MATRICES Y DETERMINANTES CON MATLAB

Tamaño: px
Comenzar la demostración a partir de la página:

Download "MATRICES Y DETERMINANTES CON MATLAB"

Transcripción

1 Para la matriz A= Definir la matriz y obtener: Submatriz formada por los últimos 4 elementos Submatriz formada por las dos primeras filas MATRICES Y DETERMINANTES CON MATLAB El elemento a 44 El elemento a 44 El elemento a 24 El elemento a 42 >> A(end-3:end) >> A( [ 2],:) >> A=[ ; 5 0 8; ; ] >> A(end) >> A(end,end) >> A(2,end) 8 >> A(end,2) 5 >> A(end-2:end, end-:end) Submatriz formada por los elementos de las ultimas tres filas y ultimas dos 8 columnas >> C=[A;[ 3 5 7]] Añadirle filas y columnas sin mas C = que especificar el vector con los elementos que se quiere añadir Submatriz formada por los últimos 6 elementos Submatriz formada por las dos primeras columnas Submatriz formada por los elementos que ocupan las posiciones donde se interceptan las filas y 3 y las columnas 3 y 4 Eliminar la tercera fila de la matriz >> A(end-5:end) >> A(:,[ 2]) >> C=A([ 3],[3 4]) C = >> A(3, :)=[] Desde la versión 5 de Matlab se puede usar end para indicar el último elemento de una matriz, respecto de una dimensión dada.

2 Para el vector: V obtener un vector con amplitud mayor a 0.3 y discutir >> Av= [ ] Av = >> Av> >> Av(Av>0.3) >> An= :length(av); >> An(Av>0.3) >> A=find(Av>0.3) Ggg Vector de ceros y unos que condición es verdadera. muestra donde la Para obtener los elementos del vector que satisfacen la condición: Para obtener un vector con los índices de las muestras que satisfacen la condición v > 0.3 Para obtener un vector con los índices de las muestras que satisfacen la condición, utilizando la función find Para las matrices: A B : : >> A=[ 2 3 4; ] >> size(a) 2 4 >> [filas,columnas]=size(a) filas = 2 columnas = 4 >> size(b) 7 >> length(a) 4 >> length(b) 7 >> B=[pi:0.5:2*pi] Devuelve un vector fila cuyo primer elemento es es el numero de filas y cuyo Segundo elemento es el numero de columnas Devuelve el numero de filas en la primera variable y el número de columnas en la segunda variable Muestra que es un vector fila, un afila y siete columnas Devuelve el numero de filas o columnas cualquiera que sea el mayor Devuelve el tamaño del vector siete columnas >> sum(a) Devuelve la suma todas las columnas de A 2

3 A partir de B una matriz randomica de 4x3 construir la matriz B I4 3 A I La matriz randomica La matriz pedida >> B=rand(4,3) >> A=[B eye(size(b)); eye(size(b)) ones(size(b))] Con una sola instrucción crear cada una de las siguientes matrices y reemplazar las filas 2, 4, 6, 7 de B por filas 5, 6, 7, 8 de A. A Generamos A con una sola línea de comandos Generamos B con una sola línea de comandos Reemplazamos las filas 2, 4, 6, 7 de B por las filas 5, 6, 7, 8 de A y B I 8 (matriz identidad) >> A=[(:8)',(2:9)',(3:0)',(4:)',(5:2)',(6:3)',(7:4)',(8:5)'] >> B=eye(8) >> B([ ],:)=A(5:6:7:8,:)

4 Construir una matriz 5 5 cuyas columnas estén dadas por el vector columna: A T >> B=[ ]'*ones(,5) Dado el vector fila, x=rand(,5) invertir el orden de sus elementos: Definimos la matriz Matriz con sus elementos en orden inverso >> x=rand(,5) >> x=x(5:-:) x = x = Ggggg Obsérvese que por haber utilizado paréntesis en vez de corchetes los valores generados por el operador (:) afectan a los índices del vector y no al valor de sus elementos. Dada una matriz magica de orden 3, A=magic(3), invertir el orden de las columnas: Definimos la matriz Matriz con sus columnas invertidas >> A=magic(3) >> A(:,3:-:) Aunque hubiera sido más fácil utilizar la función fliplr(a), que es específica para ello. Finalmente, hay que decir que A(:) representa un vector columna con las columnas de A una detrás de otra. Con una sola línea de instrucciones generar la matriz y con una sola línea de instrucción extraer un vector columna cuyos elementos sean los elementos de las 3 diagonales de A Definimos la matriz >> A=diag(-3:3)+diag(ones(6,),)+diag(-*ones(6,),-) A Matriz con elementos de la diagonal >>diag(a,) >> diag(a) diag(a,-)

