PRÁCTICA 7. b) Elabore un archivo de Excel que calcule la cantidad que va a producir esta empresa (no es obligatorio).

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PRÁCTICA 7. b) Elabore un archivo de Excel que calcule la cantidad que va a producir esta empresa (no es obligatorio)."

Transcripción

1 1.- Suponga una empesa que actúa como competitiva a pesa de que es la única empesa del secto. A coto plazo, tiene la siguiente función de costes totales (donde epesenta la cantidad de bien): 56 a) Si la demanda del secto viene dada po P =, detemine la cantidad de bien que poduciía la empesa el beneficio que alcanzaía. Ha que iguala la demanda con la ofeta que viene dada po los costes maginales: 6 67 Paa sabe el pecio ha que inseta la cantidad poducida bien en la cuva de ofeta o en la demanda. De este modo se obtiene que el pecio es de 13. El coste vaiable medio de poduci 7 ud. es 76 63,59,5. Po tanto, a la empesa le inteesa poduci dado que el pecio es mao que CVMe. Πp CT , CTMe CVMe CMg D b) Elaboe un achivo de Excel que calcule la cantidad que va a poduci esta empesa (no es obligatoio). Micoeconomía Intemedia. Cuso 11/1 Facultad de Deecho Ciencias Sociales de Ciudad Real (UCLM)

2 .- La función de poducción de hieba en una hectáea (medida en kilogamos) viene dada po la siguiente expesión: = x, x donde x es la cantidad de nitógeno medida en kilogamos. a) Calcule el óptimo físico de la función (el punto donde la función de poducción toma su máximo valo). Realice el gáfico de la función de poducción en Excel. El óptimo físico es la cantidad máxima de hieba que se puede poduci. Paa conoce este punto ha que deiva la función especto de x e iguala a ceo. d = 36,4 x = 36 =,4 x x = 9 dx (9) = , 9 = 5 El óptimo físico son,5 kilogamos de hieba x b) Calcule la cantidad demandada del input nitógeno (cantidad que maximiza los beneficios) si el pecio de la hieba es 3 /tm el del nitógeno,3 /Kg. Paa calcula la cantidad demandada ha que esolve el siguiente pogama de maximización: maxπ,3,3 maxπ,3 936,,3 Paa ello ha que calcula la pimea deivada de los beneficios especto a x e iguala a ceo. Π 36,3,4,3,365 Po tanto, la cantidad demandada de nitógeno seá de 65 kg. Micoeconomía Intemedia. Cuso 11/1 Facultad de Deecho Ciencias Sociales de Ciudad Real (UCLM)

3 c) Calcule el nivel de beneficios máximo que puede obtene esta empesa. Realice el gáfico que contenga la función isobeneficio del máximo nivel de beneficios dos más funciones isobeneficio (po ej. Π=35 Π=7 u.m.). El máximo nivel de beneficios se obtiene calculando los beneficios que se obtienen con la cantidad de nitógeno que maximiza los beneficios, es deci Π, , 65,3 655, Π1 Π Π* x d) Calcule la cantidad demandada del input nitógeno, el nivel de beneficios si el pecio de la hieba es 35 /tm el del nitógeno,3 /Kg. Realice el gáfico de la función de poducción las funciones isobeneficios Π=35 Π=7 u.m. paa el beneficio máximo. Paa calcula la cantidad demandada ha que esolve el siguiente pogama de maximización: max maxπ,35,3 Π,35 936,,3 Paa ello ha que calcula la pimea deivada de los beneficios especto a x e iguala a ceo. Π x 36,35,4 x,35,3x68,57 Po tanto, la cantidad demandada de nitógeno seá de 68,57 kg. Es deci si aumenta el pecio del output aumenta la cantidad demandada de input. El beneficio que se obtiene es 64,41 que es mao que con el pecio de la hieba de 3 /tm. Micoeconomía Intemedia. Cuso 11/1 Facultad de Deecho Ciencias Sociales de Ciudad Real (UCLM)

4 Π1 Π Π* x e) Calcule la cantidad demandada del input nitógeno, el nivel de beneficios si el pecio de la hieba es 3 /tm el del nitógeno,15 /Kg. Realice el gáfico de la función de poducción las funciones isobeneficios Π=35 Π=7 u.m. paa el beneficio máximo. Paa calcula la cantidad demandada ha que esolve el siguiente pogama de maximización: maxπ,3,15 maxπ,3 936,,15 Paa ello ha que calcula la pimea deivada de los beneficios especto a x e iguala a ceo. Π x 36,3,4 x,3,15x77,5 Po tanto, la cantidad demandada de nitógeno seá de 77,5 kg. Es deci si disminue el pecio del input aumenta la cantidad demandada de input. El beneficio que se obtiene es 63,3 que es mao que con el pecio del nitógeno de,3 /kg Π1 Π Π* x f) Elaboe un achivo de Excel paa este ejecicio. Micoeconomía Intemedia. Cuso 11/1 Facultad de Deecho Ciencias Sociales de Ciudad Real (UCLM)

5 3.- La función de poducción de una empesa es: = K L a) Calcula las demandas odinaias de factoes. Analiza el cecimiento de la demanda odinaia del tabajo especto el pecio del poducto el pecio de los factoes poductivos. Paa obtene la demanda odinaia ha que esolve el siguiente pogama de maximización de beneficios. Paa ello ha que esolve el sistema fomado po las dos CPO: Π = p K Π CPO : Π = p K = p K K w,75 p K = = p p w = p L =,65 1 w Micoeconomía Intemedia. Cuso 11/1 Facultad de Deecho Ciencias Sociales de Ciudad Real (UCLM) 3 p K = 1 3 = w p p,65 1 3,75 w p K = K =, w Paa analiza el cecimiento de una función ha que conoce el signo de la pimea deivada, si es positiva es ceciente si el valo de la pimea negativa es dececiente.,65 p,65,65 1,5 w,65 p,65 1,5,65 w Vemos que las demandas odinaias dependen positivamente del pecio del output negativamente de los pecios de los factoes poductivos al se la pimea deivada b) Calcula la ofeta de la empesa. Analiza el cecimiento de esta función especto el pecio del poducto el pecio de los factoes poductivos. Paa calcula la función de ofeta de la empesa ha que inseta las demandas odinaias en la función de poducción. De esta foma se obtiene la elación que ha ente la cantidad que va a poduci una empesa el pecio del poducto los pecios de los factoes poductivos.,65,,65,.5,, 4 3

