Práctica 3. Derivadas parciales
|
|
|
- Pedro Medina de la Fuente
- hace 10 años
- Vistas:
Transcripción
1 Práctica 3. Derivadas parciales Análisis Matemático II. Departamento de Matemáticas. Diplomatura en Estadística / Ingeniería Técnica de Informática de Gestión 1.- DERIVADAS PARCIALES Dada f@x, yd una función de dos variables se definen las derivadas parciales como Derivada parcial con respecto a la variable x : Derivada parcial con respecto a la variable y : x f@x 0,y 0 D = lim h 0 y f@x 0,y 0 D = lim h 0 f@x 0 + h, y 0 D f@x 0,y 0 D h f@x 0,y 0 + hd f@x 0,y 0 D h Mathematica permite el cálculo de las derivadas parciales de una función f: 2 ö en un punto cualquiera (x,y) mediante las órdenes: D[f[x,y],x] Calcula la derivada parcial de la función f respecto de la variable x. D[f[x,y],y] Calcula la derivada parcial de la función f respecto de la variable y. También podemos utilizar la paleta BasicInput para las dos derivadas parciales en un punto (x,y) x f@x, yd Calcula la derivada parcial con respecto a la variable x y f@x, yd Calcula la derivada parcial con respecto a la variable y Ejemplo 1. Calcular las derivadas parciales de f(x,y)=x 2 y 3 x y 2 In[1]:= f@x_, y_d := x^2 y 3 x y^2 Calculamos la derivada parcial con respecto a x In[3]:= D@f@x, yd, xd Out[3]= 2xy 3y 2 In[4]:= x f@x, yd Out[4]= 2xy 3y 2 Calculamos la derivada parcial con respecto a y
2 2 Practica3_Derivadas_Parciales.nb In[5]:= yd, yd Out[5]= In[6]:= Out[6]= x 2 6xy y f@x, yd x 2 6xy Ejemplo 2. Calcular las derivadas parciales de f(x,y)=x 2 sen HyL + I3 x + y 2 M cos HxL y evaluarlas en el punto H0, pl. In[7]:= f@x_, y_d := x^2 Sin@yD + I3 x + y 2 M Cos@xD Calculamos las derivadas parciales In[9]:= Out[9]= In[10]:= Out[10]= x f@x, yd 3 Cos@xD I3 x+ y 2 M Sin@xD + 2 x Sin@yD y f@x, yd 2 y Cos@xD + x 2 Cos@yD Las evaluamos en el punto H0, pl In[11]:= x f@x, yd ê. 8x 0, y π< Out[11]= 3 In[12]:= y f@x, yd ê. 8x 0, y π< Out[12]= 2 π 1.- INTERPRETACIÓN GEOMÉTRICA DE LAS DERIVADAS PARCIALES Las derivadas parciales x f y y f en el punto (a,b) representan las pendientes de la superficie definida por la gráfica de f(x,y) en el punto (a,.b,f(a,b)) en las direcciones de x e y, respectivamente. Ejemplo 3. Calcular la pendiente de la gráfica de f(x,y)=sen HxL + x 2 + y 2 en el punto (1,0,f(1,0)) en las direcciones de x e y, respectivamente. In[13]:= f@x_, y_d := Sin@xD + x 2 + y 2
3 Practica3_Derivadas_Parciales.nb 3 Representamos la gráfica In[15]:= g1 = Plot3D@f@x, yd, 8x, 5, 5<, 8y, 5, 5<, AspectRatio Automatic, PlotRange AllD Out[15]= Al intersecar la gráfica con el plano y=0 se obtiene una curva.
4 4 Practica3_Derivadas_Parciales.nb In[16]:= g2 = ContourPlot3D@y 0, 8x, 5, 5<, 8y, 5, 5<, 8z, 0, 45<D Show@g1, g2d Out[16]= Out[17]= La curva intersección tiene como ecuación z=f(x,0) In[18]:= Out[18]= f@x, 0D x 2 + Sin@xD
5 Practica3_Derivadas_Parciales.nb 5 In[19]:= Plot@f@x, 0D, 8x, 0, 2<D Out[19]= La pendiente de la recta tangente a esta curva en el punto x=1 se denomina pendiente de la gráfica de f(x,y) en el punto (1,0,f(1,0)) en la dirección de x. Su valor es precisamente x f H1, 0L In[20]:= Out[20]= In[21]:= x f@x, yd 2x+ Cos@xD x f@x, yd ê. 8x 1, y 0< êê N Out[21]= De forma análoga, al intersecar la gráfica con el plano x=1 se obtiene una curva. In[22]:= g3 := ContourPlot3D@x == 1, 8x, 5, 5<, 8y, 5, 5<, 8z, 0, 45<D Show@g1, g3d Out[23]= La curva intersección tiene ahora como ecuación z=f(1,y)
