Proceso de llegadas de Poisson
|
|
|
- Mariano Morales Quiroga
- hace 9 años
- Vistas:
Transcripción
1 Gestión y Planificación de Redes y Servicios Proceso de llegadas de Poisson Area de Ingeniería Telemática Grado en Ingeniería en Tecnologías de Telecomunicación, 4º
2 Proceso de nacimiento puro Hemos visto Markoviano El estado es el número de clientes en el sistema Llegadas (nacimientos) independientes P[ 1 llegada en (τ, τ+δτ) k en el sistema ] = λ k Δτ + o(δτ) P[ 0 llegadas en (τ, τ+δτ) k en el sistema ] = 1 - λ k Δτ + o(δτ) dp k (τ)/dτ = - λ k P k (τ) + λ k-1 P k-1 (τ) dp 0 (τ)/dτ = - λ 0 P 0 (τ) k 1 N(τ)
3 Gestión y Planificación de Redes y Servicios Proceso de Markov homogéneo de nacimiento puro
4 Nacimiento puro homogéneo dp k (τ)/dτ = - λ k P k (τ) + λ k-1 P k-1 (τ) dp 0 (τ)/dτ = - λ 0 P 0 (τ) Homogeneidad: λ k =λ para todo k (tasa de nacimientos cte.): dp k (τ)/dτ = - λp k (τ) + λp k-1 (τ) dp 0 (τ)/dτ = - λp(τ) k 1 Y el sistema empieza con 0 llegadas: P 0 (0) = 1, P k (0) = 0 Con eso P 0 (τ) = e -λτ Sustituyendo: dp 1 (τ)/dτ = - λp 1 (τ) + λe -λτ Resolviendo: P 1 (τ) = λτe -λτ Y continuando por inducción: P k (τ ) = (λτ )k k! e λτ
5 Proceso de Poisson P k (τ ) = (λτ )k Esto es el { N(τ) } pues para cada τ hay una variable aleatoria Esa variable aleatoria sigue la distribución de Poisson k! e λτ Nos da la probabilidad de un número de llegadas en un intervalo (0,τ]
6 Poisson: momentos P k (τ ) = (λτ )k Esto es el { N(τ) } pues para cada τ hay una variable aleatoria Esa variable aleatoria sigue la distribución de Poisson Nos da la probabilidad de un número de llegadas en un intervalo (0,τ] La media de una de las variables N(τ) es: k! e λτ # E[N(τ )] = kp[n(τ ) = k] = 0 + λτ + (λτ ) 2 (λτ )3 % + $ 2 k=0 (λτ ) & (e λτ = '! (λτ )2 (λτ )3 = λτ 1+ λτ $ # &e λτ = λτe λτ e λτ = λτ " % Es decir, en el intervalo (0,τ] se producen en media λτ llegadas λ es el número medio de llegadas por unidad de tiempo
7 Poisson: momentos La varianza es también: σ 2 X (τ ) = λτ Con lo que la desviación estándar normalizada respecto a la media es: σ X (τ ) E[N(τ )] = 1 λτ Lo cual implica que a medida que τ crece, la distribución se encuentra más concentrada alrededor de la media Así, medir en número de llegadas en un intervalo muy grande es una buena estimación de esa media Dividir esa medida por la duración de ese intervalo es una buena estimación de λ
8 Gestión y Planificación de Redes y Servicios Tiempo entre llegadas en un proceso de Poisson
9 Poisson: interarrival times Partimos de 0 llegadas en τ = 0 Cuánto tiempo tarda en llegar el primero? Llamemos t 1 a la v.a. del tiempo hasta esa primera llegada Es fácil de ver que los eventos { N(t) = 0 } = { t 1 > t } Porque para cualquier t, si N(t)=0 entonces debe ser t 1 >t y viceversa, si t 1 >t entonces N(t)=0 Es decir: P[t 1 > t] = P[N(t) = 0] = P 0 (t) = e λt t 1 es una variable aleatoria exponencial Dado que todo el pasado queda olvidado, el tiempo hasta la siguiente será de nuevo exponencial N(t) t 2 t 1 0
10 Poisson: tiempo restante Dado un instante de tiempo cualquiera, cuánto falta hasta la siguiente llegada? P[t n > t + t ref t n > t ref ] = P[t n > t + t ref t n > t ref ] P[t n > t ref ] = P[t n > t + t ref ] P[t n > t ref ] = e λ(t+t ref ) e λt ref = e λt P[t n > t + t ref t n > t ref ] = P[t n > t] Una exponencial idéntica
11 Poisson: interarrival times Un proceso de Poisson presenta tiempos entre llegadas exponenciales Además son idependientes (por la propiedad de Markov) e identicamente distribuidas (i.i.d.) Tiempos entre llegadas positivos i.i.d. da lo que se llama un proceso de renovación (renewal process) Proceso de cuenta de llegadas de Poisson Proceso de nacimiento puro de tasa constante Tiempos entre llegadas exponenciales iid
