Vision por computadora, repaso 2
|
|
|
- Irene Montes Tebar
- hace 8 años
- Vistas:
Transcripción
1 Vision por computadora, repaso 2 Februar, 206 Geometria euclideana 2D.0. Transformaciones rigidas en el plano euclidiano Una transformación rígida (o isometría es una transformación que deja invariante la distancia entre puntos. Qué tipo de transformaciones del plano tienen esa propriedad? Translaciones. Rotaciones. Refleiones con respeto a una recta. Las combinaciones de las anteriores. En práctica en visión por computadora, manejaremos translaciones rotaciones (las refleiones cambian las orientaciones. Translación en el plano Euclidiano (2 parametros t, t : o ( = ( + p = p + t. ( t Rotación en el plano Euclidiano, centrada en la origen ( parámetro θ: ( ( ( cos θ sin θ = sin θ cos θ o p = R θ p. donde R θ es la matriz 2 2 de rotación de angulo θ. Propriedades de las matrices de rotación: R T θ R θ = I 2 2 det(r = (es la diferencia con las refleiones. Las columnas son las imagenes de los vectores de la base canónica: Permite verificar signos... La composición de los dos da la forma general de las isometrías del plano preservando la orientación (i.e. ecluendo las refleione: p = R θ p + t. Observar que, algebraicamente, no tenemos el mismo tipo de operaciones: uno es una adición entre vectores; el otro es una multiplicación matricial. Una forma de manejar todo linealmente como operaciones t
2 matriciales es pasar por coordenadas homogeneas. Por el momento, consideren simplemente el hecho de remplazar las coordenadas: ( por Cómo se escriben las translaciones rotaciones con esas coordenadas? Translaciones: = 0 t 0 t 0 0 Rotaciones: las isometrias en general: = = cos θ sin θ 0 sin θ cos θ cos θ sin θ t sin θ cos θ t 0 0 Las transformaciones rígidas del plano se pueden representar por matrices 3 3 actuando sobre coordenadas homógeneas. Veremos que se generalizará a transformaciones proectivas (perspectivas. In []: import cv2 import math import nump as np img = cv2.imread( imgs/messi5.jpg,0 rows,cols = img.shape theta = 0.2 fac =.0 M = np.float32([[fac*math.cos(theta,-fac*math.sin(theta,0],[fac*math.sin(theta,fac*math.cos( dst = cv2.warpaffine(img,m,(cols,rows cv2.imshow( img,dst cv2.waitke(0 cv2.destroallwindows( Observación: qué pasa si en lugar de.0.2 Ecuaciones de rectas en el plano Forma general de la ecuación de una recta:, usas coordenadas a + b + c = 0 Observar que en coordenadas homogeneas, se puede escribir: a + b + c. = ? 2
3 o sea como una relación de ortogonalidad: l T p = 0 podemos ver a l = a b como una representación de la recta. c 2a Observación: 2b también se puede usar! (o cualquiera versión escalada 2c Regresaremos mas adelante en la noción de dualidad entre puntos rectas en el plano. 2 Geometria euclideana 3D Transformaciones rigidas en el espacio 3D Similarmente al caso 2D: las transformaciones rígidas que conservan las distancias son: Las rotaciones 3D Las translaciones 3D De manera general, razonamos también en coordenadas homogeneas (con 4 coordenadas: ( R t z = z Las transformaciones rígidas del espacio 3D se pueden representar por matrices 4 4 actuando sobre coordenadas homógeneas (de 4 dimensiones. t es un vector de translación 3D R es una matriz 3 3 de rotación 3D. Observar que t es el vector de coordenadas correspondiendo a la imagen del punto cero antes de la transformación. Propriedades de las matrices de rotación: R T R = I 3 3 det(r =. Se pueden parametrizar por rotaciones elementales al rededor de ejes de rotación sucesivos; por ejemplo (pero ha muchas mas maneras: R = cos ψ sin ψ 0 sin ψ cos ψ cos θ sin θ 0 sin θ cos θ cos φ sin φ 0 sin φ cos φ Se necesita elegir los 3 ejes de rotación sucesivos en los cuales se aplicarán rotaciones. Representación de Euler. Esa representación tiene una singularidad: ver lo que pasa con θ = 0: gimbal lock (en unas configuraciones, se pierde la posibilidad de alcanzar todas las rotaciones vecinas. 3
4 2.0.4 Invertir transformaciones Observar que con la representación de matriz de transformación homogenea, es simple invertir transformaciones 3D: ( R t = ( R T R T t Revertir una transformación rígida corresponde a aplicar la rotación inversa (R T la translación R T t Ecuaciones de planos Forma general de la ecuación de una recta: a + b + cz + d = 0 Observar que en coordenadas homogeneas, se puede escribir: o sea como una relación de ortogonalidad: podemos ver a π = Observación: 2a 2b 2c 2d a b c d Producto vectorial Sean dos vectores 3D: a + b + cz + d. = 0 π T p = 0 como una representación del plano. también se puede usar! (o cualquiera versión escalada v = a b c v = el producto vectorial de v v se nota v v es el vector 3D: v v = bc b c a c ac ab a b. El vector obtenido es perpendicular tanto a v como a v : permite por ejemplo dar una epresión facil de una normal a un plano dado por 3 puntos A, B, C: a b c n = (B A (C A Observar también que tenemos la equivalencia: dos vectores 3D v v son colineales v v = 0. 4