6 6 Practica3_Derivadas_Parciales.nb In[24]:= yd Out[24]= 1 + y 2 + Sin@1D In[25]:= Plot@f@1, yd, 8y, 1, 1<D Out[25]= La pendiente de la recta tangente a esta curva en el punto y=0 se denomina pendiente de la gráfica de f(x,y) en el punto (1,0,f(1,0)) en la dirección de y. Su valor es precisamente y f H1, 0L In[26]:= Out[26]= In[27]:= y f@x, yd 2y y f@x, yd ê. 8x 1, y 0< êê N Out[27]= DERIVADAS PARCIALES SUCESIVAS Mathematica permite también el cálculo de las derivadas parciales sucesivas mediante la instrucción: D[f,{x,n},{y,m},...] Calcula la derivada parcial de la función f respecto de x, n veces, de y, m veces,... También podemos utilizar la paleta BasicInput para las derivadas parciales sucesivas en un punto (x,y) x,y f@x, yd Calcula la derivada cruzada con respecto a x y con respecto a y y,x f@x, yd Calcula la derivada cruzada con respecto a x y con respecto a y Ejemplo 4. Calcular las derivadas parciales segundas de la función f: 2 ô definida por f(x,y) =x 2 sen y + I3 x + y 2 M cos x, (x,y)œdã 2, dada en el ejemplo anterior y evaluarlas en el punto (p/2,p). In[28]:= f@x_, y_d := x^2 Sin@yD + H3 x + y^2l Cos@xD Derivadas parciales de primer orden
7 Practica3_Derivadas_Parciales.nb 7 In[30]:= x f@x, yd Out[30]= In[31]:= Out[31]= 3 Cos@xD I3 x+ y 2 M Sin@xD + 2 x Sin@yD y f@x, yd 2 y Cos@xD + x 2 Cos@yD Derivadas parciales de segundo orden In[32]:= Out[32]= In[33]:= Out[33]= In[34]:= Out[34]= In[35]:= Out[35]= x,x f@x, yd I3 x+ y 2 M Cos@xD 6 Sin@xD + 2 Sin@yD x,y f@x, yd 2 x Cos@yD 2 y Sin@xD y,x f@x, yd 2 x Cos@yD 2 y Sin@xD y,y f@x, yd 2 Cos@xD x 2 Sin@yD Las evaluamos en el punto (p/2,p) In[36]:= x,x f@x, yd ê. 8x π ê 2, y π< Out[36]= In[37]:= Out[37]= In[38]:= Out[38]= In[39]:= 6 x,y f@x, yd ê. 8x πê 2, y π< 3 π y,x f@x, yd ê. 8x πê 2, y π< 3 π y,y f@x, yd ê. 8x πê 2, y π< Out[39]= 0 Ejemplo 5. Calcular las derivadas parciales segundas de la función f(x,y,z)=x 2 yz 3 + senhx - y + yzl. In[40]:= f@x_, y_, z_d := x 2 yz 3 + Sin@x y + yzd Derivadas parciales de primer orden In[42]:= Out[42]= In[43]:= Out[43]= x f@x, y, zd 2xyz 3 + Cos@x y + yzd y f@x, y, zd x 2 z 3 + H 1 + zl Cos@x y + yzd
8 8 Practica3_Derivadas_Parciales.nb In[44]:= z f@x, y, zd Out[44]= 3x 2 yz 2 + y Cos@x y + yzd Derivadas parciales de segundo orden In[45]:= Out[45]= In[46]:= Out[46]= In[47]:= Out[47]= In[48]:= Out[48]= In[49]:= Out[49]= In[50]:= Out[50]= In[51]:= Out[51]= In[52]:= Out[52]= In[53]:= Out[53]= x,x f@x, y, zd 2yz 3 Sin@x y + yzd x,y f@x, y, zd 2xz 3 H 1 + zl Sin@x y + yzd x,z f@x, y, zd 6xyz 2 y Sin@x y + yzd y,x f@x, y, zd 2xz 3 H 1 + zl Sin@x y + yzd y,y f@x, y, zd H 1 + zl 2 Sin@x y + yzd y,z f@x, y, zd 3x 2 z 2 + Cos@x y + yzd y H 1 + zl Sin@x y + yzd z,x f@x, y, zd 6xyz 2 y Sin@x y + yzd z,y f@x, y, zd 3x 2 z 2 + Cos@x y + yzd y H 1 + zl Sin@x y + yzd z,z f@x, y, zd 6x 2 yz y 2 Sin@x y + yzd 4.- EJERCICIOS PROPUESTOS Ejercicio 1. Calcular las pendientes de la gráfica de f(x,y)=senhxl - senhyl en las direcciones de x e y en el punto (p/2,p,f(p/2,p)). Ejercicio 2. Dada la función f(x,y)=lnix 2 + y 2 M comprobar que se cumple 2 f Hx,yL x f Hx,yL = 0. y 2 Ejercicio 3. Calcular las derivadas parciales de tercer orden de la función f(x,y)=e x2 +y - x lnix - y 3 M. Cuáles son iguales? Ejercicio 4. Dada f(x,y)=x Ix 2 + y 2 M 3ê2 e sen Ix2 ym calcular x f H1, 0L utilizando la definición. Ejercicio 5. En un estudio de la penetración de la escarcha en las heladas, se encontró que la temperatura T en el tiempo t (medido en días) a una profundidad x (en metros),
9 Practica3_Derivadas_Parciales.nb 9 puede describirse mediante la función T(t,x)=T 0 + T 1 e -l x senhwt-lxl, donde w = 2 p 365 y l es una constante positiva. Calcular t T, cuál es su significado físico? Calcular x T, cuál es su significado físico? Demostrar que T satisface la ecuación del calor t T = k x,x T, para cierta constante k. Si l=0.2, T 0 = 0 y T 1 = 10 representar la gráfica de la función T(t,x).
