Modelos lineales en Biología, 5ª Curso de Ciencias Biológicas Clase 28/10/04. Estimación y estimadores: Distribuciones asociadas al muestreo

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Modelos lineales en Biología, 5ª Curso de Ciencias Biológicas Clase 28/10/04. Estimación y estimadores: Distribuciones asociadas al muestreo"

Transcripción

1 Modelos lieales e Biología, 5ª Curso de Ciecias Biológicas Clase 8/10/04 Estimació y estimadores: Distribucioes asociadas al muestreo Referecias: Cualquiera de los textos icluidos e la bibliografía recomedada E este tema se aplicará alguos de los coceptos relativos a probabilidad que se ha visto hasta ahora, pues se trata de ecotrar fucioes de los datos procedetes de ua muestra que sirva para estimar alguos de los parámetros poblacioales más importates. 1.- Estadísticos y estimadores. Defiimos Estadístico como cualquier fució de los datos de ua muestra. Cada valor de ua fució defiida a partir de las medidas de ua muestra depede de la muestra que e cada caso se haya elegido. Si la muestra es aleatoria, cualquier estadístico es ua variable aleatoria y como tal, tedrá ua distribució. Dedicaremos este tema a hablar de las distribucioes de alguos estadísticos muy usados e experimetació. Frecuetemete os iteresa coocer algú dato de ua població, por ejemplo: qué proporció de persoas votará ua determiada opció política?, o Cuál es la talla media de esta comuidad?. E muchas ocasioes el dato que pretedemos coocer es, además, algú parámetro de ua distribució. Por ejemplo, respecto de la opció política, podemos cosiderar toda la població dividida e dos grupos: los que vota la opció e estudio y los que o lo vota; podemos represetar la situació mediate ua variable aleatoria que tomará los valores 1, si elige la opció de iterés, y 0 si o la elige. Esta situació quedará modelada por la distribució biaria, cuyo úico parámetro es la proporció p que queremos coocer. Se tratará de elegir ua muestra y ecotrar la fució de la muestra que mejor estime el dato poblacioal requerido. Defiimos Estimador como cualquier estadístico que sirva para evaluar u dato poblacioal a partir de los de ua muestra. Todos los estimadores so variables aleatorias y sigue algú modelo de distribució, cometaremos los más importates a lo largo del tema. Represetaremos co la letra griega θ u parámetro poblacioal geérico, co el mismo símbolo co circuflejo, su estimador: ˆ θ. El estimador de la proporció p es ˆp ; el de la media µ es ˆµ ;y el de la variaza es ˆ. Existe varios procedimietos para determiar estimadores, alguos de ellos so: el de aalogía, el de máxima verosimilitud, el de míimos cuadrados y otros. Nosotros defiiremos estimadores por aalogía: tomaremos como estimador de u parámetro poblacioal su propia defiició aplicada a la muestra: Estimador de ua proporció: La proporció se estima e la muestra cotado el umero de idividuos que presete la característica que se estudie y dividiédolo etre el tamaño de la muestra: Sea ua muestra de tamaño, y de ellos a preseta la característica e estudio, etoces ˆp = Estimació de ua media: utilizaremos la media muestral como estimació de la poblacioal. Sea ua muestra de tamaño y ua característica cuatitativa X cuyas medidas e los idividuos de la muestra ha resultado ser x1, x,...,x, etoces µ ˆ = x = Estimació de ua variaza: se utiliza la cuasivariaza muestral para estimar la variaza poblacioal: ˆ = s = i= 1 ( xi x) 1 i= 1 x i a Estimació de parámetros, pág 1

2 E ocasioes observaremos el parámetro p como la media de ua distribució biaria: puesto que la variable aleatoria solo puede tomar los valores 1 (acierto) y 0 (fallo), el úmero de aciertos es tambié la suma de todos los valores de la variable observados e la muestra, y al dividir la suma de todas las observacioes etre el úmero de ellas, tedremos la media muestral. El parámetro λ de ua Poisso es su media, por lo que para estimarlo tambié podremos cosiderarlo como ua media..- Propiedades de los estimadores: Isesgadez: la pricipal característica que debe cumplir u estimador es que estime lo que realmete se pretede estimar, o sea, al repetir muchas veces la estimació, se obtega como promedio u valor muy próximo al que se desea estimar: E( θ ˆ )=θ. U estimador que cumpla esta propiedad se dice que es isesgado, e caso cotrario se le deomia sesgado. La media muestral es u estimador isesgado de la media poblacioal, pues E(x) = µ. La variaza muestral o es u estimador isesgado de la variaza poblacioal, ya que: 1 E(s ) =, por ese motivo se usa como estimador de la variaza poblacioal la cuasivariaza que sí es isesgado. Eficiecia: todo estimador es ua variable aleatoria, y, como tal, tedrá ua media y ua variaza, u estimador es tato más eficiete cueto meor sea su variaza, pues la variabilidad implica poca seguridad e que la estimació sea correcta, desde ese puto de vista, lo ideal sería que la variabilidad fuese ula. La eficiecia siempre se defie e relació a otro estimador del mismo parámetro, u estimador es más eficiete que otro si tiee meos variaza. Existe u valor míimo de la variaza de u estimador isesgado, es la deomiada cota de Frèchet-Cramer-Rao, si u estimador isesgado alcaza esta cota, decimos que es eficiete. Suficiecia: u estimador es suficiete si cotiee toda la iformació muestral relativa al parámetro que se desea estimar. La media muestral es u estimador suficiete, pues se usa todos los datos de la muestra e su cálculo. Coocida la media muestral, el dispoer de todos los datos de la muestra o mejora mi iformació referete a la media poblacioal. Cosistecia: u estimador es cosistete si la probabilidad de ecotrar valores estimados distitos a los que se desea estimar es muy baja (por poco que se diferecie los valores estimados de los que se pretede estimar) cuado el tamaño de la muestra es muy grade. Los estimadores basados e ua media muestral so isesgados, eficietes y suficietes. 3.- Distribucioes e el muestreo: a) Distribució de la media muestral: a.1) Variable aleatoria X es ua Normal (m ; s ). Extraida ua muestra de tamaño, co las observacioes x 1, x,...x. Al cosiderar todas las posibles muestras, cada observació toma los valores de la variable aleatoria X y su misma desidad, la suma de variables aleatorias Normales, todas ellas co la misma media y variaza es ua variable aleatoria Normal, cuya media es µ y cuya variaza es, por tato, aplicado las propiedades de la esperaza matemática, podemos comprobar que la media X sigue ua distribució de media µ y variaza /.. Además, al ser Normal la població de la que se extrae la muestra, la media muestral sigue tambié ua distribució Normal: X µ Al tipificar la media muestral: Z= N(0;1) Si X N(µ; ) X N(µ; /) Estimació de parámetros, pág