5 T Ingresar la matriz A A 0 Crear la matriz C A Introducimos la matriz La transpuesta La matriz C >> C=[A zeros(4);zeros(4) A_trans] >> A=[ 5 4 6;2 3 5; 6 8 4;4 8 7 ] >> A_trans=A C = A_tr sss 2 6 Dadas las matrices: A 3 9, 2 B 3 4, 5 5 C 5 3 A 0 0 Formar la matriz D 66 0 B 0 sin introducir elemento a elemento. 0 0 C Con una sola instrucción borrar la ultima fila y la ultima columna de D Extraer la primera sub matriz 4x4 M,3, 6 2,5 de D Extraer la submatriz >> A=[2 6; 3 9] B=[ 2; 3 4] C=[-5 5; 5 3] Generamos las matrices C = OBSERVACION COMANDO RESPUESTA D = Primero inicializo la matriz a ceros >> D=zeros(6,6); D = metemos las tres matrices como submatrices de D Eliminar la ultima fila y la ultima columna (Se quiere conservar la matriz D, entonces le asigno el mismo valor a una nueva variable F sobre la que se realizan los cambios) >> D(:2,:2)=A >> D(3:4,3:4)=B >> D(5:6,5:6)=C >> F=D; >> F(6,:)=[] >> F(:,6)=[] F = F =

6 Extraer la submatriz 4x4 de la esquina superior izquierda de D: Extraer la submatriz M,3, 6 2,5 de D : >> H=D(:4,:4) >> K=D([ 3 6],[2 5]) H = K =

Practica 2. Estructuras de Datos en MATLAB

Practica 2. Estructuras de Datos en MATLAB Practica. Estructuras de Datos en MATLAB Informática Aplicada - Grado en Ingeniería Química, UAM, 009/010 1 Fecha limite de entrega de la practica Grupo A: de Marzo Grupo B: 1 de Marzo Objetivos Al finalizar

Más detalles

INFORMÁTICA MATLAB GUÍA 3 Operaciones con Matrices

INFORMÁTICA MATLAB GUÍA 3 Operaciones con Matrices 1. ARREGLOS BIDIMENSIONALES (MATRICES) A las matrices también se les conoce como arreglos bidimensionales, y son una colección de números distribuidos en filas y columnas: Usos de las matrices: Electricidad

Más detalles

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 8. MATRICES

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 8. MATRICES FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 8. MATRICES 1.- Introducción de vectores y matrices. Con Derive los vectores se pueden introducir de dos formas distintas: a) Mediante

Más detalles

Herramientas computacionales para la matemática MATLAB: Arreglos

Herramientas computacionales para la matemática MATLAB: Arreglos Herramientas computacionales para la matemática MATLAB: Arreglos Verónica Borja Macías Marzo 2013 1 Una matriz es un arreglo bidimensional, es una sucesión de números distribuidos en filas y columnas.

Más detalles

GUIA BÁSICA DEL PROCEDIMIENTO MATRIX END MATRIX

GUIA BÁSICA DEL PROCEDIMIENTO MATRIX END MATRIX GUIA BÁSICA DEL PROCEDIMIENTO MATRIX END MATRIX El SPSS permite realizar cálculos matriciales mediante el lenguaje de comandos que se resumen en los siguientes pasos: 1) Abrir una ventana de sintaxis Menú:

Más detalles

Matrices: repaso. Denotaremos con M m n el conjunto de matrices de tamaño m n, o sea, de m filas y n columnas. Una matriz A M m n es de la forma A =

Matrices: repaso. Denotaremos con M m n el conjunto de matrices de tamaño m n, o sea, de m filas y n columnas. Una matriz A M m n es de la forma A = Matrices: repaso Denotaremos con M m n el conjunto de matrices de tamaño m n, o sea, de m filas y n columnas Una matriz A M m n es de la forma a 11 a 1n A = a m1 a mn Denotaremos A ij = a ij el coeficiente

Más detalles

7. PRINCIPALES COMANDOS DE DERIVE-5 PARA EL ÁLGEBRA LINEAL.

7. PRINCIPALES COMANDOS DE DERIVE-5 PARA EL ÁLGEBRA LINEAL. Prácticas de Matemáticas I y Matemáticas II con DERIVE-5 00 7. PRINCIPALES COMANDOS DE DERIVE-5 PARA EL ÁLGEBRA LINEAL. En este apartado vamos a introducir las principales operaciones que DERIVE realiza

Más detalles

2.2 Operaciones con matrices. Funciones específicas.

2.2 Operaciones con matrices. Funciones específicas. 2.2 Operaciones con matrices. Funciones específicas. Operaciones con matrices mediante operadores M puede operar con matrices (1) por medio de operadores y por medio de funciones. Sean A y B dos matrices

Más detalles

7. PRINCIPALES COMANDOS DE DERIVE PARA EL ÁLGEBRA LINEAL.

7. PRINCIPALES COMANDOS DE DERIVE PARA EL ÁLGEBRA LINEAL. Principales comandos de DERIVE para el álgebra 97 7. PRINCIPALES COMANDOS DE DERIVE PARA EL ÁLGEBRA LINEAL. En este apartado vamos a introducir las principales operaciones que DERIVE realiza en el cálculo

Más detalles

PRÁCTICA 1: Introducción a Matlab

PRÁCTICA 1: Introducción a Matlab 1.1 PRÁCTICA 1: Introducción a Matlab 1.1 Introducción MATLAB es un paquete de software que proporciona un entorno potente y amigable para cálculo y simulación. El entorno de programación ofrece operaciones

Más detalles

Departamento de Matemática Aplicada CÁLCULO COMPUTACIONAL. Licenciatura en Química (Curso ) Matrices Práctica 1

Departamento de Matemática Aplicada CÁLCULO COMPUTACIONAL. Licenciatura en Química (Curso ) Matrices Práctica 1 Departamento de Matemática Aplicada CÁLCULO COMPUTACIONAL. Licenciatura en Química (Curso 2005-06) Matrices Práctica 1 1. Introducción En esta práctica vamos a profundizar un poco en las capacidades de

Más detalles

MATRICES. Una matriz es un conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas.