1.- DERIVADAS PARCIALES. DERIVADAS PARCIALES SUCESIVAS
Practica6_Derivadas_Parciales.nb 1 PRÁCTICA 6 DERIVADAS PARCIALES 1.- DERIVADAS PARCIALES. DERIVADAS PARCIALES SUCESIVAS Mathematica permite el cálculo de las derivadas parciales de una función f: 2 ö
1. Breve resumen de optimización sin restricciones en varias variables.
MATEMÁTICAS EMPRESARIALES G.A.D.E. CURSO 202/203 Práctica 2: Aplicaciones a la Optimización. En esta práctica se introducen las herramientas que nos ofrece el programa Mathematica para optimizar funciones
Derivabilidad de una función real de variable real: propiedades y aplicaciones
practica5jj.nb 1 Derivabilidad de una función real de variable real: propiedades y aplicaciones En esta práctica aprenderemos a usar los siguientes comandos y herramientas para aplicar los resultados teóricos
PRÁCTICA 4 FUNCIONES REALES DE DOS VARIABLES REALES 1.-REPRESENTACIÓN GRÁFICA
Practica4_Funciones_Varias_Variables.nb 1 PRÁCTICA 4 FUNCIONES REALES DE DOS VARIABLES REALES 1.-REPRESENTACIÓN GRÁFICA La instrucción que sirve para representar gráficas de funciones de dos variables
Práctica 4. Diferenciabilidad de funciones de varias variables. Plano tangente.
Práctica 4. Diferenciabilidad de funciones de varias variables. Plano tangente. Análisis Matemático II. Departamento de Matemáticas. Diplomatura en Estadística / Ingeniería Técnica de Informática de Gestión
Álgebra Matricial y Optimización Ma130
Álgebra Matricial y Optimización Ma130 Elementos de Cálculo en Varias Variables Departamento de Matemáticas ITESM Elementos de Cálculo en Varias Variables Ma130 - p. 1/47 En esta lectura se dará una revisión
que corresponde al dominio definido por el paralelogramo de vértices (0, 2), (2, 1), (1, 6) y (3, 5).
74 MÉTOOS NUMÉRICOS Informática de Sistemas - curso 9/1 Hojas de problemas Tema I - Cálculo diferencial e integral en varias variables I.1 Representación de funciones de dos variables 1. ibuja el plano
Funciones de varias variables
Funciones de varias variables Derivadas parciales. El concepto de función derivable no se puede extender de una forma sencilla para funciones de varias variables. Aquí se emplea el concepto de diferencial
1. Trace la curva definida por las ecuaciones paramétricas y elimine el parámetro para deducir la ecuación cartesiana de la curva:
1. Trace la curva definida por las ecuaciones paramétricas y elimine el parámetro para deducir la ecuación cartesiana de la curva: a) x = senθ, y = cosθ, 0 θ π t b), t x = e y = e + 1 c) x = senθ, y =
S n = 3n + 2 n + 4. ln(1 + a n ) (3) Decidir, para cada una de las siguientes series, si es convergente o divergente.
CÁLCULO HOJA 1 INGENIERO TÉCNICO EN INFORMÁTICA DE SISTEMAS GRUPO DE MAÑANA, MÓSTOLES, 2008-09 (1) De la serie a n se sabe que la sucesión de sumas parciales viene dada por: S n = 3n + 2 n + 4. Encontrar
En los ejercicios 1-8, dibujar la curva representada por la función vectorial e indicar su orientación.
Universidad de Costa Rica Práctica Miscelánea para el Primer Parcial Facultad de Ciencias Funciones Vectoriales, Regla de la Cadena y Funciones Implícitas Escuela de Matemática MA 1003 Cálculo 3 Departamento
4. Sucesiones y funciones
1 4. Sucesiones y funciones Mathematica dispone de herramientas para hacer sumas de series numéricas, derivadas de funciones de una y varias variables, cálculo de primitivas de funciones de una variable,
Práctica 02 Gráficos 2D con Mathematica
Práctica 0 Gráficos D con Mathematica Mathematica dispone de varias instrucciones para representar gráficamente funciones,curvas o elementos geométricos en el plano.la instrucción Plot nos permite representar
1. Cálculo de límites para funciones de dos variables
. Cálculo de límites para funciones de dos variables Los límites de funciones de dos variables exigen, en general, un proceso de cálculo difícil. En el presente apartado se hará un análisis sobre los siguientes
Funciones de varias variables reales
Capítulo 6 Funciones de varias variables reales 6.1. Introducción En muchas situaciones habituales aparecen funciones de dos o más variables, por ejemplo: w = F D (Trabajo realizado por una fuerza) V =
Práctica 03. Gráficos 3D con Mathematica
Práctica 03. Gráficos 3D con Mathematica Como vimos en la práctica 0.1 Mathematica es una potente herramienta para la representación gráfica de funciones de una variable y curvas en el plano. En esta práctica
DERIVADAS DE FUNCIONES DE VARIAS VARIABLES. Curvas Paramétricas. Dada una curva paramétrica
ANÁLISIS MATEMÁTICO BÁSICO DERIVADAS DE FUNCIONES DE VARIAS VARIABLES Curvas Paramétricas Dada una curva paramétrica γ : [a, b] R R n t γ(t) = (f 1 (t), f 2 (t),, f n (t)), donde las funciones f k : [a,
Funciones de Varias Variables. Juan Manuel Rodríguez Prieto
Funciones de Varias Variables Juan Manuel Rodríguez Prieto Consideremos el volumen de un cilindro circular recto El volumen del cilindro depende de: radio Altura Matemáticamente, se puede escribir como
UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES )
UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS SOLUCIONES HOJA 5: Optimización 5-1. Hallar los puntos críticos de las siguiente funciones y clasificarlos: a fx, y = x y + xy.
