ESTRUCTURAS QUE SE DESPLAZAN LINEALMENTE. MÉTODO DE CROSS INDIRECTO

Tamaño: px
Comenzar la demostración a partir de la página:

Download "ESTRUCTURAS QUE SE DESPLAZAN LINEALMENTE. MÉTODO DE CROSS INDIRECTO"

Transcripción

1 4 - ESTRUCTURAS QUE SE DESPLAZAN LNEALMENTE. MÉTODO DE CROSS NDRECTO 4.1. dentificación de los Grados de Libertad Traslacionales El método de Cross ndirecto consiste en aplicar el principio de superposición sobre los desplazamientos lineales (traslaciones) que sean grados de libertad (GL). Estos desplazamientos son absolutos y se definen positivamente de acuerdo a un sistema de coordenadas prefijado. Previamente, será necesario identificar los grados de libertad traslacionales. Una regla práctica para efectuar esa identificación consiste en articular todos los nudos de la estructura, transformándola en un mecanismo inestable, para luego agregar apoyos simples (ficticios) hasta estabilizar a la estructura; el número de apoyos simples agregados corresponderá al número de grados de libertad traslacionales. En la Fig. 4.1 se ilustra la aplicación de esa regla, suponiendo que las barras no se deforman axialmente. }----u""l1 no se desplaza Fig Regla Práctica para Calcular el Número de GL.

2 82 4. Método de Cross ndirecto 4.2. Aplicación Algebraica del Método de Cross ndirecto. Matriz de Rigidez y de Flexibilidad Lateral En las Figs. 4.2 y 4.3, se ilustra algebraicamente la manera cómo se aplica el método de Cross ndirecto para una estructura de 1 y 2 GL traslacionales, respectivamente. Primer Ejemplo Algebraico (1 GL Traslacional): /. F211 / / F / d1 ;- 1 "'"... " ESTRUCTURA ORGNAL Coordenada Generalizada (1) m ESTADO o d1 - Q) Aplicar la solicitación uij = O --> Mijo = O, Vijo = O sólo existe Nijo; luego, calcular R1 O por equilibrio + d1 l( (2) A \,, -=-, fl"\d12 1"/,/,-& - ESTADO 1 (d1 = 1) Hallar dij en función de d1 = 1 Ejm. d12 = + 1 / Sen e uij = - 6 E lij dij Lij2 Por Cross --> Mij1 --> Vij1, Nij1 Calcular R11 por equilibrio Fig Aplicación Algebraica de Cross ndirecto. Estructura con 1 GL Traslacional. En el Estado O de es.te ejemplo, los momentos Mijo son nulos ya que no existen cargas aplicadas sobre las barras (uij == O). En el Estado 1, los momentos de fijación son producidos por los desplazamientos relativos dij, con lo cual, luego de liberar rotacionalmente a los nudos aplicando Cross (determinando Mijl), se podrá calcular por equilibrio: las fuerzas cortantes Vijl, las fuerzas axiales Nijl y la reacción Rll. Adicionalmente, nótese que las reacciones Rl0 Y Rl1 son positivas cuando siguen el sentido positivo de la coordenada generalizada (1). Estas reacciones son ficticias y no existen en la estructura original, por lo que: Por equilibrio en la coordenada (1): De donde se obtiene: Finalmente, por superposición: R10 + d1 R11 = O dl = -Rl0/Rll Mij = Mijo + dl Mijl... en este ejemplo Mijo = O 8i = 8io + dl 8il... en este ejemplo 8io = O

3 4. Método de Cross ndirecto 83 Segundo Ejemplo Algebraico (2 GL Traslacionales): F2 --» ll] F!_ --ld1 '< CD cambio de temperatura t.t," l-r ESTRUCTURA ORGNAL t. conocido Coordenadas generalizadas: (1) Y (2) = F1!'lJ'h R10 -' ----<l /' t.t L -'--,"" "... r ESTADO º (.d1 - d2 = Q) t. Aplicar la solicitación y hallar uij Cross --> Mijo --> Vijo, Nijo Calcular Rio por equilibrio + d1 ESTAD01 (d1 =1,d2=Q) Hallar dij en función de d1 = 1 + d2 R /-T1<l / / //.. J 1"'-1-1' / 1.". ESTADO 2 (d1 = 0, d2-1) Hallar dij en función de d2 = 1 uij = - 6 E lij dij / Lij 2 uij = - 6 E lij dij / Lij2 Cross --> Mij1 --> Vij1, Nij1 Cross --> Mij2 --> Vij2, Nij2 Calcular Ri1 por equilibrio Fig.4.3 Calcular Ri2 por equilibrio Cancelando las reacciones ficticias se tiene: En la coordenada (1 ): En la coordenada (2): R10 + d1 R11 R20 + d1 R21 + d2 R12 + d2 R22 o [1] O (2] De [1] Y [2] se calcula: d1 Y d2 Finalmente, por superposición: Mij = Mijo + d1 Mij1 + d2 Mij2 Si = Sio + d 1 Si 1 + d2 Si2

4 84 4. Método de Cross ndirecto Observaciones. Matriz de Rigidez y de Flexibilidad Lateral 1.- Debe resolverse por Cross N + 1 estados, donde N = número de GL traslacionales. En cada estado los únicos GL son las rotaciones, por lo que pueden solucionarse mediante Cross. Los estados donde se aplican desplazamientos unitarios equivalen a que la estructura esté sujeta a un desplazamiento de apoyo conocido. 2.- Las ecuaciones [1] y [2] pueden arreglarse matricialmente de la siguiente manera: R11 d1 o :::} + R21 d2 o En general: { Ro} + [Rij] {d} = {O} Donde: Luego: [ Rij] = Matriz de Rigidez Lateral, de orden N x N { d } = - [ Rij ] - 1 {Ro} Donde: [ Rij ) - 1 = [fij] = Matriz de Flexibilidad Lateral, de orden N x N Cabe indicar que el programa "EDFCO" calcula la Matriz de Flexibilidad Lateral (fij] aplicando cargas unitarias en cada coordenada generalizada (Fig. 4.4) Y luego invierte esa matriz para obtener la Matriz de Rigidez Lateral ([ Rij] = [fij ]-1 ). / / t11 '. ----cr-r / ESTADO 1 (F1 = 1. F2 = O) [ ti-] = [t11 J t21 t12 t22 f12 r k-j," ESTADO 2 íf1 = O F2-1) Fig Coeficientes de la Matriz de Flexibilidad Lateral (desplazamientos laterales). 3.- Los coeficientes Rij de la Matriz de Rigidez Lateral se definen como: Rij = reacción en la coordenada "i" cuando dj = 1, con di = O para i.. j

5 4. Método de Cross ndirecto..::..=85 En general Rij = Rji, es decir, la matriz [ Rij 1 es simétrica, lo que se puede demostrar aplicando el teorema de Betti entre los estados 1 y 2 correspondientes a la Fig R21 / R22 /<]l / / \ H12.t----<: '"." ESTAD01 (d1-1.d2-0)." ESTADO 2 (d1 - O. d2-1) J \ i ; Aplicando Betti: R11xO+R21x1 =R12x1 +R22xO=:.R21=R Cuando se desconoce el momento de inercia de las barras ( lij ), puede trabajarse con desplazamientos (O) proporcionales a los reales (d) en un factor igual a 2 E Ko: o = ( 2 E Ka ) d... en ton-m 2 En este caso, los momentos de empotramiento se calculan de la siguiente manera: Barra biempotrada: u = - 6 E d / L 2 = - 6 E k Ko d / L u = - 3 (2 E Ko d ) k / L = - 3 k O / L Barra empotrada-articulada: u = - 3 E d / L 2 = -3 E [4/3 k Ko) d / L u = - 2 (2 E Ko d) k /L = - 2 k O /L k= LKo.. :::\: " :.d ) u u -3 ko 1 1 L u= L 3 /7 k= 4 L Ko \ ' "' j\ T \ /\ d "",_ :._ ul k-O---.1,[,. u= L. / \

