FISICA II Unidad N 4 : - CORRIENTE ALTERNA

Tamaño: px
Comenzar la demostración a partir de la página:

Download "FISICA II Unidad N 4 : - CORRIENTE ALTERNA"

Transcripción

1 FISICA II Unidad N 4 : - CORRIENTE ALTERNA NIKOLA TESLA Profesora Mercedes Caratini - FISICA II- ET N 28 República Francesa Página 1 de 16

2 En el año 1882 el físico, matemático, inventor e ingeniero NIKOLA TESLA diseñó y construyó el primer motor de inducción de CA. Posteriormente el físico William Stanley, reutilizó, en 1885, el principio de inducción para transferir la CA entre dos circuitos eléctricamente aislados. La idea central fue la de enrollar un par de bobinas en una base de hierro común, denominada bobina de inducción. De este modo se obtuvo lo que sería el precursor del actual transformador. El sistema usado hoy en día fue ideado fundamentalmente por Nikola Tesla; la distribución de la corriente alterna fue comercializada por George Westinghouse. Otros que contribuyeron en el desarrollo y mejora de este sistema fueron Lucien Gaulard, John Gibbs y Oliver Shallenger entre los años 1881 y La corriente alterna superó las limitaciones que aparecían al emplear la corriente continua (CC), el cual es un sistema ineficiente para la distribución de energía a gran escala debido a problemas en la transmisión de potencia, comercializado en su día con gran agresividad por Thomas Edison. La primera transmisión interurbana de la corriente alterna ocurrió en 1891, cerca de Telluride, Colorado, a la que siguió algunos meses más tarde otra en Alemania. A pesar de las notorias ventajas de la CA frente a la CC, Thomas Edison siguió abogando fuertemente por el uso de la corriente continua, de la que poseía numerosas patentes. De hecho, atacó duramente a Nikola Tesla y a George Westinghouse, promotores de la corriente alterna, a pesar de lo cual ésta se acabó por imponer. Así, utilizando corriente alterna, Charles Proteus Steinmetz, de General Electric, pudo solucionar muchos de los problemas asociados a la producción y transmisión eléctrica, lo cual provocó al fin la derrota de Edison en la batalla de las corrientes, siendo su vencedor George Westinghouse, y en menor medida, Nikola Tesla. CORRIENTE ALTERNA Se denomina corriente alterna (abreviada CA en español y AC en inglés, de alternating current) a la corriente eléctrica en la que los portadores de carga circulan alternativamente en uno u otro sentido. La forma de onda de la corriente alterna más comúnmente utilizada es la de una onda senoidal puesto que se consigue una transmisión más eficiente de la energía. Sin embargo, en ciertas aplicaciones se utilizan otras formas de onda periódicas, tales como la triangular o la cuadrada. ONDAS SENOIDALES. Elementos de una onda: Ciclo: es la sucesión de valores de una magnitud eléctrica periódica, tensión o intensidad, antes de comenzar a repetirse. Todo ciclo esta formado por dos semiciclos uno positivo y otro negativo. Profesora Mercedes Caratini - FISICA II- ET N 28 República Francesa Página 2 de 16

3 Período: es el tiempo invertido en realizar un ciclo. Frecuencia: es el número de ciclos realizados en un segundo. Amplitud: valor máximo de la curva. VALORES EN CORRIENTE ALTERNA En corriente alterna al describir ésta una onda senoidal, no se puede hablar de un solo valor, ya que la ecuación que la describe es la de una onda, hablaremos entonces de: Valor instantáneo: es el valor que toma la magnitud eléctrica en cada instante de tiempo. Valor máximo: es el máximo valor instantáneo comprendido en un intervalo. (I 0 ; V 0 ) Los valores instantáneos de la magnitud Intensidad o Diferencia de potencial se obtienen de la siguiente ecuación: I = I 0 sen (ω t + φ) V = V 0 sen (ω t + φ) I = Intensidad instantánea. I 0 = Intensidad máxima (Amplitud de la curva) V = Voltaje instantáneo. V 0 = Voltaje máximo. (Amplitud de la curva) ω = Pulsación o velocidad angular. Se mide en Rad. /s t = tiempo. Se mide en s. φ = ángulo de fase inicial. Se mide en Rad. Profesora Mercedes Caratini - FISICA II- ET N 28 República Francesa Página 3 de 16

4 La velocidad angular puede escribirse: ω = 2 π f t en donde f es la frecuencia medida en Herzt (Hz) Por lo cual las ecuaciones de V e I pueden escribirse: I = I 0 sen (2 π f t + φ) V = V 0 sen (2 π f t + φ) Valor medio: Valor del área que forma con el eje de abcisas partido por su período. El valor medio se puede interpretar como la componente de continua de la onda sinusoidal. El área se considera positiva si está por encima del eje de abcisas y negativa si está por debajo. Como en una señal sinusoidal el semiciclo positivo es idéntico al negativo, su valor medio es nulo. Por eso el valor medio de una onda sinusoidal se refiere a un semiciclo. 2 I 0 2 V 0 I med = ; V med = π π Valor eficaz: este valor es el que produce el mismo efecto calorífico que su equivalente en corriente continua. Físicamente, el valor eficaz de una corriente alterna se define como el valor de la intensidad de la corriente continua que desarrolla la misma cantidad de energía calorífica en el mismo tiempo y en la misma resistencia. En el campo industrial, el valor eficaz es de gran importancia ya que casi todas las operaciones con magnitudes energéticas se hacen con dicho valor. Matemáticamente se demuestra que para una corriente alterna senoidal el valor eficaz viene dado por la expresión: I 0 V 0 I ef = = 0,707. I 0 V e f = = 0,707 V Normalmente los amperímetros y voltímetros de corriente alterna miden valores eficaces. Cuando se dice que su valor es de 220 V CA, se está diciendo que su valor eficaz (al menos nominalmente) es de 220 V, lo que significa que tiene los mismos efectos caloríficos que una tensión de 220 V de CC. Un ampere eficaz res aquella corriente alterna que desarrollará la misma potencia que un ampere en corriente continua. Profesora Mercedes Caratini - FISICA II- ET N 28 República Francesa Página 4 de 16

5 Un volt eficaz es aquel voltaje que producirá una corriente efectiva de un ampere a través de una resistencia de un ohm. Matemáticamente, el valor eficaz de una magnitud variable con el tiempo, se define como la raíz cuadrada de la media de los cuadrados de los valores instantáneos alcanzados durante un período. Valor pico: Valor máximo, de signo positivo (+), que toma la onda sinusoidal del espectro electromagnético, cada medio ciclo, a partir del punto 0. Ese valor aumenta o disminuye a medida que la amplitud A de la propia onda crece o decrece positivamente por encima del valor "0". Valor pico-pico: Diferencia entre su pico o máximo positivo y su pico negativo. Dado que el valor máximo de sen(x) es +1 y el valor mínimo es -1, una señal sinusoidal que oscila entre (+A 0 ) y (-A 0 ). El valor de pico a pico, escrito como A P-P, es por lo tanto (+A 0 )-(-A 0 ) = 2A 0. Si el valor pico es 311 V, su valor V pp es 622 V. V max = V p = Valor pico T = período. β = φ = ángulo de fase ωt = pulsación angular = 2 π f t Representación fasorial En corriente alterna la diferencia de potencial y la intensidad de corriente varían senoidalmente entre valores máximos en direcciones alternas. Una manera conveniente de mostrar la variación de la fem o corriente en un circuito de CA es un vector rotatorio o por medio de una onda senoidal. A este vector rotatorio se lo denomina fasor o vector de Fresnel, que tiene las siguientes características: Girará con una velocidad angular ω. Su módulo será el valor máximo o el eficaz, según convenga. Profesora Mercedes Caratini - FISICA II- ET N 28 República Francesa Página 5 de 16

