SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE

Tamaño: px
Comenzar la demostración a partir de la página:

Download "SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE"

Transcripción

1 Pág. Página 68 Reconoce, nomba y descibe figuas geométicas que apaecen en esta ilustación. Respuesta libe. Po ejemplo: cilindo, otoedo, cono, pisma tiangula Recueda otas figuas geométicas que foman pate de edificaciones, objetos industiales, envases, etc., de uso cotidiano. Respuesta libe. Página 69 Dibuja un tonco de piámide de base tiangula. Calcula el númeo de aistas, caas lateales y vétices. Aistas 9 Caas lateales Vétices 6 Qué cuepo de evolución se genea al hace gia este tapecio ectángulo sobe el eje E? Dibújalo en tu cuadeno e identifica sus elementos fundamentales. Tonco de cono: bases altua g E R Página 70 Cuenta las caas, vétices y aistas de los cinco poliedos de aiba (A, B, C, D, E) y compueba que todos cumplen la fómula de Eule. A B C D E CARAS VÉRTICES ARISTAS FÓRMULA DE EULER En el poliedo no simple (con oificio) que ves en el magen, compueba que: c 6, v 6 y a 8. Se cumple la fómula de Eule? c + v a No se cumple la fómula de Eule.

2 Pág. Página 7 Haz una tabla con el númeo de caas, vétices y aistas de los cinco poliedos egulaes. a) Compueba que los cinco cumplen la fómula de Eule. b) Compueba que dodecaedo e icosaedo cumplen las condiciones necesaias paa se duales. c) Compueba que el tetaedo cumple las condiciones paa se dual de sí mismo. C V A TETR. CUBO OCT. DODEC. ICOS a) Tetaedo c + v a + 6 Cubo c + v a Octaedo c + v a Dodecaedo c + v a Icosaedo c + v a b) Tienen el mismo númeo de aistas (0); y el númeo de caas de cada uno de ellos coincide con el de aistas del oto. c) Dos tetaedos tendán el mismo númeo de aistas (6); y el númeo de caas de cada uno de ellos () coincide con el númeo de aistas del oto (). Hemos señalado en ojo los centos de las caas fontales de estos poliedos, y en blanco, los centos de algunas caas ocultas. Uniéndolos convenientemente se obtienen los poliedos duales. Hazlo en tu cuadeno. octaedo cubo dodecaedo icosaedo tetaedo tetaedo

3 Pág. Página 7 Halla el áea total de un pisma pentagonal egula cuya aista lateal mide 0 cm; la aista de su base, cm, y la apotema de la base,,8 cm. Áea lateal Peímeto de la base Altua ( 5) cm Peímeto apotema 0 cm Áea de una base 0,8 8 cm,8 cm cm Áea total cm Halla el áea total de una piámide hexagonal egula con aista de la base de 8 cm y cuya aista lateal mide 0 cm. Áea de una caa lateal: 0 h + 00 h + 6 h h h 8 9,7 cm cm cm 8 cm 8 cm Áea 8 9,7 6,68 cm Áea lateal 6 6,68 0,08 cm 0 cm Áea de la base: 8 a + 6 a + 6 a a 8 6,9 cm Áea P a 8 6,9 66, cm Áea total 0, , 86,0 cm Página 7 8 cm a 8 cm 0 cm 0 cm Halla el áea total de un tonco de piámide cuadangula egula cuyas bases tienen de lados 0 cm y cm y cuya aista lateal mide 7 cm. cm 7 cm cm a 7 cm 0 cm 0 cm 8

4 Pág. Apotema: 7 a a + 6 a a 5 Áea lateal P + P' a cm Áea base meno 96 cm Áea base mayo cm Áea total cm Página 75 Haciendo gia un ectángulo de dimensiones cm alededo de cada uno de sus lados, se obtienen dos cilindos ectos. Halla el áea total de cada uno de ellos. a) Áea lateal π 5 0π 9, cm cm cm Áea total 0π + π 8π 50,7 cm b) cm cm Áea lateal π 5 0π 9, cm Áea total 0π + π 5 80π 5, cm Haciendo gia un tiángulo ectángulo cuyos catetos miden cm y cm alededo de cada uno de ellos, se obtienen dos conos. Dibújalos y halla el áea total de cada uno de ellos.

5 Pág. 5 a) cm x cm cm x x 5 Áea lateal π 5 0π 6,8 cm Áea total 0π + π cm 6π,0 cm b) cm x cm cm cm Áea lateal π 5 5π 7, cm Áea total 5π + π π 75,6 cm Halla la supeficie total del tonco de cono geneado al gia un tapecio ectángulo de bases cm y 7 cm y altua cm alededo de esta. cm cm g 7 cm cm cm g Geneatiz: g g 5 7 cm Áea lateal π(7 + ) 5 55π 7,7 cm Áea total 55π + π 7 + π 0π 76,8 cm Página 76 Calcula el áea de una esfea cuyo diámeto mide 8 cm. Halla el áea de una zona esféica de cm de altua. Áea de la esfea π 9 π 07,6 cm Áea de la zona esféica π 9 98π 6,7 cm Halla la supeficie de un casquete esféico tal que el adio de su base mide 6 cm y su altua 0 cm. (Radio de la esfea: R ( +h )/h.) Radio de la esfea: R + h ,8 cm h 0 0 Áea del casquete esféico π 7,8 0 56π 7,8 cm

6 Pág. 6 Página 78 Halla (azonadamente y aplicando la fómula) el volumen del tonco de cono cuyas dimensiones son: adios de las bases, 0 cm y 8 cm; altua,. 8 cm 0 cm x + 5 x 8 cm 0 cm x x 8(x + 5) 0x 8 8x + 0 0x 0 x x 0 cm Po tanto, la altua del cono gande es de y la del cono pequeño es de 0 cm. Volumen del tonco de cono V cono gande V cono pequeño π 0 5 π 8 0 0π 76,9 cm Aplicando la fómula, obtenemos: V (π 0 + π π 6π ) 5 (00π + 6π + 80π) 5 0π 76,9 cm Halla (azonadamente y aplicando la fómula) el volumen de un tonco de piámide cuadangula. Lados de las bases: 9 cm y 6 cm. Altua: cm. 0 6 cm cm 9 cm 6 cm 9 cm x + x cm cm, x + x (x + ),5x,5 x + 6,5x 6,5x x 6,5x x 6 cm,5 Po tanto, la altua de la piámide gande es de 6 cm y la de la piámide pequeña es de cm. Volumen del tonco de piámide V piámide gande V piámide pequeña cm Aplicando la fómula, obtenemos: V ( ) ( ) cm

7 8 Pág. 7 Página 79 Calcula el volumen de una esfea de cm de diámeto. R : cm V πr π 0π 7,56 cm Calcula el volumen de un casquete esféico de de altua, coespondiente a una esfea de de adio. Cuál es el volumen del esto de la esfea? V πr h π π 6 5,67 cm El volumen estante es: V V esfea V casquete π 5 6 5, ,67 6 5, Una esfea de 0 cm de adio es cotada po dos planos paalelos que pasan a cm y a 6 cm del cento. Calcula los volúmenes de los tes tozos en los que se pate la esfea. R 0 cm h h h h 0 6 cm V πr h π 0 00π 9, cm h 6 cm V V 9, cm h 0 + cm V πr h π π 6 79,67 cm Obsevación: Podemos compoba que V + V + V V esfea : 00π 00π 5 600π 000π V + V + V π V esfea πr π 0 Son iguales.

