= kv y a una fuerza constante F

Tamaño: px
Comenzar la demostración a partir de la página:

Download "= kv y a una fuerza constante F"

Transcripción

1 ROZ. VISCOSO: Una lancha de masa m naega en un lago con elocidad. En el insane se desconeca el moor. Suponiendo que la fuerza de resisencia del agua al moimieno de la lancha es proporcional a la elocidad deerminar: a) la elocidad en función del iempo, b) la elocidad en función de la disancia recorrida, así como la disancia oal recorrida hasa pararse, c) la elocidad media de la lancha en el ranscurso del iempo en el que la elocidad disminuye de a /. Solución: I.T.I. 97, Texo solución Deerminar en función del iempo la elocidad de un puno maerial de masa m que pare del reposo y esá someido a una resisencia iscosa F roz. k y a una fuerza consane F. Solución: I.T.I. 97 Texo solución Las parículas pequeñas esféricas experimenan una fuerza de resisencia iscosa dada por la ley de Sokes, 6πηr, en donde r es el radio de la parícula, su elocidad y η la iscosidad dinámica del aire o medio fluido donde caen las esferias. a) Esimar la elocidad límie de una parícula conaminane esférica de radio 1 5 m y densidad ρ g/cm 3. Suponer que el aire esá en reposo y que η Ns/m. b) Esimar el iempo que esa parícula arda en caer por una chimenea de 1 m de alura. Solución: I.T.I. 9, 98, I.T.T. 96, 99,, 5 Vamos a omar como senido posiio del moimieno unidimensional de la parícula el senido descendene, el origen de coordenadas en la pare superior de la chimenea de alura h 1 m, y pondremos a cero el cronómero en el insane en que la dejamos caer. a) Dibujando el diagrama de fuerzas y aplicando la segunda ley de Newon: m m a mg F roz ma a g F roz m g 6π η r m F roz m g Esa aceleración será nula cuando se alcance la elocidad límie: Senido posiio del moimieno Física Dinámica de la Parícula Página 1

2 4 g 6π η r m lím. mg 6π η r 3 π r 3 ρ g r ρg 6πη r 9 η.4 cm / s b) La aceleración depende de la elocidad. Separando ariables: d g 6πη r m g ( ) g d d τ Jose Jaier Sandonís R, 1/11/4 17:54 Con formao: Numeración y iñeas Donde τ.47ms es un iempo relacionado con la rapidez con la que la g parícula iende a alcanzar la elocidad límie. Inegrando y eniendo en cuena las condiciones iniciales del moimieno: d ln lím. lím. τ lím. τ /τ ( ) ( ) 1 e Para enconrar la posición en función del iempo inegrando y eniendo en cuena las condiciones iniciales del moimieno: /τ ( ) d lím. τ ( 1 e ) x( ) lím. 1 e /τ Podemos esimar que para iempos grandes en comparación con τ la exponencial es prácicamene nula y en dicho caso nos queda: x( ) lím. Cuando llega al suelo, suelo : x( suelo ) h suelo h suelo h 1 h 9 ʹ Como podemos comprobar el resulado es mucho mayor que el iempo τ, con lo que la suposición que hicimos para enconrarlo es correca. Física Dinámica de la Parícula Página

3 Una masa de 4 Kg es lanzada ericalmene con una elocidad inicial de 6 m/s. La masa encuenra una resisencia del aire F roz. k, con k.3 Ns/m. Calcular el iempo que ranscurre desde el lanzamieno hasa que alcanza la máxima alura. Cuál es la máxima alura? Solución: I.T.I. 1, I.T.T. 1, 4 Vamos a omar como senido posiio del moimieno unidimensional del cuerpo el senido ascendene, el origen de coordenadas en la posición de lanzamieno, y pondremos a cero el cronómero en el insane en que es lanzado el cuerpo. Dibujando el diagrama de fuerzas y aplicando la segunda ley de Newon: m m a mg F roz ma a F roz m m F roz La aceleración depende de la elocidad. Separando ariables: m g Senido posiio del moimieno d m k d m Inegrando eniendo en cuena las condiciones iniciales del moimieno: k d m m k ln m k (1) m Cuando el móil alcanza su máxima alura, máx.al, la elocidad se anula. Si en (1) hacemos enconraremos el iempo que nos piden: max.al. m k ln 1+ mg s Para enconrar la alura en función del iempo primeramene despejaremos la elocidad en la ecuación (1): ( ) m k m e m g Inegrando y eniendo en cuena las condiciones iniciales del moimieno: Física Dinámica de la Parícula Página 3

4 y( ) m k m e La alura máxima será: m g d m k m 1 e m m k g ( ) m k y máx. y máx.al. m 1 e m máx.al. m k g máx.al m Física Dinámica de la Parícula Página 4

5 Un paracaidisa cuya masa es de 8 kg sala de un aión que uela lenamene alcanzando una elocidad límie de 5 m/s. Calcular la aceleración del paracaidisa cuando su elocidad es de 3 m/s. Deerminar la resisencia del aire que acúa sobre él cuando su elocidad es de 3 m/s y 5 m/s. (La fuerza de rozamieno es proporcional a la elocidad). Solución: I.T.I. 96 Texo solución Se aplica una fuerza consane F a un émbolo y su eje de masa oal m para hacerle moer en un cilindro lleno de aceie. Conforme el émbolo se muee el aceie forzado a salir por orificios en el émbolo ejerce sobre ése una fuerza F aceie k F. Exprésese la disancia x recorrida por el émbolo en función del iempo, suponiendo que en, x y Solución: I.T.I. 3 Vamos a omar como senido posiio del moimieno unidimensional del émbolo el senido hacia la derecha. Dibujando el diagrama de fuerzas y aplicando la segunda ley de Newon: F + F aceie ma F k ma a F m m m F k La aceleración depende de la elocidad. Separando ariables: d m F k F k m d Inegrando eniendo en cuena las condiciones iniciales del moimieno: F k F m d k ln F m k k Para enconrar la alura en función del iempo primeramene despejaremos la elocidad en la ecuación anerior: Física Dinámica de la Parícula Página 5

