MEDIDAS DE DISTRIBUCION
|
|
|
- Monica Cabrera Gil
- hace 8 años
- Vistas:
Transcripción
1 MEDIDAS DE DISTRIBUCION ASIMETRIA Y CURTOSIS Dr. EDGAR APAZA ZUÑIGA UNIVERSIDAD NACIONAL DEL ALTIPLANO
2 MEDIDAS DE DISTRIBUCIÓN Las Medidas de Distribució permite idetificar y caracterizar la forma e que se separa o aglomera los valores de acuerdo a su represetació gráfica. Estas medidas describe la maera de cómo los datos tiede a agruparse e relació co la frecuecia co la que se halle detro de la iformació. La utilidad fudametal de las Medidas de distribució radica e la posibilidad de idetificar las características y discrimiar la distribució si ecesidad de geerar el gráfico.
3 I. ASIMETRIA Es ua expresió de la forma de la distribució, para saber si los valores de la variable se cocetra e ua determiada zoa del recorrido de la variable. Esta medida os permite idetificar si los datos se distribuye de forma uiforme alrededor del puto cetral (Media aritmética). Más precisamete, permite establecer el grado de Simetría que preseta ua distribució de probabilidad de ua variable aleatoria.
4 ASIMETRÍA Preseta tres formas diferetes. Cada ua de ellas defie y precisa la maera de cómo está distribuidos los datos respecto al eje de simetría 1. Asimetría positiva. Cuado la cola más dispersa se extiede e el lado de los valores altos de la variable co escaza frecuecia. 2. Simétrica. Si la dispersió es igual o muy similar a ambos lados, a ua distribució de frecuecias simétrica. 3. Asimetría egativa. La cola más dispersa se extiede al lado de los valores más bajos.
5 COEFICIENTES DE ASIMETRÍA: 1. COEFICIENTES DE ASIMETRÍA DE K. PEARSON: 1.1. PRIMER COEFICIENTE DE ASIMETRÍA DE PEARSON 1.2. SEGUNDO COEFIENTE DE ASIMETRÍA DE PEARSON 1.3. TERCER COEFIENTE DE ASIMETRÍA DE PEARSON 2. COEFICIENTE DE ASIMETRÍA DE YOULE BOWLEY 3. COEFICIENTES DE ASIMETRÍA DE R. FISHER 3.1. PARA UNA SERIE SIMPLE DE DATOS 3.2. PARA DATOS DE UNA VARIABLE CUANTITATIVA DISCRETA AGRUPADOS POR SUS FRECUENCIAS ABSOLUTAS 3.3. PARA DATOS DE VARIABLES CUANTITATIVAS CONTINUAS AGRUPADOS EN TABLAS DE DISTRIBUCIONES DE FRECUENCIAS
6 1. COEFICIENTE DE ASIMETRIA DE KARL PEARSON. DONDE: X X s m A S Media aritmética Mediaa 3( X s X Desviació estádar de la muestra m ) A Oscila etre -3 a 3 S A S = 0, La distribució es simétrica A S > 0, La distribució es simétrica positiva A S < 0, La distribució es simétrica egativa
7 2. COEFICIENTE DE ASIMETRIA DE YOULE BOWLEY. A S Q Q Q 3 Q 1 Q 2 DONDE: Q 1 Cuartil uo A S Oscila etre -1 a 1 Q 2 Q 3 Cuartil dos Cuartil tres Si : Si : Si : A S = 0, La distribució es simétrica A S > 0, La distribució es asimétrica positiva A S < 0, La distribució es asimétrica egativa
8 3. COEFICIENTES DE ASIMETRIA DE RONALD FISHER. LOS COEFICIENTES DE ASIMETRIA MÁS PRECISOS SON LOS DE FISHER 3.1. PARA DATOS DE UNA SERIE SIMPLE DE DATOS (DATOS NO AGRUPADOS POR CLASES) g 1 1 * i 1 ( X i S 3 X ) 3 * i X i = Valores de la de la variable X = Media aritmética de los valores de la muestra i = Frecuecia absoluta de los valores de la variable = Número total de datos S = Desviació estádar de la muestra