12 Gestión y Planificación de Redes y Servicios Propiedades del proceso de Poisson
13 PASTA Llegadas según Poisson observan el estado de un proceso Por ejemplo, para cada llegada contamos el número de clientes en el sistema con cola infinita La fracción de las llegadas que ve el sistema en un estado es igual a la fracción de tiempo que el proceso está en ese estado Poisson Arrivals See Time Averages x i N(τ) x i-1 t i tiempo
14 Suma de procesos de Poisson Combinamos dos procesos de Poisson {N 1 (t), t>0} y {N 2 (t), t>0} independientes con tasas λ 1 y λ 2 El tiempo hasta la primera llegada t 1 será el mínimo de los tiempos hasta la primera llegada de cada uno de ellos t 1 será mayor que t si son mayores que t tanto el tiempo hasta la primera llegada de N 1 (t) como hasta la primera de N 2 (t) P[t 1 > t] = P[t 11 > t]p[t 21 > t] = e λ 1t e λ 2t = e (λ 1+λ 2 )t Es decir, el tiempo hasta la primera llegada es exponencial Y por la falta de memoria de cada proceso lo son el resto t 1 t 21 t 11 tiempo
15 Suma de procesos de Poisson Combinamos dos procesos de Poisson {N 1 (t), t>0} y {N 2 (t), t>0} independientes con tasas λ 1 y λ 2 O más sencillo de ver si sabemos que la suma de dos variables aleatorias de Poisson independientes es una v.a. de Poisson Por otro lado, aunque no sean procesos de Poisson, si son muchos su combinación tiende a un proceso de Poisson Δt tiempo
16 Random splitting Proceso de Poisson con tasa λ Repartidas las llegadas en dos grupos mediante Bernoulli de parámetro p Los procesos resultantes son procesos de Poisson de tasas λp y λ(1-p) λ λp λ(1-p)
17 Falta de memoria t i : tiempo que transcurre entre la llegada al estado x i-1 y el estado x i En un proceso de Markov la historia pasada está completamente descrita por el estado actual P[X(τ n+1 ) = x n+1 X(τ n ) = x n, X(τ n 1 ) = x n,..., X(τ 1 ) x 1 ] = P[X(τ n+1 ) = x n+1 X(τ n ) = x n ] τ 1 < τ 2 <... < τ n < τ n+1 N(τ) x i-1 t i x i
18 Falta de memoria Entonces, saber que ha transcurrido un cierto tiempo no nos debe decir nada sobre el tiempo que nos queda en ese estado: P[ t i > s + t t i > s ] = h(t) P[t i > s + t t i > s] = P[t i > s + t,t i > s] P[t i > s] = P[t i > s + t] P[t i > s] = h(t) P[t i > s + t] = P[t i > s]h(t) N(τ) x i-1 s t i t x i
19 Falta de memoria Si s=0 vemos que P[ t i > s ] = P[ t i > 0 ] = 1 Y entonces sustituyendo en la anterior queda: Es decir, P[ t i > t ] = h(t) Sustituyendo en (1) queda: Sabemos que: Con lo que: Donde el último término es la función de densidad de probabilidad Derivamos (2) respecto a s : P[t i > s + t] = P[t i > s]h(t) P[t i > 0 + t] = P[t i > 0]h(t) = h(t) (1) P[t i > s + t] = P[t i > s]p[t i > t] P[t i > t] =1 P[t i t] d dt P[t i > t] = d dt (1 P[t i t]) = f τ i (t) (2) dp[t i > s + t] ds = f τ i (s)p[t i > t]
20 Reordenando: Falta de memoria E integrando entre 0 y t queda: dp[t i > s + t] = f τ ds i (s)p[t i > t] dp[t i > s + t] = f τ P[t i > t] i (s)ds O lo que es lo mismo Y así calculando la función de densidad de probabilidad: f τ i (t) = dp[τ i < t] dt ln P[τ i > t] = f τ i (0)t P[τ i > t] = e f τ i (0)t = d(1 P[τ i > t]) dt = dp[t i > t] dt f τ i (t) = f τ i (0)e f τ i (0)t = f τ i (0)e f τ i (0)t Es decir, el tiempo que se está en un estado en un proceso de Markov sigue una exponencial (que podría depender del estado)