6 ( ) F k m 1 e Inegrando y eniendo en cuena las condiciones iniciales del moimieno: x( ) F k m 1 e d F k + m k e m m k La resisencia que encuenra un paracaidisa que cae con una elocidad puede expresarse en el S.I. por F k r con k.3 y siendo r el radio del paracaídas. Deerminar r de modo que el paracaídas cuya masa, incluido el paracaidisa, es m 1 kg llegue al suelo con la misma elocidad con la que llegaría cayendo en el acío desde h 1 m de alura. En qué insane endría una elocidad de 4 m/s? dx Noa: 1 a x a ln a + x a x, gh( x) e x e x e x + e x ( ) Solución: I.T.I. 97, 3, I.T.T. 3 Vamos a omar como senido posiio del moimieno unidimensional del paracaidisa el senido descendene y amos a poner a cero el cronómero en el momeno en el que se inicia el moimieno. Dibujando el diagrama de fuerzas y aplicando la segunda ley de Newon: m m a mg k r ma a g k r m F roz m g Senido posiio del moimieno Jose Jaier Sandonís R, 1/11/4 11:46 Eliminado: de Jose Jaier Sandonís R, 1/11/4 11:45 Eliminado: la parícul Jose Jaier Sandonís R, 1/11/4 11:45 Eliminado: a Esa aceleración será nula cuando se alcance la elocidad límie: g k r m lím. mg k r Nos dicen que esa elocidad límie debe ser igual a la que se alcanza cuando se cae desde una alura h. Teniendo en cuena que para un moimieno uniformemene acelerado con aceleración g y pariendo del reposo: final gh gh mg k r gh r m kh 1.91 m La aceleración depende de la elocidad. Separando ariables: Física Dinámica de la Parícula Página 6

7 d g k r m k r mg m k r g lím. [ ] [ lím. ] g d Inegrando eniendo en cuena las condiciones iniciales del moimieno: g lím. d [ ] 1 ln + g g ln + (1) Susiuyendo el alor de la elocidad, 1 4 m/s, que nos dan en el enunciado podemos calcular el alor 1 del iempo en ese insane: 1 g ln + lím s Despejando la elocidad en la ecuación (1) podemos calcular la elocidad en cualquier insane del iempo: g ( ) gh Una parícula de masa m pare del reposo y cae bajo la acción de la graedad, a raés de un medio iscoso que opone una resisencia proporcional al cuadrado de la elocidad. a) Hallar las ecuaciones del moimieno. b) Sin resolerlas, calcular la elocidad límie con que caerá la parícula al cabo de ciero iempo. Solución: I.T.I., 5 Vamos a omar como senido posiio del moimieno unidimensional de la parícula el senido descendene. a) Dibujando el diagrama de fuerzas y aplicando la segunda ley de Newon: m m a mg k ma a g m Senido posiio del moimieno Física Dinámica de la Parícula Página 7 F roz m g

8 b) Esa aceleración será nula cuando se alcance la elocidad límie: g m lím. mg k Física Dinámica de la Parícula Página 8

9 Si la fuerza resisia sobre un cuerpo al moerse en el seno de un fluido es direcamene proporcional al cuadrado de su elocidad hallar la elocidad límie. Si pare del reposo, deerminar el iempo ranscurrido hasa que su elocidad sea la miad de la elocidad límie. dx Expresar la elocidad en función del iempo. Noa: 1 a x a ln a + x a x Solución: I.T.I., 4, I.T.T. ( ) Vamos a omar como senido posiio del moimieno unidimensional de la parícula el senido descendene y amos a poner a cero el cronómero en el momeno en el que se inicia el moimieno. Dibujando el diagrama de fuerzas y aplicando la segunda ley de Newon: m m a mg k ma a g m F roz m g Senido posiio del moimieno Esa aceleración será nula cuando se alcance la elocidad límie: g m mg k La aceleración depende de la elocidad. Separando ariables: d g m m mg k g lím. g d Inegrando eniendo en cuena las condiciones iniciales del moimieno: g lím. d [ ] 1 ln + g g ln + (1) Física Dinámica de la Parícula Página 9

10 Cuando la elocidad sea la miad de la elocidad límie el iempo 1 ranscurrido será: 1 g ln + / / g ln( 3) Despejando la elocidad en la ecuación (1) podemos calcular la elocidad en cualquier insane del iempo: ( ) gh g Admiiremos que un cuerpo que se muee en el seno de un fluido experimena una resisencia al aance que es proporcional al cuadrado de la elocidad y a la superficie fronal S según la ley: ks. Las aspas de 4 m de radio de un helicópero giran a una elocidad de 1 r.p.s. y ienen un perfil de 1.5 cm de grosor. Calcular para cada una de las aspas la fuerza oal de rozamieno y el momeno de las fuerzas de rozamieno respeco al puno de giro del eje del roor. Tomar k 1 4 dinas s /m 4. Jose Jaier Sandonís R, 1/11/4 11:51 Eliminado: Solución: I.T.I. 96, 98, 4, I.T.T. 96, 99,, 5 En primer lugar raduciremos a unidades del sisema inernacional el alor de la consane de proporcionalidad k y el de la elocidad angular ω : k 1 4 dinas s /m 4.1 N s /m 4 ω 1 r.p.s. π rad/s Consideremos la superficie que enfrena al aire una de las aspas del helicópero durane su moimieno. Diidamos esa superficie en elemenos infiniesimalmene pequeños ds, calculemos la fuerza y el momeno de fuerza que acúa sobre cada uno de dichos elemenos y finalmene sumemos para odos ellos: h R x z ω d y Física Dinámica de la Parícula Página 1

11 df roz. k ds ˆ j df R roz. k ω h x dx ˆ j ( ) k ( ω x) ( h dx) ˆ j 1 3 k ω h R 3 ˆ j d τ roz. r df roz. x df ˆ roz. k k ω h x 3 dx k ˆ τ roz. d R τ roz. kω h x 3 dx k ˆ 1 4 kω h R 4 ˆ k 15.3 N ˆ j N m ˆ k Francisco Jaier Junquer, 4/11/1 15:1 Eliminado: Física Dinámica de la Parícula Página 11

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, DATOS EN FUNCIÓN DEL TIEMPO.

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, DATOS EN FUNCIÓN DEL TIEMPO. CINEMÁTICA: MOVIMIENTO RECTILÍNEO, DATOS EN FUNCIÓN DEL TIEMPO. La velocidad de una parícula viene dada por v( ) 6 +, con en segundos y v en m/s. a) Hacer un gráfico de v() y hallar el área limiada por

Más detalles

TRABAJO Y ENERGIA: IMPULSO

TRABAJO Y ENERGIA: IMPULSO TRABAJO Y ENERGIA: IMPULSO Un paquee de 10 kg cae de una rampa con v = 3 m/s a una carrea de 25 kg en reposo, pudiendo ésa rodar libremene. Deerminar: a) la velocidad final de la carrea, b) el impulso

Más detalles

( ) m / s en un ( ) m. Después de nadar ( ) m / s. a) Cuáles

( ) m / s en un ( ) m. Después de nadar ( ) m / s. a) Cuáles CINEMÁTICA: MOVIMIENTO TRIDIMENSIONAL, DATOS EN FUNCIÓN DEL TIEMPO. Una cucaracha sobre una mesa se arrasra con una aceleración consane dada por: a (.3ˆ i. ˆ j ) cm / s. Esa sale desde un puno ( 4, ) cm

Más detalles

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, OTROS DATOS.