6 86 4. Método de Cross ndirecto 4.3. Ejemplo de Aplicación Resolver el pórtico de concreto armado (E == 2'000,000 ton/m 2 ) a dos aguas mostrado en la Fig ton/m llltmntltdjjlllill r1 r-', f1 columna 0.4 x 0.6 m - 1 lml 11 _. 1 tn m U, " '" 5.0m 5.0m r- 2.0m lml m 2 ton/m [mmrrrrnll (3 j; d1 CD (2) tll...,,: -1' m --/Í' Fig Pórtico a Dos Aguas Simétrico en Forma y Carga. Como V32 es desconocida, no se puede reducir el GL bd!" a cero; este caso es diferente al de un pórtico con viga horizontal simétricamente cargado. En la Fig. 4.6, se aprecia que V32 = P/2, por lo tanto, puede reducirse Ud!" a cero, trabajando la viga con la cuarta parte de su rigidez, mediante Cross con GL rotacionales. '" j;p LllWm P/2 j; DlJ],.,(2 3 f J j; 1 U G) H (1) ". Momentos de nercia: columna: viga: c == 0.4 X / 12 == m 4 v == 0.4 X / 12 == m 4 Rigideces al Giro (4 E / L): Coeficientes aij: ESTADO O (dl == O): Kc == 4 x x / 3 == ton-m Kv == 4 x x / == ton-m a21 == Kc/(Kc + Kv) == a23 == Kv / (Kc + Kv) == u 12 == - u21 == - 1 X 3 2 / 12 == ton-m u23 == - u32 == - 2 X 5 2 / 12 == ton-m

7 4. Método de Cross ndirecto Solución del Estado O por Cross: 2 ton/m Nudo TTTmllJ UJJJ (3 \: " Barra fui 1 ton/m 'r aij (2) R10 uij D T l (1) -" ' MijO t-_om '/1' 11 A' L Cálculo de R 1 O: 3.0 (2) ('V f R 1ton/mll (1) t1l ,fu1 3.0 f 1 M2=0 < 0.76 ton H t ton/m Fx nljlll HllLD =0 (3 <) 2.24 ton ) '- /, t '" l' Rl0! 1 Ml =0 - (1),',, 0.76 ton 0.01 \1/'1 5.0 m )"-,.,-- '-f R10 = ton ESTADO 1 (d1 = 1) d21 = - 1 tg j3 = - 1 x 2 / 5 = d23 = 1 / Cos j3 = 5.385/5 = uij = - 6 E d /L2 u12 = u21 = -6x2x10 6 xo.0072x(-0.4)/3 2 u12 = u21 = 3840 ton-m u23 = u32 == -6x2x1 06xO.01707x1.077 / u23 = u32 = ton-m J_ i 2.0 ;f / r d21 (2) \ 5.0m "

8 88 4. Método de Cross ndirecto Solución del Estado 1 por Cross: Nudo 1 2 Barra aij uij D O T 812 O O Mij O Nótese que el Cross cierra en un ciclo, sólo porque la estructura tiene un grado de libertad rotacional (82). Cálculo de R 11 : í 5464 (2) f- 2.0 Fx=O ( _hl 6536,'" (2) R11 1: M2 = O (1)..> 3372 t Ml=O R11 = 3749 ton / m Luego, por equilibrio en la coordenada 1 : De la cual resulta: Finalmente: R10 + R11 d1 = O d1 = O d1 = m = 1.25 mm Mij = MijO + d1 Mij1 barra 1-2 MijO d1 Mij Mij

9 4. Método de Cross ndirecto o 89 En la tabla anterior, puede notarse la importancia del desplazamiento ud1 ", a pesar que apenas es 1.25 mm (imperceptible). llega incluso a invertir al momento flector del nudo central de la estructura y a magnificar los momentos del nudo 2 (ver la Fig. 4.7). - _ Fig DMF (ton-m) i Muchas veces para techar grandes ambientes (por ejemplo, fábricas) se recurre a pórticos metálicos que resultan ser muy flexibles, por lo que para atenuar los efectos del desplazamiento ud 1" se colocan tirantes metálicos (Fig. 4.8)../ '\ --- '.' tirante para atenuar d1" Fig.4.8 PÓRTCO METÁLCO Cabe también mencionar que hace algunos años una vivienda de albañilería sin reforzar (ubicada en Lima) colapsó, por el empuje que le ocasionó el techo a dos aguas que soportaban los muros de albañilería carentes de columnas de arriostre (Fig. 4.9). k/ \ colapso por empuje 1$ \:?\ del techo a 2 nj ] aguas; -::.l' \\'., sobre muros de; albañilería reforzados / 3,1 ''-1 -''-'-',,-,-,-- Fig.4.9.

10 90 4. Método de Cross ndirecto 4.4. Problemas Propuestos 1.- Resolver el pórtico de la Fig. 4.5 empleando la coordenada generalizada mostrada: 2 ton/m 11rr j 111lJJ cúspide o cumbrera 2.0 )G) 3.0 columna 0.4xO.6 m S.Om..,',r 5.0 m -,f 1 ton/m 8 (1),'" S.Om.f--, -----;o;' En los problemas 2 y 3, se desconoce el momento de inercia de las barras, por lo que se trabajarán empleando desplazamientos proporcionales (O) a los reales (d). Problema 2: 3 Kip » 1D1 (21) (81) KO= 10' 10' to ---- OMF (Kip-pie) 01 = 150 Kip-pie","" = 2 E Ka d1 RESULTADQS L + 10'... "... ' -i -t "" -'

11 4_._M_e_'to_dC!!.. C;!!!..d_ir-,ec to,-- 91 Problema 3: (61) 10 ton,...--""--"' , 0-'7 D2,,'C' (21) 6.0 m * KO = (1) ton (61) -_:...:L.--..., 3m -1- T (1) (1) 6.0m,;3> D1 RESULTADOS: ,...---=,...;;--... ' / 1. _ DMF (to o - mi ",,\: / L ",\: 8.27 D1 = 2 E Ka d1 = ton-m 2 D2 = 2 E Ka d2 = ton-m ,'" 4.- Considerando los grados de libertad, asociados a los desplazamientos lineales, que se muestran en la figura, calcule el vector de rigideces Ri2 (correspondiente a un desplazamiento unitario d2 = 1). Suponer: E = 2'000,000 ton/m 2 Columnas: 0.30xO.60 m F Vigas: 0.30xO. 70 m e D W (2"1 _/ E /\ ;> j 4.0m B 4.0m,,",' + -1 Resultado: {Ri2} = -1733l ton / m 4525 ( 1257 )

12 92 HURACÁN EN MAM (vista superior) y EDFCO JAPONÉS (vista inferior)

3. Método de cálculo.

3. Método de cálculo. Método de cálculo 7. Método de cálculo. Como método de cálculo vamos a seguir el método de los desplazamientos, en el que las incógnitas son los desplazamientos de los nudos de la estructura. Y para estudiar

Más detalles

Solución: (esfuerzos en KN) 200 kn. 400 kn. 300 kn. 100 kn. 5 m A C. 2 x 5m = 10 m. 1 cm 1,2 cm 1 cm

Solución: (esfuerzos en KN) 200 kn. 400 kn. 300 kn. 100 kn. 5 m A C. 2 x 5m = 10 m. 1 cm 1,2 cm 1 cm Problema 1. n la celosía de la figura, calcular los esfuerzos en todas las barras y reacciones en los apoyos, debido a la actuación simultánea de todas las acciones indicadas (cargas exteriores y asientos

Más detalles

Análisis Estructural I Método de Cross

Análisis Estructural I Método de Cross El cálculo de un pórtico de vigas continuas constituye un problema común en el calculista de estructuras de edificios, a los fines de obtener el armado final de las mismas. Si las cargas y luces difieren

Más detalles

El Método de Rigideces: ejemplo de aplicación

El Método de Rigideces: ejemplo de aplicación El Método de Rigideces: ejemplo de aplicación Apellidos, nombre Basset Salom, uisa (lbasset@mes.upv.es) Departamento Centro Mecánica de Medios Continuos y Teoría de Estructuras Escuela Técnica Superior

Más detalles

Estructuras de Edificación: Tema 21 - El método del equilibrio en estructuras de nudos rígidos.

Estructuras de Edificación: Tema 21 - El método del equilibrio en estructuras de nudos rígidos. Estructuras de Edificación: Tema 21 - El método del equilibrio en estructuras de nudos rígidos. David Herrero Pérez Departamento de Estructuras y Construcción Universidad Politécnica de Cartagena Grado

Más detalles

CARGAS NO APLICADAS EN NUDOS

CARGAS NO APLICADAS EN NUDOS Capítulo 9 Cargas no aplicadas en los nudos 9.1- Cargas en el interior de un tramo Hasta ahora sólo se consideraron casos en que las cargas eteriores están aplicadas sobre los nudos; en el caso que actúen

Más detalles

Sistema Estructural de Masa Activa

Sistema Estructural de Masa Activa Sistema Estructural de Masa Activa DEFINICIÓN DE SISTEMAS ESTRUCTURALES Son sistemas compuestos de uno o varios elementos, dispuestos de tal forma, que tanto la estructura total como cada uno de sus componentes,

Más detalles

Cátedra de Ingeniería Rural Escuela Universitaria de Ingeniería Técnica Agrícola de Ciudad Real A 2 A 1

Cátedra de Ingeniería Rural Escuela Universitaria de Ingeniería Técnica Agrícola de Ciudad Real A 2 A 1 Si la sección de un perfil metálico es la que aparece en la figura, suponiendo que la chapa que une los círculos es de espesor e inercia despreciables, determina la relación entre las secciones A 1 y A

Más detalles

MDOF. Dinámica Estructural Aplicada II C 2012 UCA

MDOF. Dinámica Estructural Aplicada II C 2012 UCA MDOF Dinámica Estructural Aplicada II C 2012 UCA Desde el punto de vista dinámico, interesan los grados de libertad en los que se generan fuerzas generalizadas de inercia significativas; es decir, fuerzas

Más detalles

II.- CONCEPTOS FUNDAMENTALES DEL ANÁLISIS ESTRUCTURAL

II.- CONCEPTOS FUNDAMENTALES DEL ANÁLISIS ESTRUCTURAL II.- CONCEPTOS FUNDAMENTALES DEL ANÁLISIS ESTRUCTURAL 2.1.- Introducción Los métodos fundamentales disponibles para el analista estructural son el método de la flexibilidad (o de las fuerzas), y el método

Más detalles

San Bartolomé. Una estructura se comporta de acuerdo a cómo se haya construido. EFECTOS DEL PROCESO CONSTRUCTIVO EN EL MODELAJE

San Bartolomé. Una estructura se comporta de acuerdo a cómo se haya construido. EFECTOS DEL PROCESO CONSTRUCTIVO EN EL MODELAJE San Bartolomé 4 Una estructura se comporta de acuerdo a cómo se haya construido. 2 3 1 EFECTOS DEL PROCESO CONSTRUCTIVO EN EL MODELAJE sismo SECCIÓN COMPUESTA POR DOS MATERIALES INTEGRADOS SECCIÓN REAL

Más detalles

Capítulo 8. DEFORMACIONES EN LAS VIGAS

Capítulo 8. DEFORMACIONES EN LAS VIGAS Roberto Imaz Gutiérrez. Este capítulo se publica bajo Licencia Creative Commons BY NC SA 3.0 Capítulo 8. DEFORMACIONES EN LAS VIGAS 1. APLICACIÓN DEL CÁLCULO DE LAS DEFORMACIONES A LA RESOLUCIÓN DE ESTRUCTURAS

Más detalles

Estructuras de Edificación: Tema 19 - Estructuras articuladas hiperestáticas.

Estructuras de Edificación: Tema 19 - Estructuras articuladas hiperestáticas. Estructuras de Edificación: Tema 19 - Estructuras articuladas hiperestáticas. David Herrero Pérez Departamento de Estructuras y Construcción Universidad Politécnica de Cartagena Grado en Ingeniería de

Más detalles

ANÁLISIS SIMPLIFlCADO DE VIGAS SUJETAS A CARGA VERTICAL

ANÁLISIS SIMPLIFlCADO DE VIGAS SUJETAS A CARGA VERTICAL 3 - ANÁLISIS SIMPLIFlCADO DE VIGAS SUJETAS A CARGA VERTICAL 3.1. Hipótesis Simplificatoria de la Norma E-060 La norma peruana de concreto armado E-060, así como el reglamento norteamericano ACI, permiten

Más detalles

ANALISIS DE ESTRUCTURAS. Def: Sistema de miembros unidos entre si y construido para soportar con seguridad las cargas a ella aplicadas.

ANALISIS DE ESTRUCTURAS. Def: Sistema de miembros unidos entre si y construido para soportar con seguridad las cargas a ella aplicadas. ANALISIS DE ESTRUCTURAS Def: Sistema de miembros unidos entre si y construido para soportar con seguridad las cargas a ella aplicadas. TIPOS DE ESTRUCTURAS Armaduras: estructuras estacionaria concebidas

Más detalles

VI. Sistemas de dos grados de libertad

VI. Sistemas de dos grados de libertad Objetivos: 1. Describir que es un sistema de dos grados de.. Deducir las ecuaciones diferenciales de movimiento para un sistema de dos grados de masa-resorte-amortiguador, con amortiguamiento viscoso y

Más detalles

Problema 1. Vista general del problema. Modelo - Vista longitudinal. Sección cajón. φ= m m m

Problema 1. Vista general del problema. Modelo - Vista longitudinal. Sección cajón. φ= m m m Problema 1 Sea el puente de la Figura 1 consistente en una sección cajón de hormigón armado simplemente apoyado en sus extremos y que apoya al centro sobre una columna circular empotrada en la base. La

Más detalles

Asignatura: Horas: Total (horas): Obligatoria X Teóricas 4.5 Semana 4.5 Optativa Prácticas Semanas 72

Asignatura: Horas: Total (horas): Obligatoria X Teóricas 4.5 Semana 4.5 Optativa Prácticas Semanas 72 UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA PROGRAMA DE ESTUDIO Aprobado por el Consejo Técnico de la Facultad de Ingeniería en su sesión ordinaria del 15 de octubre de 2008 ANÁLISIS

Más detalles

TEMA 11: ESTRUCTURA DE BARRAS

TEMA 11: ESTRUCTURA DE BARRAS TEMA 11: ESTRUCTURA DE BARRAS ESTRUCTURAS 1 ENRIQUE DE JUSTO MOSCARDÓ ANTONIO DELGADO TRUJILLOh ANTONIA FERNÁNDEZ SERRANO MARÍA CONCEPCIÓN BASCÓN HURTADO Departamento de Mecánica de Medios Continuos, Teoría

Más detalles

Resistencia de Materiales. Estructuras. Tema 11. Inestabilidad en barras. Pandeo. Barra Empotrada-Empotrada.

Resistencia de Materiales. Estructuras. Tema 11. Inestabilidad en barras. Pandeo. Barra Empotrada-Empotrada. Resistencia de Materiales. Estructuras Tema 11. Inestabilidad en barras. Pandeo Módulo 6 Barra Empotrada-Empotrada. En los módulos anteriores se ha estudiado el caso del pandeo en la barra articulada-articulada,

Más detalles

Pórticos espaciales. J. T. Celigüeta

Pórticos espaciales. J. T. Celigüeta Pórticos espaciales J. T. Celigüeta Pórtico espacial. Definición Estructura reticular. Barras rectas de sección despreciable. Cualquier orientación en el espacio. Barras unidas rígidamente en ambos extremos.

Más detalles

1. Hallar por el método de Cross los diagramas de momento flector y de esfuerzo

1. Hallar por el método de Cross los diagramas de momento flector y de esfuerzo 1. allar por el método de ross los diagramas de momento flector y de esfuerzo cortante, así como las reacciones de la estructura de la figura, empleando el método de superposición en las barras cargadas.

Más detalles

TITULACIÓN: INGENIERO TÉCNICO DE MINAS (PRIMERA PARTE)

TITULACIÓN: INGENIERO TÉCNICO DE MINAS (PRIMERA PARTE) EXAMEN DE TEORÍA DE ESTRUCTURAS 03-09-2009 E.T.S.I. MINAS U.P.M. TITULACIÓN: INGENIERO TÉCNICO DE MINAS (PRIMERA PARTE) Duración: 1 hora 15 minutos Fecha de publicación de las calificaciones provisionales:

Más detalles

Máster Universitario en Ingeniería de las Estructuras, Cimentaciones y Materiales UNIVERSIDAD POLITÉCNICA DE MADRID ANÁLISIS DINÁMICO DE ESTRUCTURAS

Máster Universitario en Ingeniería de las Estructuras, Cimentaciones y Materiales UNIVERSIDAD POLITÉCNICA DE MADRID ANÁLISIS DINÁMICO DE ESTRUCTURAS ALBERTO RUIZ-CABELLO LÓPEZ EJERCICIO 4 1. Matriz de masas concentradas del sistema. La matriz de masas concentradas para un edificio a cortante es una matriz diagonal en la que cada componente no nula

Más detalles

ETAPAS BÁSICAS DEL ANÁLISIS MATRICIAL DE UN SISTEMA DISCRETO. Mercedes López Salinas

ETAPAS BÁSICAS DEL ANÁLISIS MATRICIAL DE UN SISTEMA DISCRETO. Mercedes López Salinas ETAPAS BÁSICAS DEL ANÁLISIS MATRICIAL DE UN SISTEMA DISCRETO Mercedes López Salinas PhD. Ing. Civil elopez@uazuay.edu.ec ELEMENTOS FINITOS Facultad de Ciencia y Tecnología Escuela de Ingeniería Civil y

Más detalles

III. INTRODUCCIÓN A LOS MÉTODOS DE FLEXIBILIDAD Y RIGIDEZ

III. INTRODUCCIÓN A LOS MÉTODOS DE FLEXIBILIDAD Y RIGIDEZ III. INTROUCCIÓN OS MÉTOOS E FEXIII Y RIGIEZ..- Introducción En este capítulo se introducirán los conceptos básicos de los métodos de flexibilidad y de rigidez. Estos métodos son aplicables, generalmente,

Más detalles

ESTRUCTURAS SIMETRICAS

ESTRUCTURAS SIMETRICAS ESTRUCTURAS SIMETRICAS Las estructuras reales presentan con mucha frecuencia diseños que tienen la característica de ser simétricas con relación a algún plano, como por ejemplo las estructuras de muchos

Más detalles

ESTRUCTURAS EL METODO GENERAL

ESTRUCTURAS EL METODO GENERAL ESTRUCTURAS EL METODO GENERAL MODULO INSTRUCCIONAL MI-E4 Ing.N.VILLASECA C. Trabajo elaborado bajo la coordinación, orientación y supervisión del Autor, con la participación de: Responsable : Ing. N.Villaseca

Más detalles

PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ ESCUELA DE POSGRADO

PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ ESCUELA DE POSGRADO PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ ESCUELA DE POSGRADO RESPUESTA NO-LINEAL DE ESTRUCTURAS DE CONCRETO ARMADO DE UN PISO SOMETIDAS A SOLICITACIONES SÍSMICAS BI-DIRECCIONALES CON ÁNGULOS DE INCIDENCIA

Más detalles

ESTÁTICA DE ESTRUCTURAS COI 303 UNIDAD 5 SISTEMAS ESTRUCTURALES ISOSTATICOS

ESTÁTICA DE ESTRUCTURAS COI 303 UNIDAD 5 SISTEMAS ESTRUCTURALES ISOSTATICOS ESTÁTICA DE ESTRUCTURAS COI 303 UNIDAD 5 SISTEMAS ESTRUCTURALES ISOSTATICOS --- PRIMER SEMESTRE 2015 OBJETIVO DE UNIDAD: -Dominar el concepto de estructura isostática. -Plantear ecuaciones de equilibrio

Más detalles

CAPITULO 2 DISEÑO DE MIEMBROS EN TRACCIÓN Y COMPRESIÓN SIMPLES

CAPITULO 2 DISEÑO DE MIEMBROS EN TRACCIÓN Y COMPRESIÓN SIMPLES CAPITULO 2 DISEÑO DE MIEMBROS EN TRACCIÓN Y COMPRESIÓN SIMPLES Fig. 2.a Cuando se estudia el fenómeno que ocasionan las fuerzas normales a la sección transversal de un elemento, se puede encontrar dos

Más detalles

ESTATICA Y RESISTENCIA DE MATERIALES (ING IND) T P Nº 7: SOLICITACIONES N, Q y M f

ESTATICA Y RESISTENCIA DE MATERIALES (ING IND) T P Nº 7: SOLICITACIONES N, Q y M f ESTATICA Y RESISTENCIA DE MATERIALES (ING IND) T P Nº 7: SOLICITACIONES N, Q y M f 1) Se utiliza una barra de acero de sección rectangular para transmitir cuatro cargas axiales, según se indica en la figura.

Más detalles

Aplicación del Principio de Conservación de la Energía y del Teorema de la Carga Unidad para la obtención de movimientos

Aplicación del Principio de Conservación de la Energía y del Teorema de la Carga Unidad para la obtención de movimientos Aplicación del Principio de Conservación de la Energía y del Teorema de la Carga Unidad para la obtención de movimientos Apellidos, nombre Basset Salom, Luisa (lbasset@mes.upv.es) Departamento Centro Mecánica

Más detalles

2.13.- MÉTODO DE CROSS: PARTICULARIDADES %)

2.13.- MÉTODO DE CROSS: PARTICULARIDADES %) 2.13.- MÉTODO DE CROSS: PARTICULARIDADES %) & TEORÍA DE ARCOS Y MÉTODO DE CROSS APLICADOS AL CÁLCULO DE ESTRUCTURAS 2.14.- MÉTODO DE CROSS: PARTICULARIDADES &! &" TEORÍA DE ARCOS Y MÉTODO DE CROSS APLICADOS

Más detalles

Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP U. de Santiago

Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP U. de Santiago Estática A Fuerzas Si sobre un cuerpo actúan solo dos fuerzas en la misma línea, y el cuerpo está en reposo o moviéndose con velocidad constante, las fuerzas son iguales pero de sentidos contrarios. Si

Más detalles

PROBLEMAS DE RESISTENCIA DE MATERIALES MÓDULO 5: FLEXIÓN DE VIGAS CURSO

PROBLEMAS DE RESISTENCIA DE MATERIALES MÓDULO 5: FLEXIÓN DE VIGAS CURSO PROBEMAS DE RESISTENCIA DE MATERIAES MÓDUO 5: FEXIÓN DE VIGAS CURSO 016-17 5.1( ).- Halle, en MPa, la tensión normal máxima de compresión en la viga cuya sección y diagrama de momentos flectores se muestran

Más detalles

EJEMPLOS DE APLICACIÓN DE LA INTEGRACIÓN APROXIMADA DE LAS ECUACIONES DIFERENCIALES DE EQUILIBRIO

EJEMPLOS DE APLICACIÓN DE LA INTEGRACIÓN APROXIMADA DE LAS ECUACIONES DIFERENCIALES DE EQUILIBRIO EJEMPLOS DE APLICACIÓN DE LA INTEGRACIÓN APROXIMADA DE LAS ECUACIONES DIFERENCIALES DE EQUILIBRIO 1. Objetivo El objetivo de esta aplicación es ilustrar cómo se pueden integrar las ecuaciones diferenciales

Más detalles

400 kn. A 1 = 20 cm 2. A 2 = 10 cm kn

400 kn. A 1 = 20 cm 2. A 2 = 10 cm kn Elasticidad y Resistencia de Materiales Escuela Politécnica Superior de Jaén UNIVERSIDD DE JÉN Departamento de Ingeniería Mecánica y Minera Mecánica de Medios Continuos y Teoría de Estructuras Relación

Más detalles

Relaciones esfuerzo deformación

Relaciones esfuerzo deformación Capítulo Relaciones esfuerzo deformación En esta sección se emplea la primera ley de la termodinámica para derivar la relación esfuerzo deformación..1. Relaciones constitutivas Se llama modelo constitutivo

Más detalles

ESTRUCTURAS RETICULADAS

ESTRUCTURAS RETICULADAS ESTRUTURS RETIULS Prof. arlos Navarro epartamento de ecánica de edios ontinuos y Teoría de Estructuras En el cálculo estructuras reticuladas suele despreciarse las deformaciones inducidas por los esfuerzos

Más detalles

ÍNDICE TOMO 1 DISEÑO Y CÁLCULO ELÁSTICO DE LOS SISTEMAS ESTRUCTURALES ÍNDICE GENERAL

ÍNDICE TOMO 1 DISEÑO Y CÁLCULO ELÁSTICO DE LOS SISTEMAS ESTRUCTURALES ÍNDICE GENERAL ÍNDICE TOMO 1 DISEÑO Y CÁLCULO ELÁSTICO DE LOS SISTEMAS ESTRUCTURALES ÍNDICE GENERAL INTRODUCCIÓN Tomo I CAPÍTULO 1. ESTUDIO TIPOLÓGICO DE LAS ESTRUCTURAS DE VECTOR ACTIVO O DE NUDOS ARTICULADOS. CAPÍTULO

Más detalles

INDICE. Primera Parte VIGAS CONTINUAS Y ESTRUCTURAS APORTICADAS

INDICE. Primera Parte VIGAS CONTINUAS Y ESTRUCTURAS APORTICADAS INDICE Primera Parte VIGAS CONTINUAS Y ESTRUCTURAS APORTICADAS 1 La barra elástica 1.1 Introducción 1.2 Ley de Hooke. 1.3 Teorema de Mohr 1.4 EI concepto «rigidez de resorte» 1.5 Relación entre rigidez

Más detalles

División algebraica I (Método de Horner)

División algebraica I (Método de Horner) División algebraica I (Método de Horner) División por Horner: División no algebraica de polinomios Esta división exige condiciones especiales: a. Aplicamos el método de Horner con el ordenamiento de los

Más detalles

Ejemplo 1.8 (Página 248).

Ejemplo 1.8 (Página 248). Ejemplo.8 (Página 8). INTRODUCCIÓN A ESTUDIO DEL ELEMENTO FINITO EN INGENIERÍA SEGUNDA EDICIÓN Tirupathi R. Chandrupatla Ashok D. Belegundu Prentice Hall, México, 999 Para la viga y carga mostrada en la

Más detalles

,oo". J. ,oo'. + '[ uoo-,lroo-,lroo'-,] ] Estructuras hiperestáticas. (Pr. 1)

,oo. J. ,oo'. + '[ uoo-,lroo-,lroo'-,] ] Estructuras hiperestáticas. (Pr. 1) E.T.S. DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. UNIVERSIDAD DE GRANADA Estructuras hiperestáticas. (Pr. 1) En Ias cuatro estructuras siguientes calcular las reacciones, leyes de esfuerzos (cortantes,

Más detalles

CAPITULO 4 ANALISIS VERTICAL

CAPITULO 4 ANALISIS VERTICAL 37 CAPITULO 4 ANALISIS VERTICAL 4.1 CARGAS Procedemos a evaluar las cargas verticales actuantes en los diferentes elementos estructurales que conforman el edificio. Las cargas verticales se clasifican,

Más detalles

UNIVERSIDAD DE BUENOS AIRES Facultad de Ingeniería Departamento de Estabilidad. Estabilidad I / 64.01

UNIVERSIDAD DE BUENOS AIRES Facultad de Ingeniería Departamento de Estabilidad. Estabilidad I / 64.01 Ejercicio 1 Deducir analíticamente las funciones M y Q de las vigas simplemente apoyadas de las figuras. Aplicar el método de las secciones. Ejercicio 1.1 Ejercicio 1.2 Ejercicio 1.3 Ejercicio 1.4 Ejercicio

Más detalles

La cantidad de movimiento angular obedece una ley de conservación muy similar a la que obedece el momentum lineal.

La cantidad de movimiento angular obedece una ley de conservación muy similar a la que obedece el momentum lineal. En vista de la gran analogía que se han presentado entre la mecánica lineal y la mecánica rotacional, no debe ser ninguna sorpresa que la cantidad de movimiento o momento lineal tenga un similar rotacional.

Más detalles

Teoremas energéticos fundamentales del análisis estructural. Aplicación a celosías planas

Teoremas energéticos fundamentales del análisis estructural. Aplicación a celosías planas Teoremas energéticos fundamentales del análisis estructural Aplicación a celosías planas Índice Directos Densidad de energía Complementarios Densidad de energía complementaria Energía elástica (Función

Más detalles

Análisis de estabilidad en puentes largos tipo Pony

Análisis de estabilidad en puentes largos tipo Pony 44 Revista Ingeniería e Investigación No. 42 Abril de 1999 Análisis de estabilidad en puentes largos tipo Pony Jaequelíne Contreras Castaño REsUMEN Este trabajo considera la estabilidad general de dos

Más detalles

CONCEPTOS GENERALES DEL ANÁLISIS ESTRUCTURAL

CONCEPTOS GENERALES DEL ANÁLISIS ESTRUCTURAL CONCEPTOS GENERALES DEL ANÁLISIS ESTRUCTURAL Prof. Carlos Navarro Departamento de Mecánica de Medios Continuos y Teoría de Estructuras LAS CONDICIONES DE SUSTENTACIÓN DE UNA ESTRUCTURA LIBERACIÓN DE ESFUERZOS

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD DE BACHILLERATO LOGSE (PLAN 2002) Septiembre MECÁNICA.