3 Co frecuecia o se cooce la variaza poblacioal, etoces se estima co la cuasivariaza poblacioal, pero al tipificar, lo X µ que se obtiee o es lo mismo que ates: t = t( 1) s Cuado los datos procede de ua variable Normal, la media de todas las medias muestrales sigue ua distribució Normal, si se tipifica co la desviació típica poblacioal, la media tipificada sigue ua Normal (0;1). Pero si se tipifica co la cuasidesviació típica, sigue ua distribució t de Studet co -1 grados de libertad. a.) La variable aleatoria X No es ua Normal: Etoces la distribució de la media muestral depede de la distribució de la variable origial. No obstate, para muestras grades : >30 (Teorema Cetral del Límite), se puede asegurar que la distribució de la media muestral es muy aproximadamete ua Normal de media la de X y de variaza la de X dividido por el tamaño muestral. Si la variaza muestral es descoocida NO SE PUEDE UTILIZAR LA DISTRIBUCIÓN t, pues falla el supuesto de Normalidad, por ello se comete meos error utilizado la distribució Normal y tomado MUESTRAS DE TAMAÑO SUPERIOR A 60. b) Distribució del estimador del parámetro p de ua distribució biaria: Si de ua distribució biaria tomamos ua muestra de tamaño y cotamos el úmero de aciertos, a, el cociete a/ estima la proporció de aciertos e la població. Cosiderado la variable aleatoria úmero de aciertos observados e la muestra de tamaño, esta variable, si la extracció fue idepediete, sigue ua distribució biomial, de parámetros y p: a b(;p) Tambié se puede cosiderar que los valores posibles de la variable aleatoria de partida (biaria co media p y variaza pq) so 0 y 1, por lo tato las observacioes muestrales solo tedrá estos valores, la suma de todas las observacioes muestrales coicide co el úmero de aciertos y por lo tato, a / puede ser cosiderado como ua media, por lo que segú el Teorema Cetral del Límite (T.C.L.), si la muestra es grade: X N(µ; /)=N(p; pq/) c) Distribució del estimador del parámetro de ua distribució Normal: Si X es ua variable aleatoria N(µ; ) y descoocemos la media y la variaza poblacioal, podemos estimar ésta co la cuasivariaza poblacioal: xi x (1)s = i= 1 1 s = ( xi x), se puede demostrar que el estadístico 1 i = 1 sigue ua distribució Chicuadrado co -1 grados de libertad. Esto sigifica que al tipificar respecto de la variaza poblacioal, cada sumado es el cuadrado de ua N(0;1), y la suma de todos ellos ua Chi-cuadrado, pero todos los sumados o so idepedietes, ya que la suma de todas las observacioes ha de ser tal que se obtega la media x observada. Si fijamos este valor de la media muestral y dejamos que varíe libremete las observacioes, solo hemos de calcular -1, pues la última viee obligada. Por lo tato, el úmero de grados de libertad de la distribució Chi-cuadrado es -1 (el mismo úmero que se utiliza como deomiador del cálculo del estimador de la variaza). d) Distribució del cociete de las los estimadores de las variazas de dos distribucioes Normales idepedietes: (1)s E ocasioes hay que comparar las variazas de dos distribucioes Normales, como el estadístico sigue ua distribució Chi cuadrado co -1 g.l., calculado cada uo de ellos e su respectiva muestra, el estadístico: Estimació de parámetros, pág 3

4 ( ) 1 1 ( 1) ( ) ( 1) 1 s s = 1s s sigue ua distribució F de Sedecor co 1-1 y -1 grados de libertad respectivamete. 4.- Estimació por puto y por itervalo: Cuado realizamos ua estimació de u parámetro aplicado el estimador correspodiete, damos u valor como estimació del parámetro poblacioal, etoces decimos que hemos realizado ua estimació por puto. Co frecuecia hay que platearse qué ta segura es esa estimació: Qué probabilidad hay de que el valor que se ha dado como estimació coicida co lo que realmete se desea estimar?. Supogamos el caso de ua distribució biaria cuyo parámetro p sea realmete 0.4, que por el mometo es descoocido y tomamos ua muestra de tamaño, =5, qué probabilidad hay de que se obtega a = para que el p estimado sea 0.4? 5 3 P(X = ) = = 0,3456 Esto os dice que e solo 34.5 de cada cie veces que tomásemos esta muestra estimaremos correctamete el parámetro poblacioal (e más del 65% de los casos realizaremos ua estimació icorrecta). Qué decir si la variable de partida fuese cotíua?. Por ello ua estimació por puto es poco iformativa de la calidad de esa estimació y se prefiere dar u itervalo de valores etre los cuales esperamos esté icluido el valor estimado co ua cierta probabilidad, es la estimació por itervalo. Para realizar ua estimació por itervalo es preciso coocer la distribució del estimador que se usa y, a partir de ella, costruir u itervalo de cofiaza. Veámoslo co u ejemplo: a) Estimació por itervalo de la media de ua variable Normal. Realizar ua estimació por itervalo es ecotrar los extremos a y b de u itervalo que esperamos cotega la media poblacioal co ua probabilidad que osotros fijamos de atemao y que deomiamos, ivel de cofiaza, sea este ivel 1- α, etoces será : P(a < µ b) =1-α Nosotros sabemos que si la variable de partida es Normal, la media muestral es ua Normal de media la poblacioal y variaza la poblacioal dividida por el tamaño muestral: X N(µ; X µ /) Z= N(0;1) Se puede ecotrar dos valores: a y b tales que la probabilidad de que Z tome valores compredidos etre ellos sea u valor dado 1-α, P(a<Z b) = 1-α. E realidad hay ifiidad de posibles valores a y b y por eso se suele tomar tales que la probabilidad de que Z sea meor que a sea igual a la probabilidad de que Z sea mayor que b, y ambas probabilidades igual a α/ Como al distribució Normal es simétrica respecto de su media, e el caso de ua N(0;1), dos abcisas a y b que delimite colas de igual probabilidad verifica que a = b, por lo que solo hay que buscar el cuatil z α / de la Normal(0;1) Estimació de parámetros, pág 4

5 α/ α/ x µ Etoces: P( zα / < z α) = 1 α, quitado deomiadores detro del parétesis: P zα / < xµ zα / = 1α, restado x : P x zα / <µ x + zα / = 1α, cambiado el sigo y el setido de la desigualdad detro del parétesis: P x zα/ < µ x + zα/ = 1α Supogamos ua variable aleatoria de la que sabemos que sigue ua distribució Normal, de media descoocida y variaza coocida =4. Para estimar la media poblacioal tomamos ua muestra de tamaño 10 y calculamos la media muestral, que resulta ser 30. La estimació por puto será x =30. Por lo tato, el itervalo buscado es: x zα/ < µ x+ zα/ Para este ejemplo, si se desea que 1-α =0.90, el cuatil buscado es el que deja a su derecha u área de 0.05, para que su simétrico deje u área a su izquierda de E las tablas de la Normal(0;1), podemos ecotrar que el cuatil buscado es 1.64, por lo que : 4 4 I1 α = x zα/ < µ x + zα/ = ; = ( 8.963; ) Podemos afirmar que la media poblacioal es u valor compredido etre y co u grado de cofiaza del 90%. Estimació de parámetros, pág 5