INSTRUCCIONES GENERALES Y VALORACIÓN
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2014-2015 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES Y VALORACIÓN Después
Funciones de Varias Variables
Funciones de Varias Variables 1. Funciones de dos Variables Sea Ω un subconjunto del plano x, y, esto es Ω R 2. Una función real f de dosvariablesesunareglaqueasociaacadaparordenado (x,y) Ω unúniconúmeroreal
Primer Parcial MATE1207 Cálculo Vectorial (Tema B) 1
Universidad de los Andes Departamento de Matemáticas Primer Parcial MATE1207 Cálculo Vectorial (Tema B) 1 Instrucciones: Lea cuidadosamente y conteste cada pregunta en la hoja asignada. Escriba con bolígrafo
FUNCIONES DE VARIAS VARIABLES
FUNCIONES DE VARIAS VARIABLES FUNCIONES DE VARIAS VARIABLES [5.] Hallar representar gráficamente las curvas de nivel de la función f (, ). Solución Por definición Cm, / m. Por tanto: C 0 0, / 0, / 0 m
Funciones de varias variables. Extremos relativos y condicionados
Derivadas_extremos.nb Funciones de varias variables. Extremos relativos y condicionados Práctica de Cálculo, E.U.A.T, 8 En esta práctica veremos cómo derivar funciones de varias variables y hallar extremos
Tarea 1 - Vectorial 201420
Tarea - Vectorial 040. Part :. - 3... Hacer parametrización de la curva de intersección del cilindro x + y = 6 y el plano x + z = 5. Encontrar las coordenadas de los puntos de la curva donde la curvatura
1. Funciones de varias variables
Análisis Matemático II. Curso 2008/2009. Diplomatura en Estadística/Ing. Téc. en Inf. de Gestión. Universidad de Jaén TEMA 2: CONTINUIDAD DE FUNCIONES DE VARIAS VARIABLES 1. Funciones de varias variables
Práctica 6. Método de los multiplicadores de Lagrange. Extremos condicionados.
Práctica 6. Método de los multiplicadores de Lagrange. Extremos condicionados. Análisis Matemático II. Departamento de Matemáticas. Diplomatura en Estadística / Ingeniería Técnica de Informática de Gestión
-1 y 2 son mínimos relativos, pero sólo 2 podría ser un mínimo (absoluto). 0 es un máximo relativo, pero no es un máximo (absoluto)
Máximos y mínimos relativos Dada una funci ón f definida sobre un intervalo I, un punto aœ I es un máximo relativo de f si existe un ε > 0 tal que para cualquier x que verifique x - a < ε (es decir, x
2. Sea f(x, y) = x 2 2xy+y 2. Aquí el discriminante es igual a cero. Qué son los puntos críticos: mínimos locales, máximos locales o puntos silla?
1. Sea f(x, y) = Ax 2 + B con A 0. Cuáles son los puntos críticos de f? Son máximos locales o mínimos locales? Solución. Los puntos críticos son aquellos en los que las derivadas parciales son iguales
CAPITULO 3. Aplicaciones de la Derivada. Licda. Elsie Hernández Saborío. Instituto Tecnológico de Costa Rica. Escuela de Matemática
CAPITULO Aplicaciones de la Derivada Licda. Elsie Hernández Saborío Instituto Tecnológico de Costa Rica Escuela de Matemática Créditos Primera edición impresa: Rosario Álvarez, 1988. Edición Latex: Marieth
2.1.5 Teoremas sobre derivadas
si x < 0. f(x) = x si x 0 x o = 0 Teoremas sobre derivadas 9 2. f(x) = x 3, x o = 3 a. Determine si f es continua en x o. b. Halle f +(x o ) y f (x o ). c. Determine si f es derivable en x o. d. Haga la
Propiedades de la adición de vectores y la multiplicación de un vector por un escalar
ÁLGEBRA MATRICIAL PROF. MARIELA SARMIENTO SESIÓN : ESPACIO VECTORIAL Propiedades de la adición de vectores y la multiplicación de un vector por un escalar Teorema.1: Si A, B y C son vectores cualesquiera
DERIVABILIDAD DE FUNCIONES
CAPÍTULO V. DERIVABILIDAD DE FUNCIONES SECCIONES A. Definición de derivada. B. Reglas de derivación. C. Derivadas sucesivas. D. Funciones implícitas. Derivación logarítmica. E. Ecuaciones paramétricas.
