Leonhard Euler (Suiza, )
|
|
|
- Ana Rey Maidana
- hace 8 años
- Vistas:
Transcripción
1 Existen muchos movimientos que se repiten a intervalos iguales de tiempo, como ser las oscilaciones de una masa sobre un resorte, el movimiento de un péndulo y las vibraciones de un instrumento musical de cuerda. Otros numerosos sistemas también muestran movimiento oscilatorio. or ejemplo, las moléculas en un sólido oscilan alrededor de sus posiciones de equilibrio; en circuitos de corriente alterna, el voltaje, la corriente y la carga ecléctica varían periódicamente con el tiempo. éndulo de Foucault En Física se ha idealizado un tipo de movimiento oscilatorio, en el que se considera que sobre el sistema no existe la acción de las fuerzas de rozamiento, es decir, no existe disipación de energía y el movimiento se mantiene invariable, sin necesidad de comunicarle energía exterior a este. Este movimiento se llama movimiento armónico simple (MS). Se dice que una prtícula se mueve con un movimiento armónico simple cuando su desplazamiento desde el punto de equilibrio, varía en el tiempo t, de acuerdo con la relación: f: f(t) = cos (ω t + φ), es la amplitud del movimiento. La constante ω recibe el nombre de frecuencia angular, y el ángulo constante φ se llama constante de fase. El período T, del movimiento es el tiempo que tarda la partícula en completar un ciclo y viene dado por: T= 2 π ω Leonhard Euler (Suiza, ) El verdadero autor del actual simbolismo y de la expresión analítica de la trigonometría fue Euler. En su Introductio (1748) dio una exposición admirablemente fundada de toda la teoría de las funciones trigonométricas, incluyendo su desarrollo en serie. Euler estudió en la Universidad de Basilea con el matemático suizo Johann Bernoulli, licenciándose a los 16 años. En 1727, por invitación de la emperatriz de usia Catalina I, fue miembro del profesorado de la cademia de Ciencias de San etersburgo. Fue nombrado catedrático de física en 1730 y de matemática en En 1741 fue profesor de matemática en la cademia de Ciencias de Berlín a petición del rey de rusia, Federico el Grande. Euler regresó a San etersburgo en 1766, donde permaneció hasta su muerte. unque obstaculizado por una pérdida parcial de visión, antes de cumplir 30 años y por una ceguera casi total, al final de su vida Euler produjo numerosas obras matemáticas importantes, así como reseñas matemáticas y científicas. Fue uno de los últimos hombres que pudo tener un conocimiento acabado de todas las matemáticas de su época. 120 GUSTVO. DUFFOU
2 8 FUNCIONES NGULES 1 MEDID DE UN ÁNGULO 1.1. DEFINICIÓN El ángulo se mide por la longitud del arco, con una unidad apropiada para medir ángulos. Según cual sea la unidad usada, se tendrán diferentes sistemas para medir ángulos SISTEMS DE MEDIDS En trigonometría suelen emplearse dos unidades distintas para medir ángulos, que originan dos sistemas de medidas: el sexagesimal y el circular. Sistema sexagesimal Unidad: grado Se toma como unidad el grado sexagesimal, o simplemente grado, que se define como: Una de las 360 partes en que se divide la circunferencia. or lo tanto, se tiene que: Una circunferencia equivale a 360º El grado se divide a su vez en 60 minutos y el minuto en 60 segundos. ecordemos que, mientras que el símbolo se utiliza para indicar grados, no se utiliza ningún símbolo para indicar la medida en radianes. La división de una circunferencia en 360 grados es muy arbitraria, debida a los antiguos babilonios, a quienes les agradaban los múltiplos de 60. La medida de un ángulo en grados es ampliamente usada en ingeniería y en las ciencias físicas, principalmente en astronomía, navegación y topografía. El método más corriente para localizar una estrella en el cielo, o un punto en la superficie de la Tierra, es utilizar su distancia angular en grados, minutos y segundos a ciertos puntos o líneas de referencia fijadas. La posición de un objeto en la superficie de la Tierra se mide en grados de latitud norte o sur del ecuador y grados de longitud este u oeste del meridiano principal, que normalmente es el meridiano que pasa por Greenwich, en Inglaterra. La división en 2π partes es fundamental. Los radianes se usan casi exclusivamente en estudios teóricos, como en el cálculo, debido a la mayor simplicidad de ciertos resultados, de las funciones angulares, en especial para las derivadas y la expresión de series infinitas. MTEMÁTIC DE CUTO 121