6 Nótese que se habla de cofiaza e lugar de probabilidad: ua vez tomada la muestra, todos los datos requeridos para costruir el itervalo so coocidos y podemos costruirlo. Este itervalo ya ha sido fijado y cotedrá o o a la media poblacioal. Solo podemos afirmar que de repetir el proceso muchas veces, tedríamos que, e promedio, 90 de cada 100 de los itervalos que así se costuya cotedrá a la media poblacioal, y "cofiamos" e que este sea uo de esos 90. Si la variaza poblacioal fuese descoocida, todo sería semejate, cambiado variaza poblacioal por cuasivariaza muestral y la distribució Normal por ua t de Studet co -1 grados de libertad. Para el ejemplo actual, si 4 es la cuasidesviació típica: s s 4 4 I1 α = x t(1), < µ x + t( 1) ; ( 8.841;31.159) α / = + = α / Lógicamete, cuado valor de la variaza estimada coicide co la variaza poblacioal (descoocida), al descoocer la variaza poblacioal se obtiee u itervalo más amplio para teer la misma cofiaza de recubrir la media, pues el grado de descoocimieto es mayor. b) Estimació por itervalo de la media de ua variable que o sabemos si sigue ua ley Normal. E este caso solo podemos tomar muestras grades y aplicar el T.C.L.. Si la variaza poblacioal es coocida, el tamaño muestral solo debe ser superior a 30, mietras que si la variaza poblacioal es descoocida, el tamaño ha de ser superior a 60. E ambos casos se debe usar la distribució Normal y o la t, ya que por o cumplirse el supuesto de ormalidad, el error cometido al utilizar la t de Studet es superior al que se comete mateiedo la Normal. Los resultados so solo aproximados, tato más cuato mayor sea la muestra: I x z < µ x+ z 1 α α/ α/ co >30 s I x z < µ x+ z 1 α α/ α/ s co >60 c) Estimació por itervalo del parámetro p de ua distribució biaria: Si se toma ua muestra de tamaño de ua distribució biaria de parámetro p descoocido, podemos cotar el úmero de aciertos de la muestra para estimar p. Esta catidad es ua variable aleatoria que sigue ua distribució biomial de parámetros coocido y p descoocido. Si se supoe que la estimació por puto de p es ua buea aproximació de su valor poblacioal, se podrá calcular las probabilidades asociados a los distitos valores de los posibles x de ua distribució b(;p) ˆ y sumar P(X=0)+P(X=1)+... hasta ecotrar ua tal que la suma esté lo más próximo posible a α /, supogamos que esta sea x a. Del mismo modo se puede proceder por el extremo superior: P(X=)+P(X=-1)+... hasta ecotrar u x b que haga que la suma sea lo más próximo posible a α /, etoces, como: ˆp = /, el itervalo será: xa xb I 1 α = ( ; ) auque, como la probabilidad es discreta, el ivel 1-α deseado casi uca se alcaza exactamete. Este procedimieto tiee ua objeció grave y es que para costruir ua estimació del parámetro poblacioal ha de hacer uso de este parámetro, que es descoocido y se utiliza el valor de p estimado. Otro procedimieto cosiste e determiar los valores p 1 y p del siguiete modo: p 1 es la proporció que se ha de utilizar e ua distribució biomial b( ; p1) para que la probabilidad de obteer a o más aciertos sea 1-α / y p es la proporció que se ha de utilizar e ua distribució biomial b( ; p ) para que la probabilidad de obteer a o meos aciertos sea α / pq E el caso de que el tamaño muestral sea grade, se puede usar la aproximació de la Normal: ˆp Np;, el itervalo de cofiaza será: a pq p = pˆ ± zα /, el icoveiete es que el itervalo para p vuelve a quedar e fució de p, por eso se suele sustituir los p y q de detro de la raíz por sus estimacioes muestrales: Estimació de parámetros, pág 6

7 p = pˆ ± z α / ˆˆ pq Esta fórmula solo es aplicable si el tamaño muestral es tal que tato el úmero de "aciertos" como el de "fallos" sea mayor que 0. Además habría que icluir ua correcció por cotiuidad debida al hecho de aproximar ua distribució discreta (co valores para probabilidades putuales) por ua cotíua, e la que la probabilidad asociada a u solo puto es ula. E el caso de que o se alcace este tamaño de muestra, se puede calcular el itervalo a partir de la fórmula iicial: p(1 p) p = pˆ ± zα / E la que se ha sustituido q por 1 p, como el resto de catidades so coocidas, teemos ua ecuació irracioal e p, que se resuelve aislado el térmio irracioal, elevado al cuadrado: pq ( p pˆ ) = zα / y resolviedo la ecuació de segudo grado que se obtiee. Las raices de dicha ecuació so los extremos del itervalo pedido. Existe otras expresioes para la estimació por itervalo de proporcioes, que o se verá aquí, (ver Martí Adrés, 1994). d) Estimació por itervalo de ua variaza de ua variable aleatoria Normal E el caso de la variaza, si la variable de la que se toma la muestra sigue ua distribució Normal N(µ ; ) sabemos que el estadístico (1)s sigue ua distribució Chi-cuadrado co -1 g.l., puesto que esta distribució toma valores a partir de cero y o es simétrica, tedremos que determiar a partir de las tablas de esta distribució los cuatiles χ 1-α/ y χ α/ que deja a su derecha u área 1-α/ y α/, respectivamete, etoces: (1)s Pχ1 α / < < χ α / = 1α el itervalo de cofiaza es: al despejar la variaza poblacioal hay que ivertir los sigos de la desigualdad, y ( 1) s ( ) 1 s I 1α = ; χα/ χ 1 α/ Estimació de parámetros, pág 7

Métodos Estadísticos de la Ingeniería Tema 9: Inferencia Estadística, Estimación de Parámetros Grupo B

Métodos Estadísticos de la Ingeniería Tema 9: Inferencia Estadística, Estimación de Parámetros Grupo B Métodos Estadísticos de la Igeiería Tema 9: Iferecia Estadística, Estimació de Parámetros Grupo B Área de Estadística e Ivestigació Operativa Licesio J. Rodríguez-Aragó Abril 200 Coteidos...............................................................

Más detalles

Estimación puntual y por intervalos de confianza

Estimación puntual y por intervalos de confianza Ídice 6 Estimació putual y por itervalos de cofiaza 6.1 6.1 Itroducció.......................................... 6.1 6. Estimador........................................... 6. 6.3 Método de costrucció

Más detalles

Tema 9. Inferencia Estadística. Intervalos de confianza.

Tema 9. Inferencia Estadística. Intervalos de confianza. Tema 9. Iferecia Estadística. Itervalos de cofiaza. Idice 1. Itroducció.... 2 2. Itervalo de cofiaza para media poblacioal. Tamaño de la muestra.... 2 2.1. Itervalo de cofiaza... 2 2.2. Tamaño de la muestra...

Más detalles

16 Distribución Muestral de la Proporción

16 Distribución Muestral de la Proporción 16 Distribució Muestral de la Proporció 16.1 INTRODUCCIÓN E el capítulo aterior hemos estudiado cómo se distribuye la variable aleatoria media aritmética de valores idepedietes. A esta distribució la hemos

Más detalles

Estimación puntual y por intervalos

Estimación puntual y por intervalos 0/1/011 Aálisis de datos gestió veteriaria Estimació putual por itervalos Departameto de Producció Aimal Facultad de Veteriaria Uiversidad de Córdoba Córdoba, 30 de Noviembre de 011 Estimació putual por

Más detalles

Estimación puntual y por Intervalos de Confianza

Estimación puntual y por Intervalos de Confianza Capítulo 7 Estimació putual y por Itervalos de Cofiaza 7.1. Itroducció Cosideremos ua v.a X co distribució F θ co θ descoocido. E este tema vemos cómo dar ua estimació putual para el parámetro θ y cómo

Más detalles

IES Fco Ayala de Granada Sobrantes de 2008 (Modelo 3 Junio) Solución Germán-Jesús Rubio Luna 12 2 = 3 12. , es decir

IES Fco Ayala de Granada Sobrantes de 2008 (Modelo 3 Junio) Solución Germán-Jesús Rubio Luna 12 2 = 3 12. , es decir IES Fco Ayala de Graada Sobrates de 008 (Modelo Juio) Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 008 (MODELO ) OPCIÓN A EJERCICIO _A 0 a b Sea las matrices A= y B= 0 6 a) ( 5 putos)

Más detalles

Análisis estadístico de datos simulados Estimadores puntuales

Análisis estadístico de datos simulados Estimadores puntuales Aálisis estadístico de datos simulados Estimadores putuales Georgia Flesia FaMAF 5 de mayo, 2015 Aálisis estadístico Modelizació estadística: Elegir ua distribució e base a los datos observados. Estimar

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDADES PAUTA DE CORRECCIÓN PRUEBA PARCIAL N o 3 Profesor: Hugo S. Salias. Primer Semestre 2012 1. El ivel

Más detalles

5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor.

5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lecció. Fucioes y derivada. 5. Aproimació de fucioes: poliomios de Taylor y teorema de Taylor. Alguas veces podemos aproimar fucioes complicadas mediate otras

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO.001-.00 - CONVOCATORIA: SEPTIEMBRE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella,

Más detalles

Análisis de datos en los estudios epidemiológicos II

Análisis de datos en los estudios epidemiológicos II Aálisis de datos e los estudios epidemiológicos II Itroducció E este capitulo cotiuamos el aálisis de los estudios epidemiológicos cetrádoos e las medidas de tedecia cetral, posició y dispersió, ídices

Más detalles

ESTIMACIÓN PUNTUAL Y ESTIMACIÓN POR INTERVALOS DE CONFIANZA

ESTIMACIÓN PUNTUAL Y ESTIMACIÓN POR INTERVALOS DE CONFIANZA ESTIMACIÓN PUNTUAL Y ESTIMACIÓN POR INTERVALOS DE CONFIANZA Autores: Ágel A. Jua (ajuap@uoc.edu), Máimo Sedao (msedaoh@uoc.edu), Alicia Vila (avilag@uoc.edu). ESQUEMA DE CONTENIDOS Defiició Propiedades

Más detalles

ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M.

ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M. ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Juliá de la Horra Departameto de Matemáticas U.A.M. 1 Itroducció Cuado estamos iteresados e estudiar algua característica de ua població (peso, logitud de las hojas,

Más detalles

INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE UNA PROPORCIÓN

INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE UNA PROPORCIÓN INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE UNA PROPORCIÓN Págia 98 Cuátas caras cabe esperar? El itervalo característico correspodiete a ua probabilidad del 95% (cosideramos casas raros al 5% de los casos extremos)

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central EYP14 Estadística para Costrucció Civil 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 04 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Juio, Ejercicio 4, Opció A Reserva, Ejercicio 4, Opció A Reserva, Ejercicio 4, Opció

Más detalles

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2008 (MODELO 5)

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2008 (MODELO 5) IES Fco Ayala de Graada Sobrates de 008 (Modelo 5) Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 008 (MODELO 5) OPCIÓN A EJERCICIO 1_A De las restriccioes que debe cumplir las

Más detalles

= Adj(A ) = 0 1-2/8 3/8 0 1-2/8 3/8 1-2/8 3/8 8-2 3

= Adj(A ) = 0 1-2/8 3/8 0 1-2/8 3/8 1-2/8 3/8 8-2 3 IES Fco Ayala de Graada Sobrates de 007 (Modelo 5) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO _A ( puto) U taller de carpitería ha vedido 5 muebles, etre sillas, silloes y butacas, por u total de

Más detalles

IES Fco Ayala de Granada Sobrantes 2014 (Modelo 2 ) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes 2014 (Modelo 2 ) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates 014 (Modelo ) Solucioes Germá-Jesús Rubio Lua SELETIVIDAD ANDALUÍA MATEMÁTIAS SS SOBRANTES 014 MODELO OPIÓN A EJERIIO 1 (A) (1 75 putos) Represete gráficamete la regió

Más detalles

INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE UNA PROPORCIÓN

INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE UNA PROPORCIÓN 3 INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE UNA PROPORCIÓN Págia 99 REFLEXIONA Y RESUELVE Cuátas caras cabe esperar? Repite el razoamieto aterior para averiguar cuátas caras cabe esperar si lazamos 00 moedas

Más detalles

IES Fco Ayala de Granada Sobrantes de 2006 (Modelo 2 Septiembre) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2006 (Modelo 2 Septiembre) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 006 (Modelo Septiembre) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A (1 5 putos) Represete gráficamete el recito defiido por el siguiete sistema de iecuacioes:

Más detalles

7.2. Métodos para encontrar estimadores

7.2. Métodos para encontrar estimadores Capítulo 7 Estimació putual 7.1. Itroducció Defiició 7.1.1 U estimador putual es cualquier fució W (X 1,, X ) de la muestra. Es decir, cualquier estadística es ua estimador putual. Se debe teer clara la

Más detalles

Muestreo. Tipos de muestreo. Inferencia Introducción

Muestreo. Tipos de muestreo. Inferencia Introducción Germá Jesús Rubio Lua Catedrático de Matemáticas del IES Fracisco Ayala Muestreo. Tipos de muestreo. Iferecia Itroducció Nota.- Puede decirse que la Estadística es la ciecia que se preocupa de la recogida

Más detalles

Solución del examen de Investigación Operativa de Sistemas de septiembre de 2004

Solución del examen de Investigación Operativa de Sistemas de septiembre de 2004 Solució del eame de Ivestigació Operativa de Sistemas de septiembre de 4 Problema (,5 putos: Ua marca de cereales para el desayuo icluye u muñeco de regalo e cada caja de cereales. Hay tres tipos distitos

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO.-.3 - CONVOCATORIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe

Más detalles

PRUEBA A ( ) ( ) p z p z 0.4988 1 0.4988 0.4988 1 0.4988 0.4988 1.96,0.4988 + 1.96 = 0.4521, 0.5455 441 441

PRUEBA A ( ) ( ) p z p z 0.4988 1 0.4988 0.4988 1 0.4988 0.4988 1.96,0.4988 + 1.96 = 0.4521, 0.5455 441 441 PRUEBAS DE ACCESO A LA UNIVERSIDAD LOGSE CURSO 007-008 CONVOCATORIA: MATERIA: MATEMATICAS APLICADAS A LAS CC SS - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe respoder

Más detalles

IES Fco Ayala de Granada Sobrantes de 2011 (Modelo 1) Enunciado Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2011 (Modelo 1) Enunciado Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 011 (Modelo 1) Euciado Germá-Jesús Rubio Lua SOLUCIONES PRUEBA DE ACCESO A LA UNIVERSIDAD DEL AÑO 010-011 ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

Más detalles

CURSO 2.004-2.005 - CONVOCATORIA:

CURSO 2.004-2.005 - CONVOCATORIA: PRUEBAS DE ACCESO A LA UNIVERSIDAD LOGSE / LOCE CURSO 4-5 - CONVOCATORIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe

Más detalles

0-3 2 0 4-2 -2 0-1 0-1 0-3-13-1

0-3 2 0 4-2 -2 0-1 0-1 0-3-13-1 IS Fco Ayala de Graada Sobrates 009 (Modelo 6) Solució Germá-Jesús Rubio Lua OPCIÓN A JRCICIO 1 ( putos) Sea las matrices: -1 4-1 - 1 5 - -6 A ; B 0-1 y C 0-1 1 0 1-0 -1 Determie X e la ecuació matricial

Más detalles

Ejercicio 1. Sea el recinto limitado por las siguientes inecuaciones: y + 2x 2; 2y 3x 3; 3y x 6.

Ejercicio 1. Sea el recinto limitado por las siguientes inecuaciones: y + 2x 2; 2y 3x 3; 3y x 6. Materiales producidos e el curso: Curso realizado e colaboració etre la Editorial Bruño y el IUCE de la UAM de Madrid del 1 de marzo al 30 de abril de 013 Título: Curso Moodle para matemáticas de la ESO

Más detalles

OPCIÓN A EJERCICIO 1_A

OPCIÓN A EJERCICIO 1_A IES Fco Ayala de Graada Sobrates de 2001 (Modelo 6) Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 1 x -1 Se cosidera la matriz A = 1 1 1. x x 0 (1 5 putos) Calcule los valores de x para los que o existe

Más detalles

Tema 6. Sucesiones y Series. Teorema de Taylor

Tema 6. Sucesiones y Series. Teorema de Taylor Nota: Las siguietes líeas so u resume de las cuestioes que se ha tratado e clase sobre este tema. El desarrollo de todos los tópicos tratados está recogido e la bibliografía recomedada e la Programació

Más detalles

Propuesta A. { (x + 1) 4. Se considera la función f(x) =

Propuesta A. { (x + 1) 4. Se considera la función f(x) = Pruebas de Acceso a Eseñazas Uiversitarias Oficiales de Grado (0) Materia: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II El alumo deberá cotestar a ua de las dos opcioes propuestas A o B. Se podrá utilizar

Más detalles

OPCIÓN A EJERCICIO 1 (A)

OPCIÓN A EJERCICIO 1 (A) IES Fco Ayala de Graada Juio de 01 (Geeral Modelo 6) Solucioes Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 01 MODELO (COMÚN) OPCIÓN A EJERCICIO 1 (A) -1-1 1 Sea las matrices A =

Más detalles

Ejemplos y ejercicios de. Análisis Exploratorio de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios.

Ejemplos y ejercicios de. Análisis Exploratorio de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios. ANÁLISIS EXPLORATORIO DE DATOS Ejemplos y ejercicios de Aálisis Exploratorio de Datos Descripció estadística de ua variable. Ejemplos y ejercicios..1 Ejemplos. Ejemplo.1 Se ha medido el grupo saguíeo de

Más detalles

Soluciones Hoja de Ejercicios 2. Econometría I

Soluciones Hoja de Ejercicios 2. Econometría I Ecoometría I. Solucioes Hoja 2 Carlos Velasco. MEI UC3M. 2007/08 Solucioes Hoja de Ejercicios 2 Ecoometría I 1. Al pregutar el saldo Z (e miles de euros) de su cueta de ahorro cojuta a u matrimoio madrileño

Más detalles

INTERVALOS DE CONFIANZA Y TAMAÑO MUESTRAL. 1. Una muestra aleatoria de 9 tarrinas de helado proporciona los siguientes pesos en gramos

INTERVALOS DE CONFIANZA Y TAMAÑO MUESTRAL. 1. Una muestra aleatoria de 9 tarrinas de helado proporciona los siguientes pesos en gramos 1 INTERVALOS DE CONFIANZA Y TAMAÑO MUESTRAL La mayoría de estos problemas ha sido propuestos e exámees de selectividad de los distitos distritos uiversitarios españoles. 1. Ua muestra aleatoria de 9 tarrias

Más detalles

BIOESTADISTICA (55-10536) Estudios de prevalencia (transversales) 1) Características del diseño en un estudio de prevalencia, o transversal.

BIOESTADISTICA (55-10536) Estudios de prevalencia (transversales) 1) Características del diseño en un estudio de prevalencia, o transversal. Departameto de Estadística Uiversidad Carlos III de Madrid BIOESTADISTICA (55-10536) Estudios de prevalecia (trasversales) CONCEPTOS CLAVE 1) Características del diseño e u estudio de prevalecia, o trasversal

Más detalles

Para construir intervalos de confianza recordemos la distribución muestral de la proporción muestral $p :

Para construir intervalos de confianza recordemos la distribución muestral de la proporción muestral $p : Itervalos de Cofiaza para ua proporció Cuado hacemos u test de hipótesis decidimos sobre u valor hipotético del parámetro. Qué proporció de mujeres espera compartir las tareas de la casa co su pareja?

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE ESPECÍFICA: MATERIAS DE MODALIDAD

PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE ESPECÍFICA: MATERIAS DE MODALIDAD PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE ESPECÍFICA: MATERIAS DE MODALIDAD CURSO 009-010 CONVOCATORIA: MATERIA: MATEMÁTICAS APLICADAS A LAS CC SS - Cada alumo debe elegir sólo ua de las pruebas (A o B).

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE GENERAL: MATERIAS DE MODALIDAD

PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE GENERAL: MATERIAS DE MODALIDAD PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE GENERAL: MATERIAS DE MODALIDAD CURSO 009-010 CONVOCATORIA: MATERIA: MATEMATICAS APLICADAS A LAS CC. SS. - Cada alumo debe elegir sólo ua de las pruebas (A o B) y,

Más detalles

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2012 (MODELO 1) OPCIÓN A

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2012 (MODELO 1) OPCIÓN A IES Fco Ayala de Graada Sobrates de 2012 (Modelo 1 ) Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2012 (MODELO 1) OPCIÓN A EJERCICIO 1_A -1-6 -1 1 2 a 0 1 Sea las matrices A

Más detalles

IES Fco Ayala de Granada Sobrantes de 2006 (Modelo 5 ) Solución Germán-Jesús Rubio Luna OPCIÓN A

IES Fco Ayala de Granada Sobrantes de 2006 (Modelo 5 ) Solución Germán-Jesús Rubio Luna OPCIÓN A IES Fco Ayala de Graada Sobrates de 2006 (Modelo 5 ) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A Sea la regió defiida por las siguietes iecuacioes: x/2 + y/3 1 ; - x + 2y 0; y 2. (2 putos) Represete

Más detalles

IES Fco Ayala de Granada Junio de 2013 (Reserva 2 Modelo 1 ) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Junio de 2013 (Reserva 2 Modelo 1 ) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Graada Juio de 03 (Reserva Modelo ) Solucioes Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 03 MODELO (RESERVA ) OPCIÓN A EJERCICIO (A) ( 5 putos) U fabricate elabora

Más detalles

SOLUCIONES Modelo 2 PRUEBA DE ACCESO A LA UNIVERSIDAD DEL AÑO 2010-2011 ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

SOLUCIONES Modelo 2 PRUEBA DE ACCESO A LA UNIVERSIDAD DEL AÑO 2010-2011 ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II IES Fco Ayala de Graada Sobrates de 011 (Modelo ) Germá-Jesús Rubio Lua SOLUCIONES Modelo PRUEBA DE ACCESO A LA UNIVERSIDAD DEL AÑO 010-011 ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II OPCIÓN

Más detalles

Calculamos los vértices del recinto convexo, resolviendo las ecuaciones las rectas de dos en dos.