ANALISIS MATEMATICO II Grupo Ciencias 2015
ANALISIS MATEMATICO II Grupo Ciencias 05 Práctica : Geometría Analítica: Vectores, Rectas y Planos A. Vectores Hasta el 9 de marzo. Sean v = (0,, ) y w = (,, 4) dos vectores de IR 3. (a) Obtener el coseno
Límites y Continuidad de funciones de varias variables
1.- Se construye un depósito de propano adosando dos hemisferios a los etremos de un cilindro circular recto. Epresar el volumen V de ese depósito en función del radio r del cilindro y de su altura h..-
Tarea 1 - Vectorial
Tarea - Vectorial 2050. Part :. - 3.2.. Un cerro se queda en las montañas en la altura de 6 mil metros. El cerro tiene la forma del gráfico de la función z = f(x, y) = x 2 y 2. Observamos que plaquitas
3. Funciones de varias variables
Métodos Matemáticos (Curso 2013 2014) Grado en Óptica y Optometría 17 3. Funciones de varias variables Función real de varias variables reales Sea f una función cuyo dominio es un subconjunto D de R n
1. Derivadas parciales
Análisis Matemático II. Curso 2009/2010. Diplomatura en Estadística/Ing. Téc. en Inf. de Gestión. Universidad de Jaén TEMA 3. ABLES DIFERENCIACIÓN DE FUNCIONES DE VARIAS VARI- 1. Derivadas parciales Para
Hoja 2: Derivadas direccionales y diferenciabilidad.
Sonia L. Rueda ETS Arquitectura. UPM Curso 2011-2012. 1 CÁLCULO Hoja 2: Derivadas direccionales y diferenciabilidad. 1. Sea f : R 2 R la función definida por x 4 (x 2 +y 2 ) 2, (x, y) (0, 0) 0, (x, y)
Prof. Claudio del Pino O.
Índice 1. Derivadas parciales 2 1.1. Definición de derivadas parciales..... 2 1.2. Actividades iniciales............ 3 1.3. Costo marginal............... 5 1.3.1. Una actividad........... 6 1.4. Productos
Funciones definidas a trozos
Concepto de función Dominio de una función Características de las funciones Intersecciones con los ejes Crecimiento y decrecimiento Máximos y mínimos Continuidad y discontinuidad Simetrías Periodicidad
13 Integral. indefinida. 1. Reglas de integración. Piensa y calcula. Aplica la teoría
Integral indefinida. Reglas de integración Piensa y calcula Calcula: a y =, y' = b y' =, y = c y = cos, y' = d y' = cos, y = a y' = b y = c y' = sen d y = sen Aplica la teoría. 7 Se aplica la integral
(A) Primer parcial. si 1 x 1; x 3 si x>1. (B) Segundo parcial
CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E700 1) x 5 > 1. A) Primer parcial ) Sean las funciones ft) t +,gy) y 4&hw) w. Encontrar f/h, g f, f g y sus dominios. ) Graficar la función x + six
Es un sistema de dos vectores deslizables de la misma magnitud que están en distintas rectas sostén con la misma dirección pero sentido contrario
MECANICA TEORÍA Moento Entonces Sistea Par o Cupla de Vectores Es un sistea de dos vectores deslizables de la isa agnitud que están en distintas rectas sostén con la isa dirección pero sentido contrario
Práctica 2. Continuidad de funciones de varias variables
Práctica 2. Continuidad de funciones de varias variables Análisis Matemático II. Departamento de Matemáticas. Diplomatura en Estadística / Ingeniería Técnica de Informática de Gestión 1.- GRÁFICAS Y CURVAS
Diferenciabilidad, Regla de la Cadena y Aplicaciones
Universidad Técnica Federico Santa María Departamento de Matemática Matemática III Guía Nº3 Primer Semestre 015 Diferenciabilidad, Regla de la Cadena y Aplicaciones Problemas Propuestos 1. Sea f : R R
1. Hallar los extremos de las funciones siguientes en las regiones especificadas:
1 1. DERIVACIÓN 1. Hallar los extremos de las funciones siguientes en las regiones especificadas: b) f(x) x (x 1) en el intervalo [, ] y en su dominio. DOMINIO. D R. CORTES CON LOS EJES. Cortes con el
INTEGRALES DEFINIDAS Y CÁLCULOS DE ÁREAS
INTEGRALES DEFINIDAS Y CÁLCULOS DE ÁREAS CÁLCULO AUTOMÁTICO DE INTEGRALES DEFINIDAS La integral de una función definida puede obtenerse en DERIVE tecleando el icono Cálculo integral,, También puede obtenerse
Aproximación local. Plano tangente. Derivadas parciales.
Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 004-005 Aproximación local. Plano tangente. Derivadas parciales. 1. Plano tangente 1.1. El problema de la aproximación
Práctica 7. Integración de funciones de dos variables. Teorema de Fubini. Cambio de variable a coordenadas polares.