3 Sistema circular Unidad: radián En este sistema se toma como unidad de medida el radián, que se define como: El ángulo cuyo arco es igual al radio de la circunferencia a la cual pertenece ELCIÓN ENTE EL SISTEM SEXGESIML Y EL CICUL Dado que en una circunferencia de perímetro 2π hay 360º, se tendrá: Si 1 radián Toda la circunferencia? 2π x radianes x 1 * 2π = = 2 π radianes Medida en grados 360º 180º 90º 60º 45º 30º Medida en radianes 2π π π π π π Fórmulas de conversión: 180 radianes grados = π π grados radianes = 180 USNDO L CLCULDO l hacer cálculos con la calculadora, se debe controlar en qué modo se encuentra. Modo Modo D o DEG para trabajar en grados. o D para trabajar en radianes. El modo G o G no significa grados, significa GDINES. Se supone que el lector tiene algún conocimiento de las tres relaciones trigonométricas básicas: seno, coseno y tangente. Estas relaciones se estudian en los cursos de trigonometría de años anteriores, al resolver problemas diversos que relacionan los lados y los ángulos de un triángulo (véase el capítulo 7 en este mismo texto). Las relaciones trigonométricas son muy importantes, no solo por su relación con los lados y los ángulos de un triángulo rectángulo, sino por las propiedades que poseen como funciones angulares definidas en los números reales (véase la página 123). 122 GUSTVO. DUFFOU
4 2 CICUNFEENCI TIGONOMÉTIC y B II I o III IV B x Una circunferencia de radio unidad, cuyo centro coincide con el origen de coordenadas, se llama circunferencia trigonométrica; y el círculo que determina, círculo trigonométrico. l punto se lo toma como origen de medida de los ángulos y el punto, de posición variable sobre la circunferencia trigonométrica, se llama extremo del arco. La circunferencia se considera orientada positivamente en el sentido contrario al movimiento de las agujas de un reloj, o sea, B'B'. Los diámetros principales (horizontal y vertical) dividen al círculo trigonométrico en cuatro cuadrantes, numerados en la figura. Se dice que un ángulo situado en un plano de coordenadas rectangulares está en su posición normal si su vértice coincide con el origen y su lado inicial coincide con la parte positiva del eje x. 3 FUNCIONES NGULES 3.1. DEFINICIONES Dado que el radio de la circunferencia trigonométrica es la unidad: d(o, ) = 1 en el triángulo rectángulo OM de la figura, se tendrá: y sen = d(m,) cos = d(o,m) o M x De donde es posible definir el seno y el coseno de un ángulo como: SENO En una circunferencia trigonométrica, el seno de un ángulo es la distancia medida desde el extremo del arco al diámetro horizontal sobre la perpendicular. COSENO En una circunferencia trigonométrica, el coseno de un ángulo es la distancia medida desde el pie de la perpendicular anterior (véase seno), al centro de la circunferencia. MTEMÁTIC DE CUTO 123
5 7 EJECICIOS OUESTOS Véanse los resultados en la página ) Verificar las siguientes identidades, «en condiciones de existencia»: 1) ( sen + cos ) 2 + ( sen cos ) 2 = 2 Estrategias para probar identidades 2) (1 + sen )(1 sen ) = (cos ) 2 1) Transformar el lado de la igualdad más complicado, hasta que sea igual al más 3) (1 + cos )(1 cos ) = (sen ) 2 sencillo. 2) Transformar ambos lados de la 4) (tg )(cotg ) = 1 identidad hasta llegar a la misma expresión. 5) (tg ) 2 (cos ) 2 + (cotg ) 2 (sen ) 2 = 1 ecuérdese que es incorrecto pasar las expresiones de un lado al 6) (sen )(sec ) = tg otro del signo de igual. Hacerlo implica dar por cierta la identidad que se quiere demostrar. 128) Completar en [0, 2π). sen(... ) = sen x sen(... ) = sen (π + x) tg (x) = (... ) sen(... ) = sen (π x) cos (π + x) = (... ) cos (π x) = (... ) 129) partir de las representaciones gráficas de las funciones seno y coseno, bosquejar las representaciones gráficas de las siguientes funciones: f: f(x) = sen x g :g (x) = cos x h: h(x) = 1 sen x j: j(x) = 1 cos x 130) esolver las siguientes ecuaciones en: [ 0, 2π). 1) 2(sen x) = 1 2) 3(sen x) = 4 sen x 3) 3(tg x) = 3 4) tg (2x π) = 1 5) sen x = 3 (cos x) 6) (sen x) 2 + sen x 2 =0 7) 2(sen x) 2 = 3(cos x) 8) (cos x) 2 = 3(sen x) 2 9) 3(tg x) = 2(cos x) 10) 2 senx = ( tgx)( cos x) En la resolución de ecuaciones trigonométricas, se deben considerar siempre las condiciones de existencia. or lo tanto, las soluciones se deben dar en condiciones de existencia. 11) 3(sen x) = 4 5(tg x)(cos x) 124 GUSTVO. DUFFOU
Unidad 3: Razones trigonométricas.