6 Dado que el pecio está en el numeado la pimea deivada de la cantidad poducida especto al pecio es positiva, po tanto si aumenta el pecio aumentaá la cantidad poducida. Po el contaio, las pimeas deivadas de la cantidad poducida especto al pecio de los factoes poductivos son negativas, po tanto si aumenta el pecio de uno de los factoes poductivos disminuiá la cantidad poducida. c) Calcula las demandas compensadas de factoes. Analiza el cecimiento de la demanda compensada del tabajo especto a la cantidad del poducto el pecio de los factoes poductivos. Paa calcula las demandas compensadas de factoes ha que esolve el sistema de ecuaciones que foma las tes condiciones de pime oden paa minimiza el lagangiano coespondiente a minimiza los costes sujeto a poduci un deteminado nivel de output con la función de poducción de la empesa. min K + w s.a. K K = K = K l = K + w - λ ( - K ) l CPO : = + λ K l = w + λ K l = = K λ K = w w w = w = = w w = K = = λ = K w λ = K L = w K w = K Vemos que las demandas condicionadas dependen positivamente del output del pecio del oto facto negativamente del pecio del popio facto. Así mismo son homogéneas de gado en el pecio de los factoes poductivos. d) Calcula la función de costes (totales). Analiza el cecimiento de esta función especto a la cantidad del poducto el pecio de los factoes poductivos. La función de costes se obtiene insetando las demandas condicionadas en los costes: C = K + w w C = C = w + w w = Vemos que la función de costes es homogénea de gado 1 en pecios de los factoes que depende positivamente del output de los pecios de los factoes poductivos. Micoeconomía Intemedia. Cuso 11/1 Facultad de Deecho Ciencias Sociales de Ciudad Real (UCLM)

7 e) Calcula la función de costes medios. Analiza el cecimiento de esta función especto a la cantidad de poducto. Los costes medios se obtienen dividiendo la función de costes po el nivel de poducción: w CMe = = w Paa sabe si el coste medio es ceciente ha que sabe el signo de la pimea deivada del coste medio especto al nivel de poducción. CMe = w > Po tanto el coste medio es ceciente. f) Utilice un softwae matemático paa esolve los apatados anteioes (no es obligatoio). En Mathematica Remove["Global`*"] Remove["Global`*"] output=a*k^alfa*l^beta a=1 alfa=.5 beta=.5 pi=p*output-w*l-*k CPOP1=D1=D[pi,k] CPOP=D1=D[pi,l] dod=solve[{cpop1==,cpop==},{k,l}] dodlab=l/.dod dodcap=k/.dod Ddodlabp=D[dodlab,p] Ddodlab=D[dodlab,] Ddodlabw=D[dodlab,w] Ddodcapp=D[dodcap,p] Ddodcap=D[dodcap,] Ddodcapw=D[dodcap,w] ofeta=a*(l/.dod)^alfa*(k/.dod)^beta L=*k+w*l-lambda*(output-) D1=D[L,k] D=D[L,l] D3=D[L,lambda] dcon=solve[{d1==,d==,d3==},{k,l,lambda}] dconlab=l/.dcon dconcap=k/.dcon Micoeconomía Intemedia. Cuso 11/1 Facultad de Deecho Ciencias Sociales de Ciudad Real (UCLM)

8 Cost=*dconcap+w*dconlab CMe=Cost/ DCMe=D[CMe,] Micoeconomía Intemedia. Cuso 11/1 Facultad de Deecho Ciencias Sociales de Ciudad Real (UCLM)

13.1 Estática comparativa en el modelo IS-LM con pleno empleo

13.1 Estática comparativa en el modelo IS-LM con pleno empleo Capítulo 3 Modelo de ofeta y demanda agegada de pleno empleo. a síntesis neoclásica El modelo IS-M completo es el modelo de la síntesis neoclásica con pecios flexibles y, po lo tanto, con pleno empleo.

Más detalles

PROBLEMAS DE OPTIMIZACIÓN DE FUNCIONES

PROBLEMAS DE OPTIMIZACIÓN DE FUNCIONES PROBLEMAS DE OPTIMIZACIÓN DE FUNCIONES.- Halla dos númeos que sumados den cuo poducto sea máimo. Sean e los númeos buscados. El poblema a esolve es el siguiente: máimo Llamamos p al poducto de los dos

Más detalles

. Esta segunda función es posible que no pueda explicitarse: no pueda encontrarse la fórmula y f (x)

. Esta segunda función es posible que no pueda explicitarse: no pueda encontrarse la fórmula y f (x) 1 FUNCIONES DE DOS VARIABLES DERIVACIÓN IMPLÍCITA (Tangente a una cuva de nivel); FUNCIONES HOMOGÉNEAS Deivación implícita ecta tangente a una cuva de nivel Si (a, b) es un punto que cumple la ecuación

Más detalles

Apuntes de Electrostática Prof. J. Martín ETSEIT ELECTROESTÁTICA I CAMPO ELECTRICO EN EL ESPACIO LIBRE

Apuntes de Electrostática Prof. J. Martín ETSEIT ELECTROESTÁTICA I CAMPO ELECTRICO EN EL ESPACIO LIBRE LCTROSTÁTICA I CAMPO LCTRICO N L SPACIO LIBR. Le de Coulomb. Cagas puntuales 3. Distibuciones de caga 4. Campo eléctico 5. cuaciones de campo 6. Le de Gauss 7. Potencial eléctico 8. negía potencial 9.

Más detalles

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO Facultad de iencias uso - SOLUIOS ROLMAS FÍSIA. TMA : AMO LÉTRIO. n los puntos (; ) y (-; ) de un sistema de coodenadas donde las distancias se miden en cm, se sitúan dos cagas puntuales de valoes, y -,

Más detalles

IES Fco Ayala de Granada Junio de 2014 (Modelo 1) Soluciones Germán-Jesús Rubio Luna. Opción A. Ejercicio 2 opción A, modelo_1 Junio 2014

IES Fco Ayala de Granada Junio de 2014 (Modelo 1) Soluciones Germán-Jesús Rubio Luna. Opción A. Ejercicio 2 opción A, modelo_1 Junio 2014 IES Fco Ayala de Ganada Junio de 014 (Modelo 1) Soluciones Gemán-Jesús Rubio Luna Opción A Ejecicio 1 opción A, modelo_1 Junio 014 Sea f : R R definida po f(x) x + ax + bx + c. [1 7 puntos] Halla a, b

Más detalles

CAPITULO 6 EQUILIBRIO EN EL MERCADO DE BIENES Y SERVICIOS Y EL MERCADO MONETARIO MODELO IS - LM

CAPITULO 6 EQUILIBRIO EN EL MERCADO DE BIENES Y SERVICIOS Y EL MERCADO MONETARIO MODELO IS - LM Documento elaboado po Jaime Aguila Moeno Docente áea económica Univesidad del Valle Sede Buga CAPITULO 6 EQUILIBRIO EN EL MERCADO DE BIENES Y SERVICIOS Y EL MERCADO MONETARIO MODELO IS - LM OBJETIVO DEL

Más detalles

RECTAS EN EL PLANO. r datos, podemos dar la ecuación de dicha recta de varias P o Ecuación vectorial

RECTAS EN EL PLANO. r datos, podemos dar la ecuación de dicha recta de varias P o Ecuación vectorial RECTAS EN EL PLANO Ecuación de la ecta La ecuación de una ecta puede dase de difeentes fomas, que veemos a continuación. Conocidos un punto P(p 1, p ) y un vecto de diección d = (d 1, d ) (o sea, un vecto