Práctica 7. Integración de funciones de dos variables. Teorema de Fubini. Cambio de variable a coordenadas polares. Análisis Matemático II. Departamento de Matemáticas. Diplomatura en Estadística / Ingeniería
1. Estudiar el problema siguiente: Hallar un polinomio de grado 2 tal que:
Interpolación 1. Estudiar el problema siguiente: Hallar un polinomio de grado 2 tal que: px ( ) = z ; px ( ) = z; p ( x) = z 0 0 1 1 2 2 2. Queda determinado un polinomio p(x) de grado 3 por los siguiente
Extremos de varias variables
Capítulo 1 Extremos de varias variables Problema 1 Encontrar los extremos absolutos de la función fx, y) = xy en el conjunto A = x, y) IR : x + y 4, x 5/}. Solución: En primer lugar representamos el conjunto
9. Diferenciación de funciones reales de varias variables reales Diferenciación DERIVADAS PARCIALES
9.1. Diferenciación 9.1.1. DERIVADAS PARCIALES Derivadas parciales de una función de dos variables Se llaman primeras derivadas parciales de una función f(x, y) respecto de x e y a las funciones: f x (x,
Tema 5. Aproximación funcional local: Polinomio de Taylor. 5.1 Polinomio de Taylor
Tema 5 Aproximación funcional local: Polinomio de Taylor Teoría Los polinomios son las funciones reales más fáciles de evaluar; por esta razón, cuando una función resulta difícil de evaluar con exactitud,
Tema 5: Diferenciabilidad: Aplicaciones
Prof. Susana López 1 UniversidadAuónomadeMadrid Tema 5: Diferenciabilidad: Aplicaciones 1 Funciones compuesas y Regla de la cadena Recordemos que la regla de la cadena para funciones de una sola variable
José de Jesús Ángel Ángel, c 2010. Factorización
José de Jesús Ángel Ángel, c 2010. Factorización Contenido 1. Introducción 2 1.1. Notación.................................. 2 2. Factor común 4 2.1. Ejercicios: factor común......................... 4
164 Ecuaciones diferenciales
64 Ecuaciones diferenciales Ejercicios 3.6. Mecánica. Soluciones en la página 464. Una piedra de cae desde el reposo debido a la gravedad con resistencia despreciable del aire. a. Mediante una ecuación
x ln x dx Solución: Resolvemos la integral por partes. Si hacemos u = ln x y dv = xdx, entonces u =ln x du = 1 x dx x 2 dx = 1 2 x2 ln x x2
Tema 5 Integración Indefinida Ejercicios resueltos Ejercicio Calcular la integral x ln x dx Solución: Resolvemos la integral por partes. Si hacemos u = ln x y dv = xdx, entonces u =ln x du = x dx dv =
ENERGÍA DE DEFORMACIÓN DE UNA ESTRUCTURA
ENERGÍA DE DEFORMACIÓN DE UNA ESTRUCTURA 1. Hipótesis empleadas Las hipótesis que supondremos en este capítulo son: Material elástico lineal. Estructura estable La estructura es cargada lentamente. La
Análisis II - Primer Parcial Coloquio- Tema 1
.5. Coloquio 1/08/03. Análisis II - Primer Parcial Coloquio- Tema 1 1. Hallar a de manera que sea máximo el flujo de campo F (x,y,z)= (x,y,z) a través del borde ( con tapas!) del cilindro elíptico descripto
Práctica 3: Diferenciación I
Análisis I Matemática I Análisis II (C) Cuat II - 009 Práctica 3: Diferenciación I Derivadas parciales y direccionales. Sea f una función continua en x = a. Probar que f es derivable en x = a si y solo
1. CONTINUIDAD EN VARIAS VARIABLES
. CONTINUIDAD EN VARIAS VARIABLES. Calcular el dominio de las siguientes funciones reales de varias variables reales:. f(x, y) = 9 x 2 y 2x Debe ocurrir y 2x para evitar que el denominador se anule y 9
ANÁLISIS I MATEMÁTICA 1 ANÁLISIS II (Computación) Práctica 5 - Verano 2009
ANÁLISIS I MATEMÁTICA ANÁLISIS II (Computación) Práctica 5 - Verano 2009 Derivadas parciales de orden superior - Polinomio de Taylor - Convexidad y Extremos Derivadas de orden superior. Calcular las derivadas
REPRESENTACIONES GRÁFICAS: CONCEPTOS PREVIOS
graficos.nb 1 REPRESENTACIONES GRÁFICAS: CONCEPTOS PREVIOS PLANO: CURVAS PLANAS 1) FORMA EXPLICITA : y=f(x) Ejemplo: y = x 2 2) FORMA PARAMETRICA : x x t y y t Comando: Plot Comando: ParametricPlot Ejemplo:
Práctica 5: Derivadas parciales de orden superior - Polinomio de Taylor - Convexidad y Extremos
Análisis I Matemática I Análisis II (C) Cuat II - 2009 Práctica 5: Derivadas parciales de orden superior - Polinomio de Taylor - Convexidad y Extremos Derivadas de orden superior 1. Calcular las derivadas
Hoja de Prácticas tema 2: Derivación de Funciones de Varias Variables. (d) z = arctan(xy) (e) z = arcsin(x+y) (f) z = x y. x 2 +y 2 +z 2, ω xx =
Cálculo II EPS (Grado TICS) Curso 2012-2013 Hoja de Prácticas tema 2: Derivación de Funciones de Varias Variables 1. Hallar las derivadas parciales primera y segunda de las siguientes funciones: (a) z
ACLARACIONES SOBRE EL EXAMEN
1 (1 punto) Desarrolle el siguiente tema de teoría: Teorema de Taylor y aplicación. 2 (1.2 puntos) Considere los números complejos z = 1 + i y w = 3(cos( π) + i sen( π )). Calcule 3 3 a) z + w b) z 4 c)
Soluciones a los ejercicios del examen final
Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Cálculo I Curso 201/14 20 de diciembre de 201 Soluciones a los ejercicios del examen final 1) Se considera la función f : R R
ANÁLISIS II Computación. Práctica 4. x 3. x 2 + y 2 si (x, y) (0, 0)
facultad de ciencias exactas y naturales uba primer cuatrimestre 2007 ANÁLISIS II Computación Práctica 4 Derivadas parciales 1. Calcular a) f y (2, 1) para f(x, y) = xy + x y b) f z (1, 1, 1) para f(x,
Universidad de Sevilla. GIOI y GIERM. Matemáticas III. Departamento de Matemática Aplicada II. Guión del Tema 5: Integrales de Línea.