9 3. COEFICIENTES DE ASIMETRIA DE RONALD FISHER 3.2. PARA DATOS DE UNA VARIABLE CUANTITATIVA DISCRETA AGRUPADOS POR SUS FRECUENCIAS ABSOLUTAS g i i 1 1 ( X ( X i i X X ) ) 2 3 * X i = Valores de la variable X = Media aritmética de los valores de la muestra = Frecuecia absoluta de los valores de la variable i = Número total de datos * i i 3 2 e g 1 ( 6( 2)( 1) 1)( 3) g 1 = 0 distribució simétrica g 1 > 0 Distribució asimétrica positiva g 1 < 0 Distribució asimétrica egativa
10 3. COEFICIENTES DE ASIMETRIA DE RONALD FISHER PARA DATOS DE VARIABLES CUANTITATIVAS CONTINUAS AGRUPADOS EN TABLAS DE DISTRIBUCIONES DE FRECUENCIAS g 1 1 * i 1 ( Xi S X 3 ) 3 * i e g 1 ( 6( 2)( 1) 1)( 3) X i = Valores de la marca de clase X = Media aritmética de los valores de la muestra i = Frecuecia absoluta de los valores de la variable = Número total de datos
11 3. COEFICIENTES DE ASIMETRIA DE RONALD FISHER PARA DATOS DE VARIABLES CUANTITATIVAS CONTINUAS AGRUPADOS POR SUS FRECUENCIAS ABSOLUTAS. EJEMPLO. LONGITUD DEL DIAMETRO DE FIBRA EN ALPACAS TUIS DE LA RAZA HUCAYO ( = 150)
12
13
14
15
16
17 Error estádar del Coeficiete de Asimetría de Roal Fisher
18 PROCEDIMIENTO DE DETERMINACIÓN MEDIANTE EL EXCEL
19
20
21
22
23
24
25
26 CONCLUSION: COMO EL VALOR DEL COEFICIENTE DE ASIMETRÍA DE FISHER ES MENOR QUE CERO (0.042), LA DISTRIBUCIÓN DE DIÁMETROS DE FIBRA EN ALPACAS ES ASIMETRICA NEGATIVA, ES DECIR QUE EXISTE MAYORES CONCENTRACIONES DE FRECUENCIAS DE DIAMETROS DE FIBRA EN LAS UBICACIONES DE VALORES ALTOS.
27 II. CURTOSIS A iicios del siglo XX, Karl Pearso, utilizó por primera vez la palabra Curtosis e el cotexto estadístico para referirse a la forma de ua distribució de frecuecias. E efecto, la Curtosis es u parámetro que determia el grado cetralizació que preseta los valores, e la regió cetral de la distribució. K. Pearso, itrodujo los térmios: Platicúrtica, Mesocúrtica y Leptocúrtica para referirse a curvas de distribucioes de frecuecias meos, igual o más achatadas que la curva Normal. E cosecuecia, la Curtosis hace referecia al aputamieto de la distribució e relació a u estádar que es la distribució ormal.
28 CURTOSIS La Curtosis es ua medida de forma, más precisamete de aputamieto de las distribucioes, determia la mayor o meor cocetració de las frecuecias alrededor de la Media y e la zoa cetral de la distribució. Hace referecia al aputamieto de la distribució e relació a u Estádar, que es la Distribució Normal, la que e este caso represeta ua distribució Mesocúrtica. Si la distribució es más aputada que la Normal la distribució es Leptocúrtica; y si es más achatada esta es Platicúrtica. La Curtosis es idepediete de la Variabilidad. No es cierto que ua distribució Leptocúrtica tega meos variació y que por eso es más aputada, cotrariamete, la distribució platicúrtica o por el hecho de ser más achatada, esta debe ser más variable.
29 CURTOSIS 1. Leptocúrtica. La distribució es más aputada que la distribució ormal 2. Mesocúrtica. La distribució es ormal 3. Platicúrtica. La distribució es más achatada que la distribució ormal 1 2 3
30 COEFICIENTE DE CURTOSIS. EXISTEN VARIAS FORMAS DE DETERMINAR ESTE COEFIENTE: 1. COEFICIENTE DE CURTOSIS PERCENTÍLICO. Este coeficiete relacioa la desviació cuartil co el espacio iter percetílico obteiédose el siguiete coeficiete. k = LA DISTRIBUCIÓN ES MESOCURTICA k > LA DISTRIBUCIÓN ES LEPTOCURTICA k > LA DISTRIBUCIÓN ES PLATICURTICA
31 PESO AL DESTETE EN TERNEROS DE LA RAZA BROWN SWISS PESO AL DESTETE EN TERNEROS DE LA RAZA BROWN SWISS
32
33
34 K ( Q 2( P 3 90 Q 1 P ) 10 ) ( ( ) ) Como k = es meor que 0.263, la distribució es PLATICURTICA
35 2. COEFICIENTE DE CURTOSIS OBTENIDO POR LA HOJA ELECTRONICA EXCEL. EL EXCEL USA LA SIGUIENTE ECUACIÓN PARA CALCULAR LA CURTOSIS: k ( ( 1)( 1) 2)( 3) i 1 X i S X 4 3( 1) ( 1)( 3) 2 PESO AL DESTETE EN TERNEROS DE LA RAZA BROWN SWISS
36 PESO Media Error típico Mediaa 140 Moda 138 Desviació estádar Variaza de la muestra Curtosis Coeficiete de asimetría Rago 41 Míimo 120 Máximo 161 Suma 7041 Cueta 50
37 3. COEFICIENTE DE CURTOSIS DE PEARSON. Pearso itrodujo los térmios Platicúrtica, Mesocúrtica y Platicúrtica para referirse a curvas meos, igual y más achatadas que la Curva Normal. Pearso, demostró para ua distribució Normal que: Defie a 2 3 = Como el Grado de Curtosis ua medida de alejamieto co respecto a la distribució Normal. El cual es defiido por: b i 1 i 1 ( X ( X i i ) ) EE g 2 ( 24 ( 1) 3)( 2)( 3)( 2 5)
38
39 b i 1 i 1 ( X ( X i i ) ) 2 4 * * i i 2 3
40 24 ( 1) 2 EE g 2 ( 3)( 2)( 3)( 5)
41
42
43
44 FIN
ESTADÍSTICA DESCRIPTIVA
ESTADÍSTICA DESCRIPTIVA DISTRIBUCIÓN DE FRECUENCIAS, HISTOGRAMA, POLIGONO Y ESTADÍSITICOS DE TENDENCIA CENTRAL, DISPERSIÓN, ASIMETRÍA Y CURTOSIS. Prof.: MSc. Julio R. Vargas I. Las calificacioes fiales
Medidas de Tendencia Central
1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los valores observados e la muestra, dividida
Probabilidad y estadística
Probabilidad y estadística MEDIDAS DE TENDENCIA CENTRAL, MEDIDAS DE DISPERSIÓN, GRÁFICAS, E INTERPRETANDO RESULTADOS Prof. Miguel Hesiquio Garduño. Est. Mirla Beavides Rojas Depto. De Igeiería Química
Qué es la estadística?
Qué es la estadística? La estadística tiee que ver co la recopilació, presetació, aálisis y uso de datos para tomar decisioes y resolver problemas. Qué es la estadística? U agete recibe iformació e forma
Importancia de las medidas de tendencia central.
UNIDAD 5: UTILICEMOS MEDIDAS DE TENDENCIA CENTRAL. Importacia de las medidas de tedecia cetral. Cuado recopilamos ua serie de datos podemos resumirlos utilizado ua tabla de clases y frecuecias. La iformació
Unidad N 2. Medidas de dispersión
Uidad N 2 Medidas de dispersió Ua seguda propiedad importate que describe ua serie de datos uméricos es ua variació. La variació es la catidad de dispersió o propagació e los datos. Dos series de datos
PROBABILIDADES Y ESTADÍSTICA (C) Práctica 6 Aula + Laboratorio
26 PROBABILIDADES Y ESTADÍSTICA (C) Práctica 6 Aula + Laboratorio 1. Los siguietes valores so medicioes del peso (e miles de toeladas) de grades taques de petróleo. 229, 232, 239, 232, 259, 361, 220, 260,
Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor.
1 Estadística Descriptiva Tema 8.- Estadística. Tablas y Gráficos. Combiatoria Trata de describir y aalizar alguos caracteres de los idividuos de u grupo dado, si extraer coclusioes para u grupo mayor.
PREGUNTAS TIPO EXAMEN- ESTADÍSTICA DESCRIPTIVA 2
PREGUNTAS TIPO EXAMEN- ESTADÍSTICA DESCRIPTIVA 2 Preg. 1. Para comparar la variabilidad relativa de la tensión arterial diastólica y el nivel de colesterol en sangre de una serie de individuos, utilizamos
Análisis de datos en los estudios epidemiológicos II
Aálisis de datos e los estudios epidemiológicos II Itroducció E este capitulo cotiuamos el aálisis de los estudios epidemiológicos cetrádoos e las medidas de tedecia cetral, posició y dispersió, ídices
MEDIDAS DE DISPERSIÓN.
MEDIDA DE DIPERIÓN. Las medidas de tedecia cetral solamete da ua medida de la localizació del cetro de los datos. Co mucha frecuecia, es igualmete importate describir la forma e que las observacioes está
Resumen de fórmulas estadísticas y funciones en Excel
Resume de fórmulas estadísticas y fucioes e Excel 1. Medidas de posició o tedecia cetral Estadístico Fórmula Fució e Excel Media aritmética =A VERAGE(rago de datos) muestral para datos Xi o X = =AVERAGE(A
Problemas de Estimación de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviana Ramírez Benavides
Problemas de Estimació de Ua y Dos Muestras UCR ECCI CI-35 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviaa Ramírez Beavides Iferecia Estadística La teoría de la iferecia estadística cosiste e aquellos
CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel
x Estimado alumo: Aquí ecotrarás las claves de correcció, las habilidades y los procedimietos de resolució asociados a cada preguta, o obstate, para reforzar tu apredizaje es fudametal que asistas a la
Preguntas más Frecuentes: Tema 2
Pregutas más Frecuetes: Tema 2 Pulse sobre la preguta para acceder directamete a la respuesta 1. Se puede calcular la media a partir de las frecuecias absolutas acumuladas? 2. Para calcular la media aritmética,
Medidas de Distribución
Medidas de Distribución Trabajo a realizar de este tema: En Excel 2003 hoja 1, prepara un(os) cuadro(s) sinópticos o mapas conceptuales o mapas mentales que sinteticen éste capítulo. En la hoja 2 y en
ESTADISTICA UNIDIMENSIONAL
ESTADISTICA UIDIMESIOAL La estadística estudia propiedades de ua població si recurrir al sufragio uiversal. El estudio estadístico tiee dos posibilidades (1) Describir lo que ocurre e la muestra mediate
CAPÍTULO 6 DISTRIBUCIONES MUESTRALES
CAPÍTULO 6 DISTRIBUCIONES MUESTRALES Uo de los objetivos de la estadística es coocer acerca del comportamieto de parámetros poblacioales tales como: la media ( μ ), la variaza ( ) o la proporció ( p ).
Guía 1 Matemática: Estadística NM 4
Cetro Educacioal Sa Carlos de Aragó. Sector: Matemática. Prof.: Ximea Gallegos H. 1 Guía 1 Matemática: Estadística NM 4 Nombre: Curso: Fecha. Uidad: Estadística y Probabilidades. Apredizajes Esperados:
GLOSARIO ESTADÍSTICO. Fuente: Murray R. Spiegel, Estadística,, McGraw Hill.
GLOSARIO ESTADÍSTICO Fuete: Murray R. Spiegel, Estadística,, McGraw Hill. CONCEPTOS Y DEFINICIONES ESPECIALES Es el estudio cietífico de los La estadística posee tres campos métodos para recoger, orgaizar,
Módulo de Estadística
Módulo de Estadística Tema 2: Estadística descriptiva Tema 2: Estadísticos 1 Medidas La finalidad de las medidas de posición o tendencia central (centralización) es encontrar unos valores que sinteticen
PRUEBAS DE HIPÓTESIS.
PRUEBAS DE HIPÓTESIS. HIPÓTESIS ESTADÍSTICA Paramétrica : No Paramétrica Es ua afirmació sobre los valores de los parámetros poblacioales descoocidos. Es ua afirmació sobre algua característica Simple
Práctica 7 CONTRASTES DE HIPÓTESIS
Práctica 7. Cotrastes de hipótesis Práctica 7 CONTRATE DE IPÓTEI Objetivos Utilizar los cotrastes de hipótesis para decidir si u parámetro de la distribució de uos datos objeto de estudio cumple o o ua
Medidas estadísticas
Medidas estadísticas Medidas de Tedecia Cetral: Se llama así debido a que ua vez bie calculadas, sus valores tiede a estar ubicadas e el cetro de la distribució ordeada. Esta característica la posee la
Temas de Estadística Práctica
Temas de Estadística Práctica Antonio Roldán Martínez Proyecto http://www.hojamat.es/ Tema 2: Medidas de tipo paramétrico Resumen teórico Medidas de tipo paramétrico Medidas de tendencia central Medidas
UNIDAD III DESCRIPCIÓN DE UN CONJUNTO DE DATOS. 1. Medidas de resumen descriptivas. 2. Medidas de tendencia central Moda
UNIDAD III DESCRIPCIÓN DE UN CONJUNTO DE DATOS 1. Medidas de resume descriptivas Para describir u cojuto de datos utilizamos ua serie de medidas, de igual forma que para describir a u persoa podemos utilizar
Trabajo Especial Estadística
Estadística Resolució de u Problema Alumas: Arrosio, Florecia García Fracaro, Sofía Victorel, Mariaela FECHA DE ENTREGA: 12 de Mayo de 2012 Resume Este trabajo es ua ivestigació descriptiva, es decir,
Tema 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD. X- μ. f(x) = e para - < x < Z 2. . e para - < z <
Tema 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD La distribució ormal: La distribució ormal, campaa de Gauss o, curva ormal, tambié defiida por De Moivre. Características y propiedades: La siguiete fórmula
MEDIDAS DE RESUMEN. Jorge Galbiati Riesco
MEDIDAS DE RESUMEN Jorge Galbiati Riesco Las medidas de resume sirve para describir e forma resumida u cojuto de datos que costituye ua muestra tomada de algua població. Podemos distiguir cuatro grupos
BIOESTADÍSTICA I 1. DEFINICIONES
BIOESTADÍSTICA I 1. DEFINICIONES 1.1 ESTADÍSTICA. Es ua disciplia, que hace parte de la matemática aplicada, que provee métodos y procedimietos para colectar, clasificar, resumir y aalizar iformació (datos)
Estadística Descriptiva
Igacio Cascos Ferádez Dpto. Estadística e I.O. Uiversidad Pública de Navarra Estadística Descriptiva Estadística ITT Soido e Image curso 2004-2005 1. Defiicioes fudametales La Estadística Descriptiva se
Ejemplos y ejercicios de. Análisis Exploratorio de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios.
ANÁLISIS EXPLORATORIO DE DATOS Ejemplos y ejercicios de Aálisis Exploratorio de Datos Descripció estadística de ua variable. Ejemplos y ejercicios..1 Ejemplos. Ejemplo.1 Se ha medido el grupo saguíeo de
Tema 4. Estimación de parámetros
Estadística y metodología de la ivestigació Curso 2012-2013 Pedro Faraldo, Beatriz Pateiro Tema 4. Estimació de parámetros 1. Estimació putual 1 1.1. Estimació de la proporció e la distribució Bi(m, p).......................
TEMA IV PERCENTIL Y ESTADIGRAFOS DE POSICION
TEMA IV PERCENTIL Y ESTADIGRAFOS DE POSICION 1. Percentiles, cuartiles y deciies. 2. Estadígrafos de Posición. 3. Sesgo y curtosis o de pastel. Pictogramas. OBJETIVOS DE UNIDAD GENERALES. Que el futuro
TEMA 1. ESTADÍSTICA DESCRIPTIVA
TEMA. ESTADÍSTICA DESCRIPTIVA. Itroducció: coceptos básicos. Tablas estadísticas y represetacioes gráficas. Características de variables estadísticas uidimesioales.. Características de posició.. Características
Técnicas Cuantitativas II Muestra y Estadísticos Muestrales. TC II Muestra y Estadísticos Muestrales 1 / 20
Técicas Cuatitativas II 2012-2013 Muestra y Estadísticos Muestrales TC II Muestra y Estadísticos Muestrales 1 / 20 Ídice Ídice Cocepto de muestra y Alguos ejemplos de variaza de la media Cocepto de muestra
Bloque 3 Tema 12 PRUEBAS ESTADÍSTICAS PARA EL CONTRASTE DE HIPÓTESIS: PRUEBAS PARAMÉTRICAS
Bloque 3 Tema 1 PRUEBAS ESTADÍSTICAS PARA EL CONTRASTE DE HIPÓTESIS: PRUEBAS PARAMÉTRICAS Hay ocasioes e las que teemos que tomar decisioes relativas a ua població sobre la base de los coocimietos que
Medidas de Tendencia Central
EYP14 Estadística para Costrucció Civil 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los
Tema 1. Estadística Descriptiva
Estadística y metodología de la ivestigació Curso 2012-2013 Pedro Faraldo, Beatriz Pateiro Tema 1 Estadística Descriptiva 1 Itroducció 1 2 Coceptos geerales 2 3 Distribucioes de frecuecias 3 4 Represetacioes
ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M.
ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Juliá de la Horra Departameto de Matemáticas U.A.M. 1 Itroducció Cuado estamos iteresados e estudiar algua característica de ua població (peso, logitud de las hojas,
TEMA 3: DESCRIPCIÓN NUMÉRICA DE UNA VARIABLE ESTADÍSTICA: MEDIDAS DE LOCALIZACIÓN, DISPERSIÓN Y FORMA. MEDIDAS DE CONCENTRACIÓN.
TEMA 3: DESCRIPCIÓN NUMÉRICA DE UNA VARIABLE ESTADÍSTICA: MEDIDAS DE LOCALIZACIÓN, DISPERSIÓN Y FORMA. MEDIDAS DE CONCENTRACIÓN. Medidas de localizació. Medidas de dispersió. Coeficiete de variació. Mometos
En el tema anterior se estudió que muchas decisiones se toman a partir de resultados muestrales. Por ejemplo:
TEMA 6. Estimació putual. E muchos casos o será posible determiar el valor de u parámetro poblacioal descoocido, aalizado todos los valores poblacioales, pues el proceso a seguir puede ser destructivo,
PRUEBA DE HIPOTESIS BASADA EN UNA SOLA MUESTRA. Esquema del procedimiento de Prueba de Hipótesis
PRUEBA DE HIPOTESIS BASADA EN UNA SOLA MUESTRA Pruebas de hipótesis es ua parte de la ESTADISTICA INFERENCIAL y tiee su aalogía co los pasos que se realiza e u JUICIO. Objetivo: Aquí o se busca Estimar
ESTADÍSTICA UNIDIMENSIONAL
ESTADÍSTICA UIDIMESIOAL..- ITRODUCCIÓ A LA ESTADÍSTICA.- Objeto de la estadística La Estadística es el cojuto de métodos ecesarios para recoger, clasificar, represetar y resumir datos así como para iferir
ESTADÍSTICA BÁSICA. Discretas. Función de masa de probabilidad: P(X=x i ) Sólo se toma un conjunto finito valores {x 1, x 2,...}
ESTADÍSTICA BÁSICA 1.) Coceptos básicos: Estadística: Es ua ciecia que aaliza series de datos (por ejemplo, edad de ua població, altura de u equipo de balocesto, temperatura de los meses de verao, etc.)
1. Secuencia Impulso unitario (función Kroëneker) 1, n = n 0. (n) = = {... 0, 0, (1), 0, 0,... }
SEÑALES DE TIEMPO DISCRETO SEÑALES Y SISTEMAS DE TIEMPO DISCRETO Las señales está clasificadas de maera amplia, e señales aalógicas y señales discretas. Ua señal aalógica será deotada por a t e la cual
MUESTREO Y ESTIMACIÓN ESTADÍSTICA
1 MUESTREO Y ESTIMACIÓN ESTADÍSTICA Muestreo. Métodos de muestreo Se llama població al cojuto de idividuos que posee cierta característica. Ua muestra es ua parte de esa població. Muestreo es el proceso
El rango de un conjunto de números es la diferencia entre el número mayor y el menor del conjunto.
La desviación estándar y otras medidas de dispersión CAPÍTULO 4 DISPERSIO O VARIACIO La dispersión o variación de los datos es el grado en que los datos numéricos tienden a esparcirse alrededor de un valor
UNIDAD 7 Medidas de dispersión
UNIDAD 7 Medidas de dispersión UNIDAD 7 MEDIDAS DE DISPERSIÓN Al calcular un promedio, por ejemplo la media aritmética no sabemos su representatividad para ese conjunto de datos. La información suministrada
1. QUÉ ES LA ESTADÍSTICA?
1. QUÉ ES LA ESTADÍSTICA? Cuado coloquialmete se habla de estadística, se suele pesar e ua relació de datos uméricos presetada de forma ordeada y sistemática. Esta idea es la cosecuecia del cocepto popular
2 CARTAS DE CONTROL POR ATRIBUTOS
2 CARTAS DE CONTROL POR ATRIBUTOS Cualquier característica de calidad que pueda ser clasificada de forma biaria: cumple o o cumple, fucioa o o fucioa, pasa o o pasa, coforme o discoforme defectuoso, o
Estado gaseoso. Mezclas de gases ideales presión parcial de un gas en una mezcla de gases ideales ley de Dalton
Estado gaseoso Ecuació de estado de los gases perfectos o ideales Mezclas de gases ideales presió parcial de u gas e ua mezcla de gases ideales ley de Dalto Feómeos de disolució de gases e líquidos leyes
Estadística y sus aplicaciones en Ciencias Sociales Práctico 4 - Solución Curso ) Como se trata de muestreo sin reposición, se tiene C 5 3
Estadística y sus aplicacioes e Ciecias Sociales Práctico 4 - Solució Curso 016 Ejercicio 1 5! 1) Como se trata de muestreo si reposició, se tiee C 5 3 3!! muestras de tamaño =3. ) Distribució muestral
Objetivos. 1. Inferencia Estadística. INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo. M. Iniesta Universidad de Murcia
M. Iiesta Uiversidad de Murcia INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo Objetivos Tratar co muestras aleatorias y su distribució muestral e ejemplos de tamaño reducido. Tratar co la distribució de la
ESTADÍSTICA SEMANA 3
ESTADÍSTICA SEMANA 3 ÍNDICE MEDIDAS DESCRIPTIVAS... 3 APRENDIZAJES ESPERADOS... 3 DEFINICIÓN MEDIDA DESCRIPTIVA... 3 MEDIDAS DE POSICIÓN... 3 MEDIDAS DE TENDENCIA CENTRAL... 4 MEDIA ARITMÉTICA O PROMEDIO...