Unidad 3: Razones trigonométricas 1 Unidad 3: Razones trigonométricas. 1.- Medida de ángulos: grados y radianes. Las unidades de medida de ángulos más usuales son el grado sexagesimal y el radián. Se define
TEMA 4: TRIGONOMETRÍA. RAZONES TRIGONOMÉTRICAS
IES IGNACIO ALDECOA 19 TEMA 4: TRIGONOMETRÍA. RAZONES TRIGONOMÉTRICAS 4.1 Medida de ángulos. Equivalencias. Un ángulo es la región del plano comprendida entre dos semirrectas con origen común. A las semirrectas
Matemáticas TRABAJO. Funciones Trigonométricas
Matemáticas TRABAJO Funciones Trigonométricas 2 En este trabajo trataremos de mostrar de una forma práctica las funciones trigonométricas, con sus formas de presentación, origen y manejos. También se incluirán
U.E CRUZ VITALE Prof.Zuleidi Zambrano Matemática 4to A Y B
U.E CRUZ VITALE Prof.Zuleidi Zambrano Matemática 4to A Y B TEORIA PARA LA ELABORACIÓN DEL CUENTO. ( PERSONAS, DEFENSA) TRIGONOMETRÍA ETIMOLÓGICAMENTE: Trigonometría, es la parte de la matemática que estudia
Tema 6: Trigonometría.
Tema 6: Trigonometría. Comenzamos un tema, para mi parecer, muy bonito, en el que estudiaremos algunos aspectos importantes de la geometría, como son los ángulos, las principales razones e identidades
(tema 9 del libro) 1. FUNCIÓNES EXPONENCIALES
(tema 9 del libro). FUNCIÓNES EXPONENCIALES Son funciones de la forma f ( ) a donde a 0 y a. Su dominio es todo R y van a estar acotadas inferiormente por 0, que es su ínfimo. Todas pasan por el punto
TRIGONOMETRÍA. MATEMÁTICAS I 1º Bachillerato Ciencias de la Salud y Tecnológico. 1.- Ángulos en la Circunferencia.
TRIGONOMETRÍA MATEMÁTICAS I 1º Bachillerato Ciencias de la Salud y Tecnológico 1.- Ángulos en la Circunferencia. 2.- Razones Trigonométricas de un Triángulo Rectángulo. 3.- Valores del Seno, Coseno y Tangente
UNIDAD IV TRIGONOMETRÍA
UNIDAD IV TRIGONOMETRÍA http://www.ilustrados.com/publicaciones/epyuvklkkvpfesxwjt.php Objetivos: Al finalizar esta unidad, el alumno deberá ser hábil en: Comprender las definiciones de las relaciones
TRIGONOMETRIA. π radianes <> 180º
TRIGONOMETRIA La trigonometría estudia las relaciones existentes entre los ángulos y los lados de un triángulo. La base de su estudio es el ángulo. Angulo es la porción del plano limitada por dos semirrectas
5.5 LÍNEAS TRIGONOMÉTRICAS
5.5 LÍNES TRIGONOMÉTRIS Sea (O, ) una circunferencia con centro en el origen de coordenadas O(0, 0) radio la unidad. Si se construe un ángulo con vértice en el origen sentido positivo podemos obtener las
MATEMÁTICAS GRADO DÉCIMO
MATEMÁTICAS GRADO DÉCIMO SEGUNDA PARTE TEMA 1: VELOCIDAD ANGULAR Definición Velocidad Angular CONCEPTO: DEFINICIONES BÁSICAS: La velocidad angular es una medida de la velocidad de rotación. Se define como
SESIÓN 10 DERIVACIÓN DE FUNCIONES TRIGONOMÉTRICAS DIRECTAS
SESIÓN 0 DERIVACIÓN DE FUNCIONES TRIGONOMÉTRICAS DIRECTAS I. CONTENIDOS:. Derivadas de funciones trigonométricas directas. Ejercicios resueltos. Estrategias Centradas en el Aprendizaje: Ejercicios propuestos
RESOLUCIÓN DE TRIÁNGULOS FUNCIONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO (0º a 90º) DEFINICIÓN DE FUNCIONES TRIGONOMÉTRICAS
RESOLUCIÓN DE TRIÁNGULOS FUNCIONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO (0º a 90º) DEFINICIÓN DE FUNCIONES TRIGONOMÉTRICAS ESTE TRIANGULO SERA EL MISMO PARA TODA LA EXPLICACIÓN RELACIÓN ENTRE LAS FUNCIONES
Figura 1. Círculo unidad. Definición. 1. Llamamos número π (pi) al valor de la integral
ANÁLISIS MATEMÁTICO BÁSICO. LAS FUNCIONES TRIGONOMÉTRICAS. La función f(x) = 1 x 2 es continua en el intervalo [ 1, 1]. Su gráfica como vimos es la semicircunferencia de radio uno centro el origen de coordenadas.
MUNICIPIO DE MEDELLÍN GRADO 10 CONCEPTOS BÁSICOS DE TRIGONOMETRÍA
CONCEPTOS BÁSICOS DE TRIGONOMETRÍA ÁREA MATEMÁTICAS PERÍODO 01 FECHA: 13 de enero de 2014 LOGROS: MUNICIPIO DE MEDELLÍN GRADO 10 Construir y clasificar los diferentes tipos de ángulos, expresando su medida
Ángulo y conversión de medida de ángulos
INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA El saber es la única propiedad que no puede perderse. Bías Ángulo y conversión de medida de ángulos DESEMPEÑOS Entender y emplear
MATEMÁTICA DE CUARTO 207
CAPÍTULO 1 CONJUNTOS NUMÉRICOS 1 Introducción... pág. 9 2 Números naturales... pág. 10 3 Números enteros... pág. 10 4 Números racionales... pág. 11 5 Números reales... pág. 11 6 Números complejos... pág.
rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos:
Trigonometría 1.- Ángulos En la medida de ángulos, y por tanto en trigonometría, se emplean dos unidades, si bien la más utilizada en la vida cotidiana es el grado sexagesimal, en matemáticas es el radián
PRECALCULO INSTITUTO TECNOLÒGICO DE LAS AMÈRICAS CARRERA DE TECNÓLOGO EN MECATRONICA. Precálculo. Nombre de la asignatura: MAT-001
INSTITUTO TECNOLÒGICO DE LAS AMÈRICAS CARRERA DE TECNÓLOGO EN MECATRONICA PRECALCULO Nombre de la asignatura: Nomenclatura del Curso: Precálculo MAT-001 Prerrequisitos: Nomenclatura del prerrequisito Ninguno
Tema 1: Razones Trigonométricas. Resolución de Triángulos Rectángulos
Tema : Razones Trigonométricas. Resolución de Triángulos Rectángulos Matemáticas º Bachillerato CCNN.- Ángulos..- Angulo en el plano..- Criterio de Orientación de ángulos..- Sistemas de medida de ángulos.-
f(x) = sen x f(x) = cos x
www.matemáticagauss.com Trigonometría f(x) = sen x f(x) = cos x Función tangente f(x) = tan x Dominio: Ámbito: Periodo: Siempre crece 1 Prof. Orlando Bucknor Masís tel.: 9 9990 1) Un intervalo en el que
MOVIMIENTO ARMÓNICO SIMPLE
MOVIMIENTO ARMÓNICO SIMPLE Junio 2016. Pregunta 2A.- Un bloque de 2 kg de masa, que descansa sobre una superficie horizontal, está unido a un extremo de un muelle de masa despreciable y constante elástica
1. (D) La siguiente figura muestra un triángulo ABC, donde BC = 5 cm, B = 60º, C = 40º.
MATEMÁTICAS NM TRIGONOMETRÍA 1. (D) La siguiente figura muestra un triángulo ABC, donde BC = 5 cm, B = 60º, C = 40º. a) Calcule AB. b) Halle el área del triángulo. 2. (D) La siguiente figura muestra una
Las Funciones Trigonométricas. Sección 5.3 Funciones Trigonométricas de números reales
5 Las Funciones Trigonométricas Sección 5.3 Funciones Trigonométricas de números reales Qué hemos visto? Si el lado inicial de un ángulo,, coincide con la parte del eje de x que se encuentra en el primer
Se entiende por trigonometría, según su origen griego, la ciencia que tiene por objetivo la medida de los lados y los ángulos de los triángulos.
Unidad Trigonometría Introducción... Ángulos. Medida de ángulos... Razones trigonométricas de un ángulo... Resolución de triángulos: triángulos rectángulos... Casos concretos... Introducción Se entiende
EJERCICIOS MÓDULO 6. 1) Graficar aproximadamente cada ángulo dado en un sistema de ejes cartesianos:
Seminario Universitario Matemática EJERCICIOS MÓDULO 1) Graficar aproximadamente cada ángulo dado en un sistema de ejes cartesianos: a) 5 b ) 170 c ) 0 d ) 75 e) 10 f ) 50 g ) 0 h ) 87 i ) 08 j ) 700 k
14327,, = 238, 47,, 14327,, = 238, 47,, = 3º 58, 47,,
MEDID DE LS ÁNGULS Y SU CLSIFICCIÓN. El ángulo es la abertura formada por dos semirrectas con un mismo origen llamado vértice. Las semirrectas reciben el nombre de lados. Los ángulos se pueden designar
SEMANA 02 SISTEMAS DE MEDIDAS DE ARCOS, RELACIÓN ENTRE LOS SISTEMAS DE MEDIDAS DE ARCOS. LONGITUD DE ARCO.
SEMANA 02 SISTEMAS DE MEDIDAS DE ARCOS, RELACIÓN ENTRE LOS SISTEMAS DE MEDIDAS DE ARCOS. LONGITUD DE ARCO. I. INTRODUCCIÓN Arco Sección de un círculo que se encuentra entre dos puntos del círculo. Cualesquiera
Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 18 septiembre 2012.
2013-Modelo B. Pregunta 2.- La función matemática que representa una onda transversal que avanza por una cuerda es y(x,t)=0,3 sen (100πt 0,4πx + Φ 0), donde todas las magnitudes están expresadas en unidades
Trigonometría 1 INTRODUCCIÓN 2 TRIGONOMETRÍA PLANA. 2.1 Razones trigonométricas de ángulos agudos
Trigonometría 1 INTRODUCCIÓN Trigonometría, rama de las matemáticas que estudia las relaciones entre los lados y los ángulos de los triángulos. Etimológicamente significa medida de triángulos. Las primeras
rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos:
Trigonometría 1.- Ángulos En la medida de ángulos, y por tanto en trigonometría, se emplean dos unidades, si bien la más utilizada en la vida cotidiana es el grado sexagesimal, en matemáticas es el radián
Academia de Matemáticas T.M Geometría Analítica Página 1
INSTITUTO POLITECNICO NACIONAL CENTRO DE ESTUDIOS CIENTIFICOS Y TECNOLOGICOS 10. CARLOS VALLEJO MÁRQUEZ PROBLEMARIO DE GEOMETRIA ANALITICA Distancia entre puntos 1.- Determina la distancia entre los puntos
Guía de Estudio Algebra y Trigonometría Para Ciencias Agropecuarias
Guía de Estudio Para Ciencias Agropecuarias Unidad: Geometría Analítica Los siguientes ejercicios están relacionados con los principales temas de Geometría Analítica e involucra todos los conocimientos
INSTITUCION EDUCATIVA NUESTRA SEÑORA DE BELEN
RAZONES TRIGONOMÉTRICAS EN EL TRIÁNGULO RECTÁNGULO Las funciones trigonométricas estudiadas en la circunferencia unitaria se pueden describir en triángulos rectángulos a partir de las relaciones entre
GUIA DE TRIGONOMETRÍA
GUIA DE TRIGONOMETRÍA Los ángulos se pueden medir en grados sexagesimales y radianes Un ángulo de 1 radián es aquel cuyo arco tiene longitud igual al radio - 60º = radianes (una vuelta completa) - Un ángulo
FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS
FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS Página 8. Aunque el método para resolver las siguientes preguntas se sistematiza en la página siguiente, puedes resolverlas ahora: a) Cuántos radianes corresponden
7.1 RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO
Tema 7: Trigonometría Matemáticas B 4º ESO TEMA 7 TRIGONOMETRÍA 7.0 UNIDADES DE MEDIDAS DE ÁNGULOS 4º 7.0. GRADOS SEXAGESIMALES Grados, minutos y segundos : grado 60 minutos, minuto 60 segundos 4º 7.0.
Forma polar de números complejos (repaso breve)
Forma polar de números complejos (repaso breve) Objetivos. pasar la forma polar de números complejos. quisitos. Números complejos, funciones trigonométricas, valor absoluto de números complejos, circunferencia
GEOMETRÍA 1ESO ÁNGULOS & TRIÁNGULOS
Un punto se nombra con letras mayúsculas: A, B, C Una recta, formada por infinitos puntos, se nombra con letras minúsculas: a, b, c Dos rectas pueden ser paralelas, secantes o coincidentes. 1. Paralelas
1. Trigonometría 4º ESO-B. Cuaderno de ejercicios. Matemáticas JRM. Nombre y apellidos... INTRODUCCIÓN A LA TRIGONOMETRÍA Página 1
1. Trigonometría 4º ESO-B Cuaderno de ejercicios Matemáticas JRM Nombre y apellidos... INTRODUCCIÓN A LA TRIGONOMETRÍA Página 1 RESUMEN DE OBJETIVOS 1. Razones trigonométricas de un ángulo agudo. OBJETIVO
Solución: a) Módulo: en cualquier instante, el módulo del vector de posición es igual al radio de la trayectoria: r
IES Menéndez Tolosa (La Línea) Física y Química - º Bach - Movimientos Calcula la velocidad de un móvil a partir de la siguiente gráfica: El móvil tiene un movimiento uniforme. Pasa de la posición x 4
EXAMEN DE TRIGONOMETRÍA
1. Deduce la expresión del seno del ángulo mitad. 2. Sabiendo que sen á = 1/4 y que á está en el primer cuadrante, calcula tg 2á. 3. Calcula cos(2x), siendo cos x=1/2. 4. Resuelve la ecuación: cos(x)=cos(2x)
UTILIZAMOS LA TRIGONOMETRÍA.
UTILIZAMOS LA TRIGONOMETRÍA. RAZONAMIENTO Y DEMOSTRACIÓN Determina las demás razones trigonométricas a través de un dato. Aplica las definiciones de razones trigonométricas en la solución de ejercicios
- Ángulos positivos. Los que tienen el sentido de giro en contra de la agujas del reloj.
Ángulos. TRIGONOMETRÍA - Ángulo en el plano. Dos semirrectas con un origen común dividen al plano, en dos regiones, cada una de las cuales determina un ángulo ( α, β ). Al origen común se le llama vértice.
1. El movimiento circular uniforme (MCU)
FUNDACIÓN INSTITUTO A DISTANCIA EDUARDO CABALLERO CALDERON Espacio Académico: Física Docente: Mónica Bibiana Velasco Borda [email protected] CICLO: VI INICADORES DE LOGRO MOVIMIENTO CIRCULAR
Apuntes de dibujo de curvas
Apuntes de dibujo de curvas El objetivo de estas notas es dar unas nociones básicas sobre dibujo de curvas definidas por medio de ecuaciones cartesianas explícitas o paramétricas y polares: 1. Curvas en
INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA
INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA Lo peor no es cometer un error, sino tratar de justificarlo, en vez de aprovecharlo como aviso providencial de nuestra ligereza
a1 3 siendo a 1 y a 2 las aristas. 2 a a1
Semejanza y Trigonometria. 77 Ejercicios para practicar con soluciones Dos rectángulos tienen sus lados proporcionales. Los lados del primero miden 6 y 8 cm respectivamente. Si el perímetro del segundo
UD Trigonometría Ejercicios Resueltos y Propuestos Col La Presentación
En este documento se da una relación de los tipos de ejercicios que nos podemos encontrar en el tema de Trigonometría de º de Bachillerato. En todo el documento se sigue el mismo esquema: Enunciado tipo
Lección 3.1. Funciones Trigonométricas de Ángulos. 21/02/2014 Prof. José G. Rodríguez Ahumada 1 de 21
Lección 3. Funciones Trigonométricas de Ángulos /0/0 Prof. José G. Rodríguez Ahumada de Actividades 3. Referencia Texto: Seccíón 6. Ángulo; Ejercicios de Práctica: Problemas impares -33 página 09 (375
Elementos de geometría útiles para la localización espacial
Elementos de geometría útiles para la localización espacial Por qué los necesitamos un sistema de coordenadas? Ubicar espacialmente lo que se mide u observa Posicionar objetos Navegar Replantear Volver
RAZONES TRIGONOMÉTRICAS
RAZONES TRIGONOMÉTRICAS.- PRIMERAS DEFINICIONES Se denomina ángulo en el plano a la porción de plano comprendida entre dos semirrectas con un origen común denominado vértice. Ángulo central es el ángulo
UNIDAD DIDÁCTICA 6: Trigonometría
UNIDAD DIDÁCTICA 6: Trigonometría 1. ÍNDICE 1. Introducción 2. Ángulos 3. Sistemas de medición de ángulos 4. Funciones trigonométricas de un ángulo 5. Teorema de Pitágoras 6. Problemas sobre resolución
Slide 1 / 71. Movimiento Armónico Simple
Slide 1 / 71 Movimiento Armónico Simple Slide 2 / 71 MAS y Movimiento Circular Hay una profunda conexión entre el Movimiento armónico simple (MAS) y el Movimiento Circular Uniforme (MCU). Movimiento armónico
CINEMÁTICA: MOVIMIENTO CIRCULAR, CONCEPTOS BÁSICOS Y GRÁFICAS
CINEMÁTICA: MOVIMIENTO CIRCULAR, CONCEPTOS BÁSICOS Y GRÁFICAS Un volante cuyo diámetro es de 3 m está girando a 120 r.p.m. Calcular: a) su frecuencia, b) el periodo, c) la velocidad angular, d) la velocidad
Práctico 2: Mecánica lagrangeana
Mecánica Anaĺıtica Curso 2016 Práctico 2: Mecánica lagrangeana 1. La polea y la cuerda de la figura son ideales y los bloques deslizan sin roce. Obtenga las aceleraciones de los bloques a partir de las
APLICACIONES DE LA DERIVADA
APLICACIONES DE LA DERIVADA Ejercicio -Sea f: R R la función definida por f ( ) = + a + b + a) [ 5 puntos] Determina a, b R sabiendo que la gráfica de f pasa por el punto (, ) y tiene un punto de infleión
CBC. Matemática (51) universoexacto.com 1
CBC Matemática (51) universoexacto.com 1 PROGRAMA ANALÍTICO 1 :: UNIDAD 1 Números Reales y Coordenadas Cartesianas Representación de los números reales en una recta. Intervalos de Distancia en la recta
PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO
PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO 1. Una onda transversal se propaga en una cuerda según la ecuación (unidades en el S.I.) Calcular la velocidad de propagación de la onda y el estado de vibración
1 Universidad de Castilla La Mancha Septiembre 2015 SEPTIEMRE 2015 Opción A Problema 1.- Tenemos tres partículas cargadas q 1 = -20 C, q 2 = +40 C y q 3 = -15 C, situadas en los puntos de coordenadas A
El seno del ángulo agudo es la razón entre las longitudes del cateto opuesto al mismo y la
T.7: TRIGONOMETRÍA 7.1 Medidas de ángulos. El radián. Ángulo reducido. Las unidades más comunes que se utilizan para medir los ángulos son el grado sexagesimal y el radián: Grado sexageximal: es cada una
Razones trigonométricas DE un ángulo agudo de un triángulo
RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO RAZONAMIENTO Y DEMOSTRACIÓN Calcula razones trigonométricas en un triángulo rectángulo. Demuestra identidades trigonométricas elementales Demuestra identidades
1.1 El caso particular de las curvas planas.
Chapter 1 Complementos de teoría de curvas 1.1 El caso particular de las curvas planas. Una curva en el espacio cuya torsión se anula está contenida en algún plano. Supongamos que ese plano es el z = 0,
Ejercicios de Trigonometría
Ejercicios de Trigonometría. Halla la altura de un edificio que proyecta una sombra de 56 m a la misma hora que un árbol de m proyecta una sombra de m.. En un mapa, la distancia entre La Coruña y Lugo
MATEMÁTICAS II: GEOMETRÍA, TRIGONOMETRÍA, ESTADÍSTICA
MATEMÁTICAS II: GEOMETRÍA, TRIGONOMETRÍA, ESTADÍSTICA BLOQUE I: ÁNGULOS Y RELACIONES MÉTRICAS ÁNGULOS EN EL PLANO 1.1 Definición y clasificación. 1.2 Por sus medidas: -agudo -recto -obtuso -llano (de media
Universidad de Antioquia
Facultad de Ciencias Exactas y Naturales Departamento de Matemáticas Grupo de Semilleros de Matemáticas Semática Funciones Trigonométricas inversas Matemáticas Operativas Taller 4 0 La trigonometría es
RESUMEN DE TRIGONOMETRÍA
RESUMEN DE TRIGONOMETRÍA Definición: Un ángulo es la región del plano comprendida entre dos semirrectas con origen común. A las semirrectas se las llama lados del ángulo. El origen común es el vértice.
Para que un punto P(x, y) pertenezca a la circunferencia unitaria debe cumplir con la ecuación x 2 + y 2 = 1.
GUIA FUNCIONES TRIGONOMETRICAS GRADO DECIMO FUNCIOENES TRIGONOMETRICAS El estudio de la trigonometría se puede realizar por medio de las relaciones entre los ángulos y los lados de un triángulo rectángulo,
RAZONES TRIGONOMÉTRICAS. Razones trigonométricas en un triángulo rectángulo
RAZONES TRIGONOMÉTRICAS Razones trigonométricas en un triángulo rectángulo Seno El seno del ángulo B es la razón entre el cateto opuesto al ángulo y la hipotenusa. Se denota por sen B. Coseno El coseno
TRIGONOMETRÍA ESFÉRICA 2001 Kepler C k Ikastegia
TRIGNMETRÍ ESFÉRI 2001 Kepler k Ikastegia 2 1.1 Introducción La Trigonometría es una rama de la Matemática en la que se analiza la medida de las partes de los triángulos, tanto de los triángulos planos
Introducción a la geometría
Introducción a la geometría Este curso cubre los siguientes temas. Usted puede personalizar la gama y la secuencia de este curso para satisfacer sus necesidades curriculares. Plan de estudios (217 temas)
Funciones reales. Números complejos
Funciones reales. Números complejos Funciones reales 1. Encuentra todos los números reales x que verifican: a) (x 1)(x 3) > 1 b) x + 1 > 1 1 x c) x 1 + x + 1 < 1 d) 5 < x 2 14x + 5 < 26 2. Si la gráfica
Guía realizada por: Pimentel Yender.
REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA EDUCACIÓN U.E. COLEGIO DON CESAR ACOSTA BARINAS. ESTADO, BARINAS. PROFESOR: PIMENTEL YENDER. FÍSICA 4TO AÑO. MOVIMIENTO CIRCULAR
Introducción La Circunferencia Parábola Elipse Hiperbola. Conicas. Hermes Pantoja Carhuavilca
Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Matematica I Contenido 1 Introducción 2 La Circunferencia 3 Parábola 4 Elipse 5 Hiperbola Objetivos Se persigue que el estudiante:
Las Funciones Trigonométricas. Sección 5.2 (parte 1) Funciones Trigonométricas de Angulos
5 Las Funciones Trigonométricas Sección 5.2 (parte 1) Funciones Trigonométricas de Angulos Triángulos Rectos Un triángulo es recto (triángulo rectángulo) si uno de sus ángulos internos mide 90 o. La suma
BACHILLERATO FÍSICA A. HERRAMIENTAS MATEMÁTICAS DE LA FÍSICA. Dpto. de Física y Química. R. Artacho
BACHILLERATO FÍSICA A. HERRAMIENTAS MATEMÁTICAS DE LA FÍSICA R. Artacho Dpto. de Física y Química ÍNDICE 1. Áreas y volúmenes de figuras geométricas. Funciones trigonométricas 3. Productos de vectores
TEMA 9 CUERPOS GEOMÉTRICOS
Tel: 98 9 6 91 Fax: 98 1 89 96 TEMA 9 CUERPOS GEOMÉTRICOS Objetivos / Criterios de evaluación O.1.1 Conocer las fórmulas de áreas y volúmenes de figuras geométricas sencillas de D. O.1. Resolver problemas
Las funciones trigonométricas
Las funciones trigonométricas Las funciones trigonométricas Las funciones trigonométricas son las funciones derivadas de las razones trigonométricas de un ángulo. En general, el ángulo sobre el cual se
Movimiento Armónico Simple
Movimiento Armónico Simple Ejercicio 1 Una partícula vibra con una frecuencia de 30Hz y una amplitud de 5,0 cm. Calcula la velocidad máxima y la aceleración máxima con que se mueve. En primer lugar atenderemos
Cuadriláteros y circunferencia
CLAVES PARA EMPEZAR Un triángulo isósceles tiene dos lados iguales: b c. Como es rectángulo, se cumple el teorema de Pitágoras: 10 2 b 2 b 2 100 2b 2 b 7,07. Los dos lados miden 7,07 cm cada uno. r A C
Preparación para cálculo
Preparación para cálculo Este curso cubre los siguientes temas. Usted puede personalizar la gama y la secuencia de este curso para satisfacer sus necesidades curriculares. Plan de estudios (406 temas)
Ejercicios resueltos de trigonometría
Ejercicios resueltos de trigonometría 1) Convierte las siguientes medidas de grados en radianes: a) 45º b) 60º c) 180º d) 270º e) 30º f) 225º g) 150º h) 135º i) -90º j) 720º 2) Expresa las siguientes razones
La circunferencia es una línea plana y cerrada en la que todos los puntos están a igual distancia de un punto O dado.
El círculo y la circunferencia La circunferencia es una línea plana y cerrada en la que todos los puntos están a igual distancia de un punto O dado. Elementos de la circunferencia. En una circunferencia
Proyecto. Tema 6 sesión 2: Generación de Rectas, Circunferencias y Curvas. Geometría Analítica. Isidro Huesca Zavaleta
Geometría Analítica Tema 6 sesión 2: Generación de Rectas, Circunferencias y Curvas Isidro Huesca Zavaleta La Integración de dos Ciencias La Geometría Analítica nació de la integración de dos ciencias
UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL SISTEMA DE EDUCACIÓN A DISTANCIA CARRERA DE CIENCIAS DE EDUCACIÓN AREA DE MATEMÁTICAS. Módulo
UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL SISTEMA DE EDUCACIÓN A DISTANCIA CARRERA DE CIENCIAS DE EDUCACIÓN AREA DE MATEMÁTICAS Módulo TRIGONOMETRÍA Y DIBUJO TÉCNICO Msc. Sexto Nivel Tercera Edición Quito, marzo
CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos.
CAPÍTULO IV. CONTINUIDAD DE FUNCIONES SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. 121 A. DEFINICIÓN DE FUNCIÓN CONTINUA. Una función
2. El conjunto de los números complejos
Números complejos 1 Introducción El nacimiento de los números complejos se debió a la necesidad de dar solución a un problema: no todas las ecuaciones polinómicas poseen una solución real El ejemplo más
Ejercicios de Trigonometría
Ejercicios de Trigonometría 1) Indica la medida de estos ángulos en radianes: a) 0º b) 45º c) 60º d) 120º Recuerda que 360º son 2π radianes, con lo que para hacer la conversión realizaremos una simple
Física General IV: Óptica
Facultad de Matemática, Astronomía y Física Universidad Nacional de Córdoba Física General IV: Óptica Práctico de Laboratorio N 1: Ondas en una Cuerda Elástica 1 Objetivo: Estudiar el movimiento oscilatorio
La lección de hoy es sobre Relaciones de las Funciones Trigonométricas. El cuál es la expectativa para el aprendizaje del estudiante -T.2.G.
T.2G.6-Sarah Burnett-Trig. Function Ratios. La lección de hoy es sobre Relaciones de las Funciones Trigonométricas. El cuál es la expectativa para el aprendizaje del estudiante -T.2.G.6- Vamos a hablar
Unidad I Triángulos rectángulos
Unidad I Triángulos rectángulos Última revisión: 07-Enero-2010 Elaboró: Ing. Víctor H. Alcalá-Octaviano Página 1 Tema 1. Teorema de Pitágoras Matemáticas II El Teorema de Pitágoras lleva este nombre porque
MATEMATICAS GRADO DECIMO
MATEMATICAS GRADO DECIMO TERCER PERIODO TEMAS Funciones Trigonométricas. Funciones trigonométricas. Son relaciones angulares; guardan relación con el estudio de la geometría de los triángulos y son de
BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA GUÍA TEMÁTICA DEL ÁREA DE INGENIERÍAS Y CIENCIAS EXACTAS. Ingeniería y Ciencias Exactas 2013.
BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA GUÍA TEMÁTICA DEL ÁREA DE INGENIERÍAS Y CIENCIAS EXACTAS Ingeniería y Ciencias Exactas 2013. 1 ÁREA DE INGENIERIAS Y CIENCIAS EXACTAS INTRODUCCIÓN El propósito
ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS
ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS Ejercicio 1 De la función se sabe que tiene un máximo en, y que su gráfica corta al eje OX en el punto de abscisa y tiene un punto de inflexión en el punto
CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 3. Trigonometría
TRIGONOMETRÍA La trigonometría se inicia estudiando la relación entre los ángulos y los lados de un triángulo, surgiendo las razones trigonométricas de un ángulo y a partir de ellas las funciones trigonométricas.
NOMBRE DEL CURSO: Matemática Básica 1
UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA ESCUELA DE CIENCIAS, DEPARTAMENTO DE MATEMÁTICA NOMBRE DEL CURSO: Matemática Básica 1 http://mate.ingeniería.usac.edu.gt CÓDIGO: 101 CRÉDITOS:
Aplicación: cálculo de áreas XII APLICACIÓN: CÁLCULO DE ÁREAS
XII APLICACIÓN: CÁLCULO DE ÁREAS El estudiante, hasta este momento de sus estudios, está familiarizado con el cálculo de áreas de figuras geométricas regulares a través del uso de fórmulas, como el cuadrado,
Sistema de Coordenadas
Sistemas de Coordenadas Los sistemas de coordenadas son sistemas diseñados para localizar de forma precisa puntos sobre el planeta Tierra. Debido a que los sistemas de coordenadas se utilizan en mapas