8 Pág. 8 Página 8 El meto, unidad de medida de longitud, se definía antiguamente como la diezmillonésima pate de un cuadante de meidiano teeste. Es deci, un meidiano teeste tiene de metos. Según esto: a) Calcula el adio de la Tiea en km. b) Su supeficie en km. c) Su volumen en km. d) Calcula el áea de un huso hoaio. a) πr m km R π 6 69, km 6 70 km b) S πr π ( ) km 50 millones de km π π c) V πr π ( ),08 0 km billón de km d) Un huso hoaio abaca un ángulo de 5. Po tanto: S TIERRA S HUSO S S HUSO TIERRA 5 S TIERRA ( S Hay husos iguales en total S HUSO TIERRA.) Po tanto: S HUSO ,5 millones de km Los paalelos son cicunfeencias menoes. Calcula lo que mide el peímeto de los siguientes paalelos: a) 60 b) 0 c) 5 Indicación: l 0 60 l/

9 Pág. 9 a) R 60 R/ R/ R adio de la Tiea R Longitud π πr πr π ,8 km b) R + ( ) R + R R/ 0 R R R R R R Longitud π π πr π , km R R c) R 5 5 R + R R R R R 6 70 Longitud π π π 8 86,8 km Un baco va de un punto A, situado en las costas de Áfica de 0 latitud note y 0 longitud oeste, a oto B, en las costas de Améica de 0 latitud note y 80 longitud oeste, siguiendo el paalelo común. B A a) Qué distancia ha ecoido? b) Qué distancia ecoeía si la difeencia de longitudes de los dos puntos fuea de 80? c) Qué distancia ecoeía en este último caso si pudiea navega de un punto a oto siguiendo un aco de cículo máximo?

10 Pág. 0 B A Po el apatado b) del ejecicio anteio, sabemos que: π 6 km a) Distancia ecoida de A a B: ) AB π , km b) Si la difeencia fuea de 80 : Distancia π 6 7 km c) Siguiendo un aco de cículo máximo, con difeencia de 80 : Distancia ( *) πr πr π ,8 km. (*)R adio de la Tiea Po qué el hoizonte se ve cicula? Si miamos la Tiea desde muy alto (po ejemplo, desde un satélite atificial), se veá como un disco enome. La línea de tangencia del cono de visuales tangentes a la Tiea con la esfea teeste es el hoizonte. Si, en luga de esta a esa altua, estamos mucho más ceca, tenemos también oto caso de visión (con mucha meno altua), peo igualmente veemos el hoizonte cicula. Página 8 Razona po qué los casquetes polaes abacan ( 7') 6 5', la zona tóida lo mismo, y las zonas templadas, ' 6'. α α eje α α ecuado α inclinación de la eclíptica 7' Casquetes polaes 7' 6 5' Zona tóida 7' 6 5' Zonas templadas ' 6' Si la inclinación de la eclíptica fuea 5 en vez de 7', cómo quedaían deteminadas las zonas climáticas? Casquetes polaes abacaían 5 90 Zona tóida abacaía 5 90 No había zonas templadas.

Arista Los polígonos que limitan al poliedro se llaman caras. Tetraedro Cubo Octaedro Dodecaedro Icosaedro

Arista Los polígonos que limitan al poliedro se llaman caras. Tetraedro Cubo Octaedro Dodecaedro Icosaedro OBJETIVO 1 CLASIICAR POLIEDROS NOMBRE: CURSO: ECHA: POLIEDROS Un poliedo es un cuepo geomético que está limitado po cuato o más polígonos. Aista Los polígonos que limitan al poliedo se llaman caas. Caa

Más detalles

9 Cuerpos geométricos

9 Cuerpos geométricos 865 _ 045-056.qxd 7/4/07 1:0 Página 45 Cuepos geométicos INTRODUCCIÓN Los cuepos geométicos están pesentes en múltiples contextos de la vida eal, de aí la impotancia de estudialos. Es inteesante constui

Más detalles

CUERPOS REDONDOS. LA ESFERA TERRESTRE

CUERPOS REDONDOS. LA ESFERA TERRESTRE IES PEÑAS NEGRAS. Geometía. º ESO. CUERPOS REDONDOS. LA ESFERA TERRESTRE 1. CUERPOS REDONDOS. Un cuepo edondo es un sólido que contiene supeficies cuvas. Dento de los cuepos edondos los más inteesantes

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 PÁGINA 223 EJERCICIOS Cuepos de evolución 1 Cuáles de las siguientes figuas son cuepos de evolución? De cuáles conoces el nombe? a) b) c) d) e) f) g) h) i) Todos son cuepos de evolución, excepto

Más detalles

2.7 Cilindros, conos, esferas y pirámides

2.7 Cilindros, conos, esferas y pirámides UNIDAD Geometía.7 Cilindos, conos, esfeas y piámides 58.7 Cilindos, conos, esfeas y piámides OBJETIVOS Calcula el áea y el volumen de cilindos, conos, esfeas y piámides egulaes Resolve poblemas de solidos

Más detalles

Matemáticas para Maestros Primer Curso Grado en Primaria 2014/2015. Tema 2. Magnitudes Geométricas

Matemáticas para Maestros Primer Curso Grado en Primaria 2014/2015. Tema 2. Magnitudes Geométricas Tema 2. Magnitudes Geométicas 1. Intoducción En pime luga tataemos de una cualidad de las figuas planas (su extensión, lo que ocupan en el plano) llamada, genealmente, supeficie o áea. Algunos autoes establecen

Más detalles

12 Cuerpos. en el espacio. 1. Elementos básicos en el espacio. Dibuja a mano alzada un punto, una recta, un romboide y un cubo.

