Proceso de llegadas de Poisson
|
|
|
- Juan Antonio Rojas Herrera
- hace 9 años
- Vistas:
Transcripción
1 Gestión y Planificación de Redes y Servicios Proceso de llegadas de Poisson Area de Ingeniería Telemática Grado en Ingeniería en Tecnologías de Telecomunicación, 4º
2 Proceso de nacimiento puro Hemos visto Markoviano El estado es el número de clientes en el sistema Llegadas (nacimientos) independientes P[ 1 llegada en (τ, τ+δτ) k en el sistema = λ k Δτ + o(δτ) P[ 0 llegadas en (τ, τ+δτ) k en el sistema = 1 - λ k Δτ + o(δτ) Proceso de Poisson P k (τ ) = (λτ )k k! e λτ N(τ)
3 Poisson: interarrival times Partimos de 0 llegadas en τ = 0 Cuánto tiempo tarda en llegar el primero? Llamemos t 1 a la v.a. del tiempo hasta esa primera llegada Es fácil de ver que los eventos { N(t) = 0 } = { t 1 > t } Porque para cualquier t, si N(t)=0 entonces debe ser t 1 >t y viceversa, si t 1 >t entonces N(t)=0 Es decir: P[t 1 > t = P[N(t) = 0 = P 0 (t) = e λt t 1 es una variable aleatoria exponencial Dado que todo el pasado queda olvidado, el tiempo hasta la siguiente será de nuevo exponencial N(t) t 2 t 1 0
4 Poisson: tiempo restante Dado un instante de tiempo cualquiera, cuánto falta hasta la siguiente llegada? < t + t ref t n > t ref = P[t ref < t n < t + t ref > t ref = < t + t ref < t ref > t ref = t ref < t n < t + t ref fdp t n < t + t ref t n < t ref t ref t + t ref t n N(t) t t n 0 t ref
5 Poisson: tiempo restante Dado un instante de tiempo cualquiera, cuánto falta hasta la siguiente llegada? < t + t ref t n > t ref = P[t ref < t n < t + t ref > t ref = 1 e λ(t+t ref ) (1 e λt ref ) e λt ref = e λt ref e λ(t+t ref ) e λt ref = < t + t ref < t ref > t ref =1 e λt = < t =1 e λt N(t) t t n 0 t ref
6 Poisson: tiempo restante Dado un instante de tiempo cualquiera, cuánto falta hasta la siguiente llegada? < t + t ref t n > t ref = P[t ref < t n < t + t ref > t ref = 1 e λ(t+t ref ) (1 e λt ref ) e λt ref = e λt ref e λ(t+t ref ) e λt ref = < t + t ref < t ref > t ref =1 e λt = Una exponencial idéntica
7 Poisson: interarrival times Un proceso de Poisson presenta tiempos entre llegadas exponenciales Además son idependientes (por la propiedad de Markov) e identicamente distribuidas (i.i.d.) Tiempos entre llegadas positivos i.i.d. da lo que se llama un proceso de renovación (renewal process) Proceso de cuenta de llegadas de Poisson Proceso de nacimiento puro de tasa constante Tiempos entre llegadas exponenciales iid
8 PASTA Llegadas según Poisson observan el estado de un proceso Por ejemplo, para cada llegada contamos el número de clientes en el sistema con cola infinita La fracción de las llegadas que ve el sistema en un estado es igual a la fracción de tiempo que el proceso está en ese estado Poisson Arrivals See Time Averages x i N(τ) x i-1 t i tiempo
9 Suma de procesos de Poisson Combinamos dos procesos de Poisson {N 1 (t), t>0} y {N 2 (t), t>0} independientes con tasas λ 1 y λ 2 El tiempo hasta la primera llegada t 1 será el mínimo de los tiempos hasta la primera llegada de cada uno de ellos t 1 será mayor que t si son mayores que t tanto el tiempo hasta la primera llegada de N 1 (t) como hasta la primera de N 2 (t) P[t 1 > t = P[t 11 > tp[t 21 > t = e λ 1t e λ 2t = e (λ 1+λ 2 )t Es decir, el tiempo hasta la primera llegada es exponencial Y por la falta de memoria de cada proceso lo son el resto t 1 t 21 t 11 tiempo