21 Falta de memoria Se dice que una variable aleatoria X, positiva, no tiene memoria si: P[X > s + t] = P[X > s]p[x > t] Una variable aleatoria exponencial cumple esa condición: P[X > s + t] = e λ(s+t) = e λs e λt = P[X > s]p[x > t] Pero además, como hemos visto, una variable que lo cumpla debe ser exponencial Es decir, la variable aleatoria exponencial es la única con la propiedad de no tener memoria (memoryless) Y es normal que los tiempos entre llegadas en un proceso de Poisson sean exponenciales pues lo es el tiempo en un estado de un proceso Markoviano Memoryless
Proceso de llegadas de Poisson
Gestión y Planificación de Redes y Servicios Proceso de llegadas de Poisson Area de Ingeniería Telemática http://www.tlm.unavarra.es Grado en Ingeniería en Tecnologías de Telecomunicación, 4º Proceso de
Introducción a los Procesos de Poisson *
Introducción a los Procesos de Poisson * Victor M. Pérez Abreu C. Departamento de Probabilidad y Estadística, CIMAT David Reynoso Valle Licenciatura en Matemáticas, DEMAT, Universidad de Guanajuato 22
U3: Procesos Poisson. Probabilidad e Introducción a los Procesos Estocásticos. Mgs. Nora Arnesi
U3: Procesos Poisson Probabilidad e Introducción a los Procesos Estocásticos. Mgs. Nora Arnesi Analizar el siguiente proceso estocástico: Una fuente radioactiva emite partículas y sea X t : número de partículas
Modelos Estocásticos I Tercer Examen Parcial Respuestas
Modelos Estocásticos I Tercer Examen Parcial Respuestas. a Cuál es la diferencia entre un estado recurrente positivo y uno recurrente nulo? Cómo se define el período de un estado? Demuestre que si el estado
Procesos estocásticos Sesión 9. Cadenas de Markov a tiempo continuo
Procesos estocásticos Sesión 9. Cadenas de Markov a tiempo continuo Enrique Miranda Universidad of Oviedo Máster Universitario en Análisis de Datos para la Inteligencia de Negocios Contenidos 1. Cadenas
1.1. Distribución exponencial. Definición y propiedades
CONTENIDOS 1.1. Distribución exponencial. Definición y propiedades 1.2. Procesos de conteo 1.3. Procesos de Poisson - Tiempos de espera y entre llegadas - Partición y mezcla de un proceso de Poisson -
Procesos estocásticos
Procesos estocásticos Las cadenas de Markov estudian procesos estocásticos Los procesos estocásticos son modelos matemáticos que describen sistemas dinámicos sometidos a procesos aleatorios Parámetros:
Definición. P(X t+s = j X s = i, X sn = i n,..., X s0 = i 0 ) = P(X t+s = j X s = i)
Definición Cadenas de Markov a tiempo continuo Para extender la propiedad de Markov a tiempo continuo se requiere definir la probabilidad condicional dado que conocemos el proceso en un intervalo continuo
Tema 02. Análisis de prestaciones e introducción al dimensionamiento en redes de conmutación de paquetes. Rafael Estepa Alonso Universidad de Sevilla
Tema 02 Análisis de prestaciones e introducción al dimensionamiento en redes de conmutación de paquetes Rafael Estepa Alonso Universidad de Sevilla Índice del Tema 02 2.1 Introducción a las Prestaciones
Tema 5. Introducción al Teletráfico y a la Teoría de Colas
Redes y Servicios de Telecomunicaciones Tema 5. Introducción al Teletráfico y a la Teoría de Colas Bertsekas: 3.1, 3.2, 3.3. Iversen: 1.1, 1.2, 1.5, 1.8, 2.2-2.2.3 (Repaso), 3.3. o Schwartz: 2.1 y 2.2
INSTITUTO DE FÍSICA FACULTAD DE INGENIERÍA FÍSICA ESTADÍSTICA
INSTITUTO DE FÍSICA FACULTAD DE INGENIERÍA DIPLOMA DE ESPECIALIZACIÓN EN FÍSICA (ANEP UDELAR) FÍSICA ESTADÍSTICA Curso 013 Práctico II Fundamentos de Probabilidad y Estadística. Fecha de Entrega: 13 de
Procesos de Poisson. Fabián Mancilla. U. de Santiago de Chile. Fabián Mancilla (Usach) Modelos Estocásticos 1 / 44
Procesos de Poisson Fabián Mancilla U. de Santiago de Chile [email protected] Fabián Mancilla (Usach) Modelos Estocásticos 1 / 44 Introducción En este curso estudiaremos algunos modelos probabiĺısticos