Más detalles

GEOMETRÍA. 1. Sin resolver el sistema, determina si la recta 2x 3y + 1 = 0 es exterior, secante ó tangente a la circunferencia

GEOMETRÍA. 1. Sin resolver el sistema, determina si la recta 2x 3y + 1 = 0 es exterior, secante ó tangente a la circunferencia Puebas de Acceso a la Univesidad GEOMETRÍA Junio 94.. Sin esolve el sistema detemina si la ecta x y + = 0 es exteio secante ó tangente a la cicunfeencia (x ) + (y ) =. Razónalo. [5 puntos]. Dadas las ecuaciones

Más detalles

( ) y ( ) = CAMPOS: OPERADOR NABLA ( ) ( )

( ) y ( ) = CAMPOS: OPERADOR NABLA ( ) ( ) CAMPOS: OPERADOR NABLA Repesenta los campos vectoiales A i + j, B i j. Halla la divegencia el otacional de cada uno de ellos eplica el significado físico de los esultados obtenidos. Solución: I.T.I., 3,

Más detalles

9. NÚMEROS COMPLEJOS EN FORMA POLAR

9. NÚMEROS COMPLEJOS EN FORMA POLAR Númeos Complejos en Foma Pola 9. NÚMEROS COMPLEJOS EN FORMA POLAR Recodemos que en la Unidad vimos que a un númeo complejo podemos expesalo en foma inómica z = a + i donde a, son númeos eales, que se epesenta

Más detalles

9. NÚMEROS COMPLEJOS EN FORMA POLAR

9. NÚMEROS COMPLEJOS EN FORMA POLAR 9. NÚMEROS COMPLEJOS EN FORMA POLAR Recodemos que en la Unidad vimos que a un númeo complejo podemos expesalo en foma inómica z = a + i donde a, son númeos eales, que se epesenta gáficamente mediante un

Más detalles

TRIGONOMETRÍA FUNCIONES DE MÁS DE 90 GRADOS página 1

TRIGONOMETRÍA FUNCIONES DE MÁS DE 90 GRADOS página 1 TRIGONOMETRÍA FUNCIONES DE MÁS DE 90 GRADOS página 1 página 2 SEGUNDO BIMESTRE 1 FUNCIONES DE MAS DE 90 GRADOS 1.1 CONCEPTOS Y DEFINICIONES Los valoes de las funciones tigonométicas solamente eisten paa

Más detalles

El modelo ahorro-inversión Función de consumo: Función de inversión:

El modelo ahorro-inversión Función de consumo: Función de inversión: Capítulo 4 El lago plazo: el modelo ahoo-invesión con pleno empleo En este capítulo se estudia el equilibio ingeso-gasto en el modelo clásico de pecios flexibles y el equilibio ahoo-invesión. Asimismo,

Más detalles

FÍSICA I TEMA 0: INTRODUCCIÓN

FÍSICA I TEMA 0: INTRODUCCIÓN FÍSICA I TEMA 0: INTRODUCCIÓN 1. Expesa en los sistemas cegesimal, intenacional y técnico el peso y la masa de un cuepo de 80 Kg. de masa. CEGESIMAL Centímeto, gamo y segundo. 80 Kg 80 Kg * 1000 g /Kg

Más detalles

Matemáticas II Hoja 6: Puntos, rectas y planos en el espacio

Matemáticas II Hoja 6: Puntos, rectas y planos en el espacio Pofeso: Miguel Ángel Baeza Alba (º Bachilleato) Matemáticas II Hoja 6: Puntos, ectas y planos en el espacio Ejecicio : a) Halla el punto de cote ente el plano 6x y + z y la ecta que pasa po el punto P

Más detalles

Alquiler o Hipoteca?: Un Modelo Simple de Tenencia de Vivienda. Marisol Rodríguez Chatruc UdeSA

Alquiler o Hipoteca?: Un Modelo Simple de Tenencia de Vivienda. Marisol Rodríguez Chatruc UdeSA Alquile o Hipoteca?: Un Modelo Simple de Tenencia de Vivienda Una aplicación del método de pogamación dinámica a vaiable dicotómica Maisol Rodíguez Chatuc UdeSA 4 CNEPE - 28 y 29 de mayo de 2009 Motivación

Más detalles

Problemas aritméticos

Problemas aritméticos 3 Poblemas aitméticos Antes de empeza Objetivos En esta quincena apendeás a: Recoda y pofundiza sobe popocionalidad diecta e invesa, popocionalidad compuesta y epatos popocionales. Recoda y pofundiza sobe

Más detalles

VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES

VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES DEFINICIÓN Un vecto es un segmento oientado. Un vecto AB queda deteminado po dos puntos, oigen A y extemo B. Elementos de un vecto: Módulo de un vecto es la

Más detalles

Capitulo III. Capítulo III

Capitulo III. Capítulo III Cinemática y Dinámica de Máquinas. III. Métodos analíti de análisis cinemático Capitulo III Métodos analíti de análisis cinemático. 1 R Sancibián y. de Juan. Ing. Mecánica Cinemática y Dinámica de Máquinas.

Más detalles

www.fisicaeingenieria.es Vectores y campos

www.fisicaeingenieria.es Vectores y campos www.fisicaeingenieia.es Vectoes y campos www.fisicaeingenieia.es www.fisicaeingenieia.es ) Dados los vectoes a = 4$ i + 3$ j + k$ y c = $ i + $ j 7k$, enconta las componente de oto vecto unitaio, paa que

Más detalles

A continuación obligamos, aplicando el producto escalar, a que los vectores:

A continuación obligamos, aplicando el producto escalar, a que los vectores: G1.- Se sabe que el tiángulo ABC es ectángulo en el vétice C, que petenece a la ecta intesección de los planos y + z = 1 e y 3z + 3 = 0, y que sus otos dos vétices son A( 2, 0, 1 ) y B ( 0, -3, 0 ). Halla

Más detalles

VII.- EQUILIBRIO DE LAS TRANSFORMACIONES REALES pfernandezdiez.es

VII.- EQUILIBRIO DE LAS TRANSFORMACIONES REALES pfernandezdiez.es VII.- EQUILIBRIO DE LAS RANSFORMACIONES REALES VII..- SISEMAS ERMODINÁMICOS La masa de los sistemas que evolucionan puede veni en moles, kg, etc., y po eso indicamos los potenciales temodinámicos con mayúsculas.

Más detalles

ÁLGEBRA LINEAL I LISTA DE EJERCICIOS 3. Página para el curso:

ÁLGEBRA LINEAL I LISTA DE EJERCICIOS 3. Página para el curso: ÁLGEBRA LINEAL I LISTA DE EJERCICIOS 3 DANIEL LABARDINI FRAGOSO DANIEL BALAM CRUZ HUITRÓN Página paa el cuso: www.matem.unam.mx/labadini/teaching.html A lo lago de los siguientes ejecicios, seá un campo.