6 Representación fasorial de una onda senoidal. La componente vertical del vector rotatorio en cualquier instante es el valor instantáneo del voltaje o la corriente. Una revolución completa del vector rotatorio o una onda senoidal completa sobre la curva representan un ciclo. La razón de utilizar la representación fasorial está en la simplificación que ello supone. Matemáticamente, un fasor puede ser definido fácilmente por un número complejo, por lo que puede emplearse la teoría de cálculo de estos números para el análisis de sistemas de corriente alterna. CORRIENTE ALTERNA VERSUS CORRIENTE CONTINUA La razón del amplio uso de la corriente alterna viene determinada por su facilidad de transformación, cualidad de la que carece la corriente continua. En el caso de la corriente continua la elevación de la tensión se logra conectando dínamos en serie, lo cual no es muy práctico, al contrario en corriente alterna se cuenta con un dispositivo: el transformador, que permite elevar la tensión de una forma eficiente. La energía eléctrica viene dada por el producto de la tensión, la intensidad y el tiempo. Dado que la sección de los conductores de las líneas de transporte de energía eléctrica depende de la intensidad, podemos, mediante un transformador, elevar el voltaje hasta altos valores (alta tensión), disminuyendo en igual proporción la intensidad de corriente. Con esto la misma energía puede ser distribuida a largas distancias con bajas intensidades de corriente y, por tanto, con bajas pérdidas por causa del efecto Joule y otros efectos asociados al paso de corriente tales como la histéresis o las corrientes de Foucault. Una vez en el punto de consumo o en sus cercanías, el voltaje puede ser de nuevo reducido para su uso industrial o doméstico de forma cómoda y segura. Profesora Mercedes Caratini - FISICA II- ET N 28 República Francesa Página 6 de 16

7 INDUCTOR Y REACTANCIA INDUCTIVA Un inductor o bobina es un conductor enrollado alrededor de un núcleo, en forma de hélice generalmente el enrollamiento es de hilo de cobre esmaltado. El núcleo puede ser de un material ferroso o de aire. Un inductor es un componente que almacena energía en forma de campo magnético. Cuando una CA fluye a través de la bobina, el flujo magnético cambiante induce una fem opuesta en los alambres. Esta fem inversa se conoce como autoinducción o simplemente inductancia. La inductancia de una bobina puede incrementarse aumentando el número de bobinas o insertando un material permeable en el centro de la bobina. La inductancia se representa con la letra L y se mide en Henries (Hy) La reactancia inductiva representa la oposición de la inductancia, al paso de la CA. Se la representa con la letra X L La reactancia inductiva depende de: La inductancia de la bobina. La frecuencia del voltaje aplicado. Se calcula con la siguiente fórmula: X L = 2 π f L La reactancia inductiva, como resistencia se mide en Ohm. La corriente eficaz en un inductor se determina de su reactancia inductiva y su voltaje eficaz mediante la ecuación de la ley de Ohm: V L = I. X L CAPACITOR Y REACTANCIA CAPACITIVA La corriente continua no circulará a través de un capacitor debido a la separación de las placas. Sin embargo, cuando se inserta un capacitor en un circuito de CA, la corriente alterna descargará y cargará en forma alternativa el capacitor, permitiendo que se lleve a cabo trabajo en el circuito. Del mismo modo que la fem inversa en un inductor presenta oposición a la corriente eléctrica, así ocurrirá con la fem inversa debido a la carga que se acumula en el capacitor. Profesora Mercedes Caratini - FISICA II- ET N 28 República Francesa Página 7 de 16

8 La reactancia capacitiva es la oposición no resistiva a la corriente alterna debido a la fem inversa del capacitor. Se la representa con la letra X C La reactancia capacitiva depende de: Se calcula con la siguiente fórmula: La capacidad del capacitor. La frecuencia de la CA. X C = 1 2. π f C La reactancia capacitiva se mide en Ohm. La corriente eficaz en un circuito capacitivo se determina a partir de su reactancia capacitiva y su voltaje eficaz mediante la ecuación de la ley de Ohm: V C = I. X C CIRCUITOS DE CORRIENTE ALTERNA. En los circuitos de CA los valores instantáneos de la fem y de la intensidad de corriente no suelen estar en fase, es decir, no alcanzan en el mismo instante de tiempo sus valores máximos y sus ceros, debido a los elementos pasivos del circuito. Es decir que el voltaje y la corriente se encuentran en fase cuando alcanzan sus máximos y sus ceros al mismo tiempo. Los efectos de la inductancia y la capacitancia en un circuito de CA evitan que el voltaje y la corriente alcancen los máximos y ceros al mismo tiempo. En otras palabras, la corriente y el voltaje en la mayor parte de los circuitos de CA están fuera de fase (desfasaje). Profesora Mercedes Caratini - FISICA II- ET N 28 República Francesa Página 8 de 16

9 Circuito de CA Resistivo puro. CA. Estos circuitos contienen solo resistencias, en este caso una resistencia en serie con el generador de Muchos electrodomésticos (lámparas, calefactores, tostadores, planchas, secadores de pelo, etc.) se aproximan a un estado de resistencia pura. En estos dispositivos, el voltaje y la corriente instantánea están en fase. Esto significa que las variaciones de voltaje producirán variaciones simultáneas en la corriente. Cuando el voltaje es un máximo, la corriente es también un máximo. Cuando el voltaje es un mínimo, la corriente también lo es. Cuando el voltaje es cero, la corriente es cero V = V 0 sen 2π f t I = I 0 sen 2π f t En la representación vectorial de la primera figura, al cabo de un cierto tiempo t, los vectores rotatorios que representan a la intensidad en la resistencia y a la diferencia de potencial entre sus extremos, ha girado un ángulo ω t.(2πf t). Sus proyecciones sobre el eje vertical marcados por los segmentos de color azul y rojo son respectivamente, los valores en el instante t de la intensidad que circula por la resistencia y de la diferencia de potencial entre sus extremos. Circuito de CA inductivo puro En este caso el circuito contiene un inductor en serie con un generador de CA. Profesora Mercedes Caratini - FISICA II- ET N 28 República Francesa Página 9 de 16

10 La presencia de un inductor da como resultado una fem inversa que retrasa la corriente para que alcance su máximo. El voltaje alcanza un máximo mientras que la corriente aún esta en cero. Cuando el voltaje alcanza el cero, la corriente está en un máximo En un circuito que contiene solo inductancias, se dice que la intensidad de corriente esta retrasada con respecto al voltaje un cuarto de ciclo ó π/2 (90 ) V = V 0 sen 2π f t I = I 0 sen (2π f t - π/2 ) Circuito de CA capacitivo puro Este circuito esta formado por un capacitor en serie con un generador de CA. Profesora Mercedes Caratini - FISICA II- ET N 28 República Francesa Página 10 de 16

11 En estos circuitos el voltaje esta retrasado con respecto a la corriente, puesto que el flujo de cargas hacia el capacitor es necesario para conformar una fem opuesta. Cuando el voltaje aplicado esta decreciendo, la carga fluye desde el capacitor. La razón de flujo de esta carga alcanza un máximo cuando el voltaje aplicado es cero. En un circuito capacitivo puro la intensidad de corriente esta adelantada con respecto al voltaje un cuarto de ciclo ó π/2 (90 ). V = V 0 sen 2π f t I = I 0 sen (2π f t + π/2 ) Circuitos de CA en serie RCL Los circuitos de corriente alterna contienen resistencias, capacitores e inductores en cantidades variables. Por ejemplo: La caída de tensión total en un circuito en CC es la simple suma de las caídas de tensión en cada elemento del circuito. En cambio en un circuito de CA, el voltaje y la corriente no están en fase entre sí: V R está siempre en fase con la corriente, V L adelanta a la corriente por 90. V C esta retrasado respecto de la corriente por 90. Para determinar el voltaje eficaz del circuito se necesita utilizar un diagrama vectorial, llamado diagrama de fases. En este diagrama, los valores eficaces de V R, V L, V C se grafican como vectores rotatorios. La relación de fase se expresa en términos del ángulo de fase (φ), que es una medida de cuánto Profesora Mercedes Caratini - FISICA II- ET N 28 República Francesa Página 11 de 16

12 adelanta el voltaje a la corriente en un elemento del circuito en particular. Por ejemplo, en un resistor puro, el voltaje y la corriente están en fase y φ = 0. Para un inductor φ = +90, y para un capacitor φ = Se presenta un ángulo de fase negativo cuando el voltaje se encuentra retrasado con respecto a la corriente. Se considera V R como un vector a lo largo del eje x, V L se representa mediante un vector que apunta verticalmente hacia arriba y V C tiene la misma dirección que V L pero de sentido hacia abajo. V L V C V R V L - V C V φ V R Si V L es más grande que V C da como resultado un ángulo de fase positivo. En otras palabras, el circuito es inductivo y la intensidad de corriente retrasa (voltaje adelanta). En un circuito capacitivo, V C es mayor que V L y se produce un ángulo de fase negativo que indica que el voltaje esta retrasado con respecto a la corriente. El voltaje eficaz V en un circuito de CA se define como la suma vectorial de V R, V L, V C, cuando se presentan sobre un diagrama de fase. Para calcular el ángulo de fase: V = V R 2 + (V L V C ) 2 ecuación 1 φ = arc tg V L V C V R Recordando que: V R = I. R V L = I. X L V C = I. X C Podemos reemplazar V R, V L y V C por su valor en la ecuación 1 y sacando I de factor común, obtenemos: V = I. R 2 + (X L X C ) 2 Si pasamos I al otro miembro lo que obtenemos es una medida de la oposición combinada que el circuito presenta a la corriente alterna. Esta oposición combinada se denomina impedancia. Z V / I = R 2 + (X L X C ) 2 ecuación 2 Profesora Mercedes Caratini - FISICA II- ET N 28 República Francesa Página 12 de 16