12 Cuerpos. en el espacio. 1. Elementos básicos en el espacio. Dibuja a mano alzada un punto, una recta, un romboide y un cubo. 12 uepos en el espacio 1. Elementos básicos en el espacio ibuja a mano alzada un punto, una ecta, un omboide y un cubo. P I E N S A Y A L U L A Recta Punto Romboide ubo ané calculista 489,6 : 7,5 = 65,28;

Más detalles

GEOMETRÍA. 1. Sin resolver el sistema, determina si la recta 2x 3y + 1 = 0 es exterior, secante ó tangente a la circunferencia

GEOMETRÍA. 1. Sin resolver el sistema, determina si la recta 2x 3y + 1 = 0 es exterior, secante ó tangente a la circunferencia Puebas de Acceso a la Univesidad GEOMETRÍA Junio 94.. Sin esolve el sistema detemina si la ecta x y + = 0 es exteio secante ó tangente a la cicunfeencia (x ) + (y ) =. Razónalo. [5 puntos]. Dadas las ecuaciones

Más detalles

GUIA DE TRABAJO Materia: Matemáticas. Tema: Geometría 18 Explorando la esfera-1. Fecha: Profesor: Fernando Viso

GUIA DE TRABAJO Materia: Matemáticas. Tema: Geometría 18 Explorando la esfera-1. Fecha: Profesor: Fernando Viso GUIA DE TRABAJO Mateia: Matemáticas. Tema: Geometía 18 Exploando la esfea-1. Fecha: Pofeso: Fenando Viso Nombe del alumno: Sección del alumno: CONDICIONES: Tabajo individual. Sin libos, ni cuadenos, ni

Más detalles

Ejercicios. 100 Capítulo 8 Construcciones geométricas

Ejercicios. 100 Capítulo 8 Construcciones geométricas jecicios 1. a. Taza la ecta (MN). b. Taza la semiecta [N). c. Taza el segmento [Q]. d. Taza el segmento []. e. Taza la ecta (). f. Taza la semiecta [).. 7. () [] [) (G) G () [) [) () [] [] [) (G) H 8.

Más detalles

1 Halla la mediatriz del segmento AB. 2 Traza la recta perpendicular a la recta r por el punto A.

1 Halla la mediatriz del segmento AB. 2 Traza la recta perpendicular a la recta r por el punto A. 1 Halla la mediatiz del segmento. 2 Taza la ecta pependicula a la ecta po el punto. 3 Taza la pependicula a la ecta desde el punto. uál es la distancia del punto a la ecta? 4 Dibuja dos ectas pependiculaes

Más detalles

Generalidades y ángulos en la circunferencia. II Medio 2016

Generalidades y ángulos en la circunferencia. II Medio 2016 Genealidades y ángulos en la cicunfeencia II Medio 2016 pendizajes espeados Identifica los elementos de una cicunfeencia y un cículo. Calcula áeas y peímetos del cículo, del secto cicula y del segmento

Más detalles

A B. Teniendo en cuenta que el lado de un pentágono regular es la sección aurea de su diagonal, se tiene la siguiente construcción:

A B. Teniendo en cuenta que el lado de un pentágono regular es la sección aurea de su diagonal, se tiene la siguiente construcción: 1. Dibuja el pentágono egula de diagonal 120 mm. D E O G AF/2 A B F Pate pimea: Dibujo del pentágono. Teniendo en cuenta que el lado de un pentágono egula es la sección auea de su diagonal, se tiene la

Más detalles

PÁGINA 98. a) Tetraedro = 2 Cubo = 2 Octaedro = 2 Dodecaedro = 2 Icosaedro = 2

PÁGINA 98. a) Tetraedro = 2 Cubo = 2 Octaedro = 2 Dodecaedro = 2 Icosaedro = 2 PÁGINA 98 Pág. 1 1 Haz una tabla con el número de caras, vértices y aristas de los cinco poliedros regulares. a) Comprueba que los cinco cumplen la fórmula de Euler. [Recuerda: c + v = a + ]. b) Comprueba

Más detalles

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO Facultad de iencias uso - SOLUIOS ROLMAS FÍSIA. TMA : AMO LÉTRIO. n los puntos (; ) y (-; ) de un sistema de coodenadas donde las distancias se miden en cm, se sitúan dos cagas puntuales de valoes, y -,

Más detalles

IV: Medida de magnitudes para maestros. Capitulo 1: Magnitudes y medida

IV: Medida de magnitudes para maestros. Capitulo 1: Magnitudes y medida IV: Medida de magnitudes paa maestos. apitulo 1: Magnitudes y medida SELEIÓN DE EJERIIOS RESUELTOS ATIVIDAD INTRODUTORIA (Ejecicios 1 y 13): 1. Viginia avanza un meto, apoximadamente, cada dos pasos. En

Más detalles

PROBLEMAS DE OPTIMIZACIÓN DE FUNCIONES

PROBLEMAS DE OPTIMIZACIÓN DE FUNCIONES PROBLEMAS DE OPTIMIZACIÓN DE FUNCIONES.- Halla dos númeos que sumados den cuo poducto sea máimo. Sean e los númeos buscados. El poblema a esolve es el siguiente: máimo Llamamos p al poducto de los dos

Más detalles

6: PROBLEMAS METRICOS

6: PROBLEMAS METRICOS Unidad 6: PROBLEMAS METRICOS 6.1.- DIRECCIONES DE RECTAS Y PLANOS Los poblemas afines tatan de incidencias (ve si un punto está contenido en una ecta o en un plano y ve si una ecta está contenida en un

Más detalles

6.1. SUPERFICIE PRISMÁTICA Y PRISMA

6.1. SUPERFICIE PRISMÁTICA Y PRISMA 6 6.1. SUPERFICIE PRISMÁTICA Y PRISMA 6.. SUPERFICIE PIRAMIDAL Y PIRÁMIDE 6.. CUERPOS REDONDOS. 6.4. SÓLIDOS DE REVOLUCIÓN Objetivos: Detemina áeas de supeficies. Detemina volúmenes de sólidos. 14 Inicialmente

Más detalles

Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos:

Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos: FÍSICA GENERAL II GUÍA - Campo eléctico: Ley de Gauss Objetivos de apendizaje Esta guía es una heamienta que usted debe usa paa loga los siguientes objetivos: Defini el concepto de Flujo de Campo Eléctico.

Más detalles

2º de Bachillerato Óptica Física

2º de Bachillerato Óptica Física Física TEMA 4 º de Bacilleato Óptica Física.- Aveigua el tiempo que tadaá la luz oiginada en el Sol en llega a la Tiea si el diámeto de la óbita que ésta descibe alededo del Sol es de 99350000 Km. Y en

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejecicios esueltos Boletín 1 Leyes de Keple y Ley de gavitación univesal Ejecicio 1 Dos planetas de masas iguales obitan alededo de una estella de masa mucho mayo. El planeta 1 descibe una óbita cicula

Más detalles

CAPÍTULO 11: ÁREAS Y VOLÚMENES (I)

CAPÍTULO 11: ÁREAS Y VOLÚMENES (I) CAPÍTULO 11: ÁREA Y VOLÚMENE (I) Dante Gueeo-Canduví Piua, 015 FACULTAD DE INGENIERÍA Áea Deatamental de Ingenieía Industial y de istemas CAPÍTULO 11: ÁREA Y VOLÚMENE (I) Esta oba está bajo una licencia

Más detalles

CANARIAS / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO

CANARIAS / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO CANAIAS / SEPTIEMBE 0. LOGSE / FÍSICA / EXAMEN COMPLETO De las dos opciones popuestas, sólo hay que desaolla una opción completa. Cada poblema coecto vale po tes puntos. Cada cuestión coecta vale po un

Más detalles

2πR π =

2πR π = PÁGIN 11 Pág. 1 oodends geogáfi cs 19 os ciuddes tienen l mism longitud, 15 E, y sus ltitudes son 7 5' N y 5' S. uál es l distnci ente ells? R b 7 5' b 5' Tenemos que ll l longitud del co coespondiente

Más detalles

v L G M m =m v2 r D M S r D

v L G M m =m v2 r D M S r D Poblemas de Campo Gavitatoio 1 Calcula la velocidad media de la iea en su óbita alededo del ol y la de la luna en su óbita alededo de la iea, sabiendo que el adio medio de la óbita luna es 400 veces meno

Más detalles

Apuntes de Trigonometría Elemental

Apuntes de Trigonometría Elemental Apuntes de Tigonometía Elemental José Antonio Salgueio González IES Bajo Guadalquivi - ebija ii Agadecimientos A Rocío, que con su apoyo hace posible la ealización de este poyecto 1 Índice geneal Agadecimientos

Más detalles

Matemáticas 4º ESO Fernando Barroso Lorenzo GEOMETRÍA ANALÍTICA. r r

Matemáticas 4º ESO Fernando Barroso Lorenzo GEOMETRÍA ANALÍTICA. r r Fenando Baoso Loenzo GEOMETRÍA ANALÍTICA 1. Dados los vectoes cuyas coodenadas son u = ( 10, 2) y v = (13, 2), calcula el módulo u 43 u 298621 del vecto esultante de la siguiente combinación lineal w =

Más detalles

OPTIMIZACIÓN DE FUNCIONES DE UNA VARIABLE

OPTIMIZACIÓN DE FUNCIONES DE UNA VARIABLE Matemáticas º Bacilleato. OTIMIZACIÓN DE UNCIONE DE UNA VARIABLE ROBLEMA DE OTIMIZACIÓN aa esolve un poblema de optimización se siguen los siguientes pasos:. Lee bien el enunciado.. i el poblema tiene

Más detalles

Recuerda lo fundamental

Recuerda lo fundamental 11 Figuas en el espacio Recueda lo fundamental Nombe y apellidos:... Cuso:... Fecha:... FIGURAS EN EL ESPACIO POLIEDROS REGULARES Y SEMIRREGULARES Un poliedo es egula si sus caas son... y en cada vétice

Más detalles

RELACION DE ORDEN: PRINCIPALES TEOREMAS

RELACION DE ORDEN: PRINCIPALES TEOREMAS RELACION DE ORDEN: PRINCIPALES TEOREMAS Sean a, b, c y d númeos eales; se tiene que:. Si a < b c < d a + c < b + d. Si a 0 a > 0 3. Si a < b -a > -b 4. Si a > 0 a - > 0 ; si a < 0 a - < 0 5. Si 0 < a

Más detalles

INSTITUTO DE FÍSICA MECÁNICA NEWTONIANA

INSTITUTO DE FÍSICA MECÁNICA NEWTONIANA INSTITUT DE FÍSIC ECÁNIC NEWTNIN Cuso 009 Páctico V Sistemas de Patículas y Sistemas ígidos Pate : Sistemas de patículas Ejecicio N o 1 Halla geométicamente, es deci, aplicando popiedades de simetía o

Más detalles

FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS

FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS Los ángulos: Se pueden medi en: GRADOS RADIANES: El adián se define como el ángulo que limita un aco cuya longitud es igual al adio del aco. Po tanto, el ángulo, α,

Más detalles

Trigonometría. Positivo

Trigonometría. Positivo Seminaio Univesitaio de Ingeso 17 Tigonometía La tigonometía es una de las amas de la matemática, cuyo significado etimológico es la medición de los tiángulos. Se deiva del vocablo giego tigōno: "tiángulo"

Más detalles

3.3.6 Perímetro en la circunferencia y área en el círculo.

3.3.6 Perímetro en la circunferencia y área en el círculo. 3.3.6 Peímeto en a cicunfeencia y áea en e cícuo. Peímeto de a cicunfeencia. Es a ongitud (L de a cicunfeencia, se cacua con as siguientes fómuas. d adio diámeto L = d Peo d =, entonces L = Ecuación paa

Más detalles

BLOQUE II. Geometría. 10. Elementos en el plano 11. Triángulos 12. Los polígonos y la circunferencia 13. Perímetros y áreas

BLOQUE II. Geometría. 10. Elementos en el plano 11. Triángulos 12. Los polígonos y la circunferencia 13. Perímetros y áreas LOQUE II Geometía 0. Elementos en el plano. Tiángulos. Los polígonos y la cicunfeencia. Peímetos y áeas 0 Elementos en el plano. Elementos básicos en el plano Dibuja una ecta y contesta a las siguientes

Más detalles

Sector Circular Longitud de Arco. Sector Circular. Und. 1 Introducción a la Trigonometría

Sector Circular Longitud de Arco. Sector Circular. Und. 1 Introducción a la Trigonometría Llamamos desaollo de una supeficie lateal al conjunto de puntos de la supeficie imaginaia que envuelve a un sólido y que es extendida sobe un plano. En pincipio toda supeficie lateal puede epesentase sobe

Más detalles

BLOQUE II. Geometría. 10. Elementos en el plano 11. Triángulos 12. Los polígonos y la circunferencia 13. Perímetros y áreas

BLOQUE II. Geometría. 10. Elementos en el plano 11. Triángulos 12. Los polígonos y la circunferencia 13. Perímetros y áreas LOQUE II Geometía 0. Elementos en el plano. Tiángulos. Los polígonos y la cicunfeencia. Peímetos y áeas 0 Elementos en el plano. Elementos básicos en el plano Dibuja una ecta y contesta a las siguientes

Más detalles

TEMA 3 MOVIMIENTO CIRCULAR Y GRAVITACIÓN UNIVERSAL

TEMA 3 MOVIMIENTO CIRCULAR Y GRAVITACIÓN UNIVERSAL EMA 3 MOIMIENO CICULA Y GAIACIÓN UNIESAL El movimiento cicula unifome (MCU) Movimiento cicula unifome es el movimiento de un cuepo que tiene po tayectoia una cicunfeencia y descibe acos iguales en tiempos

Más detalles

XLIX Olimpiada Matemática Española

XLIX Olimpiada Matemática Española XLIX Olimpiada Matemática Española Fase Local Melilla 1 de eneo de 01 Poblema 1 Escibimos en fila, peo no necesaiamente en oden, los númeos enteos desde el 1 al 01. Calculamos las medias de cada dos númeos

Más detalles

MARCOSAPB CIENCIAS NATURALES FÍSICA M. CIRCULAR U N.S.Q INSTITUCIÓN EDUCATIVA ESCUELA NORMAL SUPERIOR DE QUIBDÓ

MARCOSAPB CIENCIAS NATURALES FÍSICA M. CIRCULAR U N.S.Q INSTITUCIÓN EDUCATIVA ESCUELA NORMAL SUPERIOR DE QUIBDÓ MARCOSAPB CIENCIAS NAURALES FÍSICA M. CIRCULAR U. -- 0 - - 03. N.S.Q INSIUCIÓN EDUCAIVA ESCUELA NORMAL SUPERIOR DE QUIBDÓ M.C.U. MOVIMIENO CIRCULAR UNIFORME Pieda atada a una cueda: estoy giando La tiea:

Más detalles

X I OLIMPIADA NACIONAL DE FÍSICA

X I OLIMPIADA NACIONAL DE FÍSICA X I LIMPIADA NACINAL D FÍSICA FAS LCAL - UNIVSIDADS D GALICIA - 18 de Febeo de 2000 APLLIDS...NMB... CNT... PUBA BJTIVA 1) Al medi la masa de una esfea se obtuvieon los siguientes valoes (en gamos): 4,1

Más detalles

2º de Bachillerato Interacción Gravitatoria

2º de Bachillerato Interacción Gravitatoria Física EA º de Bacilleato Inteacción avitatoia.- Aveiua cuál seía la duación del año teeste en el caso supuesto que la iea se acecaa al Sol de manea que la distancia fuea un 0 % meno que la eal. Y si se

Más detalles

Definición 39. Circunferencia de centro en O y radio r en un plano π. Figura 141. Podemos definir este conjunto por comprensión así: C O,

Definición 39. Circunferencia de centro en O y radio r en un plano π. Figura 141. Podemos definir este conjunto por comprensión así: C O, 9.1 NOCIONES BÁSICAS Definición 9. Cicunfeencia de cento en O y adio en un plano π. Es el conjunto (luga geomético) de todos los puntos de un plano un punto dado O, llamado cento, una distancia., que equidistan

Más detalles

Campo eléctrico. 3 m. respectivamente. Calcular el campo eléctrico en el punto A (4,3). Resp.:

Campo eléctrico. 3 m. respectivamente. Calcular el campo eléctrico en el punto A (4,3). Resp.: Campo eléctico 1. Calcula el valo de la fueza de epulsión ente dos cagas Q 1 = 200 µc y Q 2 = 300 µc cuando se hallan sepaadas po una distancia de a) 1 m. b) 2 m. c) 3 m. Resp.: a) 540 N, b) 135 N, c )

Más detalles

CANARIAS / SEPTIEMBRE 03. LOGSE / FÍSICA / EXAMEN COMPLETO

CANARIAS / SEPTIEMBRE 03. LOGSE / FÍSICA / EXAMEN COMPLETO De las dos opciones popuestas, sólo hay que desaolla una opción completa. Cada poblema coecto vale po tes puntos. Cada cuestión coecta vale po un punto. Poblemas OPCIÓN A.- Un satélite descibe una óbita

Más detalles

TEMA 4. ELECTROSTATICA EN CONDUCTORES Y DIELECTRICOS

TEMA 4. ELECTROSTATICA EN CONDUCTORES Y DIELECTRICOS Fundamentos Físicos de la Infomática Escuela Supeio de Infomática Cuso 09/0 Depatamento de Física Aplicada TEMA 4. ELECTOSTATICA EN CONDUCTOES Y DIELECTICOS 4..- Se tiene un conducto esféico de adio 0.5

Más detalles

Soluciones ejercicios

Soluciones ejercicios Soluciones ejecicios Capítulo 1 adie es pefecto, luego si encuenta eoes, tenga la gentileza de infomanos Ejecicio 1.1 Un cuepo descibe una óbita cicula de adio R =100 m en tono a un punto fijo con apidez

Más detalles

EJERCICIOS DE GEOMETRÍA ANALITICA DEL ESPACIO

EJERCICIOS DE GEOMETRÍA ANALITICA DEL ESPACIO EJERCICIOS DE GEOMETRÍA ANALITICA DEL ESPACIO Detemina la posición elativa de las siguientes paejas de planos a) 8 ' 4 6 6 b) 6 7 ' 4 c) ' 6 7 d) 4 7 Dado el plano que contenga al punto A(-,, 4), detemina

Más detalles

12 Cuerpos. en el espacio. 1. Elementos básicos en el espacio. Dibuja a mano alzada un punto, una recta, un romboide y un cubo.

12 Cuerpos. en el espacio. 1. Elementos básicos en el espacio. Dibuja a mano alzada un punto, una recta, un romboide y un cubo. 12 uepos en el espcio 1. Elementos básicos en el espcio ibuj mno lzd un punto, un ect, un omboide y un cubo. P I E N S A Y A L U L A Rect Punto Romboide ubo né clculist 489,6 : 7,5 = 65,28; R = 0 1 2 Escibe

Más detalles

Siempre verifica que a 2 = b 2 + c 2 (Th. Pitágoras)

Siempre verifica que a 2 = b 2 + c 2 (Th. Pitágoras) Págin 1 FIGURAS EN EL PLANO POLÍGONOS FIGURAS EN EL PLANO Y EN EL ESPACIO 1.- Polígono de 3 ldos: Tiángulo. B Los ángulos inteioes de culquie tiángulo sumn siempe 180º. El áe de culquie tiángulo se puede

Más detalles

( ) CIRCUNFERENCIA UNIDAD VIII VIII.1 DEFINICIÓN DE CIRCUNFERENCIA

( ) CIRCUNFERENCIA UNIDAD VIII VIII.1 DEFINICIÓN DE CIRCUNFERENCIA CIRCUNRNCIA UNIA III III. INICIÓN CIRCUNRNCIA Una cicunfeencia se define como el luga geomético de los puntos P, que equidistan de un punto fijo en el plano llamado cento. La distancia que eiste de cualquiea

Más detalles

TEMA 9: FORMAS GEOMÉTRICAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco.

TEMA 9: FORMAS GEOMÉTRICAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. 2009 TEMA 9: FORMAS GEOMÉTRICAS. Pime Cuso de Educación Secundaia Obligatoia. I.e.s. Fuentesaúco. Manuel González de León. mgdl 01/01/2009 TEMA 09: FORMAS GEOMÉTRICAS. 1. Ideas Elementales de Geometía

Más detalles

π r. Cada círculo menor es de radio 2. Por

π r. Cada círculo menor es de radio 2. Por Pueba CNU Venezuela, Septiembe de 004. Modelo. Soluciones. < Si, y z son enteos positivos, tales que z. Cuál de las siguientes epesiones es mayo que? z ( ) ( ) a) z b) z c) z d) z e) = ( ) < ( ) = < Solución:

Más detalles

Capítulo 8 Geometría del Espacio

Capítulo 8 Geometría del Espacio Capítulo 8 Geometía del Espacio Intoducción Esta ama de la geometía, también denominada Esteeometía, se ocupa de las popiedades y medidas de figuas geométicas en el espacio tidimensional. Estas figuas

Más detalles

CUADRILÁTEROS. Cuadrado y Rectángulo.

CUADRILÁTEROS. Cuadrado y Rectángulo. ibuja un NTÁN cuando nos dan el RI. 1. ibuja una cicunfeencia de adio el que nos dan.. ibuja dos diámetos pependiculaes (ojo que pasen po el cento de la cicunfeencia). 3. ibuja la mediatiz de uno de los

Más detalles

TEMA 3 FUERZAS Y MOVIMIENTOS CIRCULARES

TEMA 3 FUERZAS Y MOVIMIENTOS CIRCULARES TEMA 3 FUERZAS Y MOVIMIENTOS CIRCULARES 1. MOVIMIENTO CIRCULAR UNIFORME (MCU). Es el movimiento de un cuepo cuya tayectoia es una cicunfeencia y su velocidad es constante. 1.1. Desplazamiento angula o

Más detalles

Geometría 2/2. Material UA. Material propiedad de sus autores. Ojo tiene errores. Magisterio Infantil - Primaria

Geometría 2/2. Material UA. Material propiedad de sus autores. Ojo tiene errores. Magisterio Infantil - Primaria Geometía 2/2 Mateial U Mateial popiedad de sus autoes. Ojo tiene eoes Magisteio Infantil Pimaia / licante 84 Junto Telepizza 695400027 www.academiaup.es info@academiaup.es Univesidad de licante FIGURS

Más detalles

Lección 2. El campo de las cargas en reposo: campo electrostático.

Lección 2. El campo de las cargas en reposo: campo electrostático. Lección 2. El campo de las cagas en eposo: campo electostático. 41. Sea el campo vectoial E = x x 2 + y u y 2 x + x 2 + y u 2 y. Puede tatase de un campo electostático? Cuánto vale el flujo de E a tavés

Más detalles

GUÍA Nº 3 VOLUMENES. CIENCIAS BÁSICAS INACAP Renca

GUÍA Nº 3 VOLUMENES. CIENCIAS BÁSICAS INACAP Renca GUÍ Nº VOLUMENES CIENCIS BÁSICS INCP Renca UNIDD II: VOLÚMENES DE CUERPOS GEOMÉTRICOS. ÁRES Y VOLÚMENES DE CUERPOS PRINCIPLES d a CUBO a = aisa, d = diagonal Áea() = 6a Volúmen(V) = a d= a PIRÁMIDE RECTNGULR

Más detalles

LUGARES GEOMÉTRICOS Y ÁNGULOS

LUGARES GEOMÉTRICOS Y ÁNGULOS REPASO Y APOYO OBJETIVO 1 LUGARES GEOMÉTRICOS Y ÁNGULOS Nombe: Cuso: Fec: Se llm lug geomético l conjunto de todos los puntos que cumplen un detemind popiedd geométic. EJEMPLO Cuál es el lug geomético

Más detalles

De acuerdo con esto la fuerza será: F qv B o bien F q v B sen. A esa fuerza se le denomina fuerza de Lorentz.

De acuerdo con esto la fuerza será: F qv B o bien F q v B sen. A esa fuerza se le denomina fuerza de Lorentz. Un imán es un cuepo capaz de atae al hieo y a algunos otos mateiales. La capacidad de atacción es máxima en dos zonas extemas del imán a las que vamos a llama polos ( y ). i acecamos dos imanes, los polos

Más detalles

UNIDAD 4: CIRCUNFERENCIA CIRCULO:

UNIDAD 4: CIRCUNFERENCIA CIRCULO: UNIDD 4: CIRCUNFERENCI CIRCULO: CONTENIDO: I. CONCEPTO DE CIRCUNFERENCI: Es una cuva ceada y plana cuyos puntos equidistan de un punto llamado cento. Una cicunfeencia se denota con la expesión: O C, y

Más detalles

Ejemplos 2. Cinemática de los Cuerpos Rígidos

Ejemplos 2. Cinemática de los Cuerpos Rígidos Ejemplos. Cinemática de los Cuepos Rígidos.1. Rotación alededo de un eje fijo.1.** El bloque ectangula ota alededo de la ecta definida po los puntos O con una velocidad angula de 6,76ad/s. Si la otación,

Más detalles

Ejemplos Ley de Gauss, Fundamentos Físicos y Tecnológicos de la Informática, P. Gomez et al., pp

Ejemplos Ley de Gauss, Fundamentos Físicos y Tecnológicos de la Informática, P. Gomez et al., pp Ejemplos Ley de Gauss, Fundamentos Físicos y Tecnológicos de la Infomática, P. Gomez et al., pp. 5-. Ejemplo 1º. Aplicando el teoema de Gauss halla el campo eléctico ceado po una distibución esféica de

Más detalles

Las componentes en el eje Y se anulan El CE resultante de la esfera hueca se encontrara sobre el eje X. El área de trabajo

Las componentes en el eje Y se anulan El CE resultante de la esfera hueca se encontrara sobre el eje X. El área de trabajo Cuso: FISICA II CB 3U 1I Halla el CE de una esfea hueca con caga Q adio a. ad a d asen P de a Las componentes en el eje Y se anulan El CE esultante de la esfea hueca se encontaa sobe el eje X. El áea de

Más detalles

La recta n forma un ángulo de 60 (trazar con reglas) con la recta r. Qué ángulos forma la recta n con la recta s? NOMBRE: Nº 1ºESO

La recta n forma un ángulo de 60 (trazar con reglas) con la recta r. Qué ángulos forma la recta n con la recta s? NOMBRE: Nº 1ºESO 1. OCBULRIO BÁSICO 1. Dibuja las siguientes ectas siguiendo las instucciones: La ecta vetical es pependicula a las ectas s y q. La distancia ente estas dos ectas es de 20mm. o La ecta n foma un ángulo

Más detalles

CP; q v B m ; R R qb

CP; q v B m ; R R qb Campo Magnético Un imán es un cuepo capaz de atae al hieo y a algunos otos mateiales. La capacidad de atacción es máxima en dos zonas extemas del imán a las que vamos a llama polos (N y S). Si acecamos

Más detalles

1. Realiza las siguientes operaciones con segmentos. 1º a+2b-c. 2º a+c-b. 3º 3a+c-b NOMBRE: Nº 1ºESO 1.3. OPERACIONES CON SEGMENTOS

1. Realiza las siguientes operaciones con segmentos. 1º a+2b-c. 2º a+c-b. 3º 3a+c-b NOMBRE: Nº 1ºESO 1.3. OPERACIONES CON SEGMENTOS 1.3. OPERCIONES CON SEGMENTOS 1. Realiza las siguientes opeaciones con segmentos a b c 1º a+2b-c 1º 2º a+c-b 2º 3º 3a+c-b 3º TEM 1 - Opeaciones con segmentos página 3 1.3.2. TEOREM DE TLES 1. Divide el

Más detalles

Matemáticas II Hoja 6: Puntos, rectas y planos en el espacio

Matemáticas II Hoja 6: Puntos, rectas y planos en el espacio Pofeso: Miguel Ángel Baeza Alba (º Bachilleato) Matemáticas II Hoja 6: Puntos, ectas y planos en el espacio Ejecicio : a) Halla el punto de cote ente el plano 6x y + z y la ecta que pasa po el punto P