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, OTROS DATOS. CINEMÁTICA: MOVIMIENTO RECTILÍNEO, OTROS DATOS. Una parícula se muee en la dirección posiia del eje X, de modo que su elocidad aría según la ley = α donde α es una consane. Teniendo en cuena que en el

Más detalles

La Cinemática es la parte de la Física que estudia los movimientos sin preocuparse de la causa que los produce.

La Cinemática es la parte de la Física que estudia los movimientos sin preocuparse de la causa que los produce. CINEMÁTICA La Cinemáica es la pare de la Física que esudia los moimienos sin preocuparse de la causa que los produce. SISTEMA DE REFERENCIA, POSICIÓN Y TRAYECTORIA Un cuerpo esá en moimieno cuando su posición

Más detalles

ECUACIÓN DEL MOVIMIENTO (PARAMÉTRICA)

ECUACIÓN DEL MOVIMIENTO (PARAMÉTRICA) CINEMÁTICA PUNTO MATERIAL O PARTÍCULA: OBJETO DE DIMENSIONES DESPRECIABLES FRENTE A LAS DISTANCIAS ENTRE ÉL Y LOS OBJETOS CON LOS QUE INTERACCIONA. SISTEMA DE REFERENCIA: CONUNTO BIEN DEFINIDO QUE, EN

Más detalles

Cinemática. El ángulo que forman las gotas de lluvia con la horizontal de la ventana es: 8,9 tg 0,46 arc tg 0,46 24,76º 19,3

Cinemática. El ángulo que forman las gotas de lluvia con la horizontal de la ventana es: 8,9 tg 0,46 arc tg 0,46 24,76º 19,3 Cinemáica. Un auomóil se muee con una elocidad de 9,3 m/s y cae lluia a 8,9 m/s en forma direca hacia abajo. Qué ángulo forma la lluia con respeco a la horizonal en la enanilla del conducor? El ángulo

Más detalles

1.10 Aplicaciones de las ecuaciones diferenciales de primer orden

1.10 Aplicaciones de las ecuaciones diferenciales de primer orden . Aplicaciones de las ecuaciones diferenciales de primer orden 55. Aplicaciones de las ecuaciones diferenciales de primer orden Ejemplo.. Decaimieno radiacivo El isóopo radiacivo Torio 24 se desinegra

Más detalles

1.CINEMÁTICA. Movimiento Se define el movimiento como el cambio de posición de algo respecto a un sistema de referencia

1.CINEMÁTICA. Movimiento Se define el movimiento como el cambio de posición de algo respecto a un sistema de referencia Magniudes fundamenales Son las magniudes que se pueden medir direcamene 1.CINEMÁTICA Definiciones Reposo Se define como el no cambiar de posición respeco a un sisema de referencia. No hay ningún cuerpo

Más detalles

SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Energía I: trabajo y potencia mecánica

SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Energía I: trabajo y potencia mecánica SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Energía I: rabajo y poencia mecánica SGUICES020CB32-A16V1 Solucionario guía Energía I: rabajo y poencia mecánica Íem Alernaiva Habilidad 1 D Comprensión 2 C Aplicación

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Acividades del final de la unidad ACTIVIDADES DEL FINAL DE LA UNIDAD. Dibuja las gráficas x- y v- de los movimienos que corresponden a las siguienes ecuaciones: a) x = +. b) x = 8. c) x = +. Calcula la

Más detalles

El flujo que atraviesa la espira es v que es constante. La intensidad que circula se calcula con la ley de Ohm

El flujo que atraviesa la espira es v que es constante. La intensidad que circula se calcula con la ley de Ohm 01. Una bobina circular de 0 espiras y radio 5 cm se coloca en un campo magnéico perpendicular al plano de la bobina. l campo magnéico aría con el iempo de acuerdo con la expresión: B = 0,0 + 0,08 SI,

Más detalles

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS Dada la dependencia de la velocidad con la posición en un movimieno recilíneo mosrada por la siguiene gráfica, deerminar la dependencia con

Más detalles

0,05 (0,02 0,16 5) 0,129 v

0,05 (0,02 0,16 5) 0,129 v L Campo Magnéico III 01. Una bobina circular de 0 espiras y radio 5 cm se coloca en un campo magnéico perpendicular al plano de la bobina. El campo magnéico aría con el iempo de acuerdo con la expresión:

Más detalles

2.- Determinar las coordenadas del c. de g. de un tractor cuyas características dimensionales son las siguientes:

2.- Determinar las coordenadas del c. de g. de un tractor cuyas características dimensionales son las siguientes: .- Un racor iene las siguienes caracerísicas: aalla: 450 mm. Radio de las ruedas morices: 70 cm. Radio de las ruedas direcrices: 30 cm. eso oal del racor: 300 Kp. eso en el eje delanero cuando el racor

Más detalles

Movimiento rectilíneo uniformemente variado (parte 1)

Movimiento rectilíneo uniformemente variado (parte 1) Moimieno recilíneo uniformemene ariado Moimieno recilíneo uniformemene ariado Empecemos! A diferencia del MRU cuya elocidad es consane, en nuesra ida diaria obseramos oro ipo de moimieno en el que hay

Más detalles

- FÓRMULAS - LEYES - GRÁFICAS -UNIFORMEMENTE VARIADO

- FÓRMULAS - LEYES - GRÁFICAS -UNIFORMEMENTE VARIADO E L - CONCEPTO - ELEMENTOS : - M O - I M I E N T O CLASES TEMA: EL MOIMIENTO - SEGÚN EL PUNTO DE REFERENCIA - SEGÚN LA TRAYECTORIA - SEGÚN LA ELOCIDAD UNIFORME ARIADO - FÓRMULAS - LEYES - GRÁFICAS -UNIFORMEMENTE

Más detalles

TEMA 3: CINEMATICA DE UNA PARTICULA

TEMA 3: CINEMATICA DE UNA PARTICULA La Mecánica es la pare de la Física que esudia el moimieno de los cuerpos. La cinemáica es la pare de la mecánica que describe el moimieno en sí, sin ener en cuena la causa del mismo. La Dinámica es la

Más detalles

1 Física General I Paralelos 05 y 22. Profesor RodrigoVergara R 0102) Movimiento Rectilíneo Horizontal

1 Física General I Paralelos 05 y 22. Profesor RodrigoVergara R 0102) Movimiento Rectilíneo Horizontal Física General I Paralelos 5 y. Profesor Rodrigoergara R ) Movimieno Recilíneo Horizonal ) Concepos basicos Definir disancia recorrida, posición y cambio de posición. Definir vecores posicion, velocidad

Más detalles

= Δx 2. Escogiendo un sistema de referencia común para ambos móviles x A

= Δx 2. Escogiendo un sistema de referencia común para ambos móviles x A Ejemplos de solución a problemas de Cinemáica de la parícula Diseño en PDF MSc. Carlos Álvarez Marínez de Sanelices, Dpo. Física, Universidad de Camagüey. Carlos.alvarez@reduc.edu.cu Acividad # C1. Un