Universidad de Sevilla. GO y GERM. Matemáticas. Departamento de Matemática Aplicada. Guión del Tema 5: ntegrales de Línea. 1. ntegrales de línea. ntegral de línea de un campo escalar. Sea una curva parametrizada
Teorema de la Función Implícita
Teorema de la Función Implícita El círculo de radio 1 con centro en el origen, puede representarse implícitamente mediante la ecuación x 2 + y 2 1 ó explícitamente por las ecuaciones y 1 x 2 y y 1 x 2
10 Cálculo. de derivadas. 1. La derivada. Piensa y calcula. Aplica la teoría
0 Cálculo de derivadas. La derivada Piensa y calcula Calcula mentalmente sobre la primera gráfica del margen: a) la pendiente de la recta secante, r, que pasa por A y B b) la pendiente de la recta tangente,
Interpolación polinómica
9 9. 5 9. Interpolación de Lagrange 54 9. Polinomio de Talor 57 9. Dados dos puntos del plano (, ), (, ), sabemos que ha una recta que pasa por ellos. Dicha recta es la gráfica de un polinomio de grado,
PRÁCTICA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES DE DOS VARIABLES REALES 1.-REPRESENTACIÓN GRÁFICA
Practica5_Funciones_Varias_Variables.nb 1 PRÁCTICA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES DE DOS VARIABLES REALES 1.-REPRESENTACIÓN GRÁFICA La instrucción que sirve para representar gráficas de funciones
(a) El triángulo dado se descompone en tres segmentos de recta que parametrizamos de la siguiente forma: (0 t 1); y = 0. { x = 1 t y = t. (0 t 1).
INTEGRALES DE LÍNEA. 15. alcular las siguientes integrales: (a) (x + y) ds donde es el borde del triángulo con vértices (, ), (1, ), (, 1). (b) x + y ds donde es la circunferencia x + y ax (a > ). (a)
TRABAJO EN GRUPO 04/2009 Permutación 1 Ingeniería Técnica de Obras Públicas (E.T.S.E.C.C.P.B.)
TRABAJO EN GRUPO 04/2009 Permutación 1 Ingeniería Técnica de Obras Públicas (E.T.S.E.C.C.P.B.) Problema 1 (i) Probar que el sistema { ln(x 2 + y 2 + 1) + z 2 = π sen(z 2 ) (x 2 + y 2 ) 3 2 + xz = 0, dene
Representación gráfica de funciones
Gráfica de una fución Representación gráfica de funciones La gráfica de una función está formada por el conjunto de puntos (x, y) para todos los valores de x pertenecientes al Dominio de la función gráfica
OCW-Universidad de Málaga, (2014). Bajo licencia. Creative Commons Attribution- NonComercial-ShareAlike 3.
OCW-Universidad de Málaga, http://ocw.uma.es (014). Bajo licencia Creative Commons Attribution- NonComercial-ShareAlike 3.0 Spain Matemáticas III Relación de ejercicios Tema 1 Ejercicios Ej. 1 Encuentra
Modelo1_2009_Enunciados. Opción A
a) Duración: hora y 30 minutos. b) Tienes que elegir entre realizar únicamente los cuatro ejercicios de la o realizar únicamente los cuatro ejercicios de la. e) Se permitirá el uso de calculadoras que
IES Fco Ayala de Granada Sobrantes de 2011 ( Modelo 3) Solución Germán-Jesús Rubio Luna
IES Fco Ayala de Granada Sobrantes de 11 ( Modelo 3) Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo 3 del 11 [ 5 puntos] Dada la función f : R R definida por f(x) ax 3 + bx +cx, determina
INTEGRAL LAPSO 2 008-2 751-1/ 6
INTEGRAL LAPSO 8-751 - 1/ 6 Universidad Nacional Abierta CÁLCULO III ( 751 ) Vicerrectorado Académico Integral Área de Matemática Fecha 1/1/8 Lapso 8 MOELO E RESPUESTAS OBJ 1 PTA 1 a. etermine el dominio
A 10. 1) El conjunto solución de 3x 2 9x = (x 3) 2 es A) 2) Una solución de 2x 2 =x(4 x) + 1 es A) 1
) El conjunto solución de x 9x = (x ) es,, ) Una solución de x =x( x) + es 7 5 ) El producto de dos números enteros positivos es 60 y el número menor es las tres quintas partes del número mayor. Cuál es
Temas 4 y 5. Teoremas de inversión local. Extremos.