Esperanza Condicional
Esperanza Condicional Podemos obtener la esperanza de una distribución condicional de la misma manera que para el caso unidimensional: 129 Caso 2 v.a. discretas X e Y: Caso 2 v.a. continuas X e Y: Percentiles
Procesos estocásticos. Definición
Procesos estocásticos Definición http://humberto-r-alvarez-a.webs.com Definición de proceso estocástico Estudio del comportamiento de una variable aleatoria a lo largo del tiempo El ajuste de cualquier
Modelos de distribuciones discretas y continuas
Ignacio Cascos Fernández Departamento de Estadística Universidad Carlos III de Madrid Modelos de distribuciones discretas y continuas Estadística I curso 2008 2009 1. Distribuciones discretas Aquellas
El momento de orden n de una variable aleatoria X es el valor esperado de X elevado a la n, es decir,
1 CLASES DE ESTADÍSTICA II CLASE 4) MOMENTOS. FUNCIÓN GENERATRIZ DE MOMENTOS CONJUNTA. El concepto de Momentos ya se conocía en el análisis de una variable aleatoria y es bueno recordarlo ahora para generalizarlo
Distribuciones de probabilidad
Distribuciones de probabilidad Distribución Binomial La distribución binomial es una de las distribuciones utilizadas más ampliamente en estadística aplicada. La distribución se deriva del procedimiento
Distribuciones de probabilidad más usuales
Tema 5 Distribuciones de probabilidad más usuales En este tema se estudiarán algunas de las distribuciones discretas y continuas más comunes, que se pueden aplicar a una gran diversidad de problemas y
Maestría en Bioinformática Probabilidad y Estadística: Clase 10
Maestría en Bioinformática Probabilidad y Estadística: Clase 10 Gustavo Guerberoff [email protected] Facultad de Ingeniería Universidad de la República Mayo de 2010 Contenidos 1 Procesos aleatorios
Hoja 4 Variables aleatorias multidimensionales
Hoja 4 Variables aleatorias multidimensionales 1.- Estudiar si F (x, y) = 1, si x + 2y 1, 0, si x + 2y < 1, es una función de distribución en IR 2. 2.- Dada la variable aleatoria 2-dimensional (X, Y )
Validación de hipótesis de un proceso de Poisson no homogéneo
Validación de hipótesis de un proceso de Poisson no homogéneo Georgina Flesia FaMAF 9 de junio, 2011 Proceso de Poisson no homogéneo H 0 ) Las llegadas diarias a un sistema ocurren de acuerdo a un Proceso
Tema 4: Variables aleatorias. Tema 4: Variables Aleatorias. Tema 4: Variables aleatorias. Objetivos del tema:
Tema 4: Variables aleatorias Tema 4: Variables Aleatorias Distribución de Bernouilli Distribución Binomial Distribución de Poisson Distribución Exponencial Objetivos del tema: Al final del tema el alumno
Estadística Clase 2. Maestría en Finanzas Universidad del CEMA. Profesor: Alberto Landro Asistente: Julián R. Siri
Estadística 010 Clase Maestría en Finanzas Universidad del CEMA Profesor: Alberto Landro Asistente: Julián R. Siri Clase 1. La distribución de Bernoulli. La distribución binomial 3. La distribución de
Estadística Clase 2. Maestría en Finanzas Universidad del CEMA. Profesor: Alberto Landro Asistente: Julián R. Siri
Estadística 011 Clase Maestría en Finanzas Universidad del CEMA Profesor: Alberto Landro Asistente: Julián R. Siri Clase 1. La distribución de Bernoulli. La distribución binomial 3. La distribución de
Método de Box Muller. Método Polar Generación de eventos en Procesos de Poisson. Método de Box-Muller. Métodos de generación de v. a.
Método de Box Muller Método Polar Generación de eventos en Procesos de Poisson Si X e Y son normales estándar indepientes, entonces R 2 = X 2 + Y 2, tan(θ) = Y X determinan variables R 2 y Θ indepientes.