5 2.0.7 Ecuaciones de rectas en 3D Cúantos parámetros necesarios para representar una recta en 3D? 5 parametros: punto particular una dirección (2 parametros La representación más común en vision es la de coordenadas de Plucker: sea v un vector director de la recta, p uno de sus puntos. Las coordenadas de Plucker son Un punto q pertenece a la recta (v, p v q = p + λv q v = p v Verificar que el segundo vector (p v es independiente de la elección de p. Observar también la naturaleza proectiva de la representación: una representación de la misma recta se puede optener al multiplicar esa por un escalar no nulo Matriz antismétrica asociada al producto vectorial Observar que si se ve el operador: v como operador unario de (al fijar v, entonces es un operador lineal en Podemos entonces representar la función: de forma matricial: Se puede verificar que La matriz A(v se nota [v]. Es antisimetrica. A(v = f v ( = v f v ( = A(v c 0 a 0 c b b a 0. 3 Tarea. Demostrar que si (λ, v es un par de valor singular, vector singular de derecha de una matriz A, entonces (λ 2, v es un par de eigen valor, eigen vector de la matriz A T A. 2. Demostrar que si F es una matriz cuadrada n n con una eigen-descomposición en los reales, de eigen valores λ,.., λ n, entonces: F positiva definida i [, n], λ i > Sean dos puntos del plano p q tales que q p 2 =. Cuáles son los parametros de la transformación rígida (rotación/translación tal que el cero del plano se vuelva p el punto (, 0 se vuelva q? 4. Sean (v, p v las coordenadas de Plucker de una recta del espacio 3D. Demostrar que esta representación no depende de la elección del punto p en la recta. 5
6 5. Sea l las coordenadas homogeneas de una recta del plano. Eso significa que un punto p pertenece a la linea si sólo si l T p = 0. Demostrar que si aplicamos una transformación afín A a los puntos p, entonces, las coordenadas de la recta están transformadas en: l = A T l 6
Geometría del plano y el espacio
Geometría del plano y el espacio AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Geometría del plano y el espacio 1 / 21 Objetivos Al final de este tema tendréis que Conocer
TRANSFORMACIONES LINEALES II. Computación Gráfica
TRANSFORMACIONES LINEALES II Computación Gráfica Rotaciones Transformación lineal que preserva producto punto entre vectores. Transforma bases de mano derecha a bases de mano derecha. En D, cada rotación
BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD DE CIENCIAS DE LA COMPUTACIÓN
1 BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD DE CIENCIAS DE LA COMPUTACIÓN BANCO DE PREGUNTAS CURSO: ALGEBRA LINEAL LICENCIATURA EN CIENCIAS DE LA COMPUTACIÓN MC Fco. Javier Robles Mendoza Otoño
Planos y Rectas. 19 de Marzo de 2012
el Geometría en el Planos y Rectas Universidad Autónoma Metropolitana Unidad Iztapalapa 19 de Marzo de 2012 el Anteriormente vimos que es posible encontrar un número infinito de vectores, no paralelos
Matemáticas II Bachillerato Ciencias y Tecnología 2º Curso ESPACIO AFÍN Introducción Ecuaciones de la recta...
Unidad 5 ESPACIO AFÍN 5.. Introducción.... - - 5.. Ecuaciones de la recta.... - - 5.3. Ecuaciones del plano.... - 4-5.4. Posiciones relativas (Incidencia y paralelismo).... - 6 - Anexo I.- EJERCICIOS...
Primer examen parcial Geometría y Álgebra Lineal 1 2 de mayo de 2015 Respuestas y solución
Primer examen parcial Geometría y Álgebra Lineal 1 2 de mayo de 2015 Respuestas y solución Respuestas a la versión 1: (La versión 1 es aquélla cuyo primer ejercicio dice Un sistema lineal de m ecuaciones
ESPACIOS VECTORIALES
ESPACIOS VECTORIALES Luisa Martín Horcajo U.P.M. Definición: Vector libre. Operaciones Un vector fijo es una segmento orientado, que queda caracterizado por su origen A y su extremo B y se representa por
CAPÍTULO 2 TRANSFORMACIONES LINEALES
CAPÍULO RANSFORMACIONES LINEALES ransformación Sean V W espacios vectoriales. La función : V W recibe el nombre de transformación, los espacios V W se llaman dominio codominio de la transformación, respectivamente.
V = v 1 +2v 2 +3v 3. v 2. v 1
Coordenadas Hay muchas maneras de darle coordenadas a los puntos del espacio, las ecuaciones de las curvas o superficies dependen de las coordenadas que utilicemos y eligiendo las coordenadas adecuadