funciones de una variable: En la parte final hay ejercicios
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 5: INTEGRALES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,
Aplicaciones de la integral definida al cálculo de áreas
Aplicaciones de la integral definida al cálculo de áreas 1º) Interpreta geométricamente el área que define la integral y obtenla. Geométricamente, la integral representa el área de la región del plano
Tema 2 Resolución de EcuacionesNo Lineales
Tema 2 Resolución de Ecuaciones No Lineales E.T.S.I. Informática Indice Introducción 1 Introducción 2 Algoritmo del método de Bisección Análisis del 3 4 5 6 Algoritmo de los métodos iterativos Interpretación
UNIDADES TECNOLÓGICAS DE SANTANDER DEPARTAMENTO DE CIENCIAS BÁSICAS CÁLCULO MULTIVARIABLE Primer Parcial
Primer Parcial Identifica los criterios de convergencia para determinar si una serie es convergente o no. 1,2 Representa una función mediante una serie de potencias estableciendo el intervalo de convergencia.
INTEGRAL DEFINIDA. APLICACIONES
COLEGIO SAN ALBERTO MAGNO MATEMÁTICAS II INTEGRAL DEFINIDA. APLICACIONES. 008 MODELO OPCIÓN A. Ejercicio. [ 5 puntos] Dadas las funciones f : [0,+ ) R y g : [0, + ) R definidas por y calcula el área del
Práctica 1.- Sucesiones y series
Práctica.- Sucesioes y series El programa Mathematica os sirve de ayuda para estudiar el comportamieto de sucesioes y series de úmeros reales, mediate las istruccioes Limit y, que os permitirá, e la mayoría
Universidad Icesi Departamento de Matemáticas y Estadística
Universidad Icesi Departamento de Matemáticas y Estadística Solución del examen final del curso Cálculo de una variable Grupo: Once Período: Inicial del año Prof: Rubén D. Nieto C. PUNTO. (x ) sen(x )
Áreas entre curvas. Ejercicios resueltos
Áreas entre curvas Ejercicios resueltos Recordemos que el área encerrada por las gráficas de dos funciones f y g entre las rectas x = a y x = b es dada por Ejercicios resueltos b a f x g x dx Ejercicio
No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano.
FUNCIONES GRAFICAS No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano. INTÉRVALOS Un intervalo es el conjunto de todos los números reales entre dos números
MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA. 1) Determinar k y h para que las rectas kx+2y-h=0, 4x+ky-2=0, se corten en un punto.
MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA ) Determinar k y h para que las rectas kxy-h=0, 4xky-=0, se corten en un punto ) La recta r: 5 x y 9 = 0, corta a la recta y = x en el punto A Obtener la ecuación
Integral definida. 4. La integral definida de una suma de funciones es igual a la suma de integrales (Propiedad de linealidad)
Integral definida Dada una función f(x) de variable real y un intervalo [a,b] R, la integral definida es igual al área limitada entre la gráfica de f(x), el eje de abscisas, y rectas x = a y x = b. bb
IES Fco Ayala de Granada Sobrantes de 2011 (Modelo 4) Soluciones Germán-Jesús Rubio Luna
IES Fco Ayala de Granada Sobrantes de 011 (Modelo 4) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo 4 del 011 [ 5 puntos] Queremos hacer junto a la carretera un cercado rectangular
Práctica 6. Método de los multiplicadores de Lagrange. Extremos condicionados.
Práctica 6. Método de los multiplicadores de Lagrange. Extremos condicionados. Análisis Matemático II. Departamento de Matemáticas. Diplomatura en Estadística / Ingeniería Técnica de Informática de Gestión
y = 2x + 8x 7, y = x 4. y = 4 x, y = x + 2, x = 2, x = 3. x = 16 y, x = 6 y. y = a x, y = x, x y = a. (1 x)dx. y = 9 x, y = 0.
. Encuentre el área de la región limitada por las curvas indicadas:.. y = x, y = x +... x = y, x = y +... y = x +, y = x +, y = x....5..6..7..8..9..0....... y = x + 8x 7, y = x. y = x, y = x +, x =, x
CALCULO INTEGRAL CONCEPTOS DE AREA BAJO LA CURVA. (Se utiliza el valor de la función en el extremo izquierdo de cada subintervalo)
CALCULO INTEGRAL CONCEPTOS DE AREA BAJO LA CURVA El problema del área, el problema de la distancia tanto el valor del área debajo de la gráfica de una función como la distancia recorrida por un objeto
INTEGRAL DEFINIDA. CÁLCULO DE ÁREAS.
INTEGRAL DEFINIDA. CÁLCULO DE ÁREAS. 1. ÁREA LIMITADA POR UNA FUNCIÓN. INTEGRAL DEFINIDA. Si tenemos una función f(x) con una forma conocida, por ejemplo una recta, una semicircunferencia,... podemos calcular
Apuntes de dibujo de curvas
Apuntes de dibujo de curvas El objetivo de estas notas es dar unas nociones básicas sobre dibujo de curvas definidas por medio de ecuaciones cartesianas explícitas o paramétricas y polares: 1. Curvas en
Estudio de funciones mediante límites y derivadas
Estudio de funciones mediante límites y derivadas CVS0. El precio del billete de una línea de autobús se obtiene sumando dos cantidades, una fija y otra proporcional a los kilómetros recorridos. Por un
Colegio Portocarrero. Curso Departamento de matemáticas. Análisis. (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas)
Análisis (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas) Problema 1: Sea la función Determina: a) El dominio de definición. b) Las asíntotas si existen. c) El o los intervalos de
x 2 + 1, si x 0 1 x 2 si x < 0 e x, si x > 0 x si 0 x < 2 f(x) = x + 2 si 2 x < 3 2x 1 si 3 x < 4 tgx, 0 < x < π/4
CÁLCULO. Curso 2003-2004. Tema 7. Derivabilidad.. Estudiar la continuidad y la derivabilidad de las funciones: {, si 0 (a) e, si > 0 2 +, si > 0 (b), si = 0 2. Dada la función (c) 2 si < 0 e, si > 0 2
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 5: INTEGRALES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,
-1 y 2 son mínimos relativos, pero sólo 2 podría ser un mínimo (absoluto). 0 es un máximo relativo, pero no es un máximo (absoluto)
Máximos y mínimos relativos Dada una funci ón f definida sobre un intervalo I, un punto aœ I es un máximo relativo de f si existe un ε > 0 tal que para cualquier x que verifique x - a < ε (es decir, x
Derivadas 6 ACTIVIDADES. 1. Página 140. Función f(x) x 2 1: Función g(x) x 3 7: 2. Página Página Página
Derivadas 6 ACTIVIDADES 1. Página 140 Función f(x) x 2 1: Función g(x) x 3 7: 2. Página 140 3. Página 141 4. Página 141 5. Página 142 211 Derivadas 6. Página 142 Las derivadas laterales no existen, por
Aplicando el teorema de los incrementos finitos a la función f(x) = x 2 + 4x - 2 en los extremos [-1, 3] hallar x o
DERIVADAS Y TEOREMAS DE DERIVABILIDAD Aplicando el teorema de los incrementos finitos a la función f(x) = x 2 + 4x - 2 en los extremos [-1, 3] hallar x o El teorema de Lagrange dice que: f(3) - f(-1) =
20 EJERCICIOS de INECUACIONES 4º ESO opc. B
0 EJERCICIOS de INECUACIONES 4º ESO opc. B Repaso de desigualdades: 1. Dadas las siguientes desigualdades, indicar si son V o F utilizando la recta real. Caso de ser inecuaciones, indicar además la solución
UNIDAD 10. DERIVADAS. APLICACIONES DE LAS DERIVADAS
Unidad 0. Derivadas. Aplicaciones de las derivadas UNIDAD 0. DERIVADAS. APLICACIONES DE LAS DERIVADAS. TASA DE VARIACIÓN MEDIA. Se llama TASA DE VARIACIÓN MEDIA (TVM) de una función () f en un intervalo
MATEMÁTICA CPU MÓDULO 1. Números reales Ecuaciones e inecuaciones. Representaciones en la recta y en el plano.
MATEMÁTICA CPU MÓDULO Números reales. Ecuaciones e inecuaciones. Representaciones en la recta y en el plano.. Marcar con una cruz los conjuntos a los cuales pertenecen los siguientes números: N Z Q R 8
APLICACIONES DE LA INTEGRAL DEFINIDA
CAPÍTULO XI. APLICACIONES DE LA INTEGRAL DEFINIDA SECCIONES A. Áreas de figuras planas. B. Cálculo de volúmenes. C. Longitud de curvas planas. D. Ejercicios propuestos. 37 A. ÁREAS DE FIGURAS PLANAS. En
Problemas de limites, continuidad y derivabilidad. Calcula los siguientes límites de funciones racionales, irracionales y exponenciales
Problemas de limites, continuidad y derivabilidad Calcula los siguientes límites de funciones racionales, irracionales y eponenciales - ) = [ = = = = = = = . ) = [0. ] = = = = = = = = = 0 = [ = p=
Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales
Grado en Ingeniería agrícola y del medio rural Tema 8 José Barrios García Departamento de Análisis Matemático Universidad de La Laguna [email protected] 2016 Licencia Creative Commons 4.0 Internacional J.
Funciones reales. Números complejos
Funciones reales. Números complejos Funciones reales 1. Encuentra todos los números reales x que verifican: a) (x 1)(x 3) > 1 b) x + 1 > 1 1 x c) x 1 + x + 1 < 1 d) 5 < x 2 14x + 5 < 26 2. Si la gráfica
Contenido 1. Integrales Dobles 2. Integrales Triples
Integración Contenido 1. Integrales Dobles 2 1.1. Integrales iteradas............................. 2 1.2. Regiones en R 2.............................. 3 1.3. Volumen..................................
Práctica 6 INTERPOLACIÓN
Práctica 6 INTERPOLACIÓN 6.1. Interpolación Polinómica Datos de interpolación: 8Hx k, f k L< k=0,1,...,n Conocemos los valores de una función, f k = f Hx k L, en n + 1 puntos distintos, x k, de un intervalo
6.1. LA INTEGRAL DEFINIDA DE RIEMANN: UNA APROXIMACIÓN CON DERIVE.
Cálculo Integral 87 6. CÁLCULO INTEGRAL. 6.. LA INTEGRAL DEFINIDA DE RIEMANN: UNA APROXIMACIÓN CON DERIVE. La integral definida de Riemann surge a partir del problema del cálculo de áreas de superficies
ESTRUCTURA DEL EXAMEN DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II PARA ALUMNOS DE BACHILLERATO
ESTRUCTURA DEL EXAMEN DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II PARA ALUMNOS DE BACHILLERATO El examen presentará dos opciones diferentes entre las que el alumno deberá elegir una y responder
Volumen de Sólidos de Revolución
60 CAPÍTULO 4 Volumen de Sólidos de Revolución 6 Volumen de sólidos de revolución Cuando una región del plano de coordenadas gira alrededor de una recta l, se genera un cuerpo geométrico denominado sólido
UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD
Opción A Ejercicio 1.- Sea f : R R definida por f(x) = x 3 +ax 2 +bx+c. a) [1 75 puntos] Halla a,b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1 2 y que la recta tangente en
IES Fco Ayala de Granada Septiembre de 2015 (Modelo 3) Soluciones Germán-Jesús Rubio Luna. Opción A. Ejercicio 1 opción A, modelo 3 Septiembre
IES Fco Ayala de Granada Septiembre de 015 (Modelo 3) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo 3 Septiembre 015 ax + b [ 5 puntos] Halla los valores a, b y c sabiendo que
Cálculo. Primer curso de Ingenieros de Telecomunicación. Curso Examen de Septiembre. 6 de Septiembre de 2002.