Ingeniería de Teletráfico
Ingeniería de Teletráfico Area de Ingeniería Telemática http://www.tlm.unavarra.es Redes 4º Ingeniería en Informática Objetivos del tema Introducción a la problemática Caso de dimensionamiento de redes
Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema:
Modelos de probabilidad Modelos de probabilidad Distribución de Bernoulli Distribución Binomial Distribución de Poisson Distribución Exponencial Objetivos del tema: Al final del tema el alumno será capaz
Definición Se dice que una variable aleatoria X es continua si su conjunto de posibles valores es todo un intervalo (finito o infinito) de números
IV. Variables Aleatorias Continuas y sus Distribuciones de Probabilidad 1 Variable Aleatoria Continua Definición Se dice que una variable aleatoria X es continua si su conjunto de posibles valores es todo
Tema 4: Leyes de la desintegración
Tema 4: Leyes de la desintegración 1. Ley exponencial 1.1. Constante de desintegración y ley exponencial El proceso de la desintegración es de naturaleza estadística: Imposible predecir el momento de la
PROCESOS ESTOCÁSTICOS II Ejercicios - Semestre 2009-I
PROCESOS ESTOCÁSTICOS II Ejercicios - Semestre 29-I Proceso de Poisson y Procesos de Renovación 1. Los clientes de una tienda entran al establecimiento de acuerdo a un proceso de Poisson de parámetro λ
Tema 4: Probabilidad y Teoría de Muestras
Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009
Método Polar para generación de variables normales Generación de eventos en Procesos de Poisson
Método Polar para generación de variables normales Generación de eventos en Procesos de Poisson Georgina Flesia FaMAF 25 de abril, 2013 Método polar Con este método se generan dos variables normales independientes.
Juan Carlos Colonia DISTRIBUCIONES MUESTRALES
Juan Carlos Colonia DISTRIBUCIONES MUESTRALES POBLACIÓN Es el conjunto de individuos u objetos que poseen alguna característica común observable y de la cual se desea obtener información. El número de
Introducción al Diseño de Experimentos.
Introducción al Diseño de Experimentos www.academia.utp.ac.pa/humberto-alvarez Introducción Una población o universo es una colección o totalidad de posibles individuos, especímenes, objetos o medidas
6.3. Distribuciones continuas
144 Bioestadística: Métodos y Aplicaciones Solución: Si consideramos la v.a. X que contabiliza el número de personas que padecen la enfermedad, es claro que sigue un modelo binomial, pero que puede ser
PROBABILIDAD Y ESTADÍSTICA ININ4010 Prof. DAVID GONZÁLEZ BARRETO SOLUCIÓN ASIGNACIÓN 6
PROBABILIDAD Y ESTADÍSTICA ININ4 Prof. DAVID GONZÁLEZ BARRETO SOLUCIÓN ASIGNACIÓN 6. Con base en probabilidades de la distribución normal a, 2 y 3 desviaciones, determine para una variable con μ = 5 y
Modelos Básicos de Distribuciones Discretas y Continuas
Modelos de Distribuciones Discretas y Continuas 1/27 Modelos Básicos de Distribuciones Discretas y Continuas Departamento de Estadística e Investigación Operativa Universidad de Sevilla Contenidos Modelos
Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides
Algunas Distribuciones Continuas de Probabilidad UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción El comportamiento de una variable aleatoria queda
OBJETIVOS: Simular en MATLAB/Octave procesos estocásticos sencillos.
GRADO en INGENIERIA de TELECOMUNICACION (Sistemas de comunicaciones, audiovisuales y telemática) ESTADISTICA 8-9 PRACTICA 5. PROCESOS ESTOCÁSTICOS OBJETIVOS: Simular en MATLAB/Octave procesos estocásticos
ESTADÍSTICA I. A continuación se presentan los Modelos Probabilísticos Continuos más importantes.
1 ESTADÍSTICA I Capítulo 6: MODELOS PROBABILÍSTICOS CONTINUOS. Contenido: Distribución Uniforme Continua. Distribución Triangular. Distribución Normal. Distribuciones Gamma, Exponencial, Erlang y Chi Cuadrado.
Cuáles son las características aleatorias de la nueva variable?