Más detalles

CÁLCULO INTEGRAL EJERCICIOS DE REPASO PARA EXAMEN DE PRIMER PARCIAL

CÁLCULO INTEGRAL EJERCICIOS DE REPASO PARA EXAMEN DE PRIMER PARCIAL CÁLCULO INTEGRAL EJERCICIOS DE REPASO PARA EXAMEN DE PRIMER PARCIAL - Máimos y s Aplica el citeio de tu elección, detemina las coodenadas paa los puntos máimos y/o s de las siguientes unciones: a) 18 5

Más detalles

11 Movimientos. 1. Transformaciones geométricas. 2. Vectores y traslaciones

11 Movimientos. 1. Transformaciones geométricas. 2. Vectores y traslaciones 11 Movimiento 1. Tanfomacione geomética onideando poitivo el entido contaio a la aguja del eloj, y ecoiendo lo vétice del tiángulo ectángulo en oden alfabético, di en qué cuadante e poitivo el entido del

Más detalles

EJERCICIOS TEMA 9: ELEMENTOS MECÁNICOS TRANSMISORES DEL MOVIMIENTO

EJERCICIOS TEMA 9: ELEMENTOS MECÁNICOS TRANSMISORES DEL MOVIMIENTO EJECICIOS TEMA 9: ELEMENTOS MECÁNICOS TANSMISOES DEL MOVIMIENTO 1. Dos uedas de ficción gian ente sí sin deslizamiento. Sabiendo que la elación de tansmisión vale 1/5 y que la distancia ente ejes es de

Más detalles

BLOQUE IV. Geometría. 11. Movimientos 12. Áreas y volúmenes

BLOQUE IV. Geometría. 11. Movimientos 12. Áreas y volúmenes LQUE IV Geometía 11. Movimiento 12. Áea y volúmene 11 Movimiento 1. Tanfomacione geomética onideando poitivo el entido contaio a la aguja del eloj, y ecoiendo lo vétice del tiángulo ectángulo en oden alfabético,

Más detalles

1 Poliedros y cuerpos de revolución

1 Poliedros y cuerpos de revolución Unidad 1. Figuras en el espacio a las Enseñanzas Aplicadas 1 Poliedros y cuerpos de revolución Página 155 1. Describe cada uno de los cinco poliedros de abajo diciendo cómo son sus caras (por ejemplo,

Más detalles

CATALUÑA / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO

CATALUÑA / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO CATALUÑA / SEPTIEMBRE 0. LOGSE / FÍSICA / EXAMEN COMPLETO Resuelva el poblema P1 y esponde a las cuestiones C1 y C Escoge una de las opciones (A o B) y esuelva el poblema P y esponda a las cuestiones C3

Más detalles

avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el

avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el /5 Conceptos pevios PRODUCTO VECTORIAL DE DO VECTORE. Es oto vecto cuyo módulo viene dado po: a b a b senα. u diección es pependicula al plano en el ue se encuentan los dos vectoes y su sentido viene dado

Más detalles

Guía de Ejercicios de MCU

Guía de Ejercicios de MCU Guía de Ejecicios de MCU Depatamento de Física - Escuela ORT 016 Resumen de Ecuaciones Útiles f 1 T ω π ω πf π T a c v ω T 1 f π ω v ω π T F c ma c m v ω 1 Ejecicios MCU 1. La siguiente tabla tiene ángulos

Más detalles

El radio de una circunferencia mide 1,25 cm. Halla el ángulo que forman las tangentes a la circunferencia desde un punto situado a 4,8 cm del centro.

El radio de una circunferencia mide 1,25 cm. Halla el ángulo que forman las tangentes a la circunferencia desde un punto situado a 4,8 cm del centro. T: TRIGNMETRÍ 1º T 7. RESLUIÓN E TRIÁNGULS RETÁNGULS L TNGENTE UN IRUNFERENI El adio de una cicunfeencia mide 1, cm. Halla el ángulo que foman las tangentes a la cicunfeencia desde un punto situado a cm

Más detalles

Solución al examen de Física

Solución al examen de Física Solución al examen de Física Campos gavitatoio y eléctico 14 de diciembe de 010 1. Si se mantuviea constante la densidad de la Tiea: a) Cómo vaiaía el peso de los cuepos en su supeficie si su adio se duplicaa?

Más detalles

MATEMÁTICAS II TEMA 6 Planos y rectas en el espacio. Problemas de ángulos, paralelismo y perpendicularidad, simetrías y distancias

MATEMÁTICAS II TEMA 6 Planos y rectas en el espacio. Problemas de ángulos, paralelismo y perpendicularidad, simetrías y distancias Geometía del espacio: poblemas de ángulos y distancias; simetías MATEMÁTICAS II TEMA 6 Planos y ectas en el espacio Poblemas de ángulos, paalelismo y pependiculaidad, simetías y distancias Ángulos ente

Más detalles

GRAVITACIÓN (parte 1)

GRAVITACIÓN (parte 1) IES LOPE DE VEGA º de BACHILLERAO (a distancia) CUESIONES, PROBLEMAS Y EJERCICIOS DE FÍSICA GRAVIACIÓN (pate 1) NIVEL BÁSICO 01 Halle las velocidades lineal, angula y aeola con que la iea gia alededo del

Más detalles

Tema 7 Geometría en el espacio Matemáticas II 2º Bachillerato 1

Tema 7 Geometría en el espacio Matemáticas II 2º Bachillerato 1 Tema Geometía en el espacio Matemáticas II º Bachilleato ÁNGULOS EJERCICIO 5 : λ Dados las ectas : λ, s : λ calcula el ángulo que foman: a) s b) s π el plano π : ; i j k a) Hallamos el vecto diecto de

Más detalles

1 Indica, en la ilustración, dos edificios que sean poliedros y tengan formas diferentes. PÁGINA 186

1 Indica, en la ilustración, dos edificios que sean poliedros y tengan formas diferentes. PÁGINA 186 PÁGINA 186 En la Casa de la Cultura se ha montado una exposición fotográfica. En ella se recogen modernos edificios en los que los poliedros y los cuerpos de revolución han sido elevados a la categoría

Más detalles

U.D. 3. I NTERACCIÓN GRAVITATORIA

U.D. 3. I NTERACCIÓN GRAVITATORIA U.D. 3. I NERACCIÓN GRAVIAORIA RESUMEN Ley de gavitación univesal: odos los cuepos se ataen con una fueza diectamente popocional al poducto de sus masas e invesamente popocional al cuadado de la distancia

Más detalles

FUERZAS GRAVITATORIAS ACTIVIDADES DE REFUERZO. 52 FÍSICA Y QUÍMICA 4. o ESO MATERIAL FOTOCOPIABLE SANTILLANA EDUCACIÓN, S. L.