Cálculo. Primer curso de Ingenieros de Telecomunicación. Curso -. Examen de Septiembre. 6 de Septiembre de. Primera parte Ejercicio. Un canal abierto cuya sección es un trapecio isósceles de bases horizontales,
«La derivada de una función en un punto representa geométricamente la pendiente de la recta tangente a la función en dicho punto»
TEMA 10 DERIVADA DE UNA FUNCIÓN EN UN PUNTO f (a): Consideremos una función f(x) y un punto P de su gráfica (ver figura), de abscisa x=a. Supongamos que damos a la variable independiente x un pequeño incremento
CÁLCULO CON SCILAB. Jorge Antonio Polanía Puentes
CÁLCULO CON SCILAB INTRODUCCIÓN.... LÍMITES.... LÍMITE DE UNA CONSTANTE.... LÍMITE DE UNA FUNCIÓN.... DERIVADAS... 4. DERIVADA DE UNA CONSTANTE... 4. DERIVADA DE UNA POTENCIA... 5.3 DERIVADA DE UN PRODUCTO...
Problemas Tema 1 Solución a problemas de Repaso de 1ºBachillerato - Hoja 02 - Todos resueltos
página /9 Problemas Tema Solución a problemas de Repaso de ºBachillerato - Hoja 02 - Todos resueltos Hoja 2. Problema. Sea f x )=a x 3 +b x 2 +c x+d un polinomio que cumple f )=0, f ' 0)=2, y tiene dos
13. Polinomios. Cálculos básicos y divisibilidad
Capitulo 1.nb 1 1. Polinomios. Cálculos básicos y divisibilidad Ejemplos con Mathematica 1. Representación de polinomios en una y varias variables Para introducir el polinomio p(x) = x2 + 1, escribiremos:
PRUEBAS DE ACCESO A LA UNIVERSIDAD EJERCICIOS RESUELTOS DEL BLOQUE DE ANÁLISIS
PRUEBAS DE ACCESO A LA UNIVERSIDAD EJERCICIOS RESUELTOS DEL BLOQUE DE ANÁLISIS MODELO 2000: OPCIÓN A: a. Calcúlense p y q de modo que la curva y = x $ + px + q contenga al punto ( 2, 1) y presente un mínimo
VELOCIDAD Y ACELERACION. RECTA TANGENTE.
VELOCIDAD Y ACELERACION. RECTA TANGENTE. 3. Describir la trayectoria y determinar la velocidad y aceleración del movimiento descrito por las curvas siguientes: (a) r (t) = i 4t 2 j + 3t 2 k. (b) r (t)
Aplicaciones físicas
Problemas propuestos con solución Aplicaciones físicas ISABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ulles Índice 1 Integral doble: valor medio 1 2 Integral doble:
Tema 7: Geometría Analítica. Rectas.
Tema 7: Geometría Analítica. Rectas. En este tema nos centraremos en estudiar la geometría en el plano, así como los elementos que en este aparecen como son los puntos, segmentos, vectores y rectas. Estudiaremos
I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL. PRIMERA EVALUACIÓN. ANÁLISIS
Eamen Global Análisis Matemáticas II Curso 010-011 I E S ATENEA SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL PRIMERA EVALUACIÓN ANÁLISIS Curso 010-011 1-I-011 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES
Fundamentos matemáticos. Tema 3 Geometría del plano y del espacio
Fundamentos matemáticos Grado en Ingeniería agrícola y del medio rural Tema 3 Geometría del plano y del espacio José Barrios García Departamento de Análisis Matemático Universidad de La Laguna [email protected]
La variable independiente x es aquella cuyo valor se fija previamente. La variable dependiente y es aquella cuyo valor se deduce a partir de x.