Más detalles

i = dq dt La relación entre la diferencia de potencial de las armaduras del condensador y su capacidad es V a V b =V ab = q C V c =V bc

i = dq dt La relación entre la diferencia de potencial de las armaduras del condensador y su capacidad es V a V b =V ab = q C V c =V bc aleos Física para iencias e ngeniería APÍTUL 1.09-2 UT 1 1.09 2.1 arga de un condensador a ravés de una resisencia La figura muesra un condensador descargado de capacidad, en un circuio formado por una

Más detalles

Bloque IV. Ecuaciones Diferenciales de primer orden Tema 3 Aplicaciones de E. D. de primer orden Ejercicios resueltos

Bloque IV. Ecuaciones Diferenciales de primer orden Tema 3 Aplicaciones de E. D. de primer orden Ejercicios resueltos Bloque IV. Ecuaciones Diferenciales de primer orden Tema Aplicaciones de E. D. de primer orden Ejercicios resuelos IV.-1 Una solución de salmuera de sal fluye a razón consane de 6L/min. hacia el inerior

Más detalles

Tema 3. Circuitos capacitivos

Tema 3. Circuitos capacitivos Inroducción a la Teoría de ircuios Tema 3. ircuios capaciivos. Inroducción... 2. Inerrupores... 3. ondensadores... 2 3.. Asociación de capacidades.... 5 ondensadores en paralelo... 5 ondensadores en serie...

Más detalles

1-Características generales del movimiento

1-Características generales del movimiento 1-Caracerísicas generales del movimieno La pare de la física que se encarga de esudiar los movimienos de los cuerpos se llama Cinemáica. 1.1-Sisema de referencia, posición y rayecoria. Decimos que un cuerpo

Más detalles

10 cm longitud 30 m. Calcular: (a) la velocidad en el pie del plano inclinado si

10 cm longitud 30 m. Calcular: (a) la velocidad en el pie del plano inclinado si Las pesas de la figura ruedan sin deslizar y sin 6 cm rozamiento por un plano inclinado 30 y de 10 cm longitud 30 m. Calcular: (a) la velocidad en el pie del plano inclinado si 100 cm las pesas parten

Más detalles

CARGA Y DESCARGA DE UN CONDENSADOR

CARGA Y DESCARGA DE UN CONDENSADOR 1. Objeivos CARGA Y DESCARGA DE UN CONDENSADOR Esudiar los procesos de carga y de descarga de un condensador. Deerminar el iempo caracerísico, τ, del circuio. 2. Fundameno eórico Un condensador es un sisema

Más detalles

SISTEMAS DE PARTICULAS

SISTEMAS DE PARTICULAS SISTEMAS DE PARTICULAS Las masas m kg y m 6 kg están unidas por una barra rígida de masa despreciable. Estando inicialmente en reposo se hallan bao la acción de las fuerzas F 8i ˆ y F 6 ˆ. Hallar las coordenadas

Más detalles

EL CERTAMEN TIENE 5 PÁGINAS CON 20 PREGUNTAS EN TOTAL.

EL CERTAMEN TIENE 5 PÁGINAS CON 20 PREGUNTAS EN TOTAL. FÍSICA 1 CETAEN Nº 3 de Noviembre de 9 A. ATENO A. ATENO NOBE OL US - EL CETAEN TIENE 5 ÁGINAS CON EGUNTAS EN TOTAL. TIEO: 9 INUTOS SIN CALCULADOA SIN TELÉFONO CELULA SIN EODUCTO DE ÚSICA COECTA: 5 UNTOS

Más detalles

FÍSICA Y QUÍMICA 1º BACHILLERATO

FÍSICA Y QUÍMICA 1º BACHILLERATO FÍSICA Y QUÍMICA 1º BACHILLERATO BLOQUE I: MECÁNICA Unidad 1: Cinemáica 1. INTRODUCCIÓN (pp. 8-3) 1.1. Definición de movimieno. Relaividad del movimieno Un cuerpo esá en movimieno cuando cambia de posición

Más detalles

CIENCIA TECNOLOGÍA Y AMBIENTE

CIENCIA TECNOLOGÍA Y AMBIENTE CIENCIA TECNOLOGÍA Y AMBIENTE MOVIMIENTO RECTILÍNEO UNIFORMENTE VARIADO PROF: JAIME QUISPE CASAS I.E.P.Nº 874 Ex 45 03 MOVIMIENTO RECTILINEO UNIFORMEMENTE VARIADO La luz y el sonio en su propagación por

Más detalles

Prof. Jorge Rojo Carrascosa

Prof. Jorge Rojo Carrascosa Asignatura: FÍSICA Y QUÍMICA EJERCICIOS DE AMPLIACIÓN - SOLUCIONES Fecha finalización: Martes, 8 de marzo de 2011 Nombre y Apellidos JRC 1 Un submarino se encuentra a una profundidad de 400 metros. Cuál

Más detalles

FÍSICA. Centro Educativo de Nivel Secundario Nº 451 Anexo Universidad Tecnológica Nacional. Dirección de Capacitación No Docente.

FÍSICA. Centro Educativo de Nivel Secundario Nº 451 Anexo Universidad Tecnológica Nacional. Dirección de Capacitación No Docente. Cenro Educaivo de Nivel Secundario Nº 45 Anexo Universidad Tecnológica Nacional Dirección de Capaciación No Docene Dirección General de Culura y Educación Provincia de Buenos Aires FÍSICA Segundo Año Unidad

Más detalles

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR Física General Proyeco PMME - Curso 007 Insiuo de Física Faculad de Ineniería UdelaR TITULO AUTORES MAQUINA DE ATWOOD EPERIMENTAL Maximiliano Bellas, Erneso Pasarisa INTRODUCCIÓN Geore Awood (745-807),

Más detalles

Θ(estas fórmulas se usan cuando no se sabe el tiempo)

Θ(estas fórmulas se usan cuando no se sabe el tiempo) FORMULARIO DE FÍSIA INEMÁTIA M.R.U M.R.U.A. e = = 0 ± a e = 0 ± a MOIMIENTO DE AÍDA LIBRE = 0 ± a e Θ Moimieno acelerado g > 0 (posiia) Moimieno decelerado g < 0 (negaia) Θ(esas fórmulas se usan cuando

Más detalles

GUÍA DE MOVIMIENTO RECTILÍNEO UNIFORME

GUÍA DE MOVIMIENTO RECTILÍNEO UNIFORME INSTITUTO NACIONAL Deparameno de Física Coordinación Segundo Medio 06. GUÍA DE MOVIMIENTO RECTILÍNEO UNIFORME NOMBRE: CURSO: Caracerísica general de M.R.U: Si una parícula se mueve en la dirección del