PRUEBAS DE ACCESO A LA UNIVERSIDAD DE BACHILLERATO LOGSE (PLAN 2002) Septiembre MECÁNICA. PRUEBAS DE ACCESO A LA UNIVERSIDAD DE BACHILLERATO LOGSE (PLAN 2002) Septiembre 2005. MECÁNICA. C1) Determina la resultante del sistema de fuerzas coplanarias mostrado en la figura inferior izquierda.

Más detalles

Análisis Estructural - 2009 Trabajo práctico de dinámica estructural: Superposición modal

Análisis Estructural - 2009 Trabajo práctico de dinámica estructural: Superposición modal Análisis Estructural - 9 Enunciado Dada la estructura de la Figura, idealizada mediante un marco con vigas rígidas y columnas inextensibles, sometida a una carga armónica lateral de 8 t, se pide: ) Determinar

Más detalles

CÁLCULO DE TENSIONES EN LAS ESTRUCTURAS

CÁLCULO DE TENSIONES EN LAS ESTRUCTURAS CÁLCULO DE TENSIONES EN LAS ESTRUCTURAS Se denomina estructura a cualquier sistema de cuerpos unidos entre sí que sea capaz de ejecer, soportar o transmitir esfuerzos. Las estructuras están formadas por

Más detalles

CONCEPTOS BÁSICOS DEL ANÁLISIS MATRICIAL DE ESTRUCTURAS DE BARRA. Mercedes López Salinas

CONCEPTOS BÁSICOS DEL ANÁLISIS MATRICIAL DE ESTRUCTURAS DE BARRA. Mercedes López Salinas CONCEPTOS BÁSICOS DEL ANÁLISIS MATRICIAL DE ESTRUCTURAS DE BARRA Mercedes López Salinas PhD. Ing. Civil elopez@uazuay.edu.ec ELEMENTOS FINITOS Facultad de Ciencia y Tecnología Escuela de Ingeniería Civil

Más detalles

CAPÍTULO III CENTROS DE CORTANTE, RIGIDEZ Y GIRO DE ESTRUCTURAS

CAPÍTULO III CENTROS DE CORTANTE, RIGIDEZ Y GIRO DE ESTRUCTURAS CAPÍTULO III CENTROS DE CORTANTE, RIGIDEZ Y GIRO DE ESTRUCTURAS RESUMEN Este capítulo presenta cuatro métodos para determinar el centro de cortante de las estructuras, dos métodos para el centro de rigidez

Más detalles

Manual de Diseño para la Construcción con Acero 216

Manual de Diseño para la Construcción con Acero  216 Manual de Diseño para la Construcción con Acero www.ahmsa.com 216 Manual de Diseño para la Construcción con Acero www.ahmsa.com 217 VI.1.1 Notación especial a, b, c, m, n, da, db, dc, dx E f h Ha-Hb, etc.

Más detalles

TEMA 3: ENLACES Y EQUILIBRIO

TEMA 3: ENLACES Y EQUILIBRIO TEMA 3: ENLACES Y EQUILIBRIO ESTRUCTURAS I ANTONIO DELGADO TRUJILLO ENRIQUE DE JUSTO MOSCARDÓ PURIFICACIÓN ALARCÓN RAMÍREZ Departamento de Mecánica de Medios Continuos, Teoría de Estructuras e Ingeniería

Más detalles

TEMA 4 SISTEMAS DE 2 GRADOS DE LIBERTAD. Sistemas de 2 Grados de Libertad

TEMA 4 SISTEMAS DE 2 GRADOS DE LIBERTAD. Sistemas de 2 Grados de Libertad TEMA 4 SISTEMAS DE GRADOS DE LIBERTAD Sistemas de Grados de Libertad ELEMENTOS DE MÁQUINAS Y VIBRACIONES - 4. - TEMA 4 SISTEMAS DE GRADOS DE LIBERTAD ELEMENTOS DE MÁQUINAS Y VIBRACIONES - 4. - TEMA 4 SISTEMAS

Más detalles

III. Análisis de marcos

III. Análisis de marcos Objetivo: 1. Efectuar el análisis de estructuras de marcos. 1. Introducción. Aquellas estructuras constituidas de vigas unidimensionales conectadas en sus extremos de forma pivotada o rígida son conocidas

Más detalles

ESCUELA TECNICA SUPERIOR DE ING. DE CAMINOS, CANALES Y PUERTOS ASIGNATURA: PROCEDIMIENTOS ESPECIALES DE CIMENTACION PLAN 83/84/ 6ºCURSO / AÑO 10/11

ESCUELA TECNICA SUPERIOR DE ING. DE CAMINOS, CANALES Y PUERTOS ASIGNATURA: PROCEDIMIENTOS ESPECIALES DE CIMENTACION PLAN 83/84/ 6ºCURSO / AÑO 10/11 ESCUELA TECNICA SUPERIOR DE ING. DE CAMINOS, CANALES Y PUERTOS ASIGNATURA: PROCEDIMIENTOS ESPECIALES DE CIMENTACION PLAN 83/84/ 6ºCURSO / AÑO 10/11 EJERCICIO Nº 1 ZAPATAS: CARGAS DE HUNDIMIENTO Una zapata

Más detalles

I.PROGRAMA DE ESTUDIOS. Unidad 1. Conceptos básicos de la teoría de las estructuras

I.PROGRAMA DE ESTUDIOS. Unidad 1. Conceptos básicos de la teoría de las estructuras I.PROGRAMA DE ESTUDIOS Unidad 1 Conceptos básicos de la teoría de las estructuras 1.1.Equilibrio 1.2.Relación fuerza desplazamiento 1.3.Compatibilidad 1.4.Principio de superposición 1.5.Enfoque de solución

Más detalles

2 =0 (3.146) Expresando, las componentes del tensor de esfuerzos en coordenadas cartesianas como: 2 ; = 2 2 ; =

2 =0 (3.146) Expresando, las componentes del tensor de esfuerzos en coordenadas cartesianas como: 2 ; = 2 2 ; = 3.7. Función de Airy Cuando las fuerzas de cuerpo b son constantes en un sólido con estado de deformación o esfuerzo plano, el problema elástico se simplifica considerablemente mediante el uso de una función

Más detalles

Energía debida al esfuerzo cortante. J. T. Celigüeta

Energía debida al esfuerzo cortante. J. T. Celigüeta Energía debida al esfuerzo cortante J. T. Celigüeta Energía debida al esfuerzo cortante Tensión y deformación de cortante: Energía acumulada: τ QA τ QA = γ = = Ib G GIb b Q * QA QA Q A A Ucort = τγdv =

Más detalles

CÁTEDRA: ESTÁTICA Y RESISTENCIA DE MATERIALES

CÁTEDRA: ESTÁTICA Y RESISTENCIA DE MATERIALES CÁTEDRA: ESTÁTICA Y RESISTENCIA DE MATERIALES Comisión de Ingeniería Química y en Minas Trabajo Práctico N 4: FUERZAS INTERNAS (Solicitaciones) - BARICENTRO 1- Se utiliza una barra de acero de sección

Más detalles

60kN/m 50kNm 50kNm. 60kN/m. 50kNm D D D CC. C C 2 2 m 5 m

60kN/m 50kNm 50kNm. 60kN/m. 50kNm D D D CC. C C 2 2 m 5 m Ejercicio 6.1 Para las vigas de la figura: a) Bosquejar cualitativamente el diagrama momento flector, el diagrama del giro y el diagrama de la deformada. b) Determinar la flecha en C y el ángulo de giro

Más detalles

Arcos planos. J. T. Celigüeta

Arcos planos. J. T. Celigüeta Arcos planos J. T. Celigüeta Arcos planos. Definición Directriz curva plana. Sección transversal despreciable. Curvatura pequeña: radio mucho mayor que el canto R>>h Varias condiciones de apoyo en los

Más detalles

MÉTODO DE LA RIGIDEZ MATRICIAL APLICADO A UNA VIGA QUE SI ESTÁ SOMETIDA A CARGA AXIAL Y SU PROGRAMACIÓN EN MATLAB.