Más detalles

PAUTA CONTROL 3 CÁLCULO EN VARIAS VARIABLES, 2014/1

PAUTA CONTROL 3 CÁLCULO EN VARIAS VARIABLES, 2014/1 PAUTA CONTROL CÁLCULO EN VARIAS VARIABLES, 14/1 (1) (a) Demueste que el máximo de la función x y z sobe la esfea x + y + z = a es (a /) y que el mínimo de la función x + y + z sobe la supeficie x y z =

Más detalles

. Desarrollando esta ecuación vectorial, obtenemos: a = 3. : a = 2, b =, c = 0, y para w : a = 0, b =, c = -2.

. Desarrollando esta ecuación vectorial, obtenemos: a = 3. : a = 2, b =, c = 0, y para w : a = 0, b =, c = -2. 1 Sean los vectoes: v 1 ( 1, 1, 1) v (,, ) y v (, 1, ) Compueba que foman una base de V. Halla las coodenadas especto de dicha base de los vectoes u ( 1,, ) y w ( 1,, 1). Paa ve si son linealmente independientes

Más detalles

Nosotros supondremos que la demanda de inversión es lineal y que depende negativamente del tipo de interés: gr donde g > 0

Nosotros supondremos que la demanda de inversión es lineal y que depende negativamente del tipo de interés: gr donde g > 0 TEMA 4: MODELO DE DETERMINACIÓN DE LA RENTA NACIONAL: EL SECTOR MONETARIO En el modelo de deteminación de la enta nacional desaollado hasta ahoa no hemos hablado de la cantidad de dineo ni de los tipos

Más detalles

Aplicación 2: Diversificación de las inversiones (problema de selección de cartera)

Aplicación 2: Diversificación de las inversiones (problema de selección de cartera) Aplicación : Divesificación de las invesiones (poblema de selección de catea) Hecho empíico: Cuanto mayo es el valo espeado (endimiento) de una invesión NO es cieto que sea más apetecible. (Si invesoes

Más detalles

200. Hallar la ecuación de la simetría ortogonal respecto de la recta:

200. Hallar la ecuación de la simetría ortogonal respecto de la recta: Hoja de Poblemas Geometía IX 200 Halla la ecuación de la simetía otogonal especto de la ecta: SOLUCIÓN n( x a) Sean: - S la simetía otogonal especto de la ecta n ( x a) - P un punto cualquiea cuyo vecto

Más detalles

IMPOSICIÓN Y EQUIVALENCIA RICARDIANA EN UNA ECONOMÍA DE DOS PERIODOS

IMPOSICIÓN Y EQUIVALENCIA RICARDIANA EN UNA ECONOMÍA DE DOS PERIODOS IMPOSICIÓN Y EQUIVALENCIA RICARDIANA EN UNA ECONOMÍA DE DOS PERIODOS Sea el siguiente poblema de un hoga epesentativo en una economía de dos peiodos, en la que los hogaes son gavados con impuestos de suma

Más detalles

PROBLEMAS DE ELECTROESTÁTICA

PROBLEMAS DE ELECTROESTÁTICA PBLMAS D LCTSTÁTICA I CAMP LCTIC N L VACI. Cagas puntuales. Cagas lineales. Cagas supeficiales 4. Flujo le de Gauss 5. Distibuciones cúbicas de caga 6. Tabajo enegía electostática 7. Poblemas Pof. J. Matín

Más detalles

Introducción al cálculo vectorial

Introducción al cálculo vectorial GRADUADO EN INGENIERÍA Y CIENCIA AGRONÓMICA GRADUADO EN INGENIERIA ALIMENTARIA GRADUADO EN INGENIERÍA AGROAMBIENTAL Intoducción al cálculo vectoial Magnitudes escalaes y vectoiales Tipos de vectoes Opeaciones

Más detalles

[b] La ecuación de la velocidad se obtiene al derivar la elongación con respecto al tiempo: v(t) = dx

[b] La ecuación de la velocidad se obtiene al derivar la elongación con respecto al tiempo: v(t) = dx Nombe y apellidos: Puntuación:. Las gáficas del oscilado amónico En la figua se muesta al gáfica elongacióntiempo de una patícula de,5 kg de masa que ealiza una oscilación amónica alededo del oigen de

Más detalles

PROBLEMAS DE ELECTROMAGNETISMO

PROBLEMAS DE ELECTROMAGNETISMO º de Bachilleato. Electomagnetismo POBLEMAS DE ELECTOMAGNETISMO 1- Un ion de litio Li +, que tiene una masa de 1,16 Α 1-6 kg, se acelea mediante una difeencia de potencial de V y enta pependiculamente

Más detalles

Tema 7: El Mercado de divisas y la cobertura del riesgo de cambio

Tema 7: El Mercado de divisas y la cobertura del riesgo de cambio TÉCNICAS DE COMERCIO EXTERIOR Tema 7: El Mecado de divisas y la cobetua del iesgo de cambio 7..- Intoducción al mecado de cambios. Convetibilidad : Existe un mecado libe que define su pecio. Resticciones

Más detalles

MAGNITUDES ESCALARES Y VECTORIALES

MAGNITUDES ESCALARES Y VECTORIALES C U R S O: FÍSIC Mención MTERIL: FM-01 MGNITUDES ESCLRES VECTORILES Sistema intenacional de medidas En 1960, un comité intenacional estableció un conjunto de patones paa estas magnitudes fundamentales.

Más detalles

5 Procedimiento general para obtener el esquema equivalente de un transformador

5 Procedimiento general para obtener el esquema equivalente de un transformador Pocedimiento geneal paa obtene el esquema equivalente de un tansfomado 45 5 Pocedimiento geneal paa obtene el esquema equivalente de un tansfomado En este capítulo se encontaá el esquema equivalente de

Más detalles

UN CACHITO DE LA ALHAMBRA

UN CACHITO DE LA ALHAMBRA UN CACHITO DE LA ALHAMBRA Se llama mosaico a todo ecubimiento del plano mediante piezas llamadas teselas que no pueden supeponese, ni puede deja huecos sin ecubi y en el que los ángulos que concuen en

Más detalles

6.5 ECUACIÓN DE LA RECTA QUE PASA POR DOS PUNTOS

6.5 ECUACIÓN DE LA RECTA QUE PASA POR DOS PUNTOS 6.. Gáficas de ectas usando m b Po ejemplo, paa gafica la ecta Maca el valo de b (odenada al oigen) sobe el eje, es deci el punto (0,). A pati de ese punto, como la pendiente es, se toma una unidad a la

Más detalles

Universidad de Tarapacá Facultad de Ciencias Departamento de Física

Universidad de Tarapacá Facultad de Ciencias Departamento de Física Univesidad de Taapacá Facultad de Ciencias Depatamento de Física Aplica el álgea de vectoes: Poducto escala Poducto vectoial Magnitudes físicas po su natualeza Escalaes Vectoiales Es un escala que se

Más detalles

Sistemas de coordenadas

Sistemas de coordenadas Electicidad Magnetismo - Gpo. Cso / Tema : Intodcción Concepto de campo Repaso de álgeba vectoial Sistemas de coodenadas Catesiano Cvilíneas genealiadas: cilíndico esféico. Opeadoes vectoiales. Gadiente