13 IMPEDANCIA: magnitud física que representa la oposición que en conjunto ofrece el circuito al paso de la CA. Se la representa con la letra Z y se mide en Ohm (Ω) al igual que la resistencia, la reactancia inductiva y la reactancia capacitiva. Se la calcula con la ecuación 2 Z = R 2 + (X L X C ) 2 Cuando mayor es la impedancia en un circuito, tanto menor resulta la corriente para un voltaje dado. Así la corriente eficaz en un circuito de CA es: I ef = V ef / Z La impedancia depende de: La frecuencia de la corriente alterna. La resistencia. La inductancia. La capacidad. Puesto que el voltaje en cada elemento depende directamente de la resistencia o reactancia, puede construirse un diagrama de fase alternativo que trate a R, X L y X C como cantidades vectoriales. Dicho diagrama puede utilizarse para calcular la impedancia y el ángulo de fase φ. X L X L -X C Z X C R φ R φ = arc tg X L X C R Profesora Mercedes Caratini - FISICA II- ET N 28 República Francesa Página 13 de 16

14 RESONANCIA La inductancia provoca que la corriente se retrase con relación al voltaje y la capacidad provoca que la corriente adelante al voltaje, su efecto combinado puede cancelarse entre sí. La reactancia total esta dada por X L - X C y la impedancia en un circuito es mínima cuando X L =X C. Cuando esto ocurre, solo permanece la resistencia R y la corriente será máxima. Se dice que un circuito en CA esta en resonancia cuando X L = X C. La frecuencia a la cual esto ocurre se denomina frecuencia de resonancia y se calcula con la siguiente fórmula: f r = 1 2 π L. C Cuando el voltaje aplicado tiene esta frecuencia la corriente en el circuito será máxima. Además, como la corriente esta limitada solo por la resistencia, estará en fase con el voltaje. Otra característica de los circuitos resonantes es que la energía liberada por un elemento reactivo (inductor o condensador) es exactamente igual a la absorbida por el otro. Es decir, durante la primera mitad de un ciclo de entrada el inductor absorbe toda la energía liberada por el condensador, y durante la segunda mitad del ciclo el condensador vuelve a capturar la energía proveniente del inductor. Es precisamente esta condición "oscilatoria" la que se conoce como resonancia, y la frecuencia en la que esta condición se da es llamada frecuencia resonante. Los circuitos resonantes son especialmente útiles cuando se desea hacer "sintonizadores" (conocidos en el inglés como "tuners"), en los cuales se quiere dar suficiente potencia a solamente una frecuencia (o un rango de frecuencias muy reducido) dentro de un espectro. Por ejemplo, cuando sintonizamos una emisora de radio en nuestro receptor lo que se ha producido es una condición de resonancia para la frecuencia central asignada para dicha estación radiodifusora. En el caso de los receptores de radio comerciales tienen un circuito resonante "ajustable" para poder seleccionar la frecuencia resonante adecuada. En las emisoras de FM, los rangos de frecuencia varían entre 88 y 108 MHz, mientras que en la AM los rangos de frecuencia de Onda Media oscilan entre 535 y 1705 KHz. POTENCIA ELÉCTRICA En la corriente alterna la potencia tiene distintos valores por lo cual se habla de tres tipos de potencias: 1) Potencia activa Es la potencia que representa la capacidad de un circuito para realizar un proceso de transformación de la energía eléctrica en trabajo. Los diferentes dispositivos eléctricos existentes convierten la energía Profesora Mercedes Caratini - FISICA II- ET N 28 República Francesa Página 14 de 16

15 eléctrica en otras formas de energía tales como: mecánica, lumínica, térmica, química, etc. Esta potencia es, por lo tanto, la realmente consumida por los circuitos y, en consecuencia, cuando se habla de demanda eléctrica, es esta potencia la que se utiliza para determinar dicha demanda. Se designa con la letra P Se la mide en watt (W) ó kilowatt (KW). Como la potencia activa es debida a los elementos resistivos (Resistencias) se la calcula con la siguiente fórmula: P = I 2. R 2) Potencia reactiva Esta potencia no es la realmente consumida y sólo aparecerá cuando existan bobinas o condensadores en los circuitos. La potencia reactiva tiene un valor medio nulo, por lo que no produce trabajo necesario. Por ello que se dice que es una potencia desvatada (no produce vatios). Se designa con la letra Q. Se mide en volt- amper reactivo (V A R ). Como la potencia reactiva es debida únicamente a los elementos reactivos se calcula con la siguiente fórmula: Q = I ef. V ef. sen φ 3) Potencia aparente La potencia aparente es la suma vectorial de la potencia que disipa dicho circuito y se transforma en calor o trabajo (potencia activa) y la potencia utilizada para la formación de los campos eléctrico y magnético de sus componentes, que fluctuará entre estos componentes y la fuente de energía (potencia reactiva). Se designa con la letra S. Esta potencia aparente no es realmente la "útil", salvo cuando el factor de potencia es la unidad (cos φ=1), y señala que la red de alimentación de un circuito no sólo ha de satisfacer la energía consumida por los elementos resistivos, sino que también ha de contarse con la que van a "almacenar" las bobinas y condensadores. Se mide en volt-amper (VA). Se la calcula con la siguiente fórmula: S = I ef. V ef La relación entre todas las potencias aludidas es: S 2 = P 2 + Q 2 Profesora Mercedes Caratini - FISICA II- ET N 28 República Francesa Página 15 de 16

16 Triángulo de potencia S φ Q 0 P FACTOR DE POTENCIA Se define factor de potencia,( f. d.p.), de un circuito de corriente alterna, como la relación entre la potencia activa, P, y la potencia aparente, S, si las corrientes y tensiones son ondas perfectamente senoidales. Si las corrientes y tensiones son ondas perfectamente senoidales, el factor de potencia será igual al coseno del ángulo que forman los fasores de la corriente y la tensión, designándose en este caso como cos φ, siendo φ el valor de dicho ángulo. De acuerdo con el triángulo de potencias: f. d. p = cos φ = P / S El factor de potencia también puede calcularse con la siguiente fórmula: f. d. p = cos φ = R / Z Como se trata del coseno de un ángulo sus valores varían desde 0 a 1, es por eso que suele expresarse como porcentaje. Por ejemplo si el factor de potencia dio 0,33 se suele expresar como 33 %. Los circuitos de CA mas comerciales tienen f. d. p de 80 a 90 % debido a que ellos suelen contener mas inductancia que capacitancia. Esto requiere que las compañías eléctricas suministren más corriente para una potencia dada. Las compañías eléctricas brindan una tasa mas baja a los usuarios con f. d. p sobre el 90%. Los usuarios comerciales pueden mejorar sus f. d. p inductivos añadiendo por ejemplo capacitores. Un f.d.p. bajo comparado con otro alto, origina, para una misma potencia, una mayor demanda de corriente, lo que implica la necesidad de utilizar cables de mayor sección. La potencia aparente es tanto mayor cuanto más bajo sea el f.d.p., lo que origina una mayor dimensión de los generadores. Ambas conclusiones llevan a un mayor costo de la instalación alimentadora. Esto no resulta práctico para las compañías eléctricas, puesto que el gasto es mayor para un f.d.p. bajo. Profesora Mercedes Caratini - FISICA II- ET N 28 República Francesa Página 16 de 16

CORRIENTE ALTERNA CORRIENTE ALTERNA

CORRIENTE ALTERNA CORRIENTE ALTERNA CORRIENTE ALTERNA La corriente alterna es generada por un alternador, las fuerzas mecánicas hacen girar una rueda polar y se obtienen tensiones inducidas en los conductores fijos del estator que la envían

Más detalles

Clase 7 Inductancia o Reactancia Inductiva

Clase 7 Inductancia o Reactancia Inductiva Clase 7 Inductancia o Reactancia Inductiva 1 La Bobina - Autoinducción Autoinducción es un fenómeno electromagnético que se presentan en determinados sistemas físicos como por ejemplo cicuitos eléctricos

Más detalles

POTENCIA ACTIVA EN C.A. Y MEDICIÓN DE FACTOR DE POTENCIA

POTENCIA ACTIVA EN C.A. Y MEDICIÓN DE FACTOR DE POTENCIA POTENCIA ACTIVA EN C.A. Y MEDICIÓN DE FACTOR DE POTENCIA OBJETIVOS: Determinar la potencia activa, aparente y el factor de potencia en circuitos monofásicos. Observe las normas de seguridad al realizar

Más detalles

En un circuito de CA los generadores suministran energía que es absorbida por los elementos pasivos (R, L y C). Esta energía absorbida puede:

En un circuito de CA los generadores suministran energía que es absorbida por los elementos pasivos (R, L y C). Esta energía absorbida puede: www.clasesalacarta.com 1 Elementos Lineales Tema 7.- CA Elementos Lineales Cuando se aplica una tensión alterna con forma de onda senoidal a los bornes de un receptor eléctrico, circula por él una corriente

Más detalles

Conversión de Corriente alterna a Corriente continua es sencilla y barata.