Más detalles

MOVIMIENTO RECTILÍNEO

MOVIMIENTO RECTILÍNEO Transparencia Nº 1. CINEMÁTICA. MOVIMIENTO QUÉ ES EL MOVIMIENTO? Cambio de posición de un móvil con el iempo. TIPOS DE MOVIMIENTO Según su rayecoria Todo movimieno es RELATIVO Lo rápido del cambio lo indoca

Más detalles

1. Derivadas de funciones de una variable. Recta tangente.

1. Derivadas de funciones de una variable. Recta tangente. 1. Derivadas de funciones de una variable. Reca angene. Derivadas Vamos a ver en ese capíulo la generalización del concepo de derivada de funciones reales de una variable a funciones vecoriales con varias

Más detalles

Tema 2: Cinemática de la Partícula

Tema 2: Cinemática de la Partícula Física I-Grupo 3 (Curso 013/14) Tema : Cinemáica de la Parícula Grado en Ingeniería Diseño Indusrial y Des. Prod. Doble Gra. en Ing. Diseño Ind. y D.P e Ing. Mecánica Escuela Poliécnica Superior Universidad

Más detalles

Departamento de Ingeniería Hidráulica y M.A. de la U.P.V HIDROGRAMA UNITARIO

Departamento de Ingeniería Hidráulica y M.A. de la U.P.V HIDROGRAMA UNITARIO Deparameno de Ingeniería Hidráulica y M.A. de la U.P.V. 6 6.- HIDROGRAMA UNITARIO Deparameno de Ingeniería Hidráulica y M.A. de la U.P.V. 63 PROBLEMA RESUELTO 1 El HU de una cuenca para una lluvia de 1

Más detalles

Problemas. Laboratorio. Física moderna 09/11/07 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre:

Problemas. Laboratorio. Física moderna 09/11/07 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre: Física moderna 9/11/7 DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre: 1. Un muelle de constante k =, 1 3 N/m está apoyado en una superficie horizontal sin rozamiento. A 1, m hay un bucle vertical de

Más detalles

ESTUDIO DEL MOVIMIENTO: CINEMÁTICA

ESTUDIO DEL MOVIMIENTO: CINEMÁTICA ESTUDIO DEL MOVIMIENTO: CINEMÁTICA ALUMNO:... CURSO:... DEPARTAMENTO DE CIENCIAS I.E.S. LA JARCIA PUERTO REAL 1. Cuándo se muee un cuerpo? El ren que aparece en la figura adjuna, esá en reposo o en moimieno?

Más detalles

Física TEMA 6. 1º Bachillerato. Física. Física

Física TEMA 6. 1º Bachillerato. Física. Física 1 INTRODUCCIÓN AL MOVIMIENTO. CINEMATICA TEMA 6 1º Bachillerao.. ESQUEMA DE LA UNIDAD. 1. CARACTERISTICAS DEL MOVIMIENTO. 1.1 SISTEMAS DE REFERENCIA. 1. TRAYECTORIA. 1.3 MAGNITUDES ESCALARES Y VECTORIALES.

Más detalles

ASPECTOS AVANZADOS EN MECÁNICA DE FLUIDOS SOLUCIONES EXACTAS

ASPECTOS AVANZADOS EN MECÁNICA DE FLUIDOS SOLUCIONES EXACTAS Problema 1 Un fluido de propiedades constantes (densidad ρ, viscosidad µ, conductividad térmica k y calor específico c) se encuentra confinado entre dos paredes horizontales infinitas separadas una distancia

Más detalles

Solución: El sistema de referencia, la posición del cuerpo en cada instante respecto a dicha referencia, el tiempo empleado y la trayectoria seguida.

Solución: El sistema de referencia, la posición del cuerpo en cada instante respecto a dicha referencia, el tiempo empleado y la trayectoria seguida. 1 Qué es necesario señalar para describir correcamene el movimieno de un cuerpo? El sisema de referencia, la posición del cuerpo en cada insane respeco a dicha referencia, el iempo empleado y la rayecoria

Más detalles

CINEMÁTICA: MOVIMIENTO CIRCULAR, CONCEPTOS BÁSICOS Y GRÁFICAS

CINEMÁTICA: MOVIMIENTO CIRCULAR, CONCEPTOS BÁSICOS Y GRÁFICAS CINEMÁTICA: MOVIMIENTO CIRCULAR, CONCEPTOS BÁSICOS Y GRÁFICAS Un volante cuyo diámetro es de 3 m está girando a 120 r.p.m. Calcular: a) su frecuencia, b) el periodo, c) la velocidad angular, d) la velocidad

Más detalles

Experimento 3. Análisis del movimiento en una dimensión. Objetivos. Teoría

Experimento 3. Análisis del movimiento en una dimensión. Objetivos. Teoría Experimeno 3 Análisis del movimieno en una dimensión Objeivos. Esablecer la relación enre la posición y la velocidad de un cuerpo en movimieno 2. Definir la velocidad como el cambio de posición en un inervalo

Más detalles

ECUACIONES DE MOVIMIENTO

ECUACIONES DE MOVIMIENTO EUAIONES DE MOVIMIENTO (PRÁTIA : MOVIMIENTO EN DOS DIMENSIONES) Ing. Francisco Franco Web: hp://mgfranciscofranco.blogspo.com/ Fuene e información: Trabajo e grao e Mónica A. amacho D. Wilson H. Imbachi

Más detalles

Física 2º Bach. Tema: Ondas 27/11/09

Física 2º Bach. Tema: Ondas 27/11/09 Física º Bach. Tema: Ondas 7/11/09 DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre: Problemas [6 PUNTOS: 1 / APARTADO] 1. Una onda ransversal se propaga en el senido negaivo de las X con una velocidad de 5,00

Más detalles

GUÍA Nº 5 CARGA Y DESCARGA DE UN CONDENSADOR

GUÍA Nº 5 CARGA Y DESCARGA DE UN CONDENSADOR 1.- Inroducción GUÍA Nº 5 CARGA Y DESCARGA DE UN CONDENSADOR Un condensador es un disposiivo que permie almacenar cargas elécricas de forma análoga a como un esanque almacena agua. Exisen condensadores

Más detalles

F I S I C A LA GUIA SE ENTREGA PEGADA EN EL CUADERNO, CONTESTADA DIRECTAMENTE SOBRE LAS HOJAS IMPRESAS.

