PROBLEMAS DE NEGOCIOS
|
|
|
- Víctor Manuel Olivera Hernández
- hace 8 años
- Vistas:
Transcripción
1 PROBLEMAS DE NEGOCIOS Una compañía elabora un producto a un costo por unidad de 20UM y lo vende por 32UM. Los costos a) Cuántas unidades debe elaborar y vender al mes con el fin que la compañía obtenga alguna utilidad? b) Cuántas unidades debe elaborar y vender al mes con el fin que la compañía tenga utilidades de al menos UM al mes?
2 Dos preguntas con distintos objetivos dos problemas Una compañía elabora un producto a un costo a) Cuántas unidades debe elaborar al mes con el fin que la compañía obtenga alguna utilidad? b) Cuántas unidades debe elaborar al mes con el fin que la compañía tenga utilidades de al menos UM al mes? Esta frase indica que estamos ante un problema de es
3 Vamos a resolver el primer problema Una compañía elabora un producto a un costo a) Cuántas unidades debe elaborar al mes con el fin que la compañía obtenga alguna utilidad? Para que se obtenga alguna utilidad se tiene que cumplir que Utilidad > 0 El problema a) también es un problema de es
4 Una compañía elabora un producto a un costo a) Cuántas unidades debe elaborar al mes con el fin que la compañía obtenga alguna utilidad? Suele ser la cantidad sobre la que se pregunta Utilidad > 0 Ya tenemos la, hay que traducirla en una en términos de la Seguimos el esquema para resolver problemas de es Dar una respuesta
5 Costo de una unidad debido a los Una factores compañía de producción elabora un producto a un costo p a) Cuántas unidades debe elaborar y vender al mes con el fin que la compañía obtenga alguna utilidad? C F Utilidad > 0 Usaremos que: Utilidad=Ingreso-Costo U I C I pq I 32q C C C C q F V Dar una respuesta
6 Una compañía elabora un producto a un costo a) Cuántas unidades debe elaborar y vender al mes con el fin que la compañía obtenga alguna utilidad? Utilidad > q q Usamos que: U I C I 32q C q No te olvides de los Dar una paréntesis respuesta
7 Una compañía elabora un producto a un costo a) Cuántas unidades debe elaborar y vender al mes con el fin que la compañía obtenga alguna utilidad? Es una lineal Utilidad > q q 32q q 12q q q 12 0 Eliminar los paréntesis Agrupar términos semejantes Se despeja la
8 Una compañía elabora un producto a un costo a) Cuántas unidades debe elaborar y vender al mes con el fin que la compañía obtenga alguna utilidad? Falta la respuesta, escrita en los mismos términos en que nos preguntan Utilidad > q q 32q q 12q q q 12 0 Eliminar los paréntesis Agrupar términos semejantes Se despeja la
9 Una compañía elabora un producto a un costo a) Cuántas unidades debe elaborar y vender al mes con el fin que la compañía obtenga alguna utilidad? Utilidad > 0 Respuesta: 32q q 0 Se deben producir y vender al 32q menos q 0 unidades en el mes 12q para que 0 la compañía tenga 12q q q 12 utilidades ,3
10 Una compañía elabora un producto a un costo a) Cuántas unidades debe elaborar al mes con el fin que la compañía obtenga alguna utilidad? b) Cuántas unidades debe elaborar al mes con el fin que la compañía tenga utilidades de al menos UM al mes? Vamos a resolver el problema b)
11 Una compañía elabora un producto a un costo por unidad de 20UM y lo vende por 32UM. Los costos fijos mensuales son de UM. b) Cuántas unidades debe elaborar al mes con el fin que la compañía tenga utilidades de al menos UM al mes? Cuál es la que Resolver resuelve la el problema? Dar una respuesta? Ya tenemos mucho hecho C Utilidad=Ingreso-Costo U I C I pq I 32q C C C q F V
12 Una compañía elabora un producto a un costo por unidad de 20UM y lo vende por 32UM. Los costos fijos mensuales son de UM. b) Cuántas unidades debe elaborar al mes con el fin que la compañía tenga utilidades de al menos UM al mes? Utilidades r Ya tenemos la, hay que traducirla en una en términos de la Dar Cuna C respuesta U I C I pq I 32q C C q F V
13 Una compañía elabora un producto a un costo por unidad de 20UM y lo vende por 32UM. Los costos fijos mensuales son de UM. b) Cuántas unidades debe elaborar al mes con el fin que la compañía tenga utilidades de al menos UM al mes? Utilidades r q q U I C I 32q C q Dar una respuesta No te olvides de los paréntesis
14 Una compañía elabora un producto a un costo por unidad de 20UM y lo vende por 32UM. Los costos fijos mensuales son de UM. b) Cuántas unidades debe elaborar al mes con el fin que la compañía tenga utilidades de al menos UM al mes? Utilidades r q q 32q q q q q q
15 Una compañía elabora un producto a un costo por unidad de 20UM y lo vende por 32UM. Los costos fijos mensuales son de UM. b) Cuántas unidades debe elaborar al mes con el fin que la compañía tenga utilidades de al menos UM al mes? Utilidades r q Respuesta: q 32q Se deben 20qproducir y vender al 12menos q unidades en el mes para que 12q la compañía tenga al menos UM en utilidades q q
16 PROBLEMAS DE NEGOCIOS 1) Una empresa elabora un artículo a un costo por unidad de 10 UM y lo vende por 25UM. Los costos fijos mensuales son de UM. Cuántas unidades debe elaborar y vender al mes con el fin que el ingreso mensual sea al menos el doble de los costos totales? 2) Una empresa elabora un artículo a un costo por unidad de 20 UM. Los costos fijos mensuales son de UM. Si vende cada artículo en 30UM Cuántas unidades debe elaborar y vender al mes para que la utilidad mensual sea al menos de UM? 3) Por fabricar un producto la compañía gasta 20UM por concepto de mano de obra y 12 UM por concepto de material. Los costos fijos mensuales de la fabrica que elabora este único producto son de UM. Cuántas unidades debe elaborar al mes para que el costo total no pase UM en el mes?
17 RESPUESTAS 1) unidades o más 2) unidades o más 3) No más de 375 unidades
Horas requeridas producto B
1. J&M Winery fabrica dos tipos de Chardonnay, uno con etiqueta económica y otro con etiqueta especial. Han firmado un contrato de venta de 30.000 cajas de Chardonnay y están seguros que podrán vender
UNIVERSIDAD TECNOLÓGICA DE JALISCO
TITULO DE LA PRACTICA: Ecuaciones limeales de Primer grado. ASIGNATURA: Matemáticas I HOJA: 1 DE: 6 UNIDAD TEMÁTICA: 2 FECHA DE REALIZACIÓN: Junio de 2007 NUMERO DE PARTICIPANTES RECOMENDABLE: 1 ELABORO:
UNIVERSIDAD DE MANAGUA
UNIVERSIDAD DE MANAGUA Sistemático de Programación Lineal Problemas de Programación Lineal: Solución Gráfica, Analítica, Sensibilidad y Método Simplex Prof. MSc. Ing. Julio Rito Vargas Avilés IIIC- 2016
Nombre del estudiante: Grupo: Hora: Salón:
Instituto Tecnológico de Saltillo. Cuadernillo de Ejercicios de Álgebra. CURSO DE NIVELACIÓN DE ÁLGEBRA 2011 Nombre del estudiante: Grupo: Hora: Salón: CONTENIDO DEL CUADERNILLO. UNIDAD NÚMEROS REALES.
GUIA DE EJERCICIOS - TEORIA DE DECISIONES
GUIA DE EJERCICIOS - TEORIA DE DECISIONES PROBLEMAS EN SITUACION DE CERTIDUMBRE: 1 Un estudiante de Administración de Empresas en la UNAP necesita completar un total de 65 cursos para obtener su licenciatura.
Soluciones de los ejercicios de Selectividad sobre Matrices y Sistemas de Ecuaciones Lineales de Matemáticas Aplicadas a las Ciencias Sociales II
Soluciones de los ejercicios de Selectividad sobre Matrices y Sistemas de Ecuaciones Lineales de Matemáticas Aplicadas a las Ciencias Sociales II Antonio Francisco Roldán López de Hierro * Convocatoria
EJERCICIOS SOBRE PROGRMACIÓN LINEAL RESUELTOS POR EL MÉTODO SIMPLEX.
EJERCICIOS SOBRE PROGRMACIÓN LINEAL RESUELTOS POR EL MÉTODO SIMPLEX. 1. Un empresario tiene a su disposición dos actividades de producción lineales, mediante la contribución de tres insumos, fundición,
Suscripciones Administración Reclamos Formule un modelo de programación lineal.
EJERCICIOS DE APLICACIÓN 1) Par, Inc. es un pequeño fabricante de equipo y material de golf. El distribuidor de Par cree que existe un mercado tanto para una bolsa de golf de precio moderado, llamada modelo
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL Junio, Ejercicio 1, Opción A Reserva 1, Ejercicio 1, Opción B Reserva 2, Ejercicio
1. Completa la siguiente tabla con los tipos de stocks o definiciones que faltan.
EJERCICIOS DE REPASO. Comercio. Unidad 3. Primera parte. 1. Completa la siguiente tabla con los tipos de stocks o definiciones que faltan. Tipo de stock Definición Stock de seguridad Este tipo de stock
EJERCICIOS PROGRAMACIÓN LINEAL
EJERCICIOS PROGRAMACIÓN LINEAL 1.- Una compañía fabrica y venden dos modelos de lámpara L 1 y L 2. Para su fabricación se necesita un trabajo manual de 20 minutos para el modelo L 1 y de 30 minutos para
SISTEMAS DE ECUACIONES
SISTEMS E ECUCIONES Ejemplos 1 Resuelva por el método de sustitución el sistema x 8 16 8x Solución Se despeja de la segunda ecuación 8x 8x Se sustitue la expresión 8x en la x 8 16 primera ecuación x 8
Habiéndose clasificado los costos y gastos en fijos y variables se identificarán:
TEMA 15: EJERCICIOS DEL PUNTO DE EQUILIBRIO. EJERCICIO 1 Habiéndose clasificado los costos y gastos en fijos y variables se identificarán: CF = COSTO FIJOS (INCLUIDOS COSTOS Y GASTOS) CV = COSTOS VARIABLES
Inecuaciones lineales y cuadráticas
Inecuaciones lineales y cuadráticas 0.1. Inecuaciones lineales Una inecuación lineal tiene la forma ax + b < 0 ó ax + b > 0 ó ax + b 0 ó ax + b 0. El objetivo consiste en hallar el conjunto solución de
En primer lugar voy a trasladar el enunciado a lenguaje matemático. Me fijo en lo que me preguntan: a una variable la llamo x y a otra y.
PROGRAMACIÓN LINEAL EJERCICIO TIPO Una confitería se elaboran tartas de nata y de manzana. Cada tarta de nata requiere medio kilo de azúcar y 8 huevos; y una de manzana, 1 kg de azúcar y 6 huevos. En la
ECUACIONES. Cuáles son las dimensiones del rectángulo con área 1.200 m tal que la base es el doble de la
ECUACIONES altura? Cuáles son las dimensiones del rectángulo con área.00 m tal que la base es el doble de la Una persona recibe un salario de 00UM más un % sobre las ventas mensuales. Otra persona no recibe
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción B Reserva 2, Ejercicio
UNIVERSIDAD DEL MAGDALENA FACULTAD DE CIENCIAS EMPRESARIALES Y ECONÓMICAS ACTIVIDAD GRUPAL II CÁLCULO INTEGRAL
I. Utiliza el método de integración por partes para resolver cada una de las siguientes integrales.. x + e 4x dx. (lnx) 4 dx 3. x 3 e x dx 4. x 5 e x3 dx 5. ln (x + 3)dx 6. (x + ) 4 ln(x + )dx 7. x 4 ln(4x)dx
LISTA DE COTEJO TRABAJO Nº 2 CALIFICACIÓN
LISTA DE COTEJO TRABAJO Nº 2 CALIFICACIÓN N ÍTEMS CALIFICACIÓN 1 Presenta la carátula 1 1.1 No presenta la carátula 0 2 Presenta la Introducción 1 2.1 No presenta la Introducción 0 3 Explica con precisión
Resolución de ecuaciones lineales. En general para resolver una ecuación lineal o de primer grado debemos seguir los siguientes pasos:
Resolución de ecuaciones lineales En general para resolver una ecuación lineal o de primer grado debemos seguir los siguientes pasos: 1º Quitar paréntesis. Si un paréntesis tiene el signo menos delante,
Números Cardinales W = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,... } ("Whole Numbers")
A. CONJUNTOS NUMÉRICOS Números Naturales N = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,... } Números Cardinales W = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,... } ("Whole Numbers") Enteros Z = {... -4, -3, -2,
SELECTIVIDAD. (Hasta modelo 2012) PROBLEMAS UNIDAD 5
SELECTIVIDAD (Hasta modelo 2012) PROBLEMAS UNIDAD 5 13. Supongamos una empresa que produce un determinado bien X y que para ello genera los siguientes costes mensuales: Retribución fija a los empleados:
Planteamiento de problemas de programación lineal. M. En C. Eduardo Bustos Farías
Planteamiento de problemas de programación lineal M. En C. Eduardo Bustos Farías 1 Objetivo Analizar diferentes ejemplos del uso de la metodología de la Investigación de Operaciones para el planteamiento
FRACCIONES PARCIALES. Procedimiento para: Descomposición en fracciones parciales en la cual cada denominador es lineal.
FRIONES PRILES Las fracciones parciales se utilizan para ayudar a descomponer epresiones racionales y obtener sumas de epresiones más simples. Hay cuatro casos: ) Descomposición en fracciones parciales
PLE: Ramificación y Acotamiento
PLE: Ramificación y Acotamiento CCIR / Depto Matemáticas TC3001 CCIR / Depto Matemáticas PLE: Ramificación y Acotamiento TC3001 1 / 45 La compañía TELFA fabrica mesa y sillas. Una mesa requiere 1 hora
Introducción a la Programación Lineal
UNIDAD 0 Introducción a la Programación Lineal. Modelo de Programación Lineal con dos variables Ejemplo: (La compañía Reddy Mikks) Reddy Mikks produce pinturas para interiores y eteriores, M y M. La tabla
ACTIVIDAD DE APRENDIZAJE
ACTIVIDAD DE APRENDIZAJE Sigla Curso MAT330 Nombre Curso Cálculo I Créditos 10 Hrs. Semestrales Totales 5 Requisitos MAT200 o MAT2001 Fecha Actualización Escuela o Programa Transversal Programa de Matemática
SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD
Pág. Página 9 PRACTICA Sistemas lineales Comprueba si el par (, ) es solución de alguno de los siguientes sistemas: x + y 5 a) x y x y 5 x + y 8 El par (, ) es solución de un sistema si al sustituir x
Aplicaciones de la línea recta
1 FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS GRADO: 10 TALLER Nº: 4 SEMESTRE II RESEÑA HISTÓRICA Aplicaciones de la línea recta RESEÑA HISTÓRICA EUCLÍDES Nació: 365 AC en Alejandría,
UNIVERSIDAD NACIONAL AUTONOMA DE NICARAGUA UNAN-MANAGUA FAREM - CARAZO
UNIVERSIDAD NACIONAL AUTONOMA DE NICARAGUA UNAN-MANAGUA FAREM - CARAZO INVESTIGACIÓN DE OPERACIONES Laboratorio #1 GRAFICA DE REGIONES CONVEXAS Y SOLUCIÓN POR MÉTODO GRÁFICO DE UN PROBLEMA DE PROGRAMACIÓN
Apuntes y ejercicios
Apuntes y ejercicios Apuntes de economía Fijo y PMP Umbral de rentabilidad www.academiacae.com - 28007 Madrid 91 501 36 88 - [email protected] 1. FIFO Y PMP Cuando en un almacén están entrando y saliendo
PROGRAMACIÓN LINEAL MÉTODO GRÁFICO
1 PROGRAMACIÓN LINEAL MÉTODO GRÁFICO Dado un problema de programación lineal se debe: 1. Graficar cada una de las restricciones. 2. Encontrar el Polígono de factibilidad, que es la intersección de los
ECUACION DE DEMANDA. El siguiente ejemplo ilustra como se puede estimar la ecuación de demanda cuando se supone que es lineal.
ECUACION DE DEMANDA La ecuación de demanda es una ecuación que expresa la relación que existe entre q y p, donde q es la cantidad de artículos que los consumidores están dispuestos a comprar a un precio
Dakota quiere maximizar el ingreso total por que se han comprado ya los recursos. Definiendo las variables de decisión como:
UNIVERSIDAD NACIONAL AUTONOMA DE NICARAGUA UNAN-MANAGUA FAREM - CARAZO Teléfono 2532-2668/Telefax 2532-2684 INVESTIGACIÓN DE OPERACIONES LABORATORIO #7 ANALISIS DE SENSIBILIDAD Y DUALIDAD DE UN PPL I.
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 21 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL Junio, Ejercicio 1, Opción A Reserva 1, Ejercicio 1, Opción B Reserva 2, Ejercicio
TEMA 7 LOS COSTES ESTÁNDARES: ANALISIS DE DESVIACIONES
TEMA 7 LOS COSTES ESTÁNDARES: ANALISIS DE DESVIACIONES 7.1.- Introducción. La desviación de una partida contable es la diferencia que surge entre la cantidad presupuestada y la cantidad real. Por lo tanto,
Formulación de un Modelo de Programación Lineal
Formulación de un Modelo de Programación Lineal Para facilitar el planteamiento del modelo matemático general de la PL considere el siguiente problema: La planta HBB fabrica 4 productos que requieren para
PROBLEMA DE FLUJO DE COSTO MINIMO.
PROBLEMA DE FLUJO DE COSTO MINIMO. EL PROBLEMA DE TRANSPORTE 1. Una empresa energética dispone de tres plantas de generación para satisfacer la demanda eléctrica de cuatro ciudades. Las plantas 1, 2 y
comprometo a combatir la mediocridad y actuar con honestidad, por eso NO copio ni dejo copiar. NOMBRE FIRMA
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL EXAMEN DE RECUPERACIÓN DE TEORÍA ECONÓMICA Marzo 25 del 2015 Mediante mi firma, YO como aspirante a una Carrera en ESPOL, me comprometo a combatir la mediocridad
PROBLEMA 1. Considere el siguiente problema de programación lineal:
PROBLEMA 1 Considere el siguiente problema de programación lineal: Sean h1 y h2 las variables de holgura correspondientes a la primera y segunda restricción, respectivamente, de manera que al aplicar el
Programación Lineal. El modelo Matemático
Programación Lineal. El modelo Matemático 1 Modelización Definición 1.1 Consideremos el problema de optimización con restricciones, definido como sigue Min f(x) s.a. g i (x) b i i = 1, 2,..., m (P OR)
1. Polinomios. 2. Ecuaciones de segundo grado. 3. Soluciones de una ecuación de segundo. grado. Problemas. 4. Sistemas de ecuaciones
1. Polinomios 1.1. Suma y resta de polinomios 1.2. Producto de polinomios 1.3. División de polinomios. Regla de Ruffini 1.4. Factorización de polinomios 2. Ecuaciones de segundo grado 2.1. Ecuaciones completas
APUNTE: Introducción a la Programación Lineal
APUNTE: Introducción a la Programación Lineal UNIVERSIDAD NACIONAL DE RIO NEGRO Asignatura: Matemática Carreras: Lic. en Administración Profesor: Prof. Mabel Chrestia Semestre: do Año: 06 Definición La
Matemáticas Universitarias
Matemáticas Universitarias 1 Sesión No. 3 Nombre: Ecuaciones Lineales Objetivo de la asignatura: En esta sesión el estudiante aplicará las principales propiedades de ecuaciones lineales con la finalidad
Por Sustitución: y= 2x+6 x + 3 (2x+6) = 4 x + 6x + 18 = 4 7x = -14 x= -2 y=2 (-2)+6 y=2. Por Igualación: 6x+18=4-x 7x=-14 x= -2 y=2 (-2)+6 y=2
Tema 5: Sistemas de Ecuaciones y de Inecuaciones. Programación lineal. 5.1 Sistemas de dos ecuaciones con dos incógnitas. Un sistema de dos ecuaciones con dos incógnitas es de la forma: Un par de valores
1) Expresar los intervalos como conjuntos y los conjuntos en forma de intervalos y graficar:
TRABAJO PRÁCTICO N : FUNCIONES DE UNA VARIABLE REAL ASIGNATURA: MATEMÁTICA LIC. ADMINISTRACIÓN - LIC. TURISMO - LIC. HOTELERÍA - 05 ) Epresar los intervalos como conjuntos y los conjuntos en forma de intervalos
Planteamiento de problemas de programación lineal. M. En C. Eduardo Bustos Farías
Planteamiento de problemas de programación lineal M. En C. Eduardo Bustos Farías 1 Ejemplo. Breeding Manufacturing Inc. Mezcla de productos 2 La Breeding Manufacturing Inc., fabrica y vende dos tipos de
Sistemas de ecuaciones lineales
Sistemas de ecuaciones lineales Índice general 1. Sistemas de ecuaciones lineales 2 2. Método de sustitución 5 3. Método de igualación 9 4. Método de eliminación 13 5. Conclusión 16 1 Sistemas de ecuaciones
Lección 4.1. Sistemas de Ecuaciones. 03/06/2013 Prof. José G. Rodríguez Ahumada 1 de 21
Lección 4.1 Sistemas de Ecuaciones 03/06/013 Prof. José G. Rodríguez Ahumada 1 de 1 Actividades 4.1 Referencia Texto: Seccíón 9.1 Sistema de Ecuaciones; Problemas impares 1-9 páginas 64 (593 y 594); Sección
Ecuaciones: Aplicaciones
Carlos A. Rivera-Morales Métodos Cuantitativos I Tabla de Contenido Contenido ales en una variable real dráticas en una variable real : Contenido Discutiremos: modelado matemático mediante ecuaciones lineales
Problemas de programación lineal.
Matemáticas 2º Bach CCSS. Problemas Tema 2. Programación Lineal. Pág 1/12 Problemas de programación lineal. 1. Unos grandes almacenes encargan a un fabricante pantalones y chaquetas deportivas. El fabricante
MATEMÁTICAS. TEMA 1 Sistemas de Ecuaciones. Método de Gauss.
MATEMÁTICAS TEMA Sistemas de Ecuaciones. Método de Gauss. ÍNDICE. Introducción. 2. Ecuaciones lineales.. Sistemas de ecuaciones lineales. 4. Sistemas de ecuaciones escalonado ó en forma triangular.. Métodos
Contenido Orientativo Matemáticas 11 EE-EA-EC, Libre Escolaridad FACES-ULA
Contenido Orientativo Matemáticas 11 EE-EA-EC, Libre Escolaridad FACES-ULA El siguiente documento tiene como objetivo proporcionar a los alumnos del curso de matemáticas 11, por la modalidad de libre escolaridad,
Herramientas para definir y optimizar los costos de su empresa
Herramientas para definir y optimizar los costos de su empresa 1. Definición El costo es el valor monetario de los elementos que requiere el ejercicio de una actividad económica destinada a la producción
UNIDAD 2: ECUACIONES E INECUACIONES. SISTEMAS DE ECUACIONES
UNIDAD 2: ECUACIONES E INECUACIONES. SISTEMAS DE ECUACIONES 1. IDENTIDADES Y ECUACIONES 2. ECUACIONES POLINÓMICAS 3. ECUACIONES BICUADRADAS 4. ECUACIONES RACIONALES 5. ECUACIONES IRRACIONALES 6. ECUACIONES
Sistemas de dos ecuaciones lineales con dos incógnitas
Sistemas de dos ecuaciones lineales con dos incógnitas Una ecuación lineal con dos incógnitas es una epresión de la forma a b c donde a, b c son los coeficientes (números) e son las incógnitas. Gráficamente
PROBLEMA DE FLUJO DE COSTO MINIMO.
PROBLEMA DE FLUJO DE COSTO MINIMO. EL PROBLEMA DE TRANSPORTE 1. Una empresa energética dispone de tres plantas de generación para satisfacer la demanda eléctrica de cuatro ciudades. Las plantas 1, 2 y
El Punto de Equilibrio como herramienta de Planeación Táctica (Corto Plazo)
TEMARIO El Punto de Equilibrio como herramienta de Planeación Táctica (Corto Plazo) Además del estudio del Análisis e Interpretación de Estados Financieros, el Punto de Equilibrio (PE), nos sirve para
PROBLEMAS DE PUNTO MUERTO RESUELTOS
PROBLEMAS DE PUNTO MUERTO RESUELTOS 1. Los alumnos de 2º curso del IES San Saturnino, con objeto de recabar fondos para su viaje de estudios, se plantean la posibilidad de vender bocadillos en un local
MATEMÁTICAS II CC III PARCIAL
UNIDAD DIDÁCTICA #3 CONTENIDO ECUACIONES LINEALES CON UNA INCOGNITA TIPOS DE ECUACIONES RESOLUCION DE ECUACIONES LINEALES INECUACIONES LINEALES 1 ECUACIONES LINEALES CON UNA INCOGNITA Una ecuación es una
MATRICES: CÁLCULO DE LA INVERSA MEDIANTE EL DETERMINANTE Y LA ADJUNTA:
MTRICES: TEORÍ COMPLEMEMENTRI Existe otro método para calcular la inversa y que sólo usaremos para matrices cuadradas de orden o de orden 3. Para ello es necesario conocer estos dos conceptos: CÁLCULO
EJERCICIOS PAU MAT II CC SOC. ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com
PROGRAMACIÓN LINEAL 1- Un deportista solamente puede tomar para desayunar barritas de chocolate y barritas de cereales. Cada barrita de chocolate proporciona 40 gramos de hidratos de carbono, 30 gramos
La Lección de hoy es sobre Escribir la Ecuación de una Línea Paralela a Una Linea Recta que Pasa Por Un Punto Dado.
La Lección de hoy es sobre Escribir la Ecuación de una Línea Paralela a Una Linea Recta que Pasa Por Un Punto Dado. El cuál es la expectativa para el aprendizaje del estudiante CGT.5.G. Veremos diferentes
(810,00 406,00)
1. Una fábrica de productos dentales, tiene una línea de producción definida por cepillos dentales para adultos, los que tienen un precio a puerta de fábrica por valor de $810, con unos costos variables
Aplicaciones de la función cuadrática. Máximo y Mínimo Algebra Sigla MAT2001
TIPO DE ACTIVIDAD: Ejercicios Título Actividad: Nombre Asignatura: Aplicaciones de la función cuadrática. Máximo y Mínimo Algebra Sigla MAT001 Semana Nº: 3-4 Actividad Nº 5 Lugar Sala de clases Otro Lugar
GUÍA UNIDADES DE LONGITUD Y SUPERFICIE 5º BÁSICO NOMBRE ALUMNO/A CURSO
GUÍA UNIDADES DE LONGITUD Y SUPERFICIE 5º BÁSICO NOMBRE ALUMNO/A CURSO NOMBRE PROFESORA : Ruth Contreras (colaboración Nataly Herrera) Objetivo de aprendizaje: Medir longitudes con unidades estandarizadas
Contabilidad de costos
Contabilidad de costos 1 Sesión No. 8 Nombre: Sistemas de Costos de Producción Conjunta Contextualización En esta sesión 8 conocerás y explicarás: Los conceptos y procedimientos de asignación de costos
Unidad 5. La función productiva de la empresa. U5 - La función productiva de la empresa @MaryPaz
Unidad 5 La función productiva de la empresa 1 Producir consiste en incrementar la utilidad de los bienes para satisfacer necesidades humanas. 2 El proceso de producción 3 Ejm: proceso de fabricación de
Guı a de Estudio: Matema tica Inecuaciones con Valor absoluto
Guı a de Estudio: Matema tica Inecuaciones con Valor absoluto Resultados de aprendizaje Determinar el conjunto solucio n de una inecuacio n con valor absoluto. Contenidos 1. Inecuaciones. Valor absoluto
Esquema conceptual: Unidad IV
Unidad IV Álgebra Esquema conceptual: Unidad IV Ecuaciones dependientes Ecuaciones independientes Ecuaciones incompletas 1. Sistemas de ecuaciones lineales 2. Solución de sistemas de dos ecuaciones lineales
Para qué me sirve SICAR Punto de Venta?
Para qué me sirve SICAR Punto de Venta? Ésta es una buena pregunta, ya que SICAR Punto de Venta brinda confianza en los procesos que haces de forma rutinaria como son: Realizar Un Control de Inventarios
Tema 3: Ecuaciones. Tema 3: Ecuaciones. Ecuaciones de primer grado. Ecuaciones de segundo grado. Ecuaciones polinómicas de grado superior
Tema 3: Ecuaciones Ecuaciones Igualdades de expresiones algebraicas Polinómicas Racionales Primer grado ax=b Segundo grado ax 2 + bx+c=0 Bicuadradas ax 4 + bx 2 +c=0 solución Determinada: Indeterminada:
ORGANIZACIÓN INDUSTRIAL (16691-ECO) PARTE II: MODELOS DE COMPETENCIA IMPERFECTA TEMA 2: EL MONOPOLIO SOLUCIÓN A LOS PROBLEMAS PROPUESTOS
ORGANIZACIÓN INDUSTRIAL (16691-ECO) PARTE II: MODELOS DE COMPETENCIA IMPERFECTA TEMA 2: EL MONOPOLIO 2.1 ANÁLISIS DE EQUILIBRIO 2.2. DISCRIMINACIÓN DE PRECIOS Y REGULACIÓN SOLUCIÓN A LOS PROBLEMAS PROPUESTOS
MATEMÁTICAS 9. TALLER DE FUNCIONES No 1
MATEMÁTICAS 9 TALLER DE FUNCIONES No 1 1. elabora una tabla de valores para cada función y traza su respectiva gráfica. Dar los valores a x desde -3 hasta 3. a. f(x) = x 5 b. f(x) = 9x + 4 2. determina
COSTOS Y PRESUPUESTOS TALLER NO EVALUADO
COSTOS Y PRESUPUESTOS TALLER NO EVALUADO Estimado alumno(a), a continuación le invitamos a desarrollar el siguiente taller, el cual tiene por finalidad afianzar el aprendizaje adquirido durante el transcurso
Sesión del día 11 de Marzo del 2011 y tutoría del día 12 de Marzo del 2011
Especialidad La enseñanza de las matemáticas en secundaria Grupo B: Celaya Sesión del día 11 de Marzo del 2011 y tutoría del día 12 de Marzo del 2011 Álgebra Resumen de la sesión anterior. Se añadió que
Finanzas. Sesión 6 Tema 15: Punto de Equilibrio. Escuela Profesional de Ingeniería de Sistemas e Informática
Finanzas Sesión 6 Tema 15: Punto de Equilibrio Escuela Profesional de Ingeniería de Sistemas e Informática Punto de equilibrio El Punto de Equilibrio de un bien o servicio, está dado por el volumen de
Habiéndose clasificado los costos y gastos en fijos y variables se identificarán: CV = COSTOS VARIABLES (INCLUIDOS COSTOS Y GASTOS)
TEMA 15: EJERCICIOS DEL PUNTO DE EQUILIBRIO. EJERCICIO 1 Habiéndose clasificado los costos y gastos en fijos y variables se identificarán: CF = COSTO FIJOS (INCLUIDOS COSTOS Y GASTOS) CV = COSTOS VARIABLES
Matemáticas Financieras Avanzadas
Matemáticas Financieras Avanzadas 1 Sesión No. 8 Nombre: Depreciación. Parte I Objetivo Al término de la sesión el estudiante solucionará problemas reales de depreciación a través de la aplicación de los
Solución de un sistema de desigualdades
Solución de un sistema de desigualdades En la sección anterior tuvimos oportunidad de resolver desigualdades de dos variables. En el último ejemplo vimos nuestro primer sistema de desigualdades, que aunque
Aplicaciones en ciencias naturales, económico-administrativas y sociales
Aplicaciones en ciencias naturales, económico-administrativas y sociales Ya hemos resuelto algunos problemas aplicados a las ciencias naturales, así que aquí nos enfocaremos más a problemas de economía,
ECUACIONES DE PRIMER GRADO CON UNA INCÓGNITA
UNIDAD OBJETIVO: Resolverá situaciones y problemas en los que se apliquen ecuaciones de primer grado con una incógnita, sistemas de ecuaciones lineales con dos y tres incógnitas, mediante métodos algebraicos
FICHAS REPASO 3º ESO. Para restar números enteros, se suma al minuendo el opuesto del sustraendo y después se aplican las reglas de la suma.
FICHAS REPASO º ESO OPERACIONES CON NÚMEROS ENTEROS El valor absoluto de un número entero es el número natural que resulta al prescindir del signo. Por ejemplo, el valor absoluto de es y el valor absoluto
HOJA Nº 12. CINEMÁTICA. COMPOSICIÓN DE MOVIMENTOS-2.
HOJA Nº 12. CINEMÁTICA. COMPOSICIÓN DE MOVIMENTOS-2. MOVIMIENTO PARABÓLICO 1. Desde un piso horizontal, un balón es lanzado con una velocidad inicial de 10 m/s formando 30º con el suelo horizontal. Calcular:
ECONOMÍA DE LA EMPRESA EJERCICIOS UMBRAL DE RENTABILIDAD = PUNTO MUERTO
ECONOMÍA DE LA EMPRESA EJERCICIOS UMBRAL DE RENTABILIDAD = PUNTO MUERTO 2008 1. La empresa M, dedicada a la fabricación de bicicletas, fabricó y vendió durante el pasado año, 200.000 bicicletas siendo
FASES DEL PROCESO TECNOLÓGICO
Vamos a construir un nido para un gorrión molinero que cría todos los veranos en nuestro jardín; para ello, seguimos las fases del proceso tecnológico. 1. Planteamiento y análisis de la necesidad o problema.
Álgebra Matricial y Optimización Ma130
Álgebra Matricial y Optimización Ma130 Programación Lineal Departamento de Matemáticas ITESM Programación Lineal Ma130 - p. 1/27 ducción En esta lectura daremos una introducción a la modelación de problemas
ECUACIONES. Una igualdad algebraica está formada por dos expresiones algebraicas (una de ellas puede ser un número), separadas por el signo =.
ECUACIONES IDENTIDADES, IGUALDADES FALSAS Y ECUACIONES.- Una igualdad algebraica está formada por dos epresiones algebraicas (una de ellas puede ser un número), separadas por el signo. Ejemplos.- ( ) ;
INSTITUTO TECNOLÓGICO DE NUEVO LEÓN. Programación Lineal
Práctica # 2 Programación Lineal Objetivo: Comprender y aplicar los métodos gráfico y simplex de programación lineal para la optimización de recursos. Introducción: La programación lineal, salió a la luz
CAPÍTULO 4 Funciones Económicas
CAPÍTULO 4 Funciones Económicas Introducción La actividad económica surge de la necesidad de utilizar recursos para producir los bienes materiales que satisfacen los deseos del hombre, ya sean básicos
UNIDAD 4 Programación lineal
UNIDD 4 Programación lineal Pág. 1 de 8 1 Un mayorista de frutos secos tiene almacenados 1 800 kilos de avellanas y 420 kilos de almendras para hacer dos tipos de mezclas, que embala en cajas como se indica
Matemáticas aplicadas a las CC.SS. II 2º Bachillerato
4. PROGRAMACIÓN LINEAL 4.1. Introducción 1. Determina las variables, la función objetivo y el conjunto de restricciones de los siguientes problemas de programación lineal: a) En una empresa de alimentación
Matrices Invertibles y Elementos de Álgebra Matricial
Matrices Invertibles y Elementos de Álgebra Matricial Departamento de Matemáticas, CSI/ITESM 20 de agosto de 2008 Índice 121 Introducción 1 122 Transpuesta 1 123 Propiedades de la transpuesta 2 124 Matrices
CONJUNTO DE LOS NUMEROS ENTEROS
República Bolivariana de Venezuela Ministerio de la Defensa Universidad Nacional Experimental Politécnica de la Fuerza Armada Núcleo Caracas CIU Cátedra: Razonamiento Matemático CONJUNTO DE LOS NUMEROS
PROBLEMA DE FLUJO DE COSTO MINIMO.
EL PROBLEMA DE TRANSPORTE PROBLEMA DE FLUJO DE COSTO MINIMO. 1. Una empresa energética dispone de tres plantas de generación para satisfacer la demanda eléctrica de cuatro ciudades. Las plantas 1, 2 y
Universidad Nacional de Ingeniería
Universidad Nacional de Ingeniería Recinto Universitario Augusto Cesar Sandino Uni - RUACS Trabajo de Investigación de Operaciones Orientado Por: Ing. Mario Pastrana Moreno Carrera: Ingeniería de Sistemas
Esterilización 1 4. Envase 3 2
9.- Una empresa de productos lácteos fabrica dos tipos de leche: entera y desnatada. El proceso de fabricación se lleva a cabo mediante una máquina de esterilización y otra de envase, donde el tiempo (expresado
UNIDAD 10: ECUACIONES DE SEGUNDO GRADO.
UNIDAD 10: ECUACIONES DE SEGUNDO GRADO. 10.1 Estudio elemental de la ecuación de segundo grado. Expresión general. 10.2 Resolución de ecuaciones de segundo grado completas e incompletas. 10.3 Planteamiento
CAPÍTULO 2 CONTABILIDAD DE COSTOS PREDETERMINADOS OBJETIVOS DE APRENDIZAJE
CAPÍTULO 2 CONTABILIDAD DE COSTOS PREDETERMINADOS OBJETIVOS DE APRENDIZAJE OBJETIVO GENERAL Conocer el funcionamiento, objeto y utilidad de los Sistema de Costos Estándar, como herramienta útil en la planificación
Dar una introducción sobre la asignatura IO Familiarizar al estudiante con las características y aplicación del modelo de matriz de decisiones
I Unidad: Introducción a al Investigación de Operaciones. Contenidos: 1. Breve reseña histórica de la l. De O. 2. Concepto de la l. De O. 3. Objeto de Estudio de la l. De O. 4. Introducción a la teoría