MATRICES. Una matriz es un conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. MATRICES Una matriz es un conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. Cada uno de los números de que consta la matriz se denomina elemento. Un elemento

Más detalles

Introducción al MATLAB

Introducción al MATLAB Introducción al MATLAB Dr. Luis Javier Morales Mendoza FIEC Universidad Veracruzana Poza Rica - Tuxpan Índice 1. Introducción al Matlab 2. Operaciones Aritméticas 3. Vectores y Matrices 4. Funciones Matemáticas

Más detalles

Determinantes. Definiciones básicas sobre determinantes. José de Jesús Angel Angel.

Determinantes. Definiciones básicas sobre determinantes.  José de Jesús Angel Angel. Determinantes Definiciones básicas sobre determinantes wwwmathcommx José de Jesús Angel Angel jjaa@mathcommx MathCon c 2007-2008 Contenido 1 Determinantes 2 11 Propiedades de determinantes 4 2 Inversa

Más detalles

M a tl a b. Oriol Roca ARREGLOS EN MATLAB.

M a tl a b. Oriol Roca ARREGLOS EN MATLAB. ARREGLOS EN MATLAB Arreglos Estructura de datos que permite almacenar varios datos bajo el mismo nombre. VECTORES: son unidimensionales 0 2 4 6 8 VS egu e crida t od en r ei nstern et Vectores Para crear

Más detalles

Definición: Dos matrices A y B son iguales si tienen el mismo orden y coinciden los elementos que ocupan el mismo lugar.

Definición: Dos matrices A y B son iguales si tienen el mismo orden y coinciden los elementos que ocupan el mismo lugar. UNIDAD 03: MATRICES Y DETERMINANTES. 3.1 Conceptos de Matrices. 3.1.1 Definición de matriz. Definición: Se lama matriz de orden m x n a un arreglo rectangular de números dispuestos en m renglones y n columnas.

Más detalles

Matrices. En este capítulo: matrices, determinantes. matriz inversa

Matrices. En este capítulo: matrices, determinantes. matriz inversa Matrices En este capítulo: matrices, determinantes matriz inversa 1 1.1 Matrices De manera informal una matriz es un rectángulo de números dentro de unos paréntesis. A = a 1,1 a 1,2 a 1,3 a 2,1 a 2,2 a

Más detalles

Algebra de Matrices 1

Algebra de Matrices 1 Algebra de Matrices Definición Una matriz es un arreglo rectangular de valores llamados elementos, organizados por filas y columnas. Ejemplo: Notas: A 6. Las matrices son denotadas con letras mayúsculas..

Más detalles

Es decir, det A = producto de diagonal principal producto de diagonal secundaria. Determinante de una matriz cuadrada de orden 3

Es decir, det A = producto de diagonal principal producto de diagonal secundaria. Determinante de una matriz cuadrada de orden 3 1.- DETERMINANTE DE UNA MATRIZ CUADRADA Determinante de una matriz cuadrada de orden 1 Dada una matriz cuadrada de orden 1, A = (a), se define det A = det (a) = a Determinante de una matriz cuadrada de

Más detalles

Operaciones con matrices

Operaciones con matrices Lección B Operaciones con matrices B.1. Introducción y operaciones de matrices numéricas Comenzamos limpiando nuestra área de trabajo clear, clc, echo off, A=[1 2 3;4 0 3;9 3 2] A = 1 2 3 4 0 3 9 3 2 es

Más detalles

Rango de una matriz. Antes de nada daremos algunas definiciones. Para ello supongamos que tenemos una matriz de orden m n: A M m n.

Rango de una matriz. Antes de nada daremos algunas definiciones. Para ello supongamos que tenemos una matriz de orden m n: A M m n. En un artículo anterior dijimos que el rango de una matriz A, ra), es el número de filas que son linealmente independientes. También se hizo uso del método de Gauss para calcular el rango de una matriz:

Más detalles

Aritmetica de matriz compleja Objeto cmatrix

Aritmetica de matriz compleja Objeto cmatrix Aritmetica de matriz compleja Objeto cmatrix Tabla de contendido Definicion Operaciones matriciales o Suma o Resta o Multiplicacion por un escalar o Multiplicación matricial: o Potecia de una matrix o

Más detalles

Una forma fácil de recordar esta suma (regla de Sarrus): Primero vamos a estudiar algunas propiedades de los determinantes.

Una forma fácil de recordar esta suma (regla de Sarrus): Primero vamos a estudiar algunas propiedades de los determinantes. Una forma fácil de recordar esta suma (regla de Sarrus): Ejemplos: Tarea: realizar al menos tres ejercicios de cálculo de determinantes de matrices de 2x2 y otros tres de 3x3. PARA DETERMINANTES DE MATRICES

Más detalles

Lección 8. Matrices y Sistemas de Ecuaciones Lineales

Lección 8. Matrices y Sistemas de Ecuaciones Lineales Lección 8 Matrices y Sistemas de Ecuaciones Lineales MIGUEL ANGEL UH ZAPATA 1 Análisis Numérico I Facultad de Matemáticas, UADY Septiembre 2014 1 Centro de Investigación en Matemáticas, Unidad Mérida En

Más detalles

Cursada Segundo Cuatrimestre 2012 Guía de Trabajos Prácticos Nro. 1

Cursada Segundo Cuatrimestre 2012 Guía de Trabajos Prácticos Nro. 1 Temas: Ambiente de trabajo MATLAB. Creación de matrices y vectores. Matrices pre-definidas. Operador dos puntos. Operaciones con matrices y vectores. Direccionamiento de elementos de matrices y vectores.

Más detalles

Tema 1: Matrices y Determinantes

Tema 1: Matrices y Determinantes Tema 1: Matrices y Determinantes September 14, 2009 1 Matrices Definición 11 Una matriz es un arreglo rectangular de números reales a 11 a 12 a 1m a 21 a 22 a 2m A = a n1 a n2 a nm Se dice que una matriz

Más detalles

A = , B = 2 2. a 11 a 1n a 21 a 2n A = a m1 a mn

A = , B = 2 2. a 11 a 1n a 21 a 2n A = a m1 a mn Máster en Materiales y Sistemas Sensores para Tecnologías Medioambientales Erasmus Mundus NOTAS DE CÁLCULO NUMÉRICO Damián Ginestar Peiró ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA DEL DISEÑO UNIVERSIDAD POLITÉCNICA

Más detalles

Matrices 3. Matrices. Verónica Briceño V. agosto 2012

Matrices 3. Matrices. Verónica Briceño V. agosto 2012 3 agosto 2012 En esta Presentación... En esta Presentación veremos: Matriz Inversa En esta Presentación... En esta Presentación veremos: Matriz Inversa Determinante En esta Presentación... En esta Presentación

Más detalles

Matemáticas 2ºBachillerato Aplicadas a las Ciencias Sociales

Matemáticas 2ºBachillerato Aplicadas a las Ciencias Sociales Matemáticas 2ºBachillerato Aplicadas a las Ciencias Sociales 1era evaluación. Determinantes DETERMINANTES Se trata de una herramienta matemática que sólo se puede utilizar cuando nos encontremos con matrices

Más detalles

Estos apuntes se han sacado de la página de internet de vitutor con pequeñas modificaciones.

Estos apuntes se han sacado de la página de internet de vitutor con pequeñas modificaciones. TEMA 1: MATRICES Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas. Cada uno de los números de que consta la matriz se denomina elemento. Un elemento

Más detalles

Matrices elementales. Forma normal de Hermite

Matrices elementales. Forma normal de Hermite UNIVERSIDAD DE JAÉN ESCUELA POLITÉCNICA SUPERIOR Departamento de Matemáticas (Área de Álgebra) Curso / PRÁCTICA Nº Matrices elementales. Forma normal de Hermite. GENERALIDADES SOBRE MATRICES. Una matriz

Más detalles

Contenido. 2 Operatoria con matrices. 3 Determinantes. 4 Matrices elementales. 1 Definición y tipos de matrices

Contenido. 2 Operatoria con matrices. 3 Determinantes. 4 Matrices elementales. 1 Definición y tipos de matrices elementales Diciembre 2010 Contenido Definición y tipos de matrices elementales 1 Definición y tipos de matrices 2 3 4 elementales 5 elementales Definición 1.1 (Matriz) Una matriz de m filas y n columnas

Más detalles

Matriz sobre K = R o C de dimensión m n

Matriz sobre K = R o C de dimensión m n 2 Matrices y Determinantes 21 Matrices Matriz sobre K = R o C de dimensión m n A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn Tipos de matrices: Cuadrada: n n = (a ij) i=1,,m j=1,,n Nula: (0) i,j 1 0

Más detalles

TEST DE DETERMINANTES

TEST DE DETERMINANTES Página 1 de 7 TEST DE DETERMINANTES 1 Si A es una matriz cuadrada de orden 3 con A = -2, a qué es igual -A? A -2 B 2 C 0 D -6 2 A -144 B 44 C 88 D -31 3 Indicar qué igualdad es falsa: A B C D 4 A -54 B

Más detalles

MATRICES. Se simboliza tal matriz por y se le llamará una matriz x o matriz de orden x (que se lee por ).

MATRICES. Se simboliza tal matriz por y se le llamará una matriz x o matriz de orden x (que se lee por ). 1 MATRICES 1 Una matriz es una disposición rectangular de números (Reales); la forma general de una matriz con filas y columnas es Se simboliza tal matriz por y se le llamará una matriz x o matriz de orden

Más detalles

Repaso de álgebra de matrices y probabilidad. Javier Santibáñez (IIMAS, UNAM) Regresión Semestre / 58

Repaso de álgebra de matrices y probabilidad. Javier Santibáñez (IIMAS, UNAM) Regresión Semestre / 58 Repaso de álgebra de matrices y probabilidad Javier Santibáñez (IIMAS, UNAM) Regresión Semestre 2017-2 1 / 58 Preliminares Definición (matriz) Una matriz de dimensión m n es un arreglo rectangular de números

Más detalles

Maribel Martínez y Ginés Ciudad-Real Fichas para mejorar la atención MATRIZ DE LETRAS

Maribel Martínez y Ginés Ciudad-Real Fichas para mejorar la atención MATRIZ DE LETRAS MATRIZ DE LETRAS p q d b p p b n g b n w n w n n w b p q d b p q d n w n g b n p q p q p q d b p n g n g n g b n w n d b d b b p q d b b n b n n w n g b n p q p q p q d b p n g n g n g b n w n d b d b

Más detalles

Introducción a Matrices y Eliminación Gaussiana

Introducción a Matrices y Eliminación Gaussiana Introducción a Matrices y Eliminación Gaussiana 1 Sistema de Ecuaciones Matricial 2 Definición Una matriz es un arreglo rectangular de valores llamados elementos, organizados por filas y columnas. Ejemplo:

Más detalles

Matemáticas 2.º Bachillerato. Matemáticas 2.º Bachillerato. Matemáticas 2.º Bachillerato. Ejemplo:

Matemáticas 2.º Bachillerato. Matemáticas 2.º Bachillerato. Matemáticas 2.º Bachillerato. Ejemplo: Mapa conceptual Determinante de segundo orden Dada una matriz cuadrada de segundo orden: a a 11 12 A = a a 21 22 se llama determinante de A al número real: det (A)= A = a11 a 12 = a a a a a21 a22 11 22

Más detalles

Inducción a MATLAB. Álgebra Lineal. Escuela de Matemáticas. Facultad de Ciencias Universidad Nacional de Colombia Sede Medellín

Inducción a MATLAB. Álgebra Lineal. Escuela de Matemáticas. Facultad de Ciencias Universidad Nacional de Colombia Sede Medellín Inducción a MATLAB Álgebra Lineal Escuela de Matemáticas Facultad de Ciencias Universidad Nacional de Colombia Sede Medellín Inducción a MATLAB (Álgebra Lineal) Escuela de Matemáticas Universidad Nacional

Más detalles

Algebra lineal Matrices

Algebra lineal Matrices Algebra lineal Matrices Una matriz A un arreglo rectangular de números dispuestos en m renglones (filas) y n columnas. Fila 1 La componente o elemento ij de A, denotado por es el número que aparece en

Más detalles

Matrices y determinantes

Matrices y determinantes Matrices y determinantes 1 Ejemplo Cuál es el tamaño de las siguientes matrices? Cuál es el elemento a 21, b 23, c 42? 2 Tipos de matrices Matriz renglón o vector renglón Matriz columna o vector columna

Más detalles

TEMA V. Pues bien, a estas caracterizaciones de los sistemas de ecuaciones lineales se las llamó matrices. En el caso del sistema considerado tenemos:

TEMA V. Pues bien, a estas caracterizaciones de los sistemas de ecuaciones lineales se las llamó matrices. En el caso del sistema considerado tenemos: TEMA V 1. MATRICES Y SISTEMAS DE ECUACIONES LINEALES. Sea el siguiente sistema de ecuaciones lineales: Realmente quien determina la naturaleza y las soluciones del sistema, no son las incógnitas: x, y,

Más detalles

TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS.

TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS. TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. 1. MATRICES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS. DEFINICIÓN: Las matrices son tablas numéricas rectangulares

Más detalles

Introducción a las Técnicas de Programación con MatLab

Introducción a las Técnicas de Programación con MatLab Introducción a las Técnicas de Programación con MatLab Variables del MatLab Expositor: Dr. Carlos Javier Solano Salinas Temario General 1. Introducción. 2. Interfaz de usuario de MatLab. 3. Variables del

Más detalles

Clase 8 Matrices Álgebra Lineal

Clase 8 Matrices Álgebra Lineal Clase 8 Matrices Álgebra Lineal Código Escuela de Matemáticas - Facultad de Ciencias Universidad Nacional de Colombia Matrices Definición Una matriz es un arreglo rectangular de números denominados entradas

Más detalles

DOCENTE: JESÚS E. BARRIOS P.

DOCENTE: JESÚS E. BARRIOS P. DOCENTE: JESÚS E. BARRIOS P. DEFINICIONES Es larga la historia del uso de las matrices para resolver ecuaciones lineales. Un texto matemático chino que proviene del año 300 A. C. a 200 A. C., Nueve capítulos

Más detalles

Determinantes. Concepto de determinante A cada matriz cuadrada A se le asigna un número denominado determinante de A, denotado por A o por det (A).