FUERZAS GRAVITATORIAS ACTIVIDADES DE REFUERZO. 52 FÍSICA Y QUÍMICA 4. o ESO MATERIAL FOTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. DE REFUERZO. Qué nombe ecibe el modelo cosmológico popuesto po Ptolomeo? En qué consiste?. Señala, de ente las opciones siguientes, quién fue el científico que popuso la ley que apaece a continuación:

Más detalles

SOLUCIONES DE LOS EJERCICIOS DE APLICACIÓN II TEMA 4

SOLUCIONES DE LOS EJERCICIOS DE APLICACIÓN II TEMA 4 SOLUCIONES DE LOS EJERCICIOS DE APLICACIÓN II TEMA 4 Ejecicio de aplicación 44 (Deivación) Se desea obtene una viga ectangula a pati de un tonco cilíndico de 6 cm de diámeto a) Demosta que la viga con

Más detalles

TRIGONOMETRÍA. Estudia las relaciones entre los lados y los ángulos de los triángulos.

TRIGONOMETRÍA. Estudia las relaciones entre los lados y los ángulos de los triángulos. TRIGONOMETRÍA Estudia las elaciones ente los lados los ángulos de los tiángulos. Los ángulos en maúsculas. Los lados como el ángulo opuesto, peo en minúsculas. Ángulo. Poción de plano compendida ente dos

Más detalles

DIBUJO TÉCNICO BACHILLERATO. Láminas resueltas del TEMA 4. TANGENCIAS. Departamento de Artes Plásticas y Dibujo

DIBUJO TÉCNICO BACHILLERATO. Láminas resueltas del TEMA 4. TANGENCIAS. Departamento de Artes Plásticas y Dibujo DIBUJO ÉCNICO BACHILLERAO Láminas esueltas del EMA 4. ANGENCIAS. Depatamento de Ates lásticas y Dibujo 1.- Dibuja 2 cicunfeencias adio 10 mm. que sean ANGENES EXERIORES a la dada y ente ellas. 2.- Dibuja

Más detalles

Es claro que el coseno de un ángulo agudo (digamos a) es igual al seno de su complemento W), de ahí la palabra coseno (seno del complemento).

Es claro que el coseno de un ángulo agudo (digamos a) es igual al seno de su complemento W), de ahí la palabra coseno (seno del complemento). Es clao que el coseno de un ángulo agudo (digamos a) es igual al seno de su complemento W), de ahí la palaba coseno (seno del complemento). Nota: En adelante escibiemos indistintamente cos a o cos(m(a)),

Más detalles

COLEGIO ESTRADA DE MARIA AUXILIADORA CIENCIA, TRABAJO Y VALORES: MI PROYECTO DE VIDA NIVELACION DE MATEMATICAS GRADO DECIMO (10 )

COLEGIO ESTRADA DE MARIA AUXILIADORA CIENCIA, TRABAJO Y VALORES: MI PROYECTO DE VIDA NIVELACION DE MATEMATICAS GRADO DECIMO (10 ) COLEGIO ESTRADA DE MARIA AUILIADORA CIENCIA, TRABAJO VALORES: MI PROECTO DE VIDA NIVELACION DE MATEMATICAS GRADO DECIMO (0 ) Fecha: Nombe del estudiante: N O T A La nivelación es en foma de talle donde

Más detalles

Tangencias y enlaces. Aplicaciones.

Tangencias y enlaces. Aplicaciones. DIBUJ Tangencias y Enlaces TEA 38: Tangencias y enlaces. Aplicaciones. Esquema:.- Intoducción. Email: pepaadoes@aakis.es Web: http://www.pepaadoesdeoposiciones.com.- Tazados de ectas tangentes...- Posiciones

Más detalles

Hotel Burj Al Arab, Dubai, Emiratos Árabes Unidos

Hotel Burj Al Arab, Dubai, Emiratos Árabes Unidos Hotel Buj Al Aab Dubai Emiato Áabe Unido Pedo ami Bofill-Gaet Poyecto de paametiación Ampliación de Matemática Intoducción Paa ete poyecto e ha ecogido como upeficie el lujoo hotel Buj al Aab de Dubai.

Más detalles

q v De acuerdo con esto la fuerza será: F qv B o bien F q v B sen 2 q v B m R R qb

q v De acuerdo con esto la fuerza será: F qv B o bien F q v B sen 2 q v B m R R qb Un imán es un cuepo capaz de atae al hieo y a algunos otos mateiales. La capacidad de atacción es máxima en dos zonas z extemas del imán a las que vamos a llama polos ( y ). i acecamos dos imanes, los

Más detalles

z a3 Ecuaciones continuas de la recta: eliminando el parámetro de (2) = = u u u

z a3 Ecuaciones continuas de la recta: eliminando el parámetro de (2) = = u u u Geometía. Puntos, ectas y planos en el espacio. Poblemas méticos en el espacio Pedo Casto Otega. Coodenadas o componentes de un vecto Sean dos puntos ( a, a ) y ( ) uuu uuu vecto son: = ( b a, b a, b a

Más detalles

CAPÍTULO 15: TRIÁNGULOS RECTÁNGULOS

CAPÍTULO 15: TRIÁNGULOS RECTÁNGULOS PÍTULO 15: TRIÁNGULOS RETÁNGULOS Dante Gueeo-handuví Piua, 2015 FULTD DE INGENIERÍ Áea Depatamental de Ingenieía Industial y de Sistemas PÍTULO 15: TRIÁNGULOS RETÁNGULOS Esta oba está bajo una licencia

Más detalles

5.7 Traducción de palabras a funciones

5.7 Traducción de palabras a funciones (0, a) = = = f () = f () (a, 0) a) b) FIGURA 5.6.17 Gáficas del poblema 51 5.7 Taducción de palabas a funciones Intoducción En cusos posteioes abá casos en los que se espea que usted taduzca las palabas

Más detalles

PÁGINA Describe y calcula la longitud del trayecto más corto que debe recorrer la lagartija para ir de A a B en cada caso.

PÁGINA Describe y calcula la longitud del trayecto más corto que debe recorrer la lagartija para ir de A a B en cada caso. PÁGIN 213 Pág. 1 0 Describe y calcula la longitud del trayecto más corto que debe recorrer la lagartija para ir de a en cada caso. 1 m 1 m 3 m En el tercer caso, y son centros de dos caras en una pirámide

Más detalles

PROBLEMAS DE ELECTROMAGNETISMO

PROBLEMAS DE ELECTROMAGNETISMO º de Bachilleato. Electomagnetismo POBLEMAS DE ELECTOMAGNETISMO 1- Un ion de litio Li +, que tiene una masa de 1,16 Α 1-6 kg, se acelea mediante una difeencia de potencial de V y enta pependiculamente

Más detalles

1. Los planetas describen órbitas elípticas planas en uno de cuyos focos está el sol.

1. Los planetas describen órbitas elípticas planas en uno de cuyos focos está el sol. LEYES DE KEPLE 1. Los planetas desciben óbitas elípticas planas en uno de cuyos focos está el sol. Esta ley esulta evidente si tenemos en cuenta que las fuezas gavitatoias son fuezas centales y que se

Más detalles