Intervalos de Confianza basados en una muestra. Instituto de Cálculo
Itervalos de Cofiaza basados e ua muestra. Istituto de Cálculo Dra. Diaa Kelmasky Hay dos razoes por las cuales el itervalo (6.63,.37) tiee mayor logitud que el obteido ateriormete (7.69, 0.3). la variaza
UNIVERSIDAD AUTONOMA DE SANTO DOMINGO
UNIVERSIDAD AUTONOMA DE SANTO DOMINGO FACULTAD DE CIENCIAS ECONOMICAS Y SOCIALES DEPARTAMENTO DE ESTADISITICA CATEDRA Estadística Especializada ASIGNATURA Estadística Descriptiva Para Psicólogos (EST-225)
MEDIDAS DESCRIPTIVAS
Tema 2: MEDIDAS DESCRIPTIVAS DE LOS DATOS 1. MEDIDAS DE CETRALIZACIÓ: Meda Medana Moda Cuantles Otras 2. MEDIDAS DE DISPERSIÓ: Desvacón típca Varanza Rango Otras 3. MEDIDAS DE FORMA: Asmetría Apuntamento
PRUEBAS DE HIPOTESIS
PRUEBAS DE HIPOTESIS Es posible estimar u parámetro a partir de datos muestrales, bie sea ua estimació putual o u itervalo de cofiaza. Pero: Si mi objetivo o es estimar u parámetro, sio determiar el cumplimieto
ANALISIS ESTADISTICO DE VALORES EXTREMOS
ANALISIS ESTADISTICO DE VALORES EXTREMOS Aplicacioes e hidrología Gloria Elea Maggio Dr. Jua F. Aragure 84 - Bueos Aires 4988 0083 www.oldor.com.ar [email protected] R E S U M E N El objetivo de este
CONTRASTE DE HIPÓTESIS
CONTRASTE DE HIPÓTESIS El cotraste de hipótesis es el procedimieto mediate el cual tratamos de cuatificar las diferecias o discrepacias etre ua hipótesis estadística y ua realidad de la que poseemos ua
Ejercicios de intervalos de confianza en las PAAU
Ejercicios de itervalos de cofiaza e las PAAU 2008 1 1.-El úmero de días de permaecia de los efermos e u hospital sigue ua ley Normal de media µ días y desviació típica 3 días. a)determiar u itervalo de
SOLUCIÓN EXAMEN I PARTE II
Nombre: Apellido: C.I.: Fecha: Firma: MÉTODOS ESTADÍSTICOS I EXAMEN I Prof. Gudberto Leó PARTE I: (Cada respuesta correcta tiee u valor de 1 puto) E los siguietes gráficos se represeta distitas distribucioes
Fórmulas Estadísticas. Recuerde: Hay k Categorías; n Datos en una muestra, N datos en una población.
Uiversidad Diego Portales Facultad de Ecoomía y Negocios Fórmulas Estadísticas Capítulo 2 Recuerde: Hay k Categorías; Datos e ua muestra, N datos e ua població. Frecuecia Relativa de Clase (f) Cuátas Clases
MEDIDAS DE TENDENCIA CENTRAL. _ xi
EDIDAS DE TENDENCIA CENTRAL. EDIA ARITÉTICA. Es la medida más coocida y tambié es llamada promedio se obtiee sumado todos los valores de la muestra o població, dividida etre el total de elemetos que cotiee
Curso de nivelación Estadística y Matemática
Curso de nivelación Estadística y Matemática Primera clase: Estadística Descriptiva Programa Técnico en Riesgo, 2016 Agenda 1 Tipos de variables y niveles de medición 2 3 Tipos de variables Variables Cuantitativas
T. 4 Estadísticos de dispersión
T. 4 Estadísticos de dispersió 1 1. Variables categóricas: la razó de variació y el ídice de variació cualitativa.. Variables ordiales: el rago y el rago itercuartil. 3. Variables cuatitativas: la variaza,
1 EXPRESIONES ALGEBRAICAS
EXPRESIONES ALGEBRAICAS E el leguaje matemático, se deomia expresioes algebraicas a toda combiació de letras y/o úmeros viculados etre si por las operacioes de suma, resta, multiplicació y poteciació de
ORGANIZACIÓN DE LOS DATOS.