Determinantes. Concepto de determinante A cada matriz cuadrada A se le asigna un número denominado determinante de A, denotado por A o por det (A). Determinantes Concepto de determinante A cada matriz cuadrada A se le asigna un número denominado determinante de A, denotado por A o por det (A). A = Determinante de orden uno a 11 = a 11 5 = 5 Determinante

Más detalles

Conjuntos y matrices. Sistemas de ecuaciones lineales

Conjuntos y matrices. Sistemas de ecuaciones lineales 1 Conjuntos y matrices Sistemas de ecuaciones lineales 11 Matrices Nuestro objetivo consiste en estudiar sistemas de ecuaciones del tipo: a 11 x 1 ++ a 1m x m = b 1 a n1 x 1 ++ a nm x m = b n Una solución

Más detalles

Introducción a Matlab. Ing. Laura López López

Introducción a Matlab. Ing. Laura López López Introducción a Matlab Ing. Laura López López Qué es Matlab? MatLab significa MATrixLABoratory MATLAB es un lenguaje de alto nivel para realizar cálculos científico-técnicos. Integra las herramientas de

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES CONCEPTO MATRICES Se llama matriz de orden (dimensión) m n a un conjunto de m n elementos dispuestos en m filas y n columnas Se representa por A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn j=1,2,,n

Más detalles

Algunos algoritmos para matrices de Toeplitz

Algunos algoritmos para matrices de Toeplitz Algunos algoritmos para matrices de Toeplitz Estos apuntes están escritos por varios estudiantes de la ESFM del IPN, bajo la dirección del profesor Egor Maximenko. Participaron Jocelyn Hernández, Jareth

Más detalles

de la forma ), i =1,..., m, j =1,..., n, o simplemente por (a i j ).

de la forma ), i =1,..., m, j =1,..., n, o simplemente por (a i j ). INTRODUCCIÓN. MATRICES Y DETERMINANTES Las matrices se utilizan en el cálculo numérico, en la resolución de sistemas de ecuaciones lineales, de las ecuaciones diferenciales y de las derivadas parciales.

Más detalles

TEMA 3: DETERMINANTES

TEMA 3: DETERMINANTES TEMA Ejercicios / TEMA : DETERMINANTES. Calcula los determinantes de las siguientes matrices: A B C d. D e. E f. F 0 0 4 0 0 4 0 0 0 0 4 4 0 SOL: A 0 SOL: B SOL: C 5 SOL: D 0 SOL: E 0 SOL: F 0. Utiliza

Más detalles

Una matriz es un arreglo rectangular de elementos. Por ejemplo:

Una matriz es un arreglo rectangular de elementos. Por ejemplo: 1 MATRICES CONCEPTOS BÁSICOS Definición: Matriz Una matriz es un arreglo rectangular de elementos. Por ejemplo: es una matriz de 3 x 2 (que se lee 3 por 2 ) pues es un arreglo rectangular de números con

Más detalles

Transponer vectores Es cambiar los vectores fila por columna y se hacen con una comilla al final de la variable del vector. P.E

Transponer vectores Es cambiar los vectores fila por columna y se hacen con una comilla al final de la variable del vector. P.E ARREGLOS UNIDIMENSIONALES (VECTORES) Es una estructura que se utiliza para almacenar y manipular gran cantidad de datos y se encuentran dispuestos en filas y columnas, por lo general se denotan con letras

Más detalles

Introducción a MATLAB

Introducción a MATLAB Introducción a MATLAB Sistemas Conexionistas - Curso 07/08 MATLAB es un sistema interactivo basado en matrices para cálculos científicos y de ingeniería. Se pueden resolver problemas numéricos relativamente

Más detalles

Guía de uso de DERIVE. 2) Botones de acceso rápido Al colocar el cursor sobre el botón aparece un recuadro con su función

Guía de uso de DERIVE. 2) Botones de acceso rápido Al colocar el cursor sobre el botón aparece un recuadro con su función Sobre la pantalla principal de DERIVE distinguimos: 1) La barra del menú 2) Botones de acceso rápido Al colocar el cursor sobre el botón aparece un recuadro con su función UNIDAD DOCENTE DE MATEMÁTICAS

Más detalles

INVERSA DE UNA MATRIZ

INVERSA DE UNA MATRIZ INVERSA DE UNA MATRIZ Profesores Omar Darío Saldarriaga Ortíz Ivan Darío Gómez Hernán Giraldo 2009 Definición Sean x = x 1 x n y y = y 1 y n vectores de n componentes, definimos el producto interno o producto

Más detalles

Esta y todas las demás prácticas están pensadas para ser trabajadas delante de

Esta y todas las demás prácticas están pensadas para ser trabajadas delante de PRÁCTICA 1 Vectores y MATLAB Esta y todas las demás prácticas están pensadas para ser trabajadas delante de un ordenador con MATLAB instalado, y no para ser leídas como una novela. En vez de eso, cada

Más detalles

Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos

Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos Tema 3: Repaso de Álgebra Lineal Parte I Virginia Mazzone Contenidos Vectores y Matrices Bases y Ortonormailizaciòn Norma de Vectores Ecuaciones Lineales Algenraicas Ejercicios Vectores y Matrices Los

Más detalles

Matrices. Álgebra de matrices.