10 Suma de procesos de Poisson Combinamos dos procesos de Poisson {N 1 (t), t>0} y {N 2 (t), t>0} independientes con tasas λ 1 y λ 2 O más sencillo de ver si sabemos que la suma de dos variables aleatorias de Poisson independientes es una v.a. de Poisson Por otro lado, aunque no sean procesos de Poisson, si son muchos su combinación tiende a un proceso de Poisson Δt tiempo
11 Random splitting Proceso de Poisson con tasa λ Repartidas las llegadas en dos grupos mediante Bernoulli de parámetro p Los procesos resultantes son procesos de Poisson de tasas λp y λ(1-p) λ λp λ(1-p)
12 Falta de memoria t i : tiempo que transcurre entre la llegada al estado x i-1 y el estado x i En un proceso de Markov la historia pasada está completamente descrita por el estado actual P[X(τ n+1 ) = x n+1 X(τ n ) = x n, X(τ n 1 ) = x n,..., X(τ 1 ) x 1 = P[X(τ n+1 ) = x n+1 X(τ n ) = x n τ 1 < τ 2 <... < τ n < τ n+1 N(τ) x i-1 t i x i
13 Falta de memoria Entonces, saber que ha transcurrido un cierto tiempo no nos debe decir nada sobre el tiempo que nos queda en ese estado: P[ t i > s + t t i > s = h(t) > s + t t i > s = > s + t,t i > s > s = > s + t > s = h(t) t i > s + t t i > s N(τ) x i-1 s t i t x i
14 Falta de memoria Entonces, saber que ha transcurrido un cierto tiempo no nos debe decir nada sobre el tiempo que nos queda en ese estado: P[ t i > s + t t i > s = h(t) > s + t t i > s = > s + t,t i > s > s = > s + t > s = h(t) > s + t = > sh(t) N(τ) x i-1 s t i t x i
15 Falta de memoria > s + t = > sh(t) Si s=0 vemos que P[ t i > s = P[ t i > 0 = 1
16 Falta de memoria Si s=0 vemos que P[ t i > s = P[ t i > 0 = 1 Y entonces sustituyendo en la anterior queda: Es decir, P[ t i > t = h(t) Sustituyendo en (1) queda: Sabemos que: Con lo que: Donde el último término es la función de densidad de probabilidad Derivamos (2) respecto a s : > s + t = > sh(t) > 0 + t = > 0h(t) = h(t) (1) > s + t = > s > t > t =1 t d dt > t = d dt (1 t) = f τ i (t) (2) d > s + t ds = f τ i (s) > t
17 Reordenando: Falta de memoria E integrando entre 0 y t queda: d > s + t = f τ ds i (s) > t d > s + t = f τ > t i (s)ds O lo que es lo mismo Y así calculando la función de densidad de probabilidad: f τ i (t) = dp[τ i < t dt ln P[τ i > t = f τ i (0)t P[τ i > t = e f τ i (0)t = d(1 P[τ i > t) dt = d > t dt f τ i (t) = f τ i (0)e f τ i (0)t = f τ i (0)e f τ i (0)t Es decir, el tiempo que se está en un estado en un proceso de Markov sigue una exponencial (que podría depender del estado)
18 Falta de memoria Se dice que una variable aleatoria X, positiva, no tiene memoria si: P[X > s + t = P[X > sp[x > t Una variable aleatoria exponencial cumple esa condición: P[X > s + t = e λ(s+t) = e λs e λt = P[X > sp[x > t Pero además, como hemos visto, una variable que lo cumpla debe ser exponencial Es decir, la variable aleatoria exponencial es la única con la propiedad de no tener memoria (memoryless) Y es normal que los tiempos entre llegadas en un proceso de Poisson sean exponenciales pues lo es el tiempo en un estado de un proceso Markoviano Memoryless
19 Resumen En un proceso de Poisson los tiempos entre llegadas son exponenciales i.i.d. También el tiempo en un estado de un proceso Markoviano Si sabemos que ha transcurrido cierto tiempo desde la última llegada no sabemos nada sobre el tiempo que falta hasta la siguiente Las llegadas de Poisson sirven para muestrear estados temporales La suma de procesos de Poisson es de Poisson La separación de un proceso de Poisson en 2 procesos mediante un proceso de Bernouilli es también de Poisson
Proceso de llegadas de Poisson
Gestión y Planificación de Redes y Servicios Proceso de llegadas de Poisson Area de Ingeniería Telemática http://www.tlm.unavarra.es Grado en Ingeniería en Tecnologías de Telecomunicación, 4º Proceso de
U3: Procesos Poisson. Probabilidad e Introducción a los Procesos Estocásticos. Mgs. Nora Arnesi
U3: Procesos Poisson Probabilidad e Introducción a los Procesos Estocásticos. Mgs. Nora Arnesi Analizar el siguiente proceso estocástico: Una fuente radioactiva emite partículas y sea X t : número de partículas
Introducción a los Procesos de Poisson *
Introducción a los Procesos de Poisson * Victor M. Pérez Abreu C. Departamento de Probabilidad y Estadística, CIMAT David Reynoso Valle Licenciatura en Matemáticas, DEMAT, Universidad de Guanajuato 22
Procesos estocásticos Sesión 9. Cadenas de Markov a tiempo continuo
Procesos estocásticos Sesión 9. Cadenas de Markov a tiempo continuo Enrique Miranda Universidad of Oviedo Máster Universitario en Análisis de Datos para la Inteligencia de Negocios Contenidos 1. Cadenas
Modelos Estocásticos I Tercer Examen Parcial Respuestas
Modelos Estocásticos I Tercer Examen Parcial Respuestas. a Cuál es la diferencia entre un estado recurrente positivo y uno recurrente nulo? Cómo se define el período de un estado? Demuestre que si el estado
1.1. Distribución exponencial. Definición y propiedades
CONTENIDOS 1.1. Distribución exponencial. Definición y propiedades 1.2. Procesos de conteo 1.3. Procesos de Poisson - Tiempos de espera y entre llegadas - Partición y mezcla de un proceso de Poisson -
Definición. P(X t+s = j X s = i, X sn = i n,..., X s0 = i 0 ) = P(X t+s = j X s = i)
Definición Cadenas de Markov a tiempo continuo Para extender la propiedad de Markov a tiempo continuo se requiere definir la probabilidad condicional dado que conocemos el proceso en un intervalo continuo
Ingeniería de Teletráfico
Ingeniería de Teletráfico Area de Ingeniería Telemática http://www.tlm.unavarra.es Redes 4º Ingeniería en Informática Objetivos del tema Introducción a la problemática Caso de dimensionamiento de redes
Tema 02. Análisis de prestaciones e introducción al dimensionamiento en redes de conmutación de paquetes. Rafael Estepa Alonso Universidad de Sevilla
Tema 02 Análisis de prestaciones e introducción al dimensionamiento en redes de conmutación de paquetes Rafael Estepa Alonso Universidad de Sevilla Índice del Tema 02 2.1 Introducción a las Prestaciones
Procesos estocásticos
Procesos estocásticos Las cadenas de Markov estudian procesos estocásticos Los procesos estocásticos son modelos matemáticos que describen sistemas dinámicos sometidos a procesos aleatorios Parámetros:
Tema 5. Introducción al Teletráfico y a la Teoría de Colas
Redes y Servicios de Telecomunicaciones Tema 5. Introducción al Teletráfico y a la Teoría de Colas Bertsekas: 3.1, 3.2, 3.3. Iversen: 1.1, 1.2, 1.5, 1.8, 2.2-2.2.3 (Repaso), 3.3. o Schwartz: 2.1 y 2.2
Procesos de Poisson. Fabián Mancilla. U. de Santiago de Chile. Fabián Mancilla (Usach) Modelos Estocásticos 1 / 44
Procesos de Poisson Fabián Mancilla U. de Santiago de Chile [email protected] Fabián Mancilla (Usach) Modelos Estocásticos 1 / 44 Introducción En este curso estudiaremos algunos modelos probabiĺısticos
Clase Auxiliar 3 20 de Agosto de 2008
IN79O: Modelos Estocásticos en Sistemas de Ingeniería Profesor : Raúl Gouet Auxiliares : Gustavo Angulo, Diego Morán Clase Auxiliar 3 2 de Agosto de 28 P Sea {N t, t > } un proceso de Poisson de tasa λ.
Distribuciones de probabilidad más usuales
Tema 5 Distribuciones de probabilidad más usuales En este tema se estudiarán algunas de las distribuciones discretas y continuas más comunes, que se pueden aplicar a una gran diversidad de problemas y
PROCESO DE NACIMIENTO PURO Y MUERTE PURA
PROCESO DE NACIMIENTO PURO Y MUERTE PURA En esta sección consideraremos dos procesos especiales. En el primer proceso, los clientes llegan y nunca parten y en el segundo proceso los clientes se retiran
12.Teoría de colas y fenómenos de espera
.Teoría de colas y fenómenos de espera Notación y terminología Modelado del proceso de llegada Modelado del proceso de servicio Notación de Kendall-Lee Procesos de nacimiento y muerte Modelo M/M/. Análisis
El momento de orden n de una variable aleatoria X es el valor esperado de X elevado a la n, es decir,
1 CLASES DE ESTADÍSTICA II CLASE 4) MOMENTOS. FUNCIÓN GENERATRIZ DE MOMENTOS CONJUNTA. El concepto de Momentos ya se conocía en el análisis de una variable aleatoria y es bueno recordarlo ahora para generalizarlo
Teoría de colas. Modelado y Análisis de Redes de Telecomunicaciones. IIE - Facultad de Ingeniería
Teoría de colas Modelado y Análisis de Redes de Telecomunicaciones IIE - Facultad de Ingeniería Contenido 1 Proceso de Poisson 2 Teoría de colas 3 El proceso M/M/1 4 Los procesos M/M/* 5 El proceso M/G/1
13.Teoría de colas y fenómenos de espera
3.Teoría de colas y fenómenos de espera Notación y terminología Modelado del proceso de llegada Modelado del proceso de servicio Notación de Kendall-Lee Procesos de nacimiento y muerte Modelo M/M/. Análisis
OBJETIVOS: Simular en MATLAB/Octave procesos estocásticos sencillos.
GRADO en INGENIERIA de TELECOMUNICACION (Sistemas de comunicaciones, audiovisuales y telemática) ESTADISTICA 8-9 PRACTICA 5. PROCESOS ESTOCÁSTICOS OBJETIVOS: Simular en MATLAB/Octave procesos estocásticos
Método Polar para generación de variables normales Generación de eventos en Procesos de Poisson
Método Polar para generación de variables normales Generación de eventos en Procesos de Poisson Georgina Flesia FaMAF 25 de abril, 2013 Método polar Con este método se generan dos variables normales independientes.
Estadística Clase 2. Maestría en Finanzas Universidad del CEMA. Profesor: Alberto Landro Asistente: Julián R. Siri
Estadística 010 Clase Maestría en Finanzas Universidad del CEMA Profesor: Alberto Landro Asistente: Julián R. Siri Clase 1. La distribución de Bernoulli. La distribución binomial 3. La distribución de
Estadística Clase 2. Maestría en Finanzas Universidad del CEMA. Profesor: Alberto Landro Asistente: Julián R. Siri
Estadística 011 Clase Maestría en Finanzas Universidad del CEMA Profesor: Alberto Landro Asistente: Julián R. Siri Clase 1. La distribución de Bernoulli. La distribución binomial 3. La distribución de
Maestría en Bioinformática Probabilidad y Estadística: Clase 10
Maestría en Bioinformática Probabilidad y Estadística: Clase 10 Gustavo Guerberoff [email protected] Facultad de Ingeniería Universidad de la República Mayo de 2010 Contenidos 1 Procesos aleatorios
Distribuciones de probabilidad
Distribuciones de probabilidad Distribución Binomial La distribución binomial es una de las distribuciones utilizadas más ampliamente en estadística aplicada. La distribución se deriva del procedimiento
INSTITUTO DE FÍSICA FACULTAD DE INGENIERÍA FÍSICA ESTADÍSTICA
INSTITUTO DE FÍSICA FACULTAD DE INGENIERÍA DIPLOMA DE ESPECIALIZACIÓN EN FÍSICA (ANEP UDELAR) FÍSICA ESTADÍSTICA Curso 013 Práctico II Fundamentos de Probabilidad y Estadística. Fecha de Entrega: 13 de
Procesos estocásticos. Definición
Procesos estocásticos Definición http://humberto-r-alvarez-a.webs.com Definición de proceso estocástico Estudio del comportamiento de una variable aleatoria a lo largo del tiempo El ajuste de cualquier
Teoría de colas. Las colas (líneas de espera) son parte de la vida diaria
Teoría de colas Las colas (líneas de espera) son parte de la vida diaria Supermercado - Servicios de reparaciones - Telecom. Banco - Comedor universitario - Producción El tiempo que la población pierde
La Función de Disponibilidad en Procesos de Renovación y aproximaciones útiles de ella.
SEMINARIO INSTITUCIONAL DE ESTADÍSTICA Escuela de Estadística Universidad Nacional de Colombia - Sede Medellín La en Procesos de Renovación y aproximaciones útiles de ella. Álvaro Calvache Archila Universidad
Cálculo de bloqueo en la RTB
Cálculo de bloqueo en la RTB Area de Ingeniería Telemática http://www.tlm.unavarra.es Arquitectura de Redes, Sistemas y Servicios Grado en Ingeniería en Tecnologías de Telecomunicación, 2º Temario 1. Introducción
Dimensionamiento y Planificación de Redes
Dimensionamiento y Planificación de Redes Tema 5. Sistemas con Fuentes Finitas Calvo Departamento de Ingeniería de Comunicaciones Este tema se publica bajo Licencia: Crea:ve Commons BY- NC- SA 4.0 Contenido
Teoría de colas I. Investigación Operativa, Grado en Estadística y Empresa, 2011/12
Teoría de colas I Prof. José Niño Mora Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Esquema Teoría de colas Ejemplo: un centro de atención telefónica (call center) Tasa de llegada y
PROCESOS ESTOCÁSTICOS II Ejercicios - Semestre 2009-I
PROCESOS ESTOCÁSTICOS II Ejercicios - Semestre 29-I Proceso de Poisson y Procesos de Renovación 1. Los clientes de una tienda entran al establecimiento de acuerdo a un proceso de Poisson de parámetro λ
Esperanza Condicional
Esperanza Condicional Podemos obtener la esperanza de una distribución condicional de la misma manera que para el caso unidimensional: 129 Caso 2 v.a. discretas X e Y: Caso 2 v.a. continuas X e Y: Percentiles
Tema 7. El Teorema de Burke y las redes de colas. Eytan Modiano Instituto Tecnológico de Massachusetts. Eytan Modiano Diapositiva 1
Tema 7 El Teorema de Burke y las redes de colas Instituto Tecnológico de Massachusetts Diapositiva 1 El Teorema de Burke Una propiedad interesante de las colas M/M/1 que simplifica enormemente su combinación
Hoja 4 Variables aleatorias multidimensionales
Hoja 4 Variables aleatorias multidimensionales 1.- Estudiar si F (x, y) = 1, si x + 2y 1, 0, si x + 2y < 1, es una función de distribución en IR 2. 2.- Dada la variable aleatoria 2-dimensional (X, Y )
(3.d) ESTIMACIÓN DE LOS PARÁMETROS EN MODELOS DE COLAS PARA LOS PROCESOS DE LLEGADA Y
(3.d) ESTIMACIÓN DE LOS PARÁMETROS EN MODELOS DE COLAS TEST DE χ SERVICIO. PARA LOS PROCESOS DE LLEGADA Y INTERVALOS DE CONFIANZA PARA λ, µ, ρ. SIMULACIÓN DE UNA COLA M/M/1. PRÁCTICA 3. 3.3. ASIGNATURA
Tema 4: Variables aleatorias. Tema 4: Variables Aleatorias. Tema 4: Variables aleatorias. Objetivos del tema:
Tema 4: Variables aleatorias Tema 4: Variables Aleatorias Distribución de Bernouilli Distribución Binomial Distribución de Poisson Distribución Exponencial Objetivos del tema: Al final del tema el alumno
Modelos Estocásticos I Primer Examen Parcial Respuestas
Modelos Estocásticos I Primer Examen Parcial Respuestas 1. Cierta especie de plantas produce un número N de semillas, donde N sigue una distribución de Poisson de parámetro λ. La probabilidad de que una
TEORÍA DE LA COMUNICACIÓN TEMA 2 RUIDO EN LOS SISTEMA DE COMUNICACIONES. Variable aleatoria (Real)
TEORÍA DE LA COMUNICACIÓN TEMA 2 RUIDO EN LOS SISTEMA DE COMUNICACIONES Grado Ing Telemática (UC3M) Teoría de la Comunicación Variable Aleatoria / 26 Variable aleatoria (Real) Función que asigna un valor
Cálculo de bloqueo en la RTB
Cálculo de bloqueo en la RTB Area de Ingeniería Telemática http://www.tlm.unavarra.es Arquitectura de Redes, Sistemas y Servicios 3º Ingeniería de Telecomunicación Temario Introducción Arquitecturas, protocolos
Generación de variables aleatorias continuas Método de la transformada inversa
Generación de variables aleatorias continuas Método de la transformada inversa Georgina Flesia FaMAF 17 de abril, 2012 Generación de v.a. discretas Existen diversos métodos para generar v.a. discretas:
Método de Box Muller. Método Polar Generación de eventos en Procesos de Poisson. Método de Box-Muller. Métodos de generación de v. a.
Método de Box Muller Método Polar Generación de eventos en Procesos de Poisson Si X e Y son normales estándar indepientes, entonces R 2 = X 2 + Y 2, tan(θ) = Y X determinan variables R 2 y Θ indepientes.
Juan Carlos Colonia DISTRIBUCIONES MUESTRALES
Juan Carlos Colonia DISTRIBUCIONES MUESTRALES POBLACIÓN Es el conjunto de individuos u objetos que poseen alguna característica común observable y de la cual se desea obtener información. El número de
Procesos estocásticos Sesión 11. Otros modelos
Procesos estocásticos Sesión 11. Otros modelos Enrique Miranda Universidad of Oviedo Máster Universitario en Análisis de Datos para la Inteligencia de Negocios Contenidos 1. El movimiento browniano. 2.
Generación de variables aleatorias continuas Método de la transformada inversa
Generación de variables aleatorias continuas Método de la transformada inversa Georgina Flesia FaMAF 16 de abril, 2013 Generación de v.a. discretas Existen diversos métodos para generar v.a. discretas:
S = N λ = 5 5 = 1 hora.
Teoría de Colas / Investigación Operativa 1 PROBLEMAS DE INVESTIGACIÓN OPERATIVA. Hoja 5 1. Al supercomputador de un centro de cálculo llegan usuarios según un proceso de Poisson de tasa 5 usuarios cada
Tema 4: Leyes de la desintegración
Tema 4: Leyes de la desintegración 1. Ley exponencial 1.1. Constante de desintegración y ley exponencial El proceso de la desintegración es de naturaleza estadística: Imposible predecir el momento de la
Modelos Básicos de Distribuciones Discretas y Continuas
Modelos de Distribuciones Discretas y Continuas 1/27 Modelos Básicos de Distribuciones Discretas y Continuas Departamento de Estadística e Investigación Operativa Universidad de Sevilla Contenidos Modelos
Introducción a la Teoría de Colas
Tema 5 Introducción a la Teoría de Colas A groso modo, podemos describir un sistema de colas (o sistema de líneas de espera) como un sistema al que los clientes llegan para recibir un servicio, si el servicio
ESTADÍSTICA I. A continuación se presentan los Modelos Probabilísticos Continuos más importantes.
1 ESTADÍSTICA I Capítulo 6: MODELOS PROBABILÍSTICOS CONTINUOS. Contenido: Distribución Uniforme Continua. Distribución Triangular. Distribución Normal. Distribuciones Gamma, Exponencial, Erlang y Chi Cuadrado.
Teoría de colas III: La cola M/M/m. Investigación Operativa, Grado en Estadística y Empresa, 2011/12
Teoría de colas III: La cola M/M/m Prof. José Niño Mora Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Esquema La cola M/M/m Factor de utilización; estabilidad Ecuaciones de balance de
Lección: Introducción a la Química Cuántica
Lección: Introducción a la Química Cuántica TEMA: Introducción 1....................... 2 I.A. Espectro discreto............... 2 I.B. Espectro continuo...............8 II. Mecánica Cuántica...............
Temas 13 y 14. Acceso múltiple de paquetes: el protocolo Aloha. Eytan Modiano Instituto Tecnológico de Massachusetts. Eytan Modiano Diapositiva 1
Temas 13 y 14 Acceso múltiple de paquetes: el protocolo Aloha Instituto Tecnológico de Massachusetts Diapositiva 1 Acceso Múltiple Medio de transmisión compartido: un receptor puede oir a múltiples emisores
Definición de variable aleatoria
Variables aleatorias Instituto Tecnológico Superior de Tepeaca Agosto-Diciembre 2015 Ingeniería en Sistemas Computacionales M.C. Ana Cristina Palacios García Definición de variable aleatoria Las variables
Generación de números aleatorios con distribución uniforme
Generadores de Números Aleatorios 1 Existen en la actualidad innumerables métodos para generar números aleatorios En la literatura disponible se pueden encontrar gran cantidad de algoritmos. Generación
Validación de hipótesis de un proceso de Poisson no homogéneo
Validación de hipótesis de un proceso de Poisson no homogéneo Georgina Flesia FaMAF 9 de junio, 2011 Proceso de Poisson no homogéneo H 0 ) Las llegadas diarias a un sistema ocurren de acuerdo a un Proceso
Tema 2. Análisis de Sistemas en Tiempo Continuo. Indice:
Indice: 1. Clasificación de Sistemas en tiempo continuo Lineales y no Lineales Invariante y Variantes en el tiempo Causal y no Causal Estable e Inestables Con y sin Memoria 2. La Convolución La Integral
Interrogación (25 Ptos.) Conteste verbalmente las siguientes preguntas :
. Universidad Católica de Chile Dpto. de Ingeniería de Sistemas Modelos Estocásticos rofesor Alvaro Alarcón 6 de Noviembre de 009 Interrogación 3.- (5 tos.) Conteste verbalmente las siguientes preguntas
PROBABILIDADES Trabajo Práctico 5. 0 si x<0. x3 si 0 x<2 1 si x 2
PROBABILIDADES Trabajo Práctico 5 1. Sea X una variable aleatoria con función de distribución acumulada a) Calcular, usando F X, P (X 1) P (0.5 X 1) P (X >1.5) b) Hallar la mediana de esta distribución.
Definición Se dice que una variable aleatoria X es continua si su conjunto de posibles valores es todo un intervalo (finito o infinito) de números
IV. Variables Aleatorias Continuas y sus Distribuciones de Probabilidad 1 Variable Aleatoria Continua Definición Se dice que una variable aleatoria X es continua si su conjunto de posibles valores es todo
Modelos de distribuciones discretas y continuas
Ignacio Cascos Fernández Departamento de Estadística Universidad Carlos III de Madrid Modelos de distribuciones discretas y continuas Estadística I curso 2008 2009 1. Distribuciones discretas Aquellas
Tema 4: Probabilidad y Teoría de Muestras
Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009
Modelos de colas exponenciales
Tema 6 Modelos de colas exponenciales 6.1. La distribución exponencial y los procesos de Poisson 6.1.1. Distribución exponencial El análisis de los distintos modelos de colas está determinado en gran parte
Estadística. Tema 2. Variables Aleatorias Funciones de distribución y probabilidad Ejemplos distribuciones discretas y continuas
Estadística Tema 2 Variables Aleatorias 21 Funciones de distribución y probabilidad 22 Ejemplos distribuciones discretas y continuas 23 Distribuciones conjuntas y marginales 24 Ejemplos distribuciones
EJERCICIOS. 1 Repaso de probabilidad
EJERCICIOS 1 Repaso de probabilidad 1. (El problema del cumpleaños) Supongamos que la distribución del día de cumpleaños es uniforme, es decir, que cada día del año tiene probabilidad 1/365 de ser el cumpleaños
PROBLEMAS DE SISTEMAS DE COLAS. Problema 1 (Kleinrock 3.2) Considere un proceso de nacimiento y muerte que verifique:
PROBLEMAS DE SISTEMAS DE COLAS Problema 1 (Kleinrock 3.2) Considere un proceso de nacimiento y muerte que verifique: λ k = α k λ k 0, 0 α < 1 µ k = µ k 1 a) Halle la probabilidad de equilibrio p k de que
Estadística Grupo V. Tema 10: Modelos de Probabilidad
Estadística Grupo V Tema 10: Modelos de Probabilidad Algunos modelos de distribuciones de v.a. Hay variables aleatorias que aparecen con frecuencia en las Ciencias Sociales y Económicas. Experimentos dicotómicos
H. R. Alvarez A., Ph. D.
Modelos de cola Las colas Las colas son frecuentes en la vida cotidiana: En un banco En un restaurante de comidas rápidas Al matricular en la universidad Los autos en un lava-autos Las colas En general,
Tema 6: Modelos de probabilidad.
Estadística 60 Tema 6: Modelos de probabilidad. 6.1 Modelos discretos. (a) Distribución uniforme discreta: La variable aleatoria X tiene una distribución uniforme discreta de parámetro n,que denoteramos
Modelos de Probabilidad con Statgraphics
Modelos de Probabilidad con Statgraphics 1. Objetivos Representar funciones de probabilidad/densidad y de distribución de diferentes modelos de variables aleatorias discretas/continuas Calcular probabilidades
Cuáles son las características aleatorias de la nueva variable?