Conversión de Corriente alterna a Corriente continua es sencilla y barata. TEMA 7 CORRIENTE ALTERNA. En los inicios del desarrollo de los sistemas eléctricos, la electricidad se producía en forma de corriente continua mediante las dinamos, este tipo de generador es más complejo

Más detalles

FISICA GENERAL III 2012 Guía de Trabajo Practico No 9 ANÁLISIS DE CIRCUITOS RL, RC Y RCL SERIE Y PARALELO. R. Comes y R. Bürgesser

FISICA GENERAL III 2012 Guía de Trabajo Practico No 9 ANÁLISIS DE CIRCUITOS RL, RC Y RCL SERIE Y PARALELO. R. Comes y R. Bürgesser FISICA GENERAL III 2012 Guía de Trabajo Practico No 9 ANÁLISIS DE CIRCUITOS RL, RC Y RCL SERIE Y PARALELO. R. Comes y R. Bürgesser Objetivos: Estudiar el comportamiento de distintos elementos (resistores,

Más detalles

Sin embargo, un circuito eléctrico puede contener uno o varios tipos diferentes de resistencias conectadas, entre las que se encuentran:

Sin embargo, un circuito eléctrico puede contener uno o varios tipos diferentes de resistencias conectadas, entre las que se encuentran: DIFERENTES TIPOS DE RESISTENCIAS De acuerdo con la Ley de Ohm, para que exista un circuito eléctrico cerrado tiene que existir: 1.- una fuente de fuerza electromotriz (FEM) o diferencia de potencial, es

Más detalles

LA CORRIENTE ALTERNA

LA CORRIENTE ALTERNA LA CORRIENTE ALTERNA Índice INTRODUCCIÓN VENTAJAS DE LA C.A. PRODUCCIÓN DE UNA C.A. VALORES CARACTERÍSTICOS DE C.A. REPRESENTACIÓN DE UNA MAGNITUD ALTERNA SENOIDAL DESFASE ENTRE MAGNITUDES ALTERNAS RECEPTORES

Más detalles

Módulo 2 CIRCUITOS DE CORRIENTE ALTERNA

Módulo 2 CIRCUITOS DE CORRIENTE ALTERNA 2016 Módulo 2 CIRCUITOS DE CORRIENTE ALTERNA Concepto de corriente alterna Generación de c.a. ondas sinusoidales valores característicos magnitudes fasoriales Ing. Rodríguez, Diego 01/01/2016 INTRODUCCIO

Más detalles

CURSO: Circuitos Eléctricos UNIDAD IV: CORRIENTE ALTERNA - TEORÍA

CURSO: Circuitos Eléctricos UNIDAD IV: CORRIENTE ALTERNA - TEORÍA www.ceduvirt.com CURSO: Circuitos Eléctricos UNIDAD IV: CORRIENTE ALTERNA - TEORÍA EJEMPLO 1: Cinco ciclos de una señal ocurren en un tiempo de 25 msg. Hallar el periodo y la frecuencia. Solución Si

Más detalles

ANÁLISIS DE CIRCUITOS SENOIDALES. Ing. Pablo M. Flores Jara

ANÁLISIS DE CIRCUITOS SENOIDALES. Ing. Pablo M. Flores Jara ANÁLISIS DE CIRCUITOS SENOIDALES Onda Senoidal (I) La corriente alterna es una corriente eléctrica cuyo valor y sentido varían continuamente, tomando valores positivos y negativos en distintos instantes

Más detalles

Potencia Eléctrica en C.A.

Potencia Eléctrica en C.A. Potencia Eléctrica en C.A. Potencia Eléctrica en Circuitos Puramente Resistivos (o en Circuitos con C.C.) Si se aplica una diferencia de potencial a un circuito, éste será recorrido por una determinada

Más detalles

TRABAJO PRÁCTICO DE LABORATORIO 6. Física General III 2013 CIRCUITOS RC, RL Y RLC EN ALTERNA.

TRABAJO PRÁCTICO DE LABORATORIO 6. Física General III 2013 CIRCUITOS RC, RL Y RLC EN ALTERNA. TRABAJO PRÁCTICO DE LABORATORIO 6 Física General III 2013 CIRCUITOS RC, RL Y RLC EN ALTERNA. OBJETIVO: Analizar el comportamiento de circuitos RC, RL y RLC cuando son alimentados con corriente alterna.

Más detalles

1º- CORRIENTE ALTERNA

1º- CORRIENTE ALTERNA º- CORRIENTE ALTERNA Se denomina corriente alterna a toda corriente eléctrica que cambia de polaridad periódicamente, pero en la práctica toma este nombre la corriente alterna de tipo senoidal: e Voltaje

Más detalles

Circuitos de corriente alterna

Circuitos de corriente alterna Circuitos de corriente alterna Área Física Resultados de aprendizaje Calcular la corriente, frecuencia y otras magnitudes en circuitos de corriente alterna, como el RLC. Contenidos. Introducción teórica.

Más detalles

En la figura 1 se observan los cambios de polaridad (positivo y negativo) y las variaciones en amplitud de una onda de ca.

En la figura 1 se observan los cambios de polaridad (positivo y negativo) y las variaciones en amplitud de una onda de ca. Página 1 de 7 TENSION ALTERNA En la figura 1 se observan los cambios de polaridad (positivo y negativo) y las variaciones en amplitud de una onda de ca. Puede definirse un voltaje alterno como el que varía

Más detalles

Aplicación de funciones de variable compleja en circuitos eléctricos: fasores

Aplicación de funciones de variable compleja en circuitos eléctricos: fasores Aplicación de funciones de variable compleja en circuitos eléctricos: fasores Ocampo Matias Estudiante de Ingeniería Eléctrica Universidad Nacional del Sur, Avda. Alem 1253, B8000CPB Bahía Blanca, Argentina

Más detalles

C.A. : Circuito con Resistencia R

C.A. : Circuito con Resistencia R Teoría sobre c.a obtenida de la página web - 1 - C.A. : Circuito con Resistencia R Intensidad Instantánea i(t) e Intensidad Eficaz I v(t) = V sen t) V I = ----- R V = R I i(t) = I sen t) V R = ----- I

Más detalles

CURSO: CIRCUITOS Y MAQUINAS ELECTRICAS Profesor del Curso : Ms.Sc. César L. López Aguilar Ingeniero Mecánico Electricista CIP 67424

CURSO: CIRCUITOS Y MAQUINAS ELECTRICAS Profesor del Curso : Ms.Sc. César L. López Aguilar Ingeniero Mecánico Electricista CIP 67424 21/11/2013 UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA AGROINDUSTRIAL MODULO SEMANA 8 CURSO: CIRCUITOS Y MAQUINAS ELECTRICAS Profesor del Curso : Ms.Sc. César L. López Aguilar Ingeniero Mecánico

Más detalles

CORRIENTE ALTERNA DEFINICION.

CORRIENTE ALTERNA DEFINICION. DEFINICION. CORRIENTE ALTERNA La forma de oscilación de la corriente alterna más comúnmente utilizada es la de una oscilación sinusoidal, puesto que se consigue una transmisión más eficiente de la energía.