Más detalles

Apéndice 4. Introducción al cálculo vectorial. Apéndice 2. Tabla de derivadas y de integrales inmediatas. Ecuaciones de la trigonometría

Apéndice 4. Introducción al cálculo vectorial. Apéndice 2. Tabla de derivadas y de integrales inmediatas. Ecuaciones de la trigonometría Apéndices Apéndice 1. Intoducción al cálculo vectoial Apéndice. Tabla de deivadas y de integales inmediatas Apéndice 3. Apéndice 4. Ecuaciones de la tigonometía Sistema peiódico de los elementos Apéndice

Más detalles

Deflexión de rayos luminosos causada por un cuerpo en rotación

Deflexión de rayos luminosos causada por un cuerpo en rotación 14 Defleión de ayos luminosos causada po un cuepo en otación 114 Intoducción Cuando un ayo luminoso pasa po la cecanía de un cuepo se ve obligado a abandona su tayectoia ectilínea y cuvase más o menos

Más detalles

MAGNITUDES VECTORIALES:

MAGNITUDES VECTORIALES: Magnitudes ectoiales MAGNITUDES VECTORIALES: Índice 1 Magnitudes escalaes ectoiales Suma de ectoes libes Poducto de un escala po un ecto 3 Sistema de coodenadas ectoiales. Vectoes unitaios 3 Módulo de

Más detalles

Y SU APLICACIÓN A LOS PLANES DE PENSIONES. ANDRÉS DE PABLO LÓPEZ Catedrático de Economía Financiera UNED

Y SU APLICACIÓN A LOS PLANES DE PENSIONES. ANDRÉS DE PABLO LÓPEZ Catedrático de Economía Financiera UNED CAPÍTULO 1 LA VALORACIÓN FINANCIERO-ACTUARIAL Y SU APLICACIÓN A LOS PLANES DE PENSIONES ANDRÉS DE PABLO LÓPEZ Catedático de Economía Financiea UNED RESUMEN En este tabajo se analiza la poblemática que

Más detalles

C. E. C. y T. No. 11 WILFRIDO MASSIEU PÉREZ

C. E. C. y T. No. 11 WILFRIDO MASSIEU PÉREZ C E C T No WILFRIDO MASSIEU PÉREZ Altua A Recta paalela a BC C Distancia (0, 0) Bisectiz B Ing J Ventua Ángel Felícitos Academia de Matemáticas C E C T No WILFRIDO MASSIEU PÉREZ La unidad de Apendizaje

Más detalles

Derivadas de funciones trigonométricas y sus inversas

Derivadas de funciones trigonométricas y sus inversas Deivadas de funciones tigonométicas y sus invesas Las funciones tigonométicas se definen a pati de un tiángulo ectángulo como sigue: sin α y csc α y y cos α x sec α x α x tan α y x cot α x y Como puedes

Más detalles

Práctica 8: Carta de Smith

Práctica 8: Carta de Smith Páctica 8: Cata de Smith Objetivo Familiaización con el manejo de la Cata de Smith. Contenidos Repesentación de impedancias y admitancias. Obtención de paámetos de las líneas empleando la Cata de Smith.

Más detalles

CUESTIONES Y PROBLEMAS DE CAMPO ELÉCTRICO. Ejercicio nº1 Cómo se manifiesta la propiedad de la materia denominada carga eléctrica?

CUESTIONES Y PROBLEMAS DE CAMPO ELÉCTRICO. Ejercicio nº1 Cómo se manifiesta la propiedad de la materia denominada carga eléctrica? UESTIONES Y POBLEMAS DE AMPO ELÉTIO Ejecicio nº ómo se manifiesta la popiedad de la mateia denominada caga eléctica? La popiedad de la mateia denominada caga eléctica se manifiesta mediante fuezas de atacción

Más detalles

Cálculo de la relación de margen de contribución en los precios y el surgimiento de la proporción áurea en la estructura de utilidades

Cálculo de la relación de margen de contribución en los precios y el surgimiento de la proporción áurea en la estructura de utilidades Cálculo de la elación de magen de contibución en los pecios y el sugimiento de la popoción áuea en la estuctua de utilidades Fecha de ecepción: 06.04.00 Fecha de aceptación: 9.0.00 Calos Henández Otega

Más detalles

Departamento de Física y Química. I. E. S. Atenea (S. S. Reyes, Madrid) Examen de Selectividad de Física. Junio Soluciones

Departamento de Física y Química. I. E. S. Atenea (S. S. Reyes, Madrid) Examen de Selectividad de Física. Junio Soluciones Examen de Selectividad de Física. Junio 2008. Soluciones imea pate Cuestión.- Un cuepo de masa m está suspendido de un muelle de constante elástica k. Se tia veticalmente del cuepo desplazando éste una

Más detalles

CAMPO GRAVITATORIO FCA 10 ANDALUCÍA

CAMPO GRAVITATORIO FCA 10 ANDALUCÍA CMPO GRVIORIO FC 0 NDLUCÍ. a) Explique qué se entiende po velocidad de escape y deduzca azonadamente su expesión. b) Razone qué enegía había que comunica a un objeto de masa m, situado a una altua h sobe

Más detalles

MÁXIMOS Y MÍNIMOS RELATIVOS

MÁXIMOS Y MÍNIMOS RELATIVOS PLICCIONES DE L DERIVD MÁXIMOS Y MÍNIMOS RELTIVOS Intoducción lgunas de las aplicaciones más impotantes e inteesantes del cálculo difeencial son aquellos poblemas en los que se busca la optimización de

Más detalles

VECTORES, DERIVADAS, INTEGRALES

VECTORES, DERIVADAS, INTEGRALES Física Tema 0-1 º Bachilleato Vectoes, deivadas, integales Tema 0 VECTORES, DERIVADAS, INTEGRALES 1.- Vectoes. Componentes de un vecto.- Suma y difeencia de vectoes 3.- Poducto de un vecto po un númeo

Más detalles

IES Menéndez Tolosa Física y Química - 1º Bach Campo eléctrico I. 1 Qué afirma el principio de conservación de la carga eléctrica?

IES Menéndez Tolosa Física y Química - 1º Bach Campo eléctrico I. 1 Qué afirma el principio de conservación de la carga eléctrica? IS Menéndez Tolosa ísica y Química - º Bach ampo eléctico I Qué afima el pincipio de consevación de la caga eléctica? l pincipio indica ue la suma algebaica total de las cagas elécticas pemanece constante.

Más detalles

GRAFICANDO EN COORDENADAS POLARES

GRAFICANDO EN COORDENADAS POLARES GRAFICANDO EN COORDENADAS POLARES Maía Guadalupe Amado Moeno, Ángel Gacía Velázquez Instituto Tecnológico de Meicali, Baja Califonia, Méico lupitaamado@hotmail.com, angel.g0@hotmail.com RESUMEN El tabajo

Más detalles

CLASE #2 de Bessel: Modos normales de una membrana circular (Continuación):

CLASE #2 de Bessel: Modos normales de una membrana circular (Continuación): CLASE #2 de Bessel: Modos nomales de una membana cicula (Continuación): Intoducción En la clase anteio esolvimos usando el Método de Sepaación de Vaiables, la ecuación de ondas paa una membana cicula de

Más detalles

Altura donde t r y w b o w ½ se deben expresar en las mismas unidades, por ser N adimensional.