F I S I C A LA GUIA SE ENTREGA PEGADA EN EL CUADERNO, CONTESTADA DIRECTAMENTE SOBRE LAS HOJAS IMPRESAS. MC. Angélica slas Medina LA GUA SE ENTREGA PEGADA EN EL CUADERNO, CONTESTADA DRECTAMENTE SOBRE LAS HOJAS MPRESAS. RESUELVE LOS SGUENTES PROBLEMAS 1. Un muchacho parado encima de un edificio, suela una

Más detalles

UNIDAD 1: CINEMÁTICA Y DINÁMICA PROBLEMAS RESUELTOS

UNIDAD 1: CINEMÁTICA Y DINÁMICA PROBLEMAS RESUELTOS FÍSICA º BACHILLERATO ROBLEMAS RESUELTOS 1 ROBLEMAS RESUELTOS 1.- Un jugador de béisbol uiliza una maquina lanzadora para ayudarse a mejorar su promedio de baeo. Coloca la máquina de 50 kg sobre un esanque

Más detalles

Solución de Examen Final Física I

Solución de Examen Final Física I Solución de Examen Final Física I Temario A Departamento de Física Escuela de Ciencias Facultad de Ingeniería Universidad de San Carlos de Guatemala 28 de mayo de 2013 Un disco estacionario se encuentra

Más detalles

CONTENIDO CINEMÁTICA DE LA PARTÍCULA. Sistemas de coordenadas. Ecuación de la trayectoria. Vectores posición, velocidad y aceleración

CONTENIDO CINEMÁTICA DE LA PARTÍCULA. Sistemas de coordenadas. Ecuación de la trayectoria. Vectores posición, velocidad y aceleración CONTENIDO Sisemas de coordenadas Ecuación de la rayecoria Vecores posición, velocidad y aceleración Componenes inrínsecas de la aceleración Movimieno circular Sisemas de referencia Movimieno relaivo: ransformaciones

Más detalles

Universidad Autónoma del Estado de Morelos

Universidad Autónoma del Estado de Morelos Uniersidad Auónoma del Esado de Morelos Dinámica y cinemáica: dossier 2 Braulio Rojas Mayoral Agoso de 25 A coninuación se presenan dos conjunos de pregunas que siren de guía para erminar la lecura de

Más detalles

CINEMÁTICA Y DINÁMICA DE UNA PARTÍCULA

CINEMÁTICA Y DINÁMICA DE UNA PARTÍCULA Inroducción a la Física Experimenal Universidad de La Laguna CINEMÁTIC Y DINÁMIC DE UN PRTÍCUL Para la realización de esa prácica el alumno deberá venir al laboraorio proviso con hojas de papel milimerado

Más detalles

Sistemas lineales con ruido blanco

Sistemas lineales con ruido blanco Capíulo 3 Sisemas lineales con ruido blanco 3.1. Ruido Blanco En la prácica se encuenra procesos esocásicos escalares u con media cero y la propiedad de que w( 1 ) y w( 2 ) no esán correlacionados aún

Más detalles

Descenso del paracaidista en una atmósfera uniforme

Descenso del paracaidista en una atmósfera uniforme Descenso del paracaidista en una atmósfera uniforme Cuando un paracaidista se lanza desde el avión suponemos que su caída es libre, el peso es la única fuerza que actúa sobre él, la aceleración es constante,

Más detalles

La física de la chimenea solar

La física de la chimenea solar La física de la chimenea solar Víctor Romero Rochín Instituto de Física, Uniersidad Nacional Autónoma de México. Apartado Postal 20-364, 01000 México, D.F, Mexico. Electronic address: romero@fisica.unam.mx

Más detalles

CORRIENTE CONTINUA. r r

CORRIENTE CONTINUA. r r COENTE CONTNU Una corriene coninua no es más que un movimieno macroscópico neo de cargas en una dirección dada. Para enenderlo vamos a compararlo con un una peloa que cae por un obogán: Una vez que la

Más detalles

SISTEMAS DE REFERENCIA

SISTEMAS DE REFERENCIA CINEMÁTICA DE LA PARTÍCULA: SISTEMAS DE REFERENCIA 1.- Cinemática de la partícula 2.- Coordenadas intrínsecas y polares 3.- Algunos casos particulares de especial interés 1.- Cinemática de la partícula

Más detalles

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2014 Problemas (Dos puntos por problema).

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2014 Problemas (Dos puntos por problema). Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 014 Problemas (Dos puntos por problema). Problema 1 (Primer parcial): Un cuerpo de masa 10 g se desliza bajando por un plano inclinado

Más detalles

Depende, en consecuencia, de la velocidad inicial del móvil y del ángulo α de lanzamiento con la horizontal.

Depende, en consecuencia, de la velocidad inicial del móvil y del ángulo α de lanzamiento con la horizontal. IES Menéndez Tolosa (La Línea) Física Química - 1º Bach - Composición de moimientos 1 Indica, considerando constante el alor de la aceleración de la graedad, de qué factores depende el alcance máimo en

Más detalles

DERIVACIÓN BAJO EL SIGNO INTEGRAL. 1. Hallar el punto del intervalo [0,2] en el que la función =

DERIVACIÓN BAJO EL SIGNO INTEGRAL. 1. Hallar el punto del intervalo [0,2] en el que la función = DERIVACIÓN BAJO EL SIGNO INTEGRAL. Hallar el puno del inervalo [,] en el que la función F () d alcanza su valor mínimo. El mínimo de una función se alcanza en los punos donde su primera derivada es nula

Más detalles

IES La Magdalena. Avilés. Asturias DINÁMICA F= 2 N

IES La Magdalena. Avilés. Asturias DINÁMICA F= 2 N DIÁMICA IES La Magdalena. Ailés. Asturias La Dinámica es una parte de la Física que estudia las acciones que se ejercen sobre los cuerpos y la manera en que estas acciones influyen sobre el moimiento de

Más detalles

Capítulo 11A Movimiento Angular SAI JORGE

Capítulo 11A Movimiento Angular SAI JORGE Capíulo 11A Movimieno Angular SAI JOGE 01 Las TUBINAS DE VIENTO como ésas pueden generar energía significaiva en una forma que es ambienalmene amisosa y renovable. Los concepos de aceleración roacional,

Más detalles

MATEMATICAS I FUNCIONES ELEMENTALES. PROBLEMAS

MATEMATICAS I FUNCIONES ELEMENTALES. PROBLEMAS 1º) La facura del gas se calcula a parir de una canidad fija y de un canidad variable que se calcula según los m 3 consumidos (el precio de cada m 3 es consane). El impore de la facura de una familia,

Más detalles

Aislante. Coulomb voltio

Aislante. Coulomb voltio UTOS ELÉTOS ONDENSADOES Los condensadores, ambién denominados capaciares, son componenes elécricos que ienen la capacidad de almacenar energía elécrica en forma de campo elécrico, carga elécrica. Un condensador

Más detalles

MODELADO CON ECUACIONES DIFERENCIALES PROBLEMAS RESUELTOS

MODELADO CON ECUACIONES DIFERENCIALES PROBLEMAS RESUELTOS UNIVERSIDAD DE ORIENTE NÚCLEO DE BOLÍVAR UNIDAD DE ESTUDIOS BÁSICOS DEPARTAMENTO DE CIENCIAS ASIGNATURA: MATEMÁTICAS IV Prof. José Gregorio Páez Veraciera Úlima acualización: 0-09-007 MODELADO CON ECUACIONES