Más detalles

Unidad Didáctica 2. Corriente Alterna Monofásica. Instalaciones y Servicios Parte II. Corriente Alterna Monofásica

Unidad Didáctica 2. Corriente Alterna Monofásica. Instalaciones y Servicios Parte II. Corriente Alterna Monofásica Instalaciones y Servicios Parte II Corriente Alterna Monofásica Unidad Didáctica 2 Corriente Alterna Monofásica Instalaciones y Servicios Parte II- UD2 CONTENIDO DE LA UNIDAD Introducción a la corriente

Más detalles

CORRIENTE ALTERNA. Onda senoidal:

CORRIENTE ALTERNA. Onda senoidal: CORRIENTE ALTERNA Onda senoidal: En corriente alterna, la tensión varía continuamente en el tiempo, tomando valores positivos y negativos. La forma más común de corriente alterna es la senoidal. Se debe

Más detalles

Temas: Corresponden a la Unidad 6 y 7 del programa analítico de la asignatura Electrotecnia 1 correspondiente al plan 2003.

Temas: Corresponden a la Unidad 6 y 7 del programa analítico de la asignatura Electrotecnia 1 correspondiente al plan 2003. Temas: Corresponden a la Unidad 6 y 7 del programa analítico de la asignatura Electrotecnia 1 correspondiente al plan 2003. PROBLEMA Nº 1: Por un circuito serie formado por un elemento resistivo de resistencia

Más detalles

INSTALACIONES ELECTRICAS ELECTROTECNIA CORRIENTE CONTINUA Y ALTERNA

INSTALACIONES ELECTRICAS ELECTROTECNIA CORRIENTE CONTINUA Y ALTERNA INSTALACIONES ELECTRICAS ELECTROTECNIA CORRIENTE CONTINUA Y ALTERNA 1) BIBLIOGRAFIA 2) LEY DE OHM 3) INTRODUCCION CORRIENTE CONTINUA 4) CIRCUITOS de CORRIENTE CONTINUA 5) INTRODUCCION CORRIENTE ALTERNA

Más detalles

Corriente Alterna: Potencia en corriente alterna

Corriente Alterna: Potencia en corriente alterna Corriente Alterna: Potencia en corriente alterna Si le preguntaran a Emilio que lámpara lucirá más, una de 100 W o una de 60 W, la respuesta sería inmediata: la de 100, que tiene mas potencia. Luego, está

Más detalles

CAMPOS ELECTROMAGNÉTICOS DEPENDIENTES DEL TIEMPO

CAMPOS ELECTROMAGNÉTICOS DEPENDIENTES DEL TIEMPO CAMPOS ELECTROMAGNÉTICOS DEPENDIENTES DEL TIEMPO PROBLEMAS PROPUESTOS 1:.Se coloca una bobina de 200 vueltas y 0,1 m de radio perpendicular a un campo magnético uniforme de 0,2 T. Encontrar la fem inducida

Más detalles

Temas: Corresponden a la Unidad 6 y 7 del programa analítico de la asignatura Electrotecnia 1 correspondiente al plan 2003.

Temas: Corresponden a la Unidad 6 y 7 del programa analítico de la asignatura Electrotecnia 1 correspondiente al plan 2003. Temas: Corresponden a la Unidad 6 y 7 del programa analítico de la asignatura Electrotecnia 1 correspondiente al plan 2003. PROBLEMA Nº 1: Por un circuito serie formado por un elemento resistivo de resistencia

Más detalles

Máster Universitario en Profesorado

Máster Universitario en Profesorado Máster Universitario en Profesorado Complementos para la formación disciplinar en Tecnología y procesos industriales Aspectos básicos de la Tecnología Eléctrica Contenido (III) TERCERA PARTE: corriente

Más detalles

POTENCIA EN CIRCUITOS DE CORRIENTE ALTERNA. Mg. Amancio R. Rojas Flores

POTENCIA EN CIRCUITOS DE CORRIENTE ALTERNA. Mg. Amancio R. Rojas Flores POTENCIA EN CIRCUITOS DE CORRIENTE ALTERNA Mg. Amancio R. Rojas Flores El análisis de potencia es de suma importancia. La potencia es la cantidad más relevante en sistemas de suministro de electricidad,

Más detalles

Físíca II-2016 Agrimensura- Alimentos -Bioingeniería - Civil-Química

Físíca II-2016 Agrimensura- Alimentos -Bioingeniería - Civil-Química FAUTAD DE INGENIEÍA - DEPATAMENTO DE FÍSIA FÍSIA II-06 ESPEIAIDADES: AGIMENSUA-IVI-QUÍMIA-AIMENTOS- BIOINGENIEÍA GUÍA DE POBEMAS POPUESTOS Y ESUETOS OIENTE ATENA Problema Nº Una inductancia de 0,0 H y

Más detalles

a) De la expresión analítica se obtiene la pulsación: ω = 6280 rad/s. Frecuencia: f ω 1000 Hz=1 khz 12 7,64 A

a) De la expresión analítica se obtiene la pulsación: ω = 6280 rad/s. Frecuencia: f ω 1000 Hz=1 khz 12 7,64 A UNIDAD 5: ORRIENTE ALTERNA ATIVIDADES FINALES PÁG. 136 1. Una onda de corriente alterna senoidal tiene por expresión analítica i=6 sen680t. alcular: a) La frecuencia y el periodo. b) El valor que toma

Más detalles

CIDEAD. 2º BACHILLERATO. ELECTROTECNIA. Tema 11.- La potencia en los circuitos de corriente alterna

CIDEAD. 2º BACHILLERATO. ELECTROTECNIA. Tema 11.- La potencia en los circuitos de corriente alterna Desarrollo del tema.- 1. Los dipolos. 2. Las relaciones de potencia en los dipolos. 3. Concepto de potencia aparente y reactiva. 4. La notación compleja de la potencia. 5. El teorema de Boucherot. 6. El

Más detalles

1. Las funciones periódicas. Ondas sinusoidales. 3. La representación vectorial de una onda.

1. Las funciones periódicas. Ondas sinusoidales. 3. La representación vectorial de una onda. DESARROLLO DEL AMA: 1. Las funciones periódicas. Ondas sinusoidales.. Características de una onda. 3. La representación vectorial de una onda. 4. Ondas sinusoidales simultáneas con la misma frecuencia:

Más detalles

NÚMEROS COMPLEJOS. Se puede considerar C como el conjunto de los pares ordenados de números reales z=(x,y) con las siguientes operaciones:

NÚMEROS COMPLEJOS. Se puede considerar C como el conjunto de los pares ordenados de números reales z=(x,y) con las siguientes operaciones: NÚMEROS COMPLEJOS Definición Se puede considerar C como el conjunto de los pares ordenados de números reales z=(x,y) con las siguientes operaciones: Elemento neutro: Elemento opuesto: Elemento unidad:

Más detalles

VOLTAJE Y CORRIENTE ALTERNA CA

VOLTAJE Y CORRIENTE ALTERNA CA LECCIÓN Nº 05 VOLTAJE Y CORRIENTE ALTERNA CA 1. GENERALIDADES Hasta ahora se ha considerado que la corriente eléctrica se desplaza desde el polo positivo del generador al negativo (la corriente electrónica

Más detalles

PRÁCTICA 3 DE FÍSICA GENERAL II

PRÁCTICA 3 DE FÍSICA GENERAL II PRÁCTCA 3 DE FÍSCA GENERAL CURSO 2016-17 Departamento de Física Aplicada e ngeniería de Materiales GRADO EN NGENERÍA DE ORGANZACÓN Coordinador: Rafael Muñoz Bueno rafael.munoz@upm.es Práctica 3 Corriente

Más detalles

2. Circuito resistivo. Los valores eficaces y la potencia. 3. Circuito inductivo. Los valores eficaces y la potencia.

2. Circuito resistivo. Los valores eficaces y la potencia. 3. Circuito inductivo. Los valores eficaces y la potencia. CIDEAD. º BACHILLERATO. ELECTROTECNIA. Desarrollo del tema.. Concepto de elementos. Excitación sinusoidal.. Circuito resistivo. Los valores eficaces y la potencia. 3. Circuito inductivo. Los valores eficaces

Más detalles

Electrotecnia General (Prof. Dr. José Andrés Sancho Llerandi) Tema 14 CORRIENTES ALTERNAS

Electrotecnia General (Prof. Dr. José Andrés Sancho Llerandi) Tema 14 CORRIENTES ALTERNAS TEMA 14 CORRIENTES ALTERNAS 14.1. VALORES ASOCIADOS A LAS ONDAS SENOIDALES. Sea un cuadro rectangular de lados h y l, formado por N espiras devanadas en serie, que gira a velocidad angular constante ω

Más detalles

Es utilizada para generar el campo electromagnético que requieren para su funcionamiento dispositivos eléctricos como transformadores, motores, etc.