Altura donde t r y w b o w ½ se deben expresar en las mismas unidades, por ser N adimensional. GENERALIDADES: CROMATOGRAFÍA Pof. Fancisco Rojo Callejas Tiempo de etención (t, fig 1) El tiempo que un soluto pemanece en la columna. Se mide desde el momento de la inyección hasta la elución del máximo

Más detalles

EL MODELO KEYNESIANO CAPÍTULO 3 3.1 INTRODUCCIÓN

EL MODELO KEYNESIANO CAPÍTULO 3 3.1 INTRODUCCIÓN CAPÍTULO 3 EL MODELO KENESIANO 3.1 INTRODUCCIÓN Antes de la Gan Depesión muchos economistas consideaban al desempleo como un poblema pasajeo y de meno impotancia asociado con las fluctuaciones nomales

Más detalles

EJERCICIOS DE GEOMETRÍA ANALITICA DEL ESPACIO

EJERCICIOS DE GEOMETRÍA ANALITICA DEL ESPACIO EJERCICIOS DE GEOMETRÍA ANALITICA DEL ESPACIO Detemina la posición elativa de las siguientes paejas de planos a) 8 ' 4 6 6 b) 6 7 ' 4 c) ' 6 7 d) 4 7 Dado el plano que contenga al punto A(-,, 4), detemina

Más detalles

GALICIA / JUNIO 03. LOGSE / FÍSICA / EXAMEN COMPLETO

GALICIA / JUNIO 03. LOGSE / FÍSICA / EXAMEN COMPLETO GALICIA / JUNIO 3. LOGSE / FÍSICA / EXAMEN COMPLEO El examen de física de las P.A.U. pesenta dos opciones de semejante nivel de dificultad. Cada opción consta de tes pates difeentes(poblemas, cuestiones

Más detalles

Brecha del producto y medidas de la tasa de interés neutral para Colombia

Brecha del producto y medidas de la tasa de interés neutral para Colombia Andés González Segio Ocampo Julián Péez Diego Rodíguez Becha del poducto y medidas de la tasa de inteés neutal paa Colombia Resumen En este documento se poponen tes medidas nuevas de la becha del poducto

Más detalles

Tema 6 La Empresa: Producción, Costes y Beneficios. Economía Aplicada

Tema 6 La Empresa: Producción, Costes y Beneficios. Economía Aplicada Tema 6 La Empresa: Producción, Costes y Beneficios Economía Aplicada Curso 2008-2009 1 Índice 1. Introducción 2. Los conceptos básicos 3. La función de producción 3.1. Concepto 3.2. Corto plazo y largo

Más detalles

Física Universitaria 2 5 de junio 2006 Enrique Sánchez y Aguilera, Rodolfo Estrada Guerrero, Abraham Vilchis CONSTANTE DIELÉCTRICA RELATIVA

Física Universitaria 2 5 de junio 2006 Enrique Sánchez y Aguilera, Rodolfo Estrada Guerrero, Abraham Vilchis CONSTANTE DIELÉCTRICA RELATIVA CONSTANTE DIELÉCTRICA RELATIVA OBJETIVO: El alumno podá detemina la constante dieléctica elativa de divesos mateiales dielécticos mediante la medición de la capacitancia de un condensado de placas paalelas.

Más detalles

CARACTERÍSTICAS DE LOS GENERADORES DE CORRIENTE CONTINUA (C.C.)

CARACTERÍSTICAS DE LOS GENERADORES DE CORRIENTE CONTINUA (C.C.) CARACERÍSCAS DE LOS GENERADORES DE CORRENE CONNUA (C.C.) Fueza electomotiz (f.e.m.) Es la causa que mantiene una tensión en bones del geneado. La fueza electomotiz (f.e.m.) es la tensión eléctica oiginada

Más detalles

ANALISIS VECTORIAL Y TENSORIAL SEMESTRE II/2015 PRACTICA # 3 UNIDAD 2 DIFERENCIACION VECTORIAL y OPERADORES DIFERENCIALES

ANALISIS VECTORIAL Y TENSORIAL SEMESTRE II/2015 PRACTICA # 3 UNIDAD 2 DIFERENCIACION VECTORIAL y OPERADORES DIFERENCIALES FACULTAD DE CIENCIAS Y TECNOLOGIA CARRERA DE INGENIERIA CIVIL 0.1 CURVAS EN R 3 ANALISIS VECTORIAL Y TENSORIAL SEMESTRE II/2015 PRACTICA # 3 UNIDAD 2 DIFERENCIACION VECTORIAL y OPERADORES DIFERENCIALES

Más detalles

LABORATORIO 3 MODELOS DEMOGRÁFICOS CONSTRUCCION DE UNA TABLA DE VIDA PARA EL TIBURÓN RABÓN BUENO

LABORATORIO 3 MODELOS DEMOGRÁFICOS CONSTRUCCION DE UNA TABLA DE VIDA PARA EL TIBURÓN RABÓN BUENO LABORATORIO 3 MODELOS DEMOGRÁFICOS CONSTRUCCION DE UNA TABLA DE VIDA PARA EL TIBURÓN RABÓN BUENO REQUISITOS Hoja de cálculo de Ecel Lab3_Tabla_de_vida_tibuon_abon_TPL.ls ). OBJETIVO En una situación ideal,

Más detalles

Es el producto escalar de la fuerza aplicada al cuerpo por el vector r r Por lo tanto es una magnitud escalar.

Es el producto escalar de la fuerza aplicada al cuerpo por el vector r r Por lo tanto es una magnitud escalar. TRABAJO Y ENERGÍA TRABAJO Es el poducto escala de la fueza aplicada al cuepo po el vecto desplazamiento. Po lo tanto es una magnitud escala. W = F.D = F.D. cos a Su unidad en el sistema intenacional es

Más detalles

Puntos, rectas y planos en el espacio. Problemas métricos en el espacio

Puntos, rectas y planos en el espacio. Problemas métricos en el espacio 1. Estudia la posición elativa de las ectas y s: x = 2t 1 x + 3y + 4z 6 = 0 : ; s : y = t + 1 2x + y 3z + 2 = 0 z = 3t + 2 Calcula la distancia ente ambas ectas (Junio 1997) Obtengamos un vecto diecto

Más detalles

Tema 0 Conocimientos previos al curso de Física

Tema 0 Conocimientos previos al curso de Física Tema 0 Conocimientos pevios al cuso de Física Conocimientos básicos de matemáticas Geometía y tigonometía Álgeba vectoial Conocimientos básicos de física Magnitudes y unidades físicas. Sistema Intenacional