Bloque 8. FUNCIONES. (En el libro Temas 10, 11 y 12, páginas 179, 197 y 211) 1. Definiciones: función, variables, ecuación, tabla y gráfica. 2. Características o propiedades de una función: 2.1. Dominio
Tema 7.0. Repaso de números reales y de funciones
Matemáticas II (Bachillerato de Ciencias) Análisis: Repaso de números reales y de funciones 47 Tema 70 Repaso de números reales y de funciones El conjunto de los números reales El conjunto de los números
3x2 2x x 1 + x 3x 5 5x2 5x x3 3x 2. 1
1. Calcula la derivada de las funciones: y = Ln3 4 3 ) 5 y = Ln [ 1) )]. Calcula la derivada de las funciones: y = sen y = sen 3 y = sen 3 y = sen 3 3 y = sen 3 ) y = sen 4 3 4 5) 3 3. Calcula la derivada
INTEGRACIÓN NUMÉRICA
INTEGRACIÓN NUMÉRICA En los cursos de Cálculo Integral, nos enseñan como calcular una integral definida de una función contínua mediante una aplicación del Teorema Fundamental del Cálculo: Teorema Fundamental
2 Deniciones y soluciones
Deniciones y soluciones Sabemos que la derivada de una función y(x) es otra función y (x) que se determina aplicando una regla adecuada. Por ejemplo, la derivada de y = e 3x es dx = 6xe3x. Si en la última
Grado en Química Bloque 1 Funciones de una variable
Grado en Química Bloque Funciones de una variable Sección.7: Aproximación de funciones. Desarrollo de Taylor. Aproximación lineal. La aproximación lineal de una función y = f(x) en un punto x = a es la
MATEMÁTICAS 2º DE ESO
MATEMÁTICAS 2º DE ESO LOE TEMA VII: FUNCIONES Y GRÁFICAS Coordenadas cartesianas. Concepto de función. Tabla y ecuación. Representación gráfica de una función. Estudio gráfico de una función. o Continuidad
EXERCISES. product of one of them by the square of the other takes a maximum value.
EXERCISES EXERCISE 1 If f : R R is defined by f(x) = e x (x 2), a) Find the asymptotes of f. b) Find where f is increasing or decreasing and the local maxima or minima. c) Find the inflection points of
LA CIRCUNFERENCIA. La circunferencia es la sección producida por un plano perpendicular al eje.
LA CIRCUNFERENCIA La circunferencia es la sección producida por un plano perpendicular al eje. β = 90º La circunferencia es un caso particular de elipse. Se llama circunferencia al lugar geométrico de
APLICACIONES DE LA DERIVADA
APLICACIONES DE LA DERIVADA Ejercicio -Sea f: R R la función definida por f ( ) = + a + b + a) [ 5 puntos] Determina a, b R sabiendo que la gráfica de f pasa por el punto (, ) y tiene un punto de infleión
CONCEPTOS BASICOS DE LA TRANSFORMADA DE LAPLACE LA TRANSFORMADA DE LAPLACE
LA TRANSFORMADA DE LAPLACE Por cálculo integral sabemos que cuando vamos a determinar una integral impropia de la forma,su desarrollo se obtiene realizando un cambio de variable en el límite superior de
Tabla 3 Diámetro de la Nombre Perímetro de la muñeca muñeca (aprox.) Cierre: (20 minutos) Perímetro de Nombre Tal a o
TEMA 4: DERIVADAS. En símbolos, la pendiente de la curva en P = lim Q P (pendiente de P Q).
TEMA 4: DERIVADAS 1. La derivada de una función. Reglas de derivación 1.1. La pendiente de una curva. La pendiente de una curva en un punto P es una medida de la inclinación de la curva en ese punto. Si
SESIÓN 3 SERIES, SUCESIONES Y LÍMITES
SESIÓN SERIES, SUCESIONES Y LÍMITES I. CONTENIDOS: 1. Sucesiones y series. Idea intuitiva de límite. Ejercicios resueltos.- Estrategias Centradas en el Aprendizaje: Ejercicios propuestos II. OBJETIVOS:
FUNCIONES TRIGONOMÉTRICAS
FUNCIONES TRIGONOMÉTRICAS DEFINICIÓN PREVIA: Una función periódica es aquella que se repite una y otra vez en una dirección horizontal. El periodo de una función periódica es la longitud de un ciclo (o