Calculamos los vértices del recinto convexo, resolviendo las ecuaciones las rectas de dos en dos. IES Fco Ayala de Graada Sobrates de 2000 (Modelo 1) Solució Germá-Jesús Rubio Lua Los Exámees del año 2000 me los ha proporcioado D. José Gallegos Ferádez OPCIÓN A EJERCICIO 1_A (2 putos) Dibuje el recito

Más detalles

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2012 (MODELO 2)

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2012 (MODELO 2) IES Fco Ayala de Graada Sobrates de 0 (Modelo ) Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 0 (MODELO ) OPCIÓN A EJERCICIO _A ( 5 putos) Halle la matriz X que verifique la ecuació

Más detalles

IES Fco Ayala de Granada Sobrantes de 2001 (Modelo 2) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2001 (Modelo 2) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 001 (Modelo ) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A (3 putos) Se quiere orgaizar u puete aéreo etre dos ciudades, co plazas suficietes de pasaje y carga,

Más detalles

REVISIÓN DE ALGUNOS INDICADORES PARA MEDIR LA DESIGUALDAD XAVIER MANCERO CEPAL

REVISIÓN DE ALGUNOS INDICADORES PARA MEDIR LA DESIGUALDAD XAVIER MANCERO CEPAL 375 REVISIÓN DE ALGUNOS INDICADORES PARA MEDIR LA DESIGUALDAD XAVIER MANCERO CEPAL 376 Revisió de alguos idicadores para medir desigualdad Medidas de Desigualdad Para medir el grado de desigualdad e la

Más detalles

TEMA 8: ESTIMACIÓN POR INTERVALOS

TEMA 8: ESTIMACIÓN POR INTERVALOS MÉTODOS ESTADÍSTICOS ARA LA EMRESA TEMA 8: ESTIMACIÓN OR INTERVALOS 8..- Itroducció a la estimació por itervalos 8..- Itervalos de cofiaza. Costrucció y características 8.3.- Itervalos de cofiaza para

Más detalles

14 Intervalos de confianza

14 Intervalos de confianza Solucioario 14 Itervalos de cofiaza ACTIVIDADES INICIALES 14.I. Calcula tal que P z < Z z α α = 0,87. P zα < Z zα = P Z zα P Z < zα = P Z zα 1= 0,87 P Z P Z P Z = 1,87 = 0,935. Buscado e el iterior de

Más detalles

IES Fco Ayala de Granada Sobrantes 2009 (Modelo 3 Junio) Soluciones Germán-Jesús Rubio Luna+

IES Fco Ayala de Granada Sobrantes 2009 (Modelo 3 Junio) Soluciones Germán-Jesús Rubio Luna+ IES Fco Ayala de Graada Sobrates 009 (Modelo 3 Juio) Solucioes Germá-Jesús Rubio Lua+ MATEMÁTICAS CCSS JUNIO 009 (MODELO 3) SELECTIVIDAD ANDALUCÍA OPCIÓN A EJERCICIO 1 Sea la igualdad A X + B = A, dode

Más detalles

DISTRIBUCION DE FRECUENCIA (DATOS AGRUPADOS)

DISTRIBUCION DE FRECUENCIA (DATOS AGRUPADOS) Los valores icluidos e u grupo de datos usualmete varía e magitud; alguos de ellos so pequeños y otros so grades. U promedio es u valor simple, el cual es cosiderado como el valor más represetativo o típico

Más detalles

Variables aleatorias. Distribución binomial y normal

Variables aleatorias. Distribución binomial y normal Variables aleatorias. Distribució biomial y ormal Variable aleatoria Def.- Al realizar u experimeto aleatorio teemos u espacio muestral E. A cualquier ley o aplicació que a cualquier suceso de E le asocie

Más detalles

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2012 (MODELO 5)

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2012 (MODELO 5) SELETIVIDAD ANDALUÍA MATEMÁTIAS SS SOBRANTES 01 (MODELO 5) OPIÓN A EJERIIO 1_A ( 5 putos) U comerciate dispoe de 100 euros para comprar dos tipos de mazaas A y B. Las del tipo A las compra a 0 60 euros/kg

Más detalles

2. LEYES FINANCIERAS.

2. LEYES FINANCIERAS. TEMA 1: CONCEPTOS PREVIOS 1. INTRODUCCIÓN. Se va a aalizar los itercambios fiacieros cosiderado u ambiete de certidumbre. El itercambio fiaciero supoe que u agete etrega a otro u capital (o capitales),

Más detalles

ANÁLISIS DEL PROBLEMA DE LOS MONOS Y LOS COCOS. (Resolución por JMEB.)

ANÁLISIS DEL PROBLEMA DE LOS MONOS Y LOS COCOS. (Resolución por JMEB.) ANÁLISIS DEL PROBLEMA DE LOS MONOS Y LOS OOS. (Resolució por JMEB.) 1. Defiició. El problema cosiste e calcular la catidad de cocos que había iicialmete e u motó que... ierto día se reuiero moos para recoger

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Juio, Ejercicio 4, Opció B Reserva 1, Ejercicio 4, Opció B Reserva, Ejercicio 4,

Más detalles

Fórmula de Taylor. Si f es continua en [a,x] y derivable en (a,x), existe c (a,x) tal que f(x) f(a) f '(c) = f(x) = f(a) + f '(c)(x a)

Fórmula de Taylor. Si f es continua en [a,x] y derivable en (a,x), existe c (a,x) tal que f(x) f(a) f '(c) = f(x) = f(a) + f '(c)(x a) Aproimació de ua fució mediate u poliomio Cuado yf tiee ua epresió complicada y ecesitamos calcular los valores de ésta, se puede aproimar mediate fucioes secillas (poliómicas). El teorema del valor medio

Más detalles

OPCIÓN A EJERCICIO 1 (A)

OPCIÓN A EJERCICIO 1 (A) IES Fco Ayala de Graada Juio de 014 (Geeral Modelo ) Solucioes Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 014 MODELO (COMÚN) OPCIÓN A EJERCICIO 1 (A) 1 a Sea las matrices A = y

Más detalles

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2008 (MODELO 4)

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2008 (MODELO 4) IES Fco Ayala de Graada Sobrates de 8 (Modelo 4) Solució Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 8 (MODELO 4) OPCIÓN A EJERCICIO 1_A (3 putos) U joyero fabrica dos modelos

Más detalles

Cuadro II.1 Valores absolutos de peso (kg) de niños y niñas < 5 años de Costa Rica, 1966. pc3. pc25 5.3 5.6 5.7 6.1 7.2 5.5 7.6 7.8 8.4 6.4 7.4 9.

Cuadro II.1 Valores absolutos de peso (kg) de niños y niñas < 5 años de Costa Rica, 1966. pc3. pc25 5.3 5.6 5.7 6.1 7.2 5.5 7.6 7.8 8.4 6.4 7.4 9. II. CRECIMIENTO FÍSICO EN CENTROAMÉRICA Y REPÚBLICA DOMINICANA: MEDIDAS ABSOLUTAS PESO Y TALLA, POR EDAD Y SEXO Y COMPARACIÓN CON EL PATRÓN CRECIMIENTO LA OMS (2005) A. Por países 1. Costa Rica E los cuadros

Más detalles

UNIDAD Nº 2. Leyes financieras: Interés simple. Interés compuesto. Descuento.