Más detalles

ECUACIONES DE LA RECTA

ECUACIONES DE LA RECTA Tema 6 Rectas y planos en el espacio- Matemáticas II º Bachilleato TEMA 6 y 7 - RECTAS Y PLANOS EN EL ESPACIO ECUACIONES DE LA RECTA Paa halla la ecuación de una ecta en el espacio necesito: Dos puntos

Más detalles

El Espacio Afín. I. E. S. Siete Colinas (Ceuta) Departamento de Matemáticas

El Espacio Afín. I. E. S. Siete Colinas (Ceuta) Departamento de Matemáticas I. E. S. Siete Colinas (Ceuta) Depatamento de Matemáticas Matemáticas de º de Bachilleato El Espacio Afín Po Javie Caoquino CaZas Catedático de matemáticas del I.E.S. Siete Colinas Ceuta 005 El Espacio

Más detalles

Práctica 2. ESTUDIO EXPERIMENTAL DEL PÉNDULO. MEDIDA DE LA ACELERACIÓN DE LA GRAVEDAD

Práctica 2. ESTUDIO EXPERIMENTAL DEL PÉNDULO. MEDIDA DE LA ACELERACIÓN DE LA GRAVEDAD Páctica. ESTUDIO EXPERIMENTAL DEL PÉNDULO. MEDIDA DE LA ACELERACIÓN DE LA GRAVEDAD OBJETIVOS Analiza expeimentalmente las caacteísticas del movimiento del péndulo simple. Detemina la aceleación de la avedad

Más detalles

TEMA 3 FUERZAS Y MOVIMIENTOS CIRCULARES

TEMA 3 FUERZAS Y MOVIMIENTOS CIRCULARES TEMA 3 FUERZAS Y MOVIMIENTOS CIRCULARES 1. MOVIMIENTO CIRCULAR UNIFORME (MCU). Es el movimiento de un cuepo cuya tayectoia es una cicunfeencia y su velocidad es constante. 1.1. Desplazamiento angula o

Más detalles

Coordenadas homogéneas

Coordenadas homogéneas Coodenadas homogéneas Una matiz de otación 3 x 3 no nos da ninguna posibilidad paa la taslación y el escalado. Intoducimos una cuata coodenada p(x,y,z) p(wx,wy,wz,w), donde w tiene un valo abitaio y epesenta

Más detalles

TEMAS DE MATEMATICAS (Oposiciones de Secundaria)

TEMAS DE MATEMATICAS (Oposiciones de Secundaria) TEMAS DE MATEMATICAS (Oposiciones de Secundaia) TEMA 47 GENERACIÓN DE CURVAS COMO ENVOLVENTES.. Intoducción.. Envolvente... Definición de Envolvente... Existencia de Envolvente en el Plano..3. Deteminación

Más detalles

CAPÍTULO II LEY DE GAUSS

CAPÍTULO II LEY DE GAUSS Tópicos de lecticidad y Magnetismo J.Pozo y R.M. Chobadjian. CAPÍTULO II LY D GAUSS La Ley de Gauss pemite detemina el campo eléctico cuando las distibuciones de cagas pesentan simetía, en caso contaio

Más detalles

0.2.4 Producto de un escalar por un vector. Vector unitario. 0.3 Vectores en el sistema de coordenadas cartesianas.

0.2.4 Producto de un escalar por un vector. Vector unitario. 0.3 Vectores en el sistema de coordenadas cartesianas. VECTORES, OPERCIONES ÁSICS. VECTORES EN EL SISTEM DE C. CRTESINS 0.1 Vectoes escalaes. 0. Opeaciones básicas: 0..1 Suma de vectoes. 0.. Vecto opuesto. 0..3 Difeencia de vectoes. 0..4 Poducto de un escala

Más detalles

avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el

avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el /5 Conceptos pevios PRODUCTO VECTORIAL DE DO VECTORE. Es oto vecto cuyo módulo viene dado po: a b a b senα. u diección es pependicula al plano en el ue se encuentan los dos vectoes y su sentido viene dado

Más detalles

( ) CIRCUNFERENCIA UNIDAD VIII VIII.1 DEFINICIÓN DE CIRCUNFERENCIA

( ) CIRCUNFERENCIA UNIDAD VIII VIII.1 DEFINICIÓN DE CIRCUNFERENCIA CIRCUNRNCIA UNIA III III. INICIÓN CIRCUNRNCIA Una cicunfeencia se define como el luga geomético de los puntos P, que equidistan de un punto fijo en el plano llamado cento. La distancia que eiste de cualquiea

Más detalles

TEMA I. Un espacio vectorial es una estructura algebraica que se compone de dos conjuntos y de dos operaciones que cumplen 8 propiedades.

TEMA I. Un espacio vectorial es una estructura algebraica que se compone de dos conjuntos y de dos operaciones que cumplen 8 propiedades. 1 Espacios vectoiales 2 Combinaciones lineales 3 Dependencia e independencia lineal 4 Bases 5 Rango de un conjunto de vectoes 6 Tansfomaciones elementales 7 Método de Gauss TEMA I 1 Espacios vectoiales

Más detalles

7. Estabilidad de sistemas termodinámicos. Principio de le Chatelier

7. Estabilidad de sistemas termodinámicos. Principio de le Chatelier 7. Estabilidad de sistemas temodinámicos. incipio de le Chatelie * Hasta ahoa hemos tabajado ecuentemente con la condición de equilibio d = a = cte o d = a =cte. imilamente mediante otas unciones temodinámicas.

Más detalles

Primer Periodo ELEMENTOS DE TRIGONOMETRIA

Primer Periodo ELEMENTOS DE TRIGONOMETRIA Matemática 10 Gado. I.E. Doloes Maía Ucós de Soledad. INSEDOMAU Pime Peíodo Pofeso: Blas Toes Suáez. Vesión.0 Pime Peiodo ELEMENTOS DE TRIGONOMETRIA Indicadoes de logos: Conveti medidas de ángulos en adianes

Más detalles

9 Cuerpos geométricos

9 Cuerpos geométricos 865 _ 045-056.qxd 7/4/07 1:0 Página 45 Cuepos geométicos INTRODUCCIÓN Los cuepos geométicos están pesentes en múltiples contextos de la vida eal, de aí la impotancia de estudialos. Es inteesante constui

Más detalles

PRÁCTICA 8. Microeconomía Intermedia. Curso 2011/2012 Facultad de Derecho y Ciencias Sociales de Ciudad Real (UCLM) Profesor: Julio del Corral Cuervo

PRÁCTICA 8. Microeconomía Intermedia. Curso 2011/2012 Facultad de Derecho y Ciencias Sociales de Ciudad Real (UCLM) Profesor: Julio del Corral Cuervo PRÁCICA 8 1.- Un monopolista con función costes C= 2 abastece a un mercado cua demanda es p=300-4. a) Calcule la cantidad producida, el precio el beneficio si la empresa se comporta como un monopolio maximizador

Más detalles

Facultad de C. E. F. y N. Departamento de FÍSICA Cátedra de FÍSICA II SOLENOIDE

Facultad de C. E. F. y N. Departamento de FÍSICA Cátedra de FÍSICA II SOLENOIDE U N IV ESID A D NACIONA de CÓ DO BA Facultad de C. E. F. y N. Depatamento de FÍSICA Cáteda de FÍSICA II caeas: todas las ingenieías auto: Ing. ubén A. OCCHIETTI Capítulo VI: Campo Magnético: SOENOIDE El

Más detalles

Operaciones financieras de financiación, inversión y cobertura de riesgos.