Es utilizada para generar el campo electromagnético que requieren para su funcionamiento dispositivos eléctricos como transformadores, motores, etc. Triángulo de Potencias: Potencia Activa : Se representa con la letra P, su unidad de medida es el Watt y se usa más comúnmente el Kwatt. Corresponde a la energía útil, se relaciona con los diferentes dispositivos

Más detalles

Serie 7 CORRIENTE ALTERNA

Serie 7 CORRIENTE ALTERNA Serie 7 CORRIENTE LTERN 1. En el circuito de la figura hallar la corriente que circula y el diagrama vectorial correspondiente. 12 S 110 0 20 mhy f = 50Hz 100 µf 2. Idéntico al anterior. 3. Idéntico al

Más detalles

TENSIONES Y CORRIENTES SINUSOIDALES: REPRESENTACIÓN GRÁFICA

TENSIONES Y CORRIENTES SINUSOIDALES: REPRESENTACIÓN GRÁFICA TENSIONES Y CORRIENTES SINUSOIDALES: REPRESENTACIÓN GRÁFICA Como ya se dicho, manejaremos, en lo sucesivo, expresiones del tipo: v = V o sen (wt + ϕ) (12.1) i = I o sen (wt + ϕ) (12.2) siendo, v = v(t):valor

Más detalles

GUIA DE PROBLEMAS CIRCUITOA ELECTRICOS MODULO CORRIENTE ALTERNA

GUIA DE PROBLEMAS CIRCUITOA ELECTRICOS MODULO CORRIENTE ALTERNA GUIA DE PROBLEMAS CIRCUITOA ELECTRICOS MODULO CORRIENTE ALTERNA 1. Un circuito serie de corriente alterna consta de una resistencia R de 200 una autoinducción de 0,3 H y un condensador de 10 F. Si el generador

Más detalles

INFORMACIÓN SOBRE LA PRUEBA DE ACCESO (PAU) A LA UNIVERSIDAD DE OVIEDO. CURSO 2015 / Materia: ELECTROTECNIA

INFORMACIÓN SOBRE LA PRUEBA DE ACCESO (PAU) A LA UNIVERSIDAD DE OVIEDO. CURSO 2015 / Materia: ELECTROTECNIA INFORMACIÓN SOBRE LA PRUEBA DE ACCESO (PAU) A LA UNIVERSIDAD DE OVIEDO. CURSO 2015 / 2016 Materia: ELECTROTECNIA 1. COMENTARIOS Y/O ACOTACIONES RESPECTO AL TEMARIO EN RELACIÓN CON LA PAU: Indicaciones

Más detalles

IEM-315-T Ingeniería Eléctrica

IEM-315-T Ingeniería Eléctrica IEM-315-T Ingeniería Eléctrica Potencia en el Estado Estable. Potencia Instantánea y Potencia Promedio. Potencia Instantánea. La potencia instantánea suministrada a cualquier dispositivo está dada por

Más detalles

EL CIRCUITO ELÉCTRICO

EL CIRCUITO ELÉCTRICO EL CIRCUITO ELÉCTRICO -ELEMENTOS DE UN CIRCUITO -MAGNITUDES ELÉCTRICAS -LEY DE OHM -ASOCIACIÓN DE ELEMENTOS -TIPOS DE CORRIENTE -ENERGÍA ELÉCTRICA. POTENCIA -EFECTOS DE LA CORRIENTE ELÉCTRICA 1. EL CIRCUITO

Más detalles

CIRCUITOS ELÉCTRICOS EN CORRIENTE ALTERNA

CIRCUITOS ELÉCTRICOS EN CORRIENTE ALTERNA CIRCUITOS ELÉCTRICOS EN CORRIENTE ALTERNA Alicia Mª. Esponda Cascajares 4 de may de 008 Alicia Ma. Esponda Cascajares 1 CORRIENTE ALTERNA Se habla de corriente ALTERNA cuando la dirección de la corriente

Más detalles

Trabajo y potencia. Trabajo mecánico: Energía consumida al desplazar un cuerpo. Se mide en julios (J).

Trabajo y potencia. Trabajo mecánico: Energía consumida al desplazar un cuerpo. Se mide en julios (J). Tema 21.6 Trabajo y potencia Trabajo mecánico: Energía consumida al desplazar un cuerpo. Se mide en julios (J). Trabajo = Fuerza espacio 1 J (1 julio) = 1 N m (newton metro) 1 cal (caloría) = 4,187 J 1

Más detalles

7. Circuitos de corriente alterna. Corriente alterna, impedancia, representación compleja. Potencia en corriente alterna, leyes de Kirchhoff.

7. Circuitos de corriente alterna. Corriente alterna, impedancia, representación compleja. Potencia en corriente alterna, leyes de Kirchhoff. 7. ircuitos de corriente alterna. orriente alterna, impedancia, representación compleja. Potencia en corriente alterna, leyes de Kirchhoff. 0. uál es la capacidad de un circuito oscilante si la carga máxima

Más detalles

SISTEMAS TRIFASICOS.

SISTEMAS TRIFASICOS. SISTEMAS TRIFASICOS. Indice: 1. SISTEMAS TRIFASICOS...2 1.1. Producción de un sistema trifásico de tensiones equilibradas...2 1.2. Secuencia de fases...3 2. CONEXIONES DE FUENTES EN ESTRELLA Y EN TRIÁNGULO...3

Más detalles

Boletín Tema 6. FFI. Ingeniería Informática (Software). Grupo 2. curso

Boletín Tema 6. FFI. Ingeniería Informática (Software). Grupo 2. curso oletín Tema 6 Generador de corriente alterna 1. Un generador sencillo de corriente alterna consiste en una bobina girando en un campo magnético uniforme. La variación temporal del flujo que atraviesa a

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS MATERIA: ELECTROTECNIA OFICIALES DE GRADO (MODELO DE EXAMEN) Curso 2013-2014 INSTRUCCIONES GENERALES Y

Más detalles

LEY DE OHM EN CORRIENTE CONTINUA

LEY DE OHM EN CORRIENTE CONTINUA LEY DE OHM EN CORRIENTE CONTINA "La intensidad de corriente que circula por un circuito de C. C. es directamente proporcional a la tensión aplicada, e inversamente proporcional a la Resistencia R del circuito."

Más detalles

TEMA I. Teoría de Circuitos

TEMA I. Teoría de Circuitos TEMA I Teoría de Circuitos Electrónica II 2007 1 1 Teoría de Circuitos 1.1 Introducción. 1.2 Elementos básicos 1.3 Leyes de Kirchhoff. 1.4 Métodos de análisis: mallas y nodos. 1.5 Teoremas de circuitos:

Más detalles

UNIVERSIDAD JOSE CARLOS MARIATEGUI LECCIÓN Nº 06 EXPRESIONES COMPLEJAS PARA LA CORRIENTE Y EL VOLTAJE 1. ELEMENTOS PASIVOS

UNIVERSIDAD JOSE CARLOS MARIATEGUI LECCIÓN Nº 06 EXPRESIONES COMPLEJAS PARA LA CORRIENTE Y EL VOLTAJE 1. ELEMENTOS PASIVOS LECCIÓN Nº 06 EXPRESIONES COMPLEJAS PARA LA CORRIENTE Y EL VOLTAJE 1. ELEMENTOS PASIVOS 61 2. FASORES Es necesario conocer las entidades de Euler y números complejos para entender favores. Sean a y b dos

Más detalles

es e valor máximo de la fem

es e valor máximo de la fem U Tópicos apítulo de : Electricidad orriente Alterna y Magnetismo J. Pozo, J. Pozo, A. A. eón eón y.m. y.m. horbadjian. APÍTUO OENTE ATENA (A.. ntroducción Para generar corriente alterna, se puede considerar

Más detalles

ELECTROTECNIA Circuitos de Corriente Alterna

ELECTROTECNIA Circuitos de Corriente Alterna ELECTROTECNIA Circuitos de Corriente Alterna Juan Guillermo alenzuela Hernández (jgvalenzuela@utp.edu.co) Universidad Tecnológica de Pereira Segundo Semestre de 2014 Juan alenzuela 1 alores Eficaces de

Más detalles

COLECCIÓN DE PROBLEMAS IV REPASO

COLECCIÓN DE PROBLEMAS IV REPASO COLECCIÓN DE PROBLEMAS I REPASO 1. Una tensión alterna de 100Hz tiene un valor eficaz de 10. Deducir la expresión de la corriente instantánea que circularía por una bobina de L=3H si se le aplica dicha

Más detalles

Tema 2. Sistemas Trifásicos. Ingeniería Eléctrica y Electrónica

Tema 2. Sistemas Trifásicos. Ingeniería Eléctrica y Electrónica 1 Tema 2. Sistemas Trifásicos 2 Sistemas trifásicos. Historia. Ventajas. Índice Conexión en estrella y en triángulo Sistemas trifásicos equilibrados Potencia en sistemas trifásicos equilibrados 3 Sistema

Más detalles

Qué diferencia existe entre 110 ó 220 volts?