Matrices. Álgebra de matrices. Matrices. Álgebra de matrices. 1. Definiciones generales Definición 1.1 Si m y n son dos números naturales, se llama matriz de números reales de orden m n a una aplicación A : {1, 2, 3,..., m} {1, 2, 3,...,

Más detalles

2.- TIPOS DE MATRICES

2.- TIPOS DE MATRICES 2º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II TEMA.- MATRICES PROFESOR: RAFAEL NÚÑEZ NOGALES.- CONCEPTO DE MATRIZ. Definición de matriz Una matriz real A es un conjunto de números reales

Más detalles

Matriz A = Se denomina MATRIZ a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas.

Matriz A = Se denomina MATRIZ a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. MATRICES Matriz Se denomina MATRIZ a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. a 11 a 12 a 1j a 1n a 21 a 22 a 2j a 2n A = a i1 a ij a in a m1 a

Más detalles

Matrices. Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas.

Matrices. Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas. Matrices Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas. Cada uno de los números de que consta la matriz se denomina elemento. Un elemento

Más detalles

DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES

DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES ALGEBRA DE MATRICES DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES DEFINICIONES 2 Las matrices y los determinantes son herramientas

Más detalles

6.8. Descomposición mediante valores singulares. v 2 =

6.8. Descomposición mediante valores singulares. v 2 = 68 Descomposición mediante valores singulares Los valores singulares de una matriz m n Supongamos que A es una matriz real cualquiera Los autovalores de A T A tienen la siguiente propiedad A T Ax = λx

Más detalles

ACTIVIDADES SELECTIVIDAD MATRICES

ACTIVIDADES SELECTIVIDAD MATRICES ACTIVIDADES SELECTIVIDAD MATRICES Ejercicio 1 Para qué valores de m tiene solución la ecuación matricial? (b) Resuelve la ecuación matricial dada para. Ejercicio 2 Siendo I la matriz identidad de orden

Más detalles

Tema 2: Determinantes

Tema 2: Determinantes Tema 2: Determinantes 1. Introducción En este tema vamos a asignar a cada matriz cuadrada de orden, un número real que llamaremos su determinante y escribiremos. Vamos a ver cómo se calcula. Consideremos

Más detalles

I. Operaciones con matrices usando Mathematica

I. Operaciones con matrices usando Mathematica PRÁCTICA 9: RESOLUCIÓN DE SISTEMAS LINEALES II I. Operaciones con matrices usando Mathematica Introducir matrices en Mathematica: listas y escritura de cuadro. Matrices identidad y diagonales. El programa

Más detalles

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO FACULTAD DE ECONOMIA LICENCIATURA DE ACTUARIA Algebra Lineal Práctica: Matriz inversa 1 M. en I. Elizabeth Almazán Torres 2 Resultado de Aprendizaje El estudiante

Más detalles

Programa EUROPA Ayuda a la Mejora en el Aprendizaje Matemáticas Cuarta sesión

Programa EUROPA Ayuda a la Mejora en el Aprendizaje Matemáticas Cuarta sesión 1/26 Programa EUROPA Ayuda a la Mejora en el Aprendizaje Matemáticas Cuarta sesión Ramón Esteban y Antonio Pastor Índice 1 Álgebra 3 Sistemas de ecuaciones lineales................ 3 Métodos conocidos...................

Más detalles

Matrices especiales. MATLAB tiene una serie de rutinas incorporadas para crear matrices. 1 Es posible crear una matriz de ceros de cualquier tamaño.

Matrices especiales. MATLAB tiene una serie de rutinas incorporadas para crear matrices. 1 Es posible crear una matriz de ceros de cualquier tamaño. PRÁCTICA 2: MATRICES Y MATLAB Introducción. En esta práctica se aprenderá a introducir y editar matrices en MATLAB. Se experimentará con algunas funciones de construcción de matrices incorporadas en MATLAB.

Más detalles

Matrices 1. Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas.

Matrices 1. Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. Matrices 1 Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. Cada uno de los números de que consta la matriz se

Más detalles

TEMA 7: MATRICES. OPERACIONES.