Apuntes de Estadística II. Ingeniería Industrial. UCAB. Marzo 203 CLASES DE ESTADÍSTICA II CLASE 5) UNA TRANSFORMACIÓN DE DOS VARIABLES. Sea Z = g(, ) una función de las variables aleatorias e, tales que
12.Teoría de colas y fenómenos de espera
.Teoría de colas y fenómenos de espera Notación y terminología Modelado del proceso de llegada Modelado del proceso de servicio Notación de Kendall-Lee Procesos de nacimiento y muerte Modelo M/M/. Análisis
Teoría de colas. Modelado y Análisis de Redes de Telecomunicaciones. IIE - Facultad de Ingeniería
Teoría de colas Modelado y Análisis de Redes de Telecomunicaciones IIE - Facultad de Ingeniería Contenido 1 Proceso de Poisson 2 Teoría de colas 3 El proceso M/M/1 4 Los procesos M/M/* 5 El proceso M/G/1
Estadística. Tema 2. Variables Aleatorias Funciones de distribución y probabilidad Ejemplos distribuciones discretas y continuas
Estadística Tema 2 Variables Aleatorias 21 Funciones de distribución y probabilidad 22 Ejemplos distribuciones discretas y continuas 23 Distribuciones conjuntas y marginales 24 Ejemplos distribuciones
Examen de Estadística Grado en Ingeniería de Telecomunicación
Cuestiones Examen de Estadística Grado en Ingeniería de Telecomunicación 3 de Junio de 5 solución h 45m C (.5 puntos). Una multinacional realiza operaciones comerciales en 3 mercados (A, B y C). El % de
Introducción a la Teoría de Colas
Tema 5 Introducción a la Teoría de Colas A groso modo, podemos describir un sistema de colas (o sistema de líneas de espera) como un sistema al que los clientes llegan para recibir un servicio, si el servicio
Temas 13 y 14. Acceso múltiple de paquetes: el protocolo Aloha. Eytan Modiano Instituto Tecnológico de Massachusetts. Eytan Modiano Diapositiva 1
Temas 13 y 14 Acceso múltiple de paquetes: el protocolo Aloha Instituto Tecnológico de Massachusetts Diapositiva 1 Acceso Múltiple Medio de transmisión compartido: un receptor puede oir a múltiples emisores
ENUNCIADO y SOLUCIONES. Problema 1
Ingeniería Industrial Métodos estadísticos de la Ingeniería Examen Junio 007. ENUNCIADO y SOLUCIONES Problema La memoria RAM para un ordenador se puede recibir de dos fabricantes A y B con igual probabilidad.
Repaso de Teoría de la Probabilidad
Repaso de Teoría de la Probabilidad Luis Mendo Tomás Escuela Politécnica Superior Universidad Autónoma de Madrid Febrero de 2008 1. Introducción Este documento contiene, de forma esquemática, los conceptos
13.Teoría de colas y fenómenos de espera
3.Teoría de colas y fenómenos de espera Notación y terminología Modelado del proceso de llegada Modelado del proceso de servicio Notación de Kendall-Lee Procesos de nacimiento y muerte Modelo M/M/. Análisis
Dimensionamiento y Planificación de Redes
Dimensionamiento y Planificación de Redes Tema 5. Sistemas con Fuentes Finitas Calvo Departamento de Ingeniería de Comunicaciones Este tema se publica bajo Licencia: Crea:ve Commons BY- NC- SA 4.0 Contenido
Clase Auxiliar 3 20 de Agosto de 2008
IN79O: Modelos Estocásticos en Sistemas de Ingeniería Profesor : Raúl Gouet Auxiliares : Gustavo Angulo, Diego Morán Clase Auxiliar 3 2 de Agosto de 28 P Sea {N t, t > } un proceso de Poisson de tasa λ.
Teoría de colas. Las colas (líneas de espera) son parte de la vida diaria
Teoría de colas Las colas (líneas de espera) son parte de la vida diaria Supermercado - Servicios de reparaciones - Telecom. Banco - Comedor universitario - Producción El tiempo que la población pierde
Definición de variable aleatoria
Variables aleatorias Instituto Tecnológico Superior de Tepeaca Agosto-Diciembre 2015 Ingeniería en Sistemas Computacionales M.C. Ana Cristina Palacios García Definición de variable aleatoria Las variables