Apuntes de Estadística II. Ingeniería Industrial. UCAB. Marzo 203 CLASES DE ESTADÍSTICA II CLASE 5) UNA TRANSFORMACIÓN DE DOS VARIABLES. Sea Z = g(, ) una función de las variables aleatorias e, tales que
Ecuaciones diferenciales
de primer orden 21 de noviembre de 2016 de primer orden Introducción Introducción a las ecuaciones diferenciales Las primeras ecuaciones diferenciales surgen al tratar de resolver ciertos problemas de
Repaso de Teoría de la Probabilidad
Repaso de Teoría de la Probabilidad Luis Mendo Tomás Escuela Politécnica Superior Universidad Autónoma de Madrid Febrero de 2008 1. Introducción Este documento contiene, de forma esquemática, los conceptos
Análisis Dinámico: Ecuaciones diferenciales no lineales de primer orden: la ecuación de Bernouilli
de aplicación económica Análisis Dinámico: Ecuaciones diferenciales no lineales de primer orden: la ecuación de Bernouilli Jesús Getán y Eva Boj Facultat d Economia i Empresa Universitat de Barcelona Marzo
Procesos estocásticos
Procesos estocásticos Enrique Miranda Universidad of Oviedo Máster Universitario en Análisis de Datos para la Inteligencia de Negocios Contenidos del curso 1. Introducción. 2. Procesos a tiempo discreto:
TEMA 5. PROCESOS ESTOCÁSTICOS.-CURSO 2017/18
TEMA 5. PROCESOS ESTOCÁSTICOS.-CURSO 2017/18 5.1. Concepto de proceso estocástico. Tipos de procesos. Realización de un proceso. 5.2. Características de un proceso estocástico. 5.3. Ejemplos de procesos
6.3. Distribuciones continuas
144 Bioestadística: Métodos y Aplicaciones Solución: Si consideramos la v.a. X que contabiliza el número de personas que padecen la enfermedad, es claro que sigue un modelo binomial, pero que puede ser
Selectividad Matemáticas II septiembre 2014, Andalucía
Selectividad Matemáticas II septiembre 14, Andalucía Pedro González Ruiz 17 de septiembre de 14 1. Opción A Problema 1.1 Sabiendo que lím x cos(3x) e x +ax xsen(x) Sea l el límite pedido. Tenemos: es finito,
Ejercicios de teoría de colas
Ejercicios de teoría de colas Investigación Operativa II Diplomatura en Estadística Curso 07/08 1. En un hospital se dispone de un equipo de médicos que pueden llevar a cabo cierto tipo de operaciones
Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema:
Modelos de probabilidad Modelos de probabilidad Distribución de Bernoulli Distribución Binomial Distribución de Poisson Distribución Exponencial Objetivos del tema: Al final del tema el alumno será capaz
PROBABILIDAD Y ESTADÍSTICA ININ4010 Prof. DAVID GONZÁLEZ BARRETO SOLUCIÓN ASIGNACIÓN 6
PROBABILIDAD Y ESTADÍSTICA ININ4 Prof. DAVID GONZÁLEZ BARRETO SOLUCIÓN ASIGNACIÓN 6. Con base en probabilidades de la distribución normal a, 2 y 3 desviaciones, determine para una variable con μ = 5 y
Variables aleatorias continuas, TCL y Esperanza Condicional
Variables aleatorias continuas, TCL y Esperanza Condicional FaMAF 17 de marzo, 2011 1 / 37 Poisson P(λ) Número de éxitos en una cantidad grande de ensayos independientes Rango: {0, 1, 2,... } = {0} N Función
Promedios móviles y volatilidad exponencial
Promedios móviles y volatilidad exponencial Eduardo Piza Javier Trejos CIMPA, Universidad de Costa Rica Julio de 2003 Objetivo: Análisis e implementación de las fórmulas de promedios móviles y volatilidad
Métodos Matemá6cos en la Ingeniería Tema 8. Distribuciones comunes
Métodos Matemá6cos en la Ingeniería Tema 8. Distribuciones comunes Jesús Fernández Fernández Carmen María Sordo García DEPARTAMENTO DE MATEMÁTICA APLICADA Y CIENCIAS DE LA COMPUTACIÓN UNIVERSIDAD DE CANTABRIA