TEMA 7: MATRICES. OPERACIONES. TEMA 7: MATRICES. OPERACIONES. 1. MATRICES. TIPOS DE MATRICES. Se llama matriz de orden m x n (m filas y n columnas) a un conjunto de m n elementos, distribuidos en m filas y n columnas y encerrados entre

Más detalles

Tema 5 Matrices y vectores

Tema 5 Matrices y vectores Tema 5 Matrices y vectores Matrices. Operaciones con matrices Vectores. Operaciones con vectores Actividades MATRICES. OPERACIONES CON MATRICES La calculadora CASIO FX 57-ES permite trabajar con matrices

Más detalles

Práctica 3: Matrices y vectores

Práctica 3: Matrices y vectores Práctica 3: Matrices y vectores 1. Introducir los vectores (1 2 3 4 5) y (6 7 8 9 10) asignándoles las variables u y v respectivamente: a. Determinar 3u, u+v, u-v. b. Construir un vector cuyos elementos

Más detalles

!MATRICES INVERTIBLES

!MATRICES INVERTIBLES Tema 4.- MATRICES INVERTIBLES!MATRICES INVERTIBLES!TÉCNICAS PARA CALCULAR LA INVERSA DE UNA MATRIZ REGULAR 1 Hemos hablado anteriormente de la matriz cuadrada unidad de orden n (I n ).. Es posible encontrar

Más detalles

Una matriz es un arreglo rectangular de números. Los números en el arreglo se llaman elementos de la matriz. ) ( + ( ) ( )

Una matriz es un arreglo rectangular de números. Los números en el arreglo se llaman elementos de la matriz. ) ( + ( ) ( ) MATRICES Una matriz es un arreglo rectangular de números. Los números en el arreglo se llaman elementos de la matriz. Ejemplo 1. Algunos ejemplos de matrices ( + ( ) ( + ( ) El tamaño o el orden de una

Más detalles

Herramientas básicas I

Herramientas básicas I Curso: Modelización y simulación matemática de sistemas Metodología para su implementación computacional Herramientas básicas I Alejandro D. Otero ([email protected]) Facultades de Ciencias Exactas y Naturales

Más detalles

APÉNDICE A. Algebra matricial

APÉNDICE A. Algebra matricial APÉNDICE A Algebra matricial El estudio de la econometría requiere cierta familiaridad con el álgebra matricial. La teoría de matrices simplifica la descripción, desarrollo y aplicación de los métodos

Más detalles

Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas.

Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. Matrices Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. Cada uno de los números de que consta la matriz se denomina

Más detalles

Procedimiento para encontrar la inversa de una matriz cuadrada (Método de Gauss-Jordan).

Procedimiento para encontrar la inversa de una matriz cuadrada (Método de Gauss-Jordan). Ejemplo 19: Demuestre que la matriz A es invertible y escríbala como un producto de matrices elementales. Solución: Para resolver el problema, se reduce A a I y se registran las operaciones elementales

Más detalles

1. INTRODUCCIÓN A MATLAB 7.0

1. INTRODUCCIÓN A MATLAB 7.0 3ª Práctica. Matlab 7.0 página 1 PROGRAMACIÓN EN MATLAB PRÁCTICA 03 INTRODUCCIÓN A MATLAB 7.0 1. INTRODUCCIÓN A MATLAB 7.0... 1 1.1 OPERACIONES BÁSICAS CON MATRICES... 1 1.2 GENERACIÓN DE MATRICES DE FORMA

Más detalles

Junio 2008: Sean las matrices B = Junio 2008: Calcular el rango de la matriz

Junio 2008: Sean las matrices B = Junio 2008: Calcular el rango de la matriz Septiembre 008: Sea A una matriz 3 x 3 de columnas C 1, C y C 3 (en ese orden). Sea B la matriz de columnas C 1 + C, C 1 + 3C 3 y C (en ese orden). Calcular el determinante de B en función de A. (1 punto)

Más detalles

Introducción a MATLAB

Introducción a MATLAB Introducción a MATLAB Sistemas Conexionistas - Curso 08/09 MATLAB es un sistema interactivo basado en matrices que se utiliza para cálculos científicos y de ingeniería. Puede resolver problemas numéricos

Más detalles

DETERMINANTES MATRICES EQUIVALENTES POR FILAS RANGO DE UNA MATRIZ. APLICACIONES

DETERMINANTES MATRICES EQUIVALENTES POR FILAS RANGO DE UNA MATRIZ. APLICACIONES Tema 2.- DETERMINANTES DETERMINANTES MATRICES EQUIVALENTES POR FILAS RANGO DE UNA MATRIZ. APLICACIONES 1 Un poco de historia Los determinantes es uno de los temas más útiles del Álgebra Lineal, con muchas

Más detalles

Lo rojo sería la diagonal principal.

Lo rojo sería la diagonal principal. MATRICES. Son listas o tablas de elementos y que tienen m filas y n columnas. La dimensión de la matriz es el número se filas y de columnas y se escribe así: mxn (siendo m el nº de filas y n el de columnas).

Más detalles

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS Definición: se llama matriz de m filas y n columnas sobre un cuerpo K (R ó C), a una ordenación rectangular de la forma Notación: a11 a...... a1n a21 a...... a2n A = M M M donde cada elemento a ij Є K

Más detalles

Determinantes. = a 11a 22 a 12 a 21 = ( 3) ( 5) ( 4) 7 = 15 ( 28) = = 43

Determinantes. = a 11a 22 a 12 a 21 = ( 3) ( 5) ( 4) 7 = 15 ( 28) = = 43 Determinante de una matriz cuadrada Toda matriz cuadrada A lleva asociado un número, llamado determinante de A, y que denotaremos mediante el símbolo. Este número, entre otras cosas, permite saber cuándo

Más detalles