ORGANIZACIÓN DE LOS DATOS. La toma de datos es ua de las partes de mayor importacia e el desarrollo de ua ivestigació. Así los datos obteidos mediate u primer proceso recibe el ombre de datos si tratar
EJERCICIOS RESUELTOS TEMA 8
EJERCICIOS RESUELTOS TEMA 8 8.. U ivestigador desea coocer la opiió de los madrileños sobre la saidad pública. Para ello, acude a las 8 de la mañaa al hospital público de la capital más cercao a su domicilio
Medidas de dispersión
Medidas de dispersión Las medidas de dispersión nos informan sobre cuánto se alejan del centro los valores de la distribución. Las medidas de dispersión son: Rango o recorrido El rango es la diferencia
DISTRIBUCIÓN DE LA MEDIA MUESTRAL. (a) Las muestras de tamaño n obtenidas en una población de media y desviación típica,
1 MAJ04 DISTRIBUCIÓN DE LA MEDIA MUESTRAL 1. E u servicio de ateció al cliete, el tiempo de espera hasta recibir ateció es ua variable ormal de media 10 miutos y desviació típica 2 miutos. Se toma muestras
INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA DISTRIBUCIÓN EN EL MUESTREO
INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA DISTRIBUCIÓN EN EL MUESTREO Objetivos geerales del tema E este tema se itroducirá el cocepto de estadístico como medio para extraer iformació acerca de la ley de
Modelos lineales en Biología, 5ª Curso de Ciencias Biológicas Clase 28/10/04. Estimación y estimadores: Distribuciones asociadas al muestreo
Modelos lieales e Biología, 5ª Curso de Ciecias Biológicas Clase 8/10/04 Estimació y estimadores: Distribucioes asociadas al muestreo Referecias: Cualquiera de los textos icluidos e la bibliografía recomedada
INECUACIONES. Ejemplo: La desigualdad 2x+l>x+5, es una inecuación por que tiene una incógnita "x" que se verifica para valores mayores que 4.
INECUACIONES DEFINICIÓN: Ua iecuació es ua desigualdad e las que hay ua o más catidades descoocidas (icógita) y que sólo se verifica para determiados valores de la icógita o icógitas. Ejemplo: La desigualdad
Los estadísticos descriptivos clásicos (Robustez)
Los estadísticos descriptivos clásicos (Robustez) MUESTRA 0 0 4 6 8 9 MUESTRA 0 0 4 6 8 57 Nº CASOS Media Mediana Moda Desviación Simetría Curtosis MUESTRA,85 4,74 0, -0.688 MUESTRA 6,77 4.8.7.77 Ambas
Análisis Multivariable
Aálisis Multivariable Resume El procedimieto Aálisis Multivariable está diseñado para resumir dos columas o más de datos uméricos. Calcula estadísticos de resume para cada variable, así como las variazas
Fase 2. Estudio de mercado: ESTADÍSTICA
1. CONCEPTO DE ESTADÍSTICA. ESTADÍSTICA DESCRIPTIVA 2. 3. TABLA DE FRECUENCIAS 4. REPRESENTACIONES GRÁFICAS 5. TIPOS DE MEDIDAS: A. MEDIDAS DE POSICIÓN B. MEDIDAS DE DISPERSIÓN C. MEDIDAS DE FORMA 1 1.
478 Índice alfabético
Índice alfabético Símbolos A, suceso contrario de A, 187 A B, diferencia de los sucesos A y B, 188 A/B, suceso A condicionado por el suceso B, 194 A B, intersección de los sucesos A y B, 188 A B, unión
Estadística Teórica II
tervalos de cofiaza Estadística Teórica NTERVALOS DE CONFANZA Satiago de la Fuete Ferádez 77 tervalos de cofiaza CÁLCULO DE NTERVALOS DE CONFANZA PARA LA MEDA CON DESVACÓN TÍPCA POBLACONAL CONOCDA Y DESCONOCDA.