Modelos de colas exponenciales
Tema 6 Modelos de colas exponenciales 6.1. La distribución exponencial y los procesos de Poisson 6.1.1. Distribución exponencial El análisis de los distintos modelos de colas está determinado en gran parte
ESTRUCTURA DE LINEAS DE ESPERA
ESTRUCTURA DE LINEAS DE ESPERA La teoría de las colas es el estudio de líneas de espera. Cuatro características de un sistema de la formación de colas o líneas de espera son: la manera en que los clientes
UNIVERSIDAD DE ATACAMA
UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDAD GUÍA DE TRABAJO 3 Profesor: Hugo S. Salinas. Primer Semestre 2010 1. Sea X 1,..., X n una muestra aleatoria
Cálculo de probabilidad. Tema 3: Variables aleatorias continuas
Cálculo de probabilidad Tema 3: Variables aleatorias continuas Guión Guión 3.1. La función de densidad de probabilidad Definición 3.1 Sea P una medida de probabilidad en un espacio muestral Ω. Se dice
(3.d) ESTIMACIÓN DE LOS PARÁMETROS EN MODELOS DE COLAS PARA LOS PROCESOS DE LLEGADA Y
(3.d) ESTIMACIÓN DE LOS PARÁMETROS EN MODELOS DE COLAS TEST DE χ SERVICIO. PARA LOS PROCESOS DE LLEGADA Y INTERVALOS DE CONFIANZA PARA λ, µ, ρ. SIMULACIÓN DE UNA COLA M/M/1. PRÁCTICA 3. 3.3. ASIGNATURA
Variables aleatorias continuas, TCL y Esperanza Condicional
Variables aleatorias continuas, TCL y Esperanza Condicional FaMAF 17 de marzo, 2011 1 / 37 Poisson P(λ) Número de éxitos en una cantidad grande de ensayos independientes Rango: {0, 1, 2,... } = {0} N Función
JUEGO DE BASKETBALL. Repaso de Distribuciones de Probabilidad Discretas y Continuas
JUEGO DE BASKETBALL Repaso de Distribuciones de Probabilidad Discretas y Continuas PREGUNTA #1 Qué es una variable aleatoria uniforme discreta? Cómo es su distribución? Qué es una variable aleatoria uniforme
CI 41C HIDROLOGÍA HIDROLOGÍA PROBABILÍSTICA
CI 41C HIDROLOGÍA HIDROLOGÍA PROBABILÍSTICA alcantarilla Puente? Badén http://www.disasternews.net/multimedia/files/drought5_9412.jpg Fenómenos en Ingeniería (según certeza de ocurrencia) determinísticos
PROCESO DE NACIMIENTO PURO Y MUERTE PURA
PROCESO DE NACIMIENTO PURO Y MUERTE PURA En esta sección consideraremos dos procesos especiales. En el primer proceso, los clientes llegan y nunca parten y en el segundo proceso los clientes se retiran
Estadística Grupo V. Tema 10: Modelos de Probabilidad
Estadística Grupo V Tema 10: Modelos de Probabilidad Algunos modelos de distribuciones de v.a. Hay variables aleatorias que aparecen con frecuencia en las Ciencias Sociales y Económicas. Experimentos dicotómicos
Generación de variables aleatorias continuas Método de la transformada inversa
Generación de variables aleatorias continuas Método de la transformada inversa Georgina Flesia FaMAF 17 de abril, 2012 Generación de v.a. discretas Existen diversos métodos para generar v.a. discretas:
PROBABILIDAD E INFERENCIA ESTADÍSTICA TEMA 3: DISTRUBUCIONES DE PROBABILIDAD CONTINUA
UNIDAD 1 PROBABILIDAD E INFERENCIA ESTADÍSTICA TEMA 3: DISTRUBUCIONES DE PROBABILIDAD CONTINUA Variables aleatorias continuas = función de densidad de probabilidad 1 Variables aleatorias continuas = función
MODELOS DE SIMULACIÓN ESTADÍSTICOS CLASE 4: DISTRIBUCIÓN t, CHI-CUADRADA y EXPONENCIAL PROFESOR: OSCAR SAAVEDRA ANDRÉS DURANGO.
DISTRIBUCIÓN t Con frecuencia intentamos estimar la media de una población cuando se desconoce la varianza, en estos casos utilizamos la distribución de t de Student. Si el tamaño de la muestra es suficientemente
Lección: Introducción a la Química Cuántica
Lección: Introducción a la Química Cuántica TEMA: Introducción 1....................... 2 I.A. Espectro discreto............... 2 I.B. Espectro continuo...............8 II. Mecánica Cuántica...............