Qué diferencia existe entre 110 ó 220 volts? Qué diferencia existe entre 110 ó 220 volts? La diferencia en cuestión es el voltaje, como mejor es la 220v, ya que para una potencia determinada, la intensidad necesaria es menor, determinada por la siguiente

Más detalles

Comportamiento de los componentes pasivos en C.A

Comportamiento de los componentes pasivos en C.A Comportamiento de los componentes pasivos en C.A Los componentes pasivos tienen distinto comportamiento cuando se les aplican dos corrientes de distinta naturaleza, una alterna y la otra continua. La respuesta

Más detalles

Factor de potencia. Importancia del factor de potencia. Figura 1. Triángulo de potencias.

Factor de potencia. Importancia del factor de potencia. Figura 1. Triángulo de potencias. Factor de potencia Figura 1. Triángulo de potencias. Se define factor de potencia, f.d.p., de un circuito de corriente alterna, como la relación entre la potencia activa, P, y la potencia aparente, S,

Más detalles

GUÍA 7: CORRIENTE ALTERNA Electricidad y Magnetismo

GUÍA 7: CORRIENTE ALTERNA Electricidad y Magnetismo GUÍA 7: CORRIENTE ALTERNA Primer Cuatrimestre 2013 Docentes: Dr. Alejandro Gronoskis Lic. María Inés Auliel Andrés Sabater Universidad Nacional de Tres de febrero Depto de Ingeniería Universidad de Tres

Más detalles

La anterior ecuación se puede también expresar de las siguientes formas:

La anterior ecuación se puede también expresar de las siguientes formas: 1. LEY DE OHM GUÍA 1: LEYES ELÉCTRICAS El circuito eléctrico es parecido a un circuito hidráulico ya que puede considerarse como el camino que recorre la corriente (el agua) desde un generador de tensión

Más detalles

Circuitos de corriente alterna

Circuitos de corriente alterna Circuitos de corriente alterna Área Física Resultados de aprendizaje Calcular la corriente, frecuencia y otras magnitudes en circuitos de corriente alterna, como el RLC. Contenidos. Introducción teórica.

Más detalles

FÍSICA GENERAL II Programación. Contenidos

FÍSICA GENERAL II Programación. Contenidos UNIVERSIDAD TÉCNICA FEDERICO SANTA MARIA 1 er Semestre 2011 FÍSICA GENERAL II Programación 1. Control 1: fecha 01 de abril, contenido: Módulos 1, 2 y 3(parcial: determinar diferencias de potencial a partir

Más detalles

Potencia en corriente alterna

Potencia en corriente alterna Potencia en corriente alterna En una corriente eléctrica la potencia se define como el producto entre la tensión y la intensidad de corriente: P(t) = V(t) I(t) En corriente alterna, al ser valores que

Más detalles

3. TRANSFORMADORES. Su misión es aumentar o reducir el voltaje de la corriente manteniendo la potencia. n 2 V 1. n 1 V 2

3. TRANSFORMADORES. Su misión es aumentar o reducir el voltaje de la corriente manteniendo la potencia. n 2 V 1. n 1 V 2 3. TRANSFORMADORES Un transformador son dos arrollamientos (bobina) de hilo conductor, magnéticamente acoplados a través de un núcleo de hierro común (dulce). Un arrollamiento (primario) está unido a una

Más detalles

Inducción electromagnética. 1. Flujo de campo magnético

Inducción electromagnética. 1. Flujo de campo magnético Inducción electromagnética 1. Flujo de campo magnético 2. Inducción electromagnética 2.1 Experiencia de Henry 2.2 Experiencias de Faraday 2.3 Ley de Faraday-Henry 2.4 Ley de Faraday- Lenz 3. Otros caso

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A En la asociación de condensadores de la figura, calcular: a) Capacidad equivalente del circuito. b) Carga que adquiere cada condensador al aplicar una tensión de 13 V entre los puntos entre los

Más detalles

Tema 11: CIRCUITOS ELÉCTRICOS

Tema 11: CIRCUITOS ELÉCTRICOS Tema 11: CIRCUITOS ELÉCTRICOS Esquema 1. Estructura atómica 2. El circuito eléctrico 3. Magnitudes eléctricas básicas 4. Ley de Ohm 5. Energía eléctrica. Efecto Joule. 6. Potencia eléctrica. Tipos de resistencias

Más detalles

CORRIENTE ALTERNA (RLC EN SERIE)

CORRIENTE ALTERNA (RLC EN SERIE) 3 ORRENTE ATERNA (R EN SERE) OBJETOS Para un circuito de corriente alterna R en serie: Medir la corriente eficaz Medir voltajes eficaces en el condensador y en la bobina Medir la impedancia total Medir

Más detalles

Al final de cada cuestión se índica su puntuación

Al final de cada cuestión se índica su puntuación TIEMPO: INSTRUCCIONES GENERALES Y VALORACIÓN Una hora y treinta minutos INSTRUCCIONES: El alumno elegirá una de las dos opciones A o B PUNTUACIÓN: Al final de cada cuestión se índica su puntuación CUESTIÓN

Más detalles

Bloque II: 5- Motores de corriente alterna (Motores trifásicos)

Bloque II: 5- Motores de corriente alterna (Motores trifásicos) Bloque II: 5- Motores de corriente alterna (Motores trifásicos) 1.- Introducción: Corriente alterna y red trifásica Se denomina corriente alterna a la corriente eléctrica en la que la magnitud y dirección

Más detalles

POTENCIA EN CIRCUITOS DE CORRIENTE ALTERNA. Mg. Amancio R. Rojas Flores

POTENCIA EN CIRCUITOS DE CORRIENTE ALTERNA. Mg. Amancio R. Rojas Flores POTENCIA EN CIRCUITOS DE CORRIENTE ALTERNA Mg. Amancio R. Rojas Flores Introducción En algún instante dado, la potencia en una carga es igual al producto y la corriente Ahora consideremos el caso de C.

Más detalles

MÓDULO 1. Líneas eléctricas de baja tensión en edificios y equipamientos urbanos

MÓDULO 1. Líneas eléctricas de baja tensión en edificios y equipamientos urbanos MÓDULO 1 Líneas eléctricas de baja tensión en edificios y equipamientos urbanos EDICIÓN: TAG FORMACIÓN RESERVADOS TODOS LOS DERECHOS. No está permitida la reproducción total o parcial de este texto, ni

Más detalles

ALTERNA (III) TRIFÁSICA: Problemas de aplicación

ALTERNA (III) TRIFÁSICA: Problemas de aplicación ALTERNA (III) TRIFÁSICA: Problemas de aplicación 1º.- Determinar la tensión compuesta que corresponde a un sistema trifásico que posee una tensión simple de 127 V. Solución: 220 V 2º.- Si la tensión de

Más detalles

CIRCUITOS DE CORRIENTE ALTERNA

CIRCUITOS DE CORRIENTE ALTERNA PRÁCTICA DE LABORATORIO II-10 CIRCUITOS DE CORRIENTE ALTERNA 1. OBJETIVOS Estudiar el comportamiento de los elementos básicos en los circuitos de corriente alterna y determinar los parámetros del circuito.