Operaciones financieras de financiación, inversión y cobertura de riesgos. Opeaciones financieas de financiación, invesión y cobetua de iesgos. Tinidad Sancho, Maite Mámol UNIVERSIDAD DE BARCELONA 23/0/203 2 Tinidad Sancho Insa, Mª Teesa Mámol INDICE.. Sistemas y mecados financieos

Más detalles

Guía Regla de la Cadena(1 er Orden)

Guía Regla de la Cadena(1 er Orden) UNIVERSIDAD DE CHILE CÁLCULO EN VARIAS VARIABLES PROFESOR: MARCELO LESEIGNEUR AUXILIARES: ALFONSO TORO - SEBASTIÁN COURT Guía Regla de la Cadena1 e Oden 1. Sean f : R R y g : R R dos funciones difeenciables.

Más detalles

CURSO: 1º BACH. MATERÍA: MAT.AP.CC.SS.I TÍTULO: LOGARITMOS. MAT. FINANCIERA NOMBRE: APELLIDOS: Sectores cesta compra básica

CURSO: 1º BACH. MATERÍA: MAT.AP.CC.SS.I TÍTULO: LOGARITMOS. MAT. FINANCIERA NOMBRE: APELLIDOS: Sectores cesta compra básica CURSO: º BACH. MATERÍA: MAT.AP.CC.SS.I CALIFICACIÓN NOMBRE: FECHA: V-06//5 APELLIDOS:. Calcula cuántos años deben pasa paa que un cieto dineo se tiplique al ingesalo en un depósito al 8 % de inteés simple.

Más detalles

OPCIÓN A FÍSICA. 30/11/2010. E r

OPCIÓN A FÍSICA. 30/11/2010. E r OPCIÓN A FÍSICA. 0//00 PROBLEMA EXPERIMENTAL (.5 p). En el laboatoio de física se ealiza un expeimento paa medi la densidad de un sólido y de una disolución. Paa ello se utiliza un dinamómeto, se pesa

Más detalles

r r r r r µ Momento dipolar magnético

r r r r r µ Momento dipolar magnético A El valo φ180 o es una posición de equilibio inestable. Si se desplaza un poco especto a esta posición, la espia tiende a tasladase aún más de φ180 o. τ F ( b/ )sinϕ ( a)( bsinϕ) El áea de la espia es

Más detalles

6 PROPORCIONALIDAD DIRECTA E INVERSA

6 PROPORCIONALIDAD DIRECTA E INVERSA PROPORCIONALIDAD DIRECTA E INVERSA EJERCICIOS PROPUESTOS. Completa la siguiente tabla paa que las magnitudes A y B sean diectamente popocionales. La azón de popocionalidad es: 0,25 A 3 0 23, 2 B 2,,75

Más detalles

= = u r y v s son l.d. POSICIÓN RELATIVA DE DOS RECTAS. Ecuaciones generales RECTAS COINCIDENTES RECTAS SECANTES RECTAS PARALELAS

= = u r y v s son l.d. POSICIÓN RELATIVA DE DOS RECTAS. Ecuaciones generales RECTAS COINCIDENTES RECTAS SECANTES RECTAS PARALELAS POSICIÓN RELATIVA DE DOS RECTAS Ecuacione geneale : Ax + By + C = : Ax + By + C = A B A B RECTAS SECANTES \ Un punto en común A B C = A B C RECTAS PARALELAS Ningún punto en común A B C = = A B C RECTAS

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Primer Examen Parcial. 27 de Enero de 2003

CÁLCULO Primer curso de Ingeniero de Telecomunicación Primer Examen Parcial. 27 de Enero de 2003 CÁLCULO Pime cuso de Igeieo de Telecomuicació Pime Exame Pacial. 7 de Eeo de 3 Ejecicio. Deducilafómuladeláeadeusegmetopaabólico e fució de su base y su altua. Se cosidea u coo cicula ecto co adio de la

Más detalles

Leyes de Kepler. Ley de Gravitación Universal

Leyes de Kepler. Ley de Gravitación Universal Leyes de Keple y Ley de Gavitación Univesal J. Eduado Mendoza oes Instituto Nacional de Astofísica Óptica y Electónica, México Pimea Edición onantzintla, Puebla, México 009 ÍNDICE 1.- PRIMERA LEY DE KEPLER

Más detalles

5.1 La herencia keynesiana. 5.2 Modelo neoclásico de inversión con costes de capital. 5.3 Modelo de inversión de Tobin con ajustes de capital.

5.1 La herencia keynesiana. 5.2 Modelo neoclásico de inversión con costes de capital. 5.3 Modelo de inversión de Tobin con ajustes de capital. Tema 5 La invesión 5. La heencia keynesiana. 5. Modelo neoclásico de invesión con coses de capial. 5.3 Modelo de invesión de Tobin con ajuses de capial. Bibliogafía: Gacía del Paso Macoeconomía Avanzada

Más detalles

+ + h. 8 v A. = = 2026 m s 1 3 1,3 10 6 m

+ + h. 8 v A. = = 2026 m s 1 3 1,3 10 6 m m A + ( ) G P m ( ) 0 + G P m R P + h R P h A B R P eniendo en cuenta que h R P /, la anteio expesión queda como: G A P 8 A 3 Sustituyendo datos numéicos, esulta: 6,67 0 N m kg, 0 3 kg A 06 m s 3,3 0 6

Más detalles

Agrupación de dipolos inclinados

Agrupación de dipolos inclinados ANTENAS 1 Agupación de dipolos inclinados Se petende analia una antena de micoondas cuo modelo simplificado es una agupación de 8 dipolos elementales de longitud l, espaciados λ/. Los dipolos se alimentan

Más detalles

UNIDAD 10.- Geometría afín del espacio (tema 5 del libro)

UNIDAD 10.- Geometría afín del espacio (tema 5 del libro) UNIDD.- Geometía afín del espacio tema del libo). VECTOR LIBRE. OPERCIONES CON VECTORES LIBRES En este cuso amos a tabaja con el espacio ectoial de dimensión,, que es simila al tatado en º de Bachilleato,

Más detalles

SECCIÓN 2: ECUACIÓN DE CHÉZY Y FÓRMULAS EXPONENCIALES

SECCIÓN 2: ECUACIÓN DE CHÉZY Y FÓRMULAS EXPONENCIALES El álculo de la ed de istibución: Hidáulica Aplicada SEIÓN : EUAIÓN E HÉZY Y FÓMUAS EXPONENIAES EUAIÓN E HÉZY Según ézy: V adio idáulico S Sección mojada P Peímeto mojado Pendiente de la línea de enegía,

Más detalles