UNIDAD Nº 2. Leyes financieras: Interés simple. Interés compuesto. Descuento. UNIDAD Nº 2 Leyes fiacieras: Iterés simple. Iterés compuesto. Descueto. 2.1 La Capitalizació simple o Iterés simple 2.1.1.- Cocepto de Capitalizació simple Es la Ley fiaciera segú la cual los itereses

Más detalles

MC Fco. Javier Robles Mendoza Primavera 2009

MC Fco. Javier Robles Mendoza Primavera 2009 1 BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD DE CIENCIAS DE LA COMPUTACIÓN APUNTES CURSO: ALGEBRA SUPERIOR INGENIERIA EN CIENCIAS DE LA COMPUTACIÓN MC Fco. Javier Robles Medoza Primavera 2009 2

Más detalles

Revisión de conceptos: S 2 p ( 1 p ) Distribución binomial: Programa de Efectividad Clínica 2003 Bioestadística Vilma E. Irazola.

Revisión de conceptos: S 2 p ( 1 p ) Distribución binomial: Programa de Efectividad Clínica 2003 Bioestadística Vilma E. Irazola. Programa de Efectividad Clíica 003 Bioestadística Vilma E. Irazola DATOS CATEGORICOS COMPARACION DE PROPORCIONES Revisió de coceptos: Cotiuos Tipos de datos Discretos Categóricos Ejemplo: Variable a a

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO 1999-2. - CONVOCATORIA: Juio MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo

Más detalles

Estadística Inferencial

Estadística Inferencial Estadística Iferecial El presete documeto es ua guía para el curso de iferecia estadística impartido e el Istituto Nacioal de Estadística Geografía e Iformática (INEGI), e el edificio de capacitació; y

Más detalles

CONCEPTOS BÁSICOS DE PRESTAMOS.

CONCEPTOS BÁSICOS DE PRESTAMOS. GESTIÓN FINANCIERA. TEMA 8º. PRESTAMOS. 1.- Coceptos básicos de préstamos. CONCEPTOS BÁSICOS DE PRESTAMOS. Coceptos básicos de prestamos. Préstamo. U préstamo es la operació fiaciera que cosiste e la etrega,

Más detalles

IES Fco Ayala de Granada Sobrantes de 2002 (Modelo 3 Junio) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2002 (Modelo 3 Junio) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 2002 (Modelo 3 Juio) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A (3 putos) U cliete de u supermercado ha pagado u total de 156 euros por 24 litros de leche,

Más detalles

IES Fco Ayala de Granada Sobrantes de 2008 (Modelo 1) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2008 (Modelo 1) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 008 (Modelo 1) Germá-Jesús Rubio Lua SOLUCIONES PRUEBA DE ACCESO A LA UNIVERSIDAD DEL AÑO 007-008 ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II OPCIÓN A

Más detalles

IES Fco Ayala de Granada Sobrantes de 2001 (Modelo 5 Septiembre) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2001 (Modelo 5 Septiembre) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 00 (Modelo 5 Septiembre) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO _A (3 putos) Para fabricar tipos de cable, A y B, que se vederá a 50 y 00 pts el metro, respectivamete,

Más detalles

Matemáticas I - 1 o BACHILLERATO Binomio de Newton

Matemáticas I - 1 o BACHILLERATO Binomio de Newton Matemáticas I - o Bachillerato Matemáticas I - o BACHILLERATO El biomio de Newto es ua fórmula que se utiliza para hacer el desarrollo de la potecia de u biomio elevado a ua potecia cualquiera de expoete

Más detalles

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 2014 MODELO 3 (COLISIONES) OPCIÓN A

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 2014 MODELO 3 (COLISIONES) OPCIÓN A IES Fco Ayala de Graada Juio de 014 (Colisioes Modelo 3) Solucioes Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 014 MODELO 3 (COLISIONES) OPCIÓN A EJERCICIO 1 (A) 1 a Sea las matrices

Más detalles

TEMA 3.- OPERACIÓN FINANCIERA

TEMA 3.- OPERACIÓN FINANCIERA . DEFINICIÓN Y CLASIFICACIÓN. TEMA 3.- OPEACIÓN FINANCIEA Se deomia operació fiaciera a todo itercambio o simultáeo de capitales fiacieros pactado etre dos agetes, siempre que se verifique la equivalecia,

Más detalles

OPCIÓN A EJERCICIO 1_A 1-2 1 Sean las matrices A =

OPCIÓN A EJERCICIO 1_A 1-2 1 Sean las matrices A = IES Fco Ayala de Graada Sobrates de 007 (Juio Modelo ) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 1-1 x -x Sea las matrices A, X y e Y -1 3 0 - z (1 puto) Determie la matriz iversa de A. ( putos)

Más detalles

Sucesiones numéricas.

Sucesiones numéricas. SUCESIONES 3º ESO Sucesioes uméricas. Ua sucesió es u cojuto ordeado de úmeros reales: a 1, a 2, a 3, a 4, Cada elemeto de la sucesió se deomia térmio, el subídice es el lugar que ocupa e la sucesió. El

Más detalles

Ejercicios Resueltos ADC / DAC

Ejercicios Resueltos ADC / DAC Curso: Equipos y Sistemas de Cotrol Digital Profesor: Felipe Páez M. Programa: Automatizació, espertio, 010 Problemas Resueltos: Ejercicios Resueltos ADC / DAC ersió 1.1 1. Se tiee u DAC ideal de 10 bits,

Más detalles

Objetivos. 1. Inferencia Estadística. INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo. M. Iniesta Universidad de Murcia

Objetivos. 1. Inferencia Estadística. INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo. M. Iniesta Universidad de Murcia M. Iiesta Uiversidad de Murcia INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo Objetivos Tratar co muestras aleatorias y su distribució muestral e ejemplos de tamaño reducido. Tratar co la distribució de la

Más detalles

-6-2 1 15 5-6 10 1-4 15 5-6 10 1-4

-6-2 1 15 5-6 10 1-4 15 5-6 10 1-4 IES Fco Ayala de Graada Sobrates de 2002 (Modelo 6 Septiembre) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 2 1-1 Sea la matriz A = 0 m-6 m+1 2 0 (1 puto) Calcule los valores de m para que dicha

Más detalles

1. Lección 11 - Operaciones Financieras a largo plazo - Préstamos (Continuación)

1. Lección 11 - Operaciones Financieras a largo plazo - Préstamos (Continuación) Aputes: Matemáticas Fiacieras 1. Lecció 11 - Operacioes Fiacieras a largo plazo - Préstamos (Cotiuació) 1.1. Préstamo: Método de cuotas de amortizació costates E este caso se verifica A 1 = A 2 = = A =

Más detalles

EXAMEN DE TÉCNICAS PARA EL ANÁLISIS DEL MERCADO. 11-Septiembre-2014.

EXAMEN DE TÉCNICAS PARA EL ANÁLISIS DEL MERCADO. 11-Septiembre-2014. EXAMEN DE TÉCNICAS PARA EL ANÁLISIS DEL MERCADO. -Septiembre-04. APELLIDOS: DNI: NOMBRE:. Se quiere hacer u estudio sobre las persoas que usa iteret e ua regió dode el 40% de los habitates so mujeres.