MÉTODO DE LA RIGIDEZ MATRICIAL APLICADO A UNA VIGA QUE SI ESTÁ SOMETIDA A CARGA AXIAL Y SU PROGRAMACIÓN EN MATLAB. MÉTODO DE LA RIGIDEZ MATRICIAL APLICADO A UNA VIGA QUE SI ESTÁ SOMETIDA A CARGA AXIAL Y SU PROGRAMACIÓN EN MATLAB. Ortiz David, Molina Marcos 2, Martínez Hugo, J. Bernal Elan 2, Hernández Daniel, García

Más detalles

5. ESFUERZOS INTERNOS EN VIGAS

5. ESFUERZOS INTERNOS EN VIGAS 5. ESFUERZOS INTERNOS EN VIGAS 5.. Introducción En este capítulo se estudiarán las fuerzas internas que existen al interior de un sólido (más específicamente en vigas) y que son las que mantienen unidas

Más detalles

Anejo 5: Longitud de pandeo de elementos comprimidos

Anejo 5: Longitud de pandeo de elementos comprimidos Anejo 5: Longitud de pandeo de elementos comprimidos A5.1 Generalidades La longitud de pandeo L cr de un elemento comprimido es la longitud de otro elemento similar con los "extremos articulados" (extremos

Más detalles

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO FACULTAD DE INGENIERIA Programa de Asignatura

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO FACULTAD DE INGENIERIA Programa de Asignatura UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO FACULTAD DE INGENIERIA Programa de Asignatura INGENIERIA CIVIL, TOPOGRAFICA Y GEODESICA División ESTRUCTURAS Departamento Fecha de aprobación * Consejo Técnico de

Más detalles

TEMA 4: PROBLEMAS RESUELTOS DE DEFORMACIÓN ANGULAR

TEMA 4: PROBLEMAS RESUELTOS DE DEFORMACIÓN ANGULAR Problemas eformación ngular T : PROLS RSULTOS ORÓN NGULR.. plicando el método de la deformación angular obtener el diagrama de momentos flectores y dibujar aproximadamente la deformada de la estructura

Más detalles

ANÁLISIS DE UN RETICULADO

ANÁLISIS DE UN RETICULADO 1. Antecedentes: 1.1. Reticulado: 1.1.1. Características: ANÁLISIS DE UN RETICULADO Presentan una solución práctica y además de ser más económicos que otro tipo de estructuras por lo cual son muy usados

Más detalles

FACTOR k DE LONGITUD DE PANDEO. en pórticos y sistemas continuos

FACTOR k DE LONGITUD DE PANDEO. en pórticos y sistemas continuos FACTOR k DE LONGITUD DE PANDEO en pórticos y sistemas continuos * APLICACIÓN CIRSOC 301-EL * 06_2 06-3-Barras Comprim 1 Columnas y otras barras axilmente comprimidas Hemos tomado algunas ideas respecto

Más detalles

2 - MÉTODO DE HARDYCROSS Nomenclatura y Convención de Signos. Fig Puente Grúa.

2 - MÉTODO DE HARDYCROSS Nomenclatura y Convención de Signos. Fig Puente Grúa. 2 - MÉTODO DE HARDYCROSS El método de Cross (o de Distribución de Momentos) es una derivación del método general de Rigidez, donde, para el caso de estructuras cuyos giros de sus nudos sean los únicos

Más detalles

Carrera: Ingeniería Civil Participantes. Asignaturas Temas Asignaturas Temas Matemáticas II

Carrera: Ingeniería Civil Participantes. Asignaturas Temas Asignaturas Temas Matemáticas II 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Análisis Estructural I Ingeniería Civil Clave de la asignatura: Horas teoría-horas práctica-créditos 3-2 -8 2.- HISTORIA DEL PROGRAMA Lugar

Más detalles

Estructura 3D metálica - Nave 3 pórticos: Esfuerzos

Estructura 3D metálica - Nave 3 pórticos: Esfuerzos Nivel avanzado - Ejemplo 14 Estructura 3D metálica - Nave 3 pórticos: Esfuerzos En esta práctica se crea una nave metálica de 3 pórticos definiéndola mediante la función Nave. Esta función permite definir

Más detalles

UNIDAD 3 ESTÁTICA DE CUERPOS RÍGIDOS. CONDICIONES DE EQUILIBRIO GENERALIDADES.-

UNIDAD 3 ESTÁTICA DE CUERPOS RÍGIDOS. CONDICIONES DE EQUILIBRIO GENERALIDADES.- UNIDAD 3 ESTÁTICA DE CUERPOS RÍGIDOS. CONDICIONES DE EQUILIBRIO GENERALIDADES.- Se dice que una fuerza es el efecto que puede ocasionar un cuerpo físico sobre otro, el cual este está compuesto de materia

Más detalles

6. ESTRUCTURAS RETICULADAS PLANAS.

6. ESTRUCTURAS RETICULADAS PLANAS. 6. ESTRUTURS RETIULS LNS. Se califica a una estructura plana de barras de reticulada cuando por estar las barras que confluyen en un mismo nodo empotradas entre sí formando un ángulo constructivo invariable,

Más detalles

Facultad de Ingeniería Civil

Facultad de Ingeniería Civil I. DATOS GENERALES 1.0. Escuela Profesional : Ingeniería Civil 1.1. Departamento Académico : Ingeniería Civil 1.2. Semestre Académico : 2016-I 2016-II 1.3. Ciclo de Estudios : SEXTO 1.4. Créditos : 6 1.5.

Más detalles

Respuesta estructural de un puente de tirantes de gran luz variando las condiciones de los vanos laterales ANEJO 1 PLANOS

Respuesta estructural de un puente de tirantes de gran luz variando las condiciones de los vanos laterales ANEJO 1 PLANOS ANEJO 1 PLANOS Ing. Víctor Josué Gutiérrez Gracia 111 112 Ing. Víctor Josué Gutiérrez Gracia Ing. Víctor Josué Gutiérrez Gracia 113 114 Ing. Víctor Josué Gutiérrez Gracia ANEJO 2 RESULTADOS DEL MODELO

Más detalles

CI 32B ANALISIS DE ESTRUCTURAS ISOSTATICAS 10 U.D. REQUISITOS: FI 21A, MA 22A DH:(3,0-2,0-,5,0) Obligatorio de la Licenciatura en Ingeniería Civil

CI 32B ANALISIS DE ESTRUCTURAS ISOSTATICAS 10 U.D. REQUISITOS: FI 21A, MA 22A DH:(3,0-2,0-,5,0) Obligatorio de la Licenciatura en Ingeniería Civil 1 CI 32B ANALISIS DE ESTRUCTURAS ISOSTATICAS 10 U.D. REQUISITOS: FI 21A, MA 22A DH:(3,0-2,0-,5,0) CARACTER: OBJETIVOS: CONTENIDOS Obligatorio de la Licenciatura en Ingeniería Civil Capacitar al alumno

Más detalles

CHEQUEO DE NUDOS NSR-09

CHEQUEO DE NUDOS NSR-09 CHEQUEO DE NUDOS NSR-09 Definición según NSR 98: Nudo: Es la porción de la columna limitada por las superficies superiores e inferiores de las vigas que llegan a ella. Daños en el sismo de Popayán, en