Cálculo de Probabilidades y Estadística. Segunda prueba. 1
08231. Cálculo de Probabilidades y Estadística. Segunda prueba. 1 Problema 1. Se eligen tres puntos A, B y C, al azar e independientemente, sobre una circunferencia. Determinar la distribución del valor
Generación de números aleatorios con distribución uniforme
Generadores de Números Aleatorios 1 Existen en la actualidad innumerables métodos para generar números aleatorios En la literatura disponible se pueden encontrar gran cantidad de algoritmos. Generación
Formulario. Estadística Administrativa. Módulo 1. Introducción al análisis estadístico
Formulario. Estadística Administrativa Módulo 1. Introducción al análisis estadístico Histogramas El número de intervalos de clase, k, se elige de tal forma que el valor 2 k sea menor (pero el valor más
Variables aleatorias continuas y Teorema Central del Limite
Variables aleatorias continuas y Teorema Central del Limite FaMAF 17 de marzo, 2015 Variables aleatorias continuas Definición Una variable aleatoria X se dice (absolutamente continua) si existe f : R R
Modelos de distribuciones discretas y continuas
Tema 6 Modelos de distribuciones discretas y continuas 6.1. Modelos de distribuciones discretas 6.1.1. Distribución uniforme sobre n puntos Definición 6.1.2 Se dice que una v.a. X sigue una distribución
Promedios móviles y volatilidad exponencial
Promedios móviles y volatilidad exponencial Eduardo Piza Javier Trejos CIMPA, Universidad de Costa Rica Julio de 2003 Objetivo: Análisis e implementación de las fórmulas de promedios móviles y volatilidad
Algunosprocesosestocásticos destacables
Algunosprocesosestocásticos destacables En este tema se van a considerar tres tipos destacables de procesos:. Procesos de Bernoulli 2. Camino aleatorio 3. Proceso de Poisson Los procesos de Bernoulli y
Generación de variables aleatorias continuas Método de la transformada inversa
Generación de variables aleatorias continuas Método de la transformada inversa Georgina Flesia FaMAF 16 de abril, 2013 Generación de v.a. discretas Existen diversos métodos para generar v.a. discretas:
Tema 6: Modelos de probabilidad.
Estadística 60 Tema 6: Modelos de probabilidad. 6.1 Modelos discretos. (a) Distribución uniforme discreta: La variable aleatoria X tiene una distribución uniforme discreta de parámetro n,que denoteramos
Sabaroni, Andrea Garello Torres, Melina Valeria Firmapaz, Maximiliano Caif, Pablo
Sabaroni, Andrea Garello Torres, Melina Valeria Firmapaz, Maximiliano Caif, Pablo Los clientes que requieren un servicio se generan a través del tiempo en una fuente de entrada. Estos clientes entran al
VARIABLES ALEATORIAS CONTINUAS
VARIABLES ALEATORIAS CONTINUAS M. en C. Juan Carlos Gutiérrez Matus Instituto Politécnico Nacional Primavera 2004 IPN UPIICSA c 2004 Juan C. Gutiérrez Matus Definición de una V.A.C. Definición de una V.A.C.
Curso de Probabilidad y Estadística
Curso de Probabilidad y Estadística Distribuciones de Probabilidad Dr. José Antonio Camarena Ibarrola [email protected] Universidad Michoacana de San Nicolás de Hidalgo Facultad de Ingeniería Eléctrica
Variables Aleatorias y Distribución de Probabilidades
Variables Aleatorias y Distribución de Probabilidades Julio Deride Silva Área de Matemática Facultad de Ciencias Químicas y Farmcéuticas Universidad de Chile 27 de mayo de 2011 Tabla de Contenidos Variables
CONTENIDOS. 1. Definición de Cadena de Markov en Tiempo Continuo. 2. Comportamiento de transición. 3. Comportamiento estacionario
CONTENIDOS 1. Definición de Cadena de Markov en Tiempo Continuo 2. Comportamiento de transición 3. Comportamiento estacionario 4. Procesos de nacimiento y muerte 1. Definición de Cadena de Markov en Tiempo
Distribuciones de probabilidad II
II Facultad de Estudios Superiores Acatlán Licenciatura en Economía 20 de abril 2017 José A. Huitrón Mendoza Distribuciones de probabilidad de Poisson Enmarca el estudio de una variable aleatoria discreta
La Función de Disponibilidad en Procesos de Renovación y aproximaciones útiles de ella.
SEMINARIO INSTITUCIONAL DE ESTADÍSTICA Escuela de Estadística Universidad Nacional de Colombia - Sede Medellín La en Procesos de Renovación y aproximaciones útiles de ella. Álvaro Calvache Archila Universidad
TEMA 2.- VARIABLES ALEATORIAS UNIDIMENSIONALES.- CURSO 17/18
TEMA 2.- VARIABLES ALEATORIAS UNIDIMENSIONALES.- CURSO 17/18 2.1. Concepto de variable aleatoria. Tipos de variables aleatorias: discretas y continuas. 2.2. Variables aleatorias discretas. Diagrama de
Conceptos de Probabilidad y estadística. Jhon Jairo Padilla A., PhD
Conceptos de Probabilidad y estadística Jhon Jairo Padilla A., PhD Introducción La ingeniería de tráfico está soportada sobre conceptos de probabilidad y estadística como: Probabilidad Variable aleatoria