Más detalles

BINOMIO DE NEWTON página 171 BINOMIO DE NEWTON

BINOMIO DE NEWTON página 171 BINOMIO DE NEWTON págia 171 Los productos otables tiee la fialidad de obteer el resultado de ciertas multiplicacioes si hacer dichas multiplicacioes. Por ejemplo, cuado se desea multiplicar los biomios cojugados siguietes:

Más detalles

1 Sucesiones. Ejemplos. a n = n a n = n! a n = n n. a n = p n. a n = 2n3 + n 2 + 5 n 2 + 8. a n = ln(n)

1 Sucesiones. Ejemplos. a n = n a n = n! a n = n n. a n = p n. a n = 2n3 + n 2 + 5 n 2 + 8. a n = ln(n) 1 Sucesioes De ició. Ua sucesió, a, es ua fució que tiee como domiio el cojuto de los úmeros aturales y como cotradomiio el cojuto de los úmeros reales: a : N! R. Se usa la siguiete otació: a () = a :

Más detalles

Estimaciones Estadísticas: Un Acercamiento Analítico. (Statistical Estimations: An Analitical Approach)

Estimaciones Estadísticas: Un Acercamiento Analítico. (Statistical Estimations: An Analitical Approach) Daea: Iteratioal Joural of Good Cosciece. 5(1) 37-55. ISSN 1870-557X 37 Estimacioes Estadísticas: U Acercamieto Aalítico (Statistical Estimatios: A Aalitical Approach) Badii, M.H. & A. Guille* Resume.

Más detalles

Gradiente, divergencia y rotacional

Gradiente, divergencia y rotacional Lecció 2 Gradiete, divergecia y rotacioal 2.1. Gradiete de u campo escalar Campos escalares. U campo escalar e R es ua fució f : Ω R, dode Ω es u subcojuto de R. Usualmete Ω será u cojuto abierto. Para

Más detalles

Estadística Descriptiva

Estadística Descriptiva Igacio Cascos Ferádez Dpto. Estadística e I.O. Uiversidad Pública de Navarra Estadística Descriptiva Estadística ITT Soido e Image curso 2004-2005 1. Defiicioes fudametales La Estadística Descriptiva se

Más detalles

IES Fco Ayala de Granada Septiembre de 2013 (Modelo 2) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Septiembre de 2013 (Modelo 2) Soluciones Germán-Jesús Rubio Luna SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SEPTIEMBRE 013 MODELO OPCIÓN A EJERCICIO 1 (A) Sea R la regió factible defiida por las iecuacioes x 3y, x 5, y 1. (0 5 putos) Razoe si el puto (4 5,1 55) perteece

Más detalles

Estimación de Parámetros. Estimación de Parámetros

Estimación de Parámetros. Estimación de Parámetros Uiversidad Técica Federico Sata María Capítulo 7 Estimació de Parámetros Estadística Computacioal II Semestre 007 Prof. Carlos Valle Págia : www.if.utfsm.cl/~cvalle e-mail : cvalle@if.utfsm.cl C.Valle

Más detalles

ESTADÍSTICA BÁSICA. Discretas. Función de masa de probabilidad: P(X=x i ) Sólo se toma un conjunto finito valores {x 1, x 2,...}

ESTADÍSTICA BÁSICA. Discretas. Función de masa de probabilidad: P(X=x i ) Sólo se toma un conjunto finito valores {x 1, x 2,...} ESTADÍSTICA BÁSICA 1.) Coceptos básicos: Estadística: Es ua ciecia que aaliza series de datos (por ejemplo, edad de ua població, altura de u equipo de balocesto, temperatura de los meses de verao, etc.)

Más detalles

Estimación de Parámetros

Estimación de Parámetros Igacio Cascos Ferádez Departameto de Estadística Uiversidad Carlos III de Madrid Estimació de Parámetros Estadística I curso 008 009 Veremos cómo costruir valores aproximados de los parámetros de los modelos

Más detalles

TEMA 5: INTERPOLACIÓN

TEMA 5: INTERPOLACIÓN 5..- ITRODUCCIÓ TEMA 5: ITERPOLACIÓ Supogamos que coocemos + putos (x,y, (x,y,..., (x,y, de la curva y = f(x, dode las abscisas x k se distribuye e u itervalo [a,b] de maera que a x x < < x b e y k = f(x

Más detalles

Transformaciones Lineales

Transformaciones Lineales Trasformacioes Lieales 1 Trasformacioes Lieales Las trasformacioes lieales iterviee e muchas situacioes e Matemáticas y so alguas de las fucioes más importates. E Geometría modela las simetrías de u objeto,

Más detalles

Capítulo 2. Operadores

Capítulo 2. Operadores Capítulo 2 Operadores 21 Operadores lieales 22 Fucioes propias y valores propios 23 Operadores hermitiaos 231 Delta de Kroecker 24 Notació de Dirac 25 Operador Adjuto 2 Operadores E la mecáica cuática

Más detalles

Una serie de potencias puede ser interpretada como una función de x. f(x) = n=0

Una serie de potencias puede ser interpretada como una función de x. f(x) = n=0 Tema 4 Series de Potecias Ua expresió de la forma a 0 + a 1 (x c) + a 2 (x c) 2 +... + a (x c) +... = recibe el ombre de serie de potecias cetrada e c. a (x c) Ua serie de potecias puede ser iterpretada

Más detalles

INFERENCIA ESTADÍSTICA. CONTRASTE DE HIPÓTESIS

INFERENCIA ESTADÍSTICA. CONTRASTE DE HIPÓTESIS INFERENCIA ESTADÍSTICA. CONTRASTE DE HIPÓTESIS 1. El peso medio de ua muestra aleatoria de 100 arajas de ua determiada variedad es de 272 g. Se sabe que la desviació típica poblacioal es de 20 g. A u ivel

Más detalles

) se obtiene un valor específico del estimador que recibe el nombre de estimación del parámetro poblacional θ y lo notaremos por = g ( x 1

) se obtiene un valor específico del estimador que recibe el nombre de estimación del parámetro poblacional θ y lo notaremos por = g ( x 1 ESTIMACIÓN PUNTUAL. ESTIMACIÓN POR INTERVALOS DE CONFIANZA. 1. INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA El objetivo básico de la iferecia estadística es hacer iferecias o sacar coclusioes sobre la població

Más detalles

www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve Correo electrónico: josearturobarreto@yahoo.com

www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve Correo electrónico: josearturobarreto@yahoo.com Autor: José Arturo Barreto M.A. Págias web: www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve El cocepto de límite Correo electróico: josearturobarreto@yahoo.com Zeó de Elea (90 A.C) plateó la

Más detalles

Tema 3. Polinomios y otras expresiones algebraicas (Estos conceptos están extraídos del libro Matemáticas 1 de Bachillerato.

Tema 3. Polinomios y otras expresiones algebraicas (Estos conceptos están extraídos del libro Matemáticas 1 de Bachillerato. UH ctualizació de oocimietos de Matemáticas ara Tema Poliomios y otras eresioes algebraicas Estos cocetos está etraídos del libro Matemáticas de achillerato McGrawHill Poliomios: oeracioes co oliomios

Más detalles

Inferencia estadística. Distribuciones muestrales. 3. Establecer relaciones entre los parámetros de la población y los obtenidos de la muestra.

Inferencia estadística. Distribuciones muestrales. 3. Establecer relaciones entre los parámetros de la población y los obtenidos de la muestra. UNIDAD 9 Iferecia estadística. Distribucioes muestrales la Estadística se distigue dos partes perfectamete difereciadas. Ua de ellas se cooce co el ombre de Estadística Descriptiva y tiee como objetivo

Más detalles