Más detalles

ELEMENTOS TIPOS CERCHA

ELEMENTOS TIPOS CERCHA NL 2013 ELEMENTOS TIPOS CERCHA Ing. Néstor Luis Sánchez Ing. Civil Tw: @NestorL ESTRUCTURAS COMPUESTAS POR ELEMENTOS TIPO CERCHA Este tipo de sistemas tienen la característica de ser muy livianos y con

Más detalles

Carrera: Ingeniería Civil CIM 0504

Carrera: Ingeniería Civil CIM 0504 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos: Análisis Estructural I Ingeniería Civil CIM 0504 3 2 8 2.- HISTORIA DEL PROGRAMA

Más detalles

Capítulo 5. FLEXIÓN COMPUESTA

Capítulo 5. FLEXIÓN COMPUESTA Roberto Imaz Gutiérrez. Este capítulo se publica bajo Licencia Creative Commons BY NC SA 3.0 Capítulo 5. FLEXIÓN COMPUESTA 5.1 FLEXION COMPUESTA PLANA. 5.1.1 Se dice que una pieza está sometida a flexión

Más detalles

Estructuras de Edificación: Tema 18 - Estructuras articuladas. Cálculo de desplazamientos.

Estructuras de Edificación: Tema 18 - Estructuras articuladas. Cálculo de desplazamientos. Estructuras de Edificación: Tema 18 - Estructuras articuladas. Cálculo de desplazamientos. David Herrero Pérez Departamento de Estructuras y Construcción Universidad Politécnica de Cartagena Grado en Ingeniería

Más detalles

CAPITULO IV ANÁLISIS SÍSMICO DE APOYOS INTERIORES DEL PUENTE DE BAHÍA DE CARÁQUEZ ANTE UN SISMO LEJANO Y OTRO IMPULSIVO

CAPITULO IV ANÁLISIS SÍSMICO DE APOYOS INTERIORES DEL PUENTE DE BAHÍA DE CARÁQUEZ ANTE UN SISMO LEJANO Y OTRO IMPULSIVO CAPITULO IV ANÁLISIS SÍSMICO DE APOYOS INTERIORES DEL PUENTE DE BAHÍA DE CARÁQUEZ ANTE UN SISMO LEJANO Y OTRO IMPULSIVO 4.1 Introducción En este capítulo se Analizara el tramo transversal la infraestructura

Más detalles

Unidad Resistencia de Materiales. Curso Resistencia de Materiales Aplicada AÑO 2011 A P U N T E S

Unidad Resistencia de Materiales. Curso Resistencia de Materiales Aplicada AÑO 2011 A P U N T E S Unidad Resistencia de Materiales Curso Resistencia de Materiales Aplicada AÑO 2011 A P U N T E S MÓDULO III: FLEXIÓN INTRODUCCION En los capítulos anteriores las fuerzas internas eran conocidas o constantes

Más detalles

IIND 4.1 TEORÍA DE ESTRUCTURAS Y CONSTRUCCIONES INDUSTRIALES

IIND 4.1 TEORÍA DE ESTRUCTURAS Y CONSTRUCCIONES INDUSTRIALES IIND 4.1 TEORÍA DE ESTRUCTURAS Y CONSTRUCCIONES INDUSTRIALES EJERCICIOS PROPUESTOS Hoja 6 Norma EA-95 1. a) En la viga continua isostática de la figura, representar las siguientes líneas de influencia,

Más detalles

ÍNDICE I TEORÍA DE LA ELASTICIDAD

ÍNDICE I TEORÍA DE LA ELASTICIDAD TÍTULO DE CAPÍTULO ÍNDICE Prólogo................................................................................... 17 Notaciones y símbolos................................................................

Más detalles

Estabilidad ESPACIAL de las construcciones. Regularidad estructural

Estabilidad ESPACIAL de las construcciones. Regularidad estructural Estabilidad ESPACIAL de las construcciones Regularidad estructural objetivos Reconocer el mecanismo mínimo estable Identificar centro de masa y centro de rigidez Analizar regularidad estructural Reconocer

Más detalles

ESTÁTICA ESTRUCTURAS ENUNCIADOS EJERCICIOS

ESTÁTICA ESTRUCTURAS ENUNCIADOS EJERCICIOS ESTÁTICA ESTRUCTURAS ENUNCIADOS EJERCICIOS Tecnología. Enunciados Ejercicios. ESTÁTICA-ESTRUCTURAS. Página 0 σ: tensiones (kp/cm 2 ) ε: deformaciones (alargamientos unitarios) σ t = σ adm : tensión de

Más detalles

MARCOS ESTRUCTURALES RIGIDOS

MARCOS ESTRUCTURALES RIGIDOS UNIVERSIDAD LA REPUBLICA MARCOS ESTRUCTURALES RIGIDOS INGENIERIA CIVIL MINAS 1 AÑO MATERIA :FORTIFICACION PROFESOR: HERNAN CARRASCO CARLOS MENESES ALEXIS GODOY DIEGO MUÑOZ HECTOR MOREO KAREN BAEZA ALEJANDRO

Más detalles

Planteamiento del problema elástico lineal

Planteamiento del problema elástico lineal Capítulo 3 Planteamiento del problema elástico lineal Para la simulación o representación de un proceso o un fenómeno físico, una de las partes fundamentales es su planteamiento matemático, que en su forma

Más detalles

ANEXO IX DE LA RESOLUCIÓN Nº 415 HCD Análisis Estructural Página 1 de 6 Programa de:

ANEXO IX DE LA RESOLUCIÓN Nº 415 HCD Análisis Estructural Página 1 de 6 Programa de: Análisis Estructural Página 1 de 6 Programa de: Análisis Estructural UNIVERSIDAD NACIONAL DE CÓRDOBA Facultad de Ciencias Exactas, Físicas y Naturales República Argentina Carrera: Ingeniería Civil Escuela:

Más detalles

2DA PRÁCTICA CALIFICADA

2DA PRÁCTICA CALIFICADA 2DA PRÁCTICA CALIFICADA DINÁMICA (IC 244) ALUMNOS : CARITAS BARRIENTOS, Ronald ROBLES ROCHA, Hamilton TORRES PÉREZ, Walter A. TORO VELARDE, William DOCENTE : Ing. CASTRO PÉREZ, Cristian CINÉTICA DE UNA

Más detalles

EI, A EI, A 2EI, A. 4.5 m. En primer lugar, definimos los nudos y los grados de libertad de la estructura.

EI, A EI, A 2EI, A. 4.5 m. En primer lugar, definimos los nudos y los grados de libertad de la estructura. 1. TEMA 5. MÉTODO MATRICIAL 1.1 Ejercicios resueltos 1. En la cubierta de la figura, determiar el valor de los momentos en los extremos de las barras, así como el momento máximo en ellas. (E=.1 1 11 N/m,

Más detalles

Obra: Pista de patinaje sobre hielo

Obra: Pista de patinaje sobre hielo Obra: Pista de patinaje sobre hielo Cubierta colgante pesada que cubre una luz libre de 95 metros. Su estructura está conformada por cables colocados cada 2 metros con apoyos a distinta altura. Completan

Más detalles

UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA MECÁNICA DEPARTAMENTO ACADÉMICO DE CIENCIAS DE INGENIERÍA SILABO

UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA MECÁNICA DEPARTAMENTO ACADÉMICO DE CIENCIAS DE INGENIERÍA SILABO UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA MECÁNICA DEPARTAMENTO ACADÉMICO DE CIENCIAS DE INGENIERÍA SILABO CÁLCULO POR ELEMENTOS FINITOS (MC-516) 2010-II UNIVERSIDAD NACIONAL DE INGENIERÍA

Más detalles