Más detalles

BLOQUE III CIRCUITOS ELÉCTRICOS EN CA

BLOQUE III CIRCUITOS ELÉCTRICOS EN CA 1.- Una tensión viene dada por la expresión es de: v(t)=240 sen( t+30). Si se aplica la tensión v(t) a un receptor puramente inductivo cuya impedancia es de j2 2 Ω, hallar el valor de la intensidad instantánea

Más detalles

CIRCUITOS DE CORRIENTE ALTERNA EN SERIE

CIRCUITOS DE CORRIENTE ALTERNA EN SERIE CIRCUITOS DE CORRIENTE ALTERNA EN SERIE I. OBJETIVOS: Estudiar las relaciones entre el voltaje y la corriente en circuitos de c.a. en serie de R, X L y X C. Analizar en forma experimental las características

Más detalles

RÉGIMEN PERMANENTE DE CORRIENTE ALTERNA SINUSOIDAL

RÉGIMEN PERMANENTE DE CORRIENTE ALTERNA SINUSOIDAL CPÍTULO 3 RÉGIMEN PERMNENTE DE CORRIENTE LTERN SINUSOIDL PR1. TEÓRICO-PRÁCTICO FSORES... 2 PR2. TEÓRICO-PRÁCTICO FSORES... 2 PR3. MÉTODOS SISTEMÁTICOS... 3 PR4. POTENCIS... 3 PR5. POTENCIS... 4 PR6. POTENCIS...

Más detalles

Máster Universitario en Profesorado

Máster Universitario en Profesorado Máster Universitario en Profesorado Complementos para la formación disciplinar en Tecnología y procesos industriales Aspectos básicos de la Tecnología Eléctrica Contenido (II) SEGUNDA PARTE: corriente

Más detalles

Clase 6 Matricula de AIEAS Nª 237/2012 Autor: M.A.R.F Salta 1

Clase 6 Matricula de AIEAS Nª 237/2012 Autor: M.A.R.F Salta 1 Clase 6 1 El capacitor Dispositivo formado por dos placas separadas por un medio aislante. Las placas se denominan armaduras y el medio aislante dieléctrico. Si las armaduras de un condensador se conectar

Más detalles

Resonancia en Circuito RLC en Serie AC

Resonancia en Circuito RLC en Serie AC Laboratorio 5 Resonancia en Circuito RLC en Serie AC 5.1 Objetivos 1. Determinar las caracteristicas de un circuito resonante RLC en serie. 2. Construir las curvas de corriente, voltaje capacitivo e inductivo

Más detalles

Es decir, cuando se aplica una tensión alterna entre sus bornes, el desfase obtenido no es el teórico.

Es decir, cuando se aplica una tensión alterna entre sus bornes, el desfase obtenido no es el teórico. En la práctica no existen estos receptores lineales puros: esistencia real: componente inductivo Bobina real: posee resistencia Condensador real: corriente de fuga a través del dieléctrico Es decir, cuando

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE EXTREMADURA CURSO 97/98

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE EXTREMADURA CURSO 97/98 CURSO 97/98 EXAMEN DE JUNIO OPCIÓN A 1. Para la conexión de resistencias mostrada en la figura calcule: a) Indicación de cada uno de los aparatos de medida. b) Potencia consumida por la resistencia de

Más detalles

Evaluación de Electricidad. 30 preguntas. Tiempo = 30 minutos. Se puede usar calculadora. Suerte

Evaluación de Electricidad. 30 preguntas. Tiempo = 30 minutos. Se puede usar calculadora. Suerte Evaluación de Electricidad. 30 preguntas. Tiempo = 30 minutos. Se puede usar calculadora. Suerte 1. Una batería de carbón y zinc tiene una F.E.M., de 9 volts y se le conecta una resistencia de 12 Kohms.

Más detalles

CAPITULO III COMPENSACION REACTIVA

CAPITULO III COMPENSACION REACTIVA CAPITULO III COMPENSACION REACTIA 1. GENERALIDADES DE COMPENSACION REACTIA 1.1 FACTOR DE POTENCIA Factor de potencia es el nombre dado a la relación entre la potencia activa (kw) usada en un sistema y

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A EJECICIO 1. (2,5 puntos) En el circuito de la figura; calcular: a) El valor de E 2 en el circuito sabiendo que la potencia disipada en 2 es de 8 W. b) Las intensidades de corriente indicadas en

Más detalles

Transformador con carga Fundamento

Transformador con carga Fundamento Transformador con carga Fundamento En la siguiente figura se encuentra el esquema de un transformador con carga. Designamos los componentes con la siguiente nomenclatura: G es un generador de corriente

Más detalles

9 José Fco. Gómez Glez., Benjamín Glez. Díaz, María de la Peña Fabiani, Ernesto Pereda de Pablo

9 José Fco. Gómez Glez., Benjamín Glez. Díaz, María de la Peña Fabiani, Ernesto Pereda de Pablo PROBLEMAS DE CIRCUITOS EN CORRIENTE ALTERNA 25. Una fuente de voltaje senoidal, de amplitud Vm = 200 V y frecuencia f=500 Hz toma el valor v(t)=100 V para t=0. Determinar la dependencia del voltaje en

Más detalles

TEMA 5: Motores de Corriente Continua.

TEMA 5: Motores de Corriente Continua. Esquema: TEMA 5: Motores de Corriente Continua. TEMA 5: Motores de Corriente Continua....1 1.- Introducción...1 2.- Ley de Faraday...2 3.- Constitución de una Máquina Eléctrica...2 4.- Principio de un

Más detalles

1º. CIRCUITO CON R: Empezaremos con un circuito formado por una resistencia alimentada por una fuente de tensión alterna senoidal:

1º. CIRCUITO CON R: Empezaremos con un circuito formado por una resistencia alimentada por una fuente de tensión alterna senoidal: CIRCUITOS EN CORRIENTE ALTERNA. Estudiaremos los circuitos básicos, formados por resistencias (R), condensadores (C) y bobinas (L), cuando se alimentan por una fuente de tensión alterna senoidal. En corriente

Más detalles

5 Aplicaciones de ED de segundo orden

5 Aplicaciones de ED de segundo orden CAPÍTULO 5 Aplicaciones de ED de segundo orden 5.3 Circuitos eléctricos Desde hace más de un siglo, la humanidad ha utilizado en su beneficio la energía eléctrica. Actualmente usamos diferentes aparatos

Más detalles

INACAP ELECTRICIDAD 2 GUIA DE APRENDIZAJE UNIDAD-3 CIRCUITOS ALTERNOS MONOFASICOS EN REGIMEN PERMANENTE SINUSOIDAL

INACAP ELECTRICIDAD 2 GUIA DE APRENDIZAJE UNIDAD-3 CIRCUITOS ALTERNOS MONOFASICOS EN REGIMEN PERMANENTE SINUSOIDAL INACAP ELECTRICIDAD 2 GUIA DE APRENDIAJE UNIDAD-3 CIRCUITOS ALTERNOS MONOFASICOS EN REGIMEN PERMANENTE SINUSOIDAL CIRCUITOS ALTERNOS MONOFASICOS EN REGIMEN PERMANENTE SINUSOIDAL La aplicación de una tensión

Más detalles

ELECTROTECNIA Análisis Fasorial de Circuitos de Corriente Alterna

ELECTROTECNIA Análisis Fasorial de Circuitos de Corriente Alterna ELECTROTECNIA Análisis Fasorial de Circuitos de Corriente Alterna Juan Guillermo Valenzuela Hernández (jgvalenzuela@utp.edu.co) Universidad Tecnológica de Pereira Segundo Semestre de 2014 Juan Valenzuela

Más detalles

CIDEAD. 2º Bachillerato. Electrotecnia Tema 12.- Sistemas trifásicos.

CIDEAD. 2º Bachillerato. Electrotecnia Tema 12.- Sistemas trifásicos. Desarrollo del tema.1. Concepto de sistemas polifásicos. 2. Conexión de las fuentes en estrella y en triángulo. 3. La conexión de los receptores. 4. Conexión en estrella y triángulo en receptores. 5. Resolución

Más detalles

CIRCUITOS DE CORRIENTE ALTERNA CON ELEMENTOS PASIVOS

CIRCUITOS DE CORRIENTE ALTERNA CON ELEMENTOS PASIVOS CIRCUITOS DE CORRIENTE ALTERNA CON ELEMENTOS PASIVOS En este apartado analizaremos circuitos alimentados con generadores de ca, donde intervienen resistencias, bobinas y condensadores por separado y después,

Más detalles

1. CONCEPTOS GENERALES

1. CONCEPTOS GENERALES ITEM DETALLE GUÍA N 1 Conceptos Generales ASIGNATURA Circuitos de Corriente Alterna CÓDIGO 51133254 DOCENTE William López Salgado CÓDIGO 34167 1. CONCEPTOS GENERALES 1.1 OBJETIVO DE LA UNIDAD Que el estudiante

Más detalles

Departamento de Física

Departamento de Física Departamento de Física ------------------------------------------------------------------------------------------------------------------------ LABORATORIO DE FUNDAMENTOS FÍSICOS II Grados TIC PRÁCTICA

Más detalles