Más detalles

1. Respecto a las características del movimiento que experimenta un cuerpo en caída libre, es INCORRECTO afirmar que

1. Respecto a las características del movimiento que experimenta un cuerpo en caída libre, es INCORRECTO afirmar que Conenio Nº Guía práctica Moimientos erticales Ejercicios PSU 1. Respecto a las características del moimiento que experimenta un cuerpo en caída libre, es INCORRECTO afirmar que A) la elocidad del cuerpo

Más detalles

1. Calcular el momento de inercia de una. 7. Calcular el momento de inercia de un. cilindro macizo y homogéneo respecto de

1. Calcular el momento de inercia de una. 7. Calcular el momento de inercia de un. cilindro macizo y homogéneo respecto de 1. Calcular el momento de inercia de una lámina rectangular y plana de dimensiones a y b, cuando gira sobre un eje perpendicular a su base a y paralelo a b. 7. Calcular el momento de inercia de un cilindro

Más detalles

0,75R es decir 1592,5 km M R M R 320 0,185. 2G 320 M RJ 12RT v

0,75R es decir 1592,5 km M R M R 320 0,185. 2G 320 M RJ 12RT v Campo Graitatorio 0. Hasta qué altura sobre a superficie terrestre hay que subir para que la intensidad del campo graitatorio se reduzca en un 5%?. Hasta qué profundidad hay que descender para que ocurra

Más detalles

Instituto de Profesores Artigas. Segundo parcial Física 1 1º A 1º B 27 de octubre 2011

Instituto de Profesores Artigas. Segundo parcial Física 1 1º A 1º B 27 de octubre 2011 Instituto de Profesores rtigas Segundo parcial Física 1 1º 1º 7 de octubre 0 1. Dos meteoritos y chocan en el espacio. El meteorito tiene masa 1,5 10 1 Kg y el meteorito tiene masa, 10 1 Kg. ntes del impacto,

Más detalles

CAPITULO 2. Movimiento rectilíneo

CAPITULO 2. Movimiento rectilíneo CAPITULO Moimieno recilíneo DEFINICIÓN DE PARTÍCULA El Puno Maerial Es una idealización de los cueros que eisen en la nauraleza que llamamos uno maerial Es un cuero cuas dimensiones son desreciables al

Más detalles

B El campo se anula en un punto intermedio P. Para cualquier punto intermedio: INT 2 2

B El campo se anula en un punto intermedio P. Para cualquier punto intermedio: INT 2 2 01. Dos cargas puntuales de 3 y 1, están situadas en los puntos y ue distan 0 cm. a) ómo aría el campo entre los puntos y y representarlo gráficamente. b) Hay algún punto de la recta en el ue el campo

Más detalles

PROPIEDADES TORSIONALES PARA DIFERENTES SECCIONES DE ACERO

PROPIEDADES TORSIONALES PARA DIFERENTES SECCIONES DE ACERO Aneo A PROPIEDADES TORSIONALES PARA DIFERENTES SEIONES DE AERO Los ingenieros esrucurales ocasionalmene necesian deerminar cieras propiedades del acero que no se encuenran con acilidad en la lieraura.

Más detalles

Figura 1. Coordenadas de un punto

Figura 1. Coordenadas de un punto 1 Tema 1. Sección 1. Diagramas espacio-iempo. Manuel Guiérrez. Deparameno de Álgebra, Geomería y Topología. Universidad de Málaga. 2971-Málaga. Spain. Marzo de 21. En la mecánica es usual incluir en los

Más detalles

UNIDAD II Ecuaciones diferenciales con variables separables

UNIDAD II Ecuaciones diferenciales con variables separables UNIDAD II Ecuaciones diferenciales con variables separables UNIDAD ECUACIONES DIFERENCIALES CON VARIABLES SEPARABLES Ecuaciones diferenciales de primer orden y de primer grado. Una ecuación diferencial

Más detalles

o Describir la relación entre el centro de masa y el centro de gravedad o Aplicar las condiciones para el equilibrio mecánico

o Describir la relación entre el centro de masa y el centro de gravedad o Aplicar las condiciones para el equilibrio mecánico UNVERSDAD NACONAL AUTO\OMA DE HONDURAS CE{TRO UNVERSTARO DE ESTUDOS GENERALES DEPARTAMENTO DE F'SCA LABORATOROS REALES - FSCA MEDCA NOMBRE: CENTRO DE MASA Y EQULBRO ROTACONAL OBJETVOS: Definir Cenro de

Más detalles

60t t 2,25s 0S(t 1) g(t 1) 5t 60t 55 2

60t t 2,25s 0S(t 1) g(t 1) 5t 60t 55 2 0. Una partícula (4 unidades de masa) choca con un núcleo de carbono ( u) que está en reposo, y se desía 4 hacia la derecha respecto de la trayectoria original. El núcleo de carbono se muee siguiendo una

Más detalles

dy v 4 cos 100 t 20 x v a 400 sen 100 t 20 x amax dt

dy v 4 cos 100 t 20 x v a 400 sen 100 t 20 x amax dt Moimientos periódicos 01. Una onda transersal se propaga a lo largo de una cuerda horizontal, en el sentido negatio del eje de abscisas, siendo 10 cm la distancia mínima entre dos puntos que oscilan en

Más detalles

Capítulo 10. Rotación de un Cuerpo Rígido

Capítulo 10. Rotación de un Cuerpo Rígido Capítulo 10 Rotación de un Cuerpo Rígido Contenido Velocidad angular y aceleración angular Cinemática rotacional Relaciones angulares y lineales Energía rotacional Cálculo de los momentos de inercia Teorema

Más detalles

d 0,42 0,42cos 1,26 10 m

d 0,42 0,42cos 1,26 10 m 0. Una partícula con carga y masa m penetra con una elocidad en una zona donde hay un campo magnético uniforme. Calcular: a) la fuerza ue actúa sobre la partícula y el trabajo efectuado por dicha fuerza.

Más detalles

8 Introducción al estudio del movimiento

8 Introducción al estudio del movimiento Inroducción al esudio del movimieno - 8 Inroducción al esudio del movimieno. Observa, algo se mueve Sisema de referencia SR Los sisemas de referencia se emplean para describir la posición y el movimieno

Más detalles

Método desarrollado en el año de 1889, pero por su sencillez todavía se sigue utilizando.