Problemas de Diferenciación de Funciones de Varias Variables Curso 2013-2014 Temas 4 y 5. Teoremas de inversión local. Extremos. 1. Sea U R n abierto convexo y f : U R. Decimos que f es convexa si: f(tx+(1
Estudio de ceros de ecuaciones funcionales
Capítulo 1 Estudio de ceros de ecuaciones funcionales Problema 1.1 Calcular el número de ceros de la ecuación arctang(x) = 4 x, dando un intervalo 5 donde se localicen. Solución: Denimos f(x) = arctan(x)
Funciones vectoriales de variable vectorial. Son aplicaciones entre espacios eucĺıdeos, IR n, f : X IR n Y IR m
Funciones vectoriales de variable vectorial Son aplicaciones entre espacios eucĺıdeos, IR n, f : X IR n Y IR m x y x = (x 1, x 2,, x n ), y = (y 1, y 2,, y m ) e y j = f j (x 1, x 2,, x n ), 1 j n n =
Problema 1 (i) Probar que el sistema. y 2 + z 2 x 2 + 2 = 0 yz + xz xy 1 = 0,
Capítulo 1 Función implícita Problema 1 (i Probar que el sistema y + z x + 0 yz + xz xy 1 0 dene dos funciones implícitas y y(x z z(x en un entorno del punto (x y z ( 1 1. (ii Sea α la curva parametrizada
Práctica 5. Regla de la cadena. Derivadas direccionales. Gradiente. Extremos relativos.
Práctica 5. Regla de la cadena. Derivadas direccionales. Gradiente. Extremos relativos. Análisis Matemático II. Departamento de Matemáticas. Diplomatura en Estadística / Ingeniería Técnica de Informática
Ampliación de Matemáticas. Integrales de línea
Ampliación de Matemáticas Integrales de línea En Física la idea intuitiva de trabajo queda recogida en la fórmula Trabajo = Fuerza x Espacio Si f(x) es la fuerza aplicada, a lo largo del eje x, a un objeto
Teoría del Consumidor. El Problema del Consumidor
Teoría del Consumidor El Problema del Consumidor Preferencias y funciones de utilidad Los axiomas A1, A2 y A4 implican que existe una función de utilidad continua u: R 2 + R que representa las preferencias
Ejercicios recomendados: Cálculo III
Ejercicios recomendados: Cálculo III Cátedra de MA 1003 II ciclo 2017 Los ejemplos que siguen están tomados del libro: Claudio Pita Ruiz Cálculo Vectorial Prentice-Hall Hispanoamericana México 1995 Ejemplos
Capítulo VI DESIGUALDADES E INECUACIONES
Capítulo VI DESIGUALDADES E INECUACIONES 6.1 DEFINICIONES: a. Desigualdad: Se denomina desigualdad a toda expresión que describe la relación entre al menos elementos escritos en términos matemáticos, y
Tipos de funciones. Clasificación de funciones
Tipos de funciones Clasificación de funciones Funciones algebraicas En las funciones algebraicas las operaciones que hay que efectuar con la variable independiente son: la adición, sustracción, multiplicación,
Hoja de Prácticas tema 3: Máximos y Mínimos
Cálculo II EPS (Grado TICS) Curso 2012-2013 Hoja de Prácticas tema 3: Máximos y Mínimos 1. Hallar los puntos críticos de las funciones dadas y determinar cuáles son máximos locales, mínimos locales o puntos
VALORES MÁXIMOS Y MÍNIMOS DE FUNCIONES DE DOS VARIABLES
VALORES MÁXIMOS Y MÍNIMOS DE FUNCIONES DE DOS VARIABLES Sergio Stive Solano Sabié 1 Mayo de 2013 1 Visita http://sergiosolanosabie.wikispaces.com VALORES MÁXIMOS Y MÍNIMOS DE FUNCIONES DE DOS VARIABLES
5 Demostrar cada una de las siguientes afirmaciones empleando la definición de
Hallar el dominio de las siguientes funciones: x 3 a) x +ln(x ) b) ln x + 6 x + c) x x d) ln x x + e) cos x + ln(x 5π) + 8π x Graficar la función sen(x π ). Hallar para que valores de x es 3 Hallar las
x 2 + ln(x + z) y = 0 yz + e xz 1 = 0 define una curva C regular en un entorno de (1, 1, 0) y halle el plano normal a C en dicho punto.
1 Sea f : R R una función C 3 que satisface f(1, ) = (0, 0), y cuya matriz ( Hessiana ) en (1, ) es: 1 0 H = 0 Hallar todos los b ɛ R de manera que la función: g( = f( + 1 b b (y ) ) tenga extremo en (1,