Método desarrollado en el año de 1889, pero por su sencillez todavía se sigue utilizando. 1 3.2.1.1. Fórmula racional Méodo desarrollado en el año de 1889, pero por su sencillez odavía se sigue uilizando. Hipóesis fundamenal: una lluvia consane y uniforme que cae sobre la cuenca de esudio,

Más detalles

TIPO DE GUIA: NIVELACION PERIODO GRADO FECHA DURACION 2 10º Julio 19 de 2012 módulos INDICADORES DE DESEMPEÑO

TIPO DE GUIA: NIVELACION PERIODO GRADO FECHA DURACION 2 10º Julio 19 de 2012 módulos INDICADORES DE DESEMPEÑO INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : CIENCIA NATURALES ASIGNATURA: FISICA DOCENTE: HUGO HERNAN BEDOYA TIPO DE GUIA: NIVELACION PERIODO GRADO FECHA DURACION 10º Julio 19 de 01 módulos

Más detalles

Solución: a) Módulo: en cualquier instante, el módulo del vector de posición es igual al radio de la trayectoria: r

Solución: a) Módulo: en cualquier instante, el módulo del vector de posición es igual al radio de la trayectoria: r IES Menéndez Tolosa (La Línea) Física y Química - º Bach - Movimientos Calcula la velocidad de un móvil a partir de la siguiente gráfica: El móvil tiene un movimiento uniforme. Pasa de la posición x 4

Más detalles

V B. g (1) V B ) g, (2) +ρ B. =( m H. m H (3) ρ 1. ρ B. Aplicando al aire la ecuación de estado de los gases perfectos, en la forma.

V B. g (1) V B ) g, (2) +ρ B. =( m H. m H (3) ρ 1. ρ B. Aplicando al aire la ecuación de estado de los gases perfectos, en la forma. Un globo de aire caliente de volumen =, m 3 está abierto por su parte inferior. La masa de la envoltura es =,87 kg y el volumen de la misma se considera despreciable. La temperatura inicial del aire es

Más detalles

Prácticas de Tecnología de Fluidos y Calor (Departamento de Física Aplicada I - E.U.P. Universidad de Sevilla)

Prácticas de Tecnología de Fluidos y Calor (Departamento de Física Aplicada I - E.U.P. Universidad de Sevilla) TERMOGENERADOR DE SEMICONDUCTORES. Objeivos Poner de manifieso el efeco Seebeck. Deerminar el coeficiene Seebeck, α, la f.e.m, la resisencia inerna, r, y el rendimieno, η, del ermogenerador (o ermopila).

Más detalles

Velocidad de descarga

Velocidad de descarga Velocidad de descarga Dr. Guillermo Becerra Córdoa Uniersidad utónoma Chapingo Dpto. de Preparatoria grícola Área de Física Profesor-Inestigador 59595500 ext. 539 E-mail: gllrmbecerra@yahoo.com Km. 38.5

Más detalles

Circuitos para observar la descarga y carga de un capacitor.

Circuitos para observar la descarga y carga de un capacitor. IUITO Objeivo Enconrar el comporamieno de la diferencia de poencial en función del iempo, (), enre los exremos de un capacior cuando en un circuio se carga y cuando se descarga el capacior. INTODUION onsidere

Más detalles

2 El movimiento y su descripción

2 El movimiento y su descripción El movimieno y su descripción EJERCICIOS PROPUESTOS. Una malea descansa sobre la cina ransporadora de un aeropuero. Describe cómo ve su movimieno un pasajero que esá: parado en la misma cina; en una cina

Más detalles

Ejercicios de Física. Dinámica. J. C. Moreno Marín y S. Heredia Avalos, DFISTS Escuela Politécnica Superior Universidad de Alicante

Ejercicios de Física. Dinámica. J. C. Moreno Marín y S. Heredia Avalos, DFISTS Escuela Politécnica Superior Universidad de Alicante Ejercicios de Física Dinámica, . Un bloque de 5 kg está sostenido por una cuerda y se tira de él hacia arriba con una aceleración de m/ s. a) Cuál es la tensión de la cuerda? b) Una vez que el bloque se

Más detalles

Modelado de Sistemas Dinámicos

Modelado de Sistemas Dinámicos A Modelado de Sisemas Dinámicos Ese ema esá dedicado al modelado de sisemas dinámicos. Eso es, a la obención de un conjuno de ecuaciones maemáicas que describen el comporamieno de un sisema físico. No

Más detalles

CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen

CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CINEMÁTICA CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CONCEPTO DE MOVIMIENTO: el movimiento es el cambio de posición, de un cuerpo, con el tiempo (este

Más detalles

a) Aplicamos la definición de velocidad e integramos para obtener la distancia al origen (x) en función del tiempo: dt t t t t +

a) Aplicamos la definición de velocidad e integramos para obtener la distancia al origen (x) en función del tiempo: dt t t t t + undamenos ísicos de la ngeniería Eamen inal / 11 julio 5 1. La velocidad de un veículo quianieves es inversamene proporcional al iempo ranscurrido desde que comenzó a nevar. Transcurrido un ciero iempo,,

Más detalles

Trabajo Práctico 1 Cinemática: el estudio del movimiento

Trabajo Práctico 1 Cinemática: el estudio del movimiento Trabajo Prácico 1 Cinemáica: el esudio del movimieno 1. Cómo e das cuena que un cuerpo esá en movimieno? Qué significa decir que el movimieno es relaivo? 2. Qué diferencia hay enre la rapidez y la velocidad?

Más detalles

Soluciones unidad 10: Tipos de movimientos 1CI 1

Soluciones unidad 10: Tipos de movimientos 1CI 1 Soluciones unidad 1: Tipos de moimientos 1CI 1 SOLUCIONES UNIDAD 1. TIPOS DE MOVIMIENTOS QUÉ SABES DE ESTO? 1. Comenta las siguientes afirmaciones: a) En general, la distancia recorrida por un móil es

Más detalles

Las señales pueden ser también, señales continuas o señales alternas.

Las señales pueden ser también, señales continuas o señales alternas. INSIUO ÉCNICO SLESINO LORENZO MSS ema 1: CONCEPOS PRELIMINRES LLER DE MEDICIONES Conenido: Concepo de señal elécrica. Valores caracerísicos de las señales elécricas: Frecuencia (período, Fase, Valor de

Más detalles

1. FLUIDOS (1 punto) Enuncie la ecuación de Bernoulli y describa cada uno de los términos.

1. FLUIDOS (1 punto) Enuncie la ecuación de Bernoulli y describa cada uno de los términos. Física Forestales. Examen A. 7-0-0 Instrucciones. La parte de teoría se contestará en primer lugar utilizando la hoja de color, sin consultar libros ni apuntes, durante el tiempo que el estudiante considere

Más detalles

Universidad de Atacama. Física 1. Dr. David Jones. 14 Mayo 2014

Universidad de Atacama. Física 1. Dr. David Jones. 14 Mayo 2014 Universidad de Atacama Física 1 Dr. David Jones 14 Mayo 2014 Fuerzas de arrastre Cuando un objeto se mueve a través de un fluido, tal como el aire o el agua, el fluido ejerce una fuerza de resistencia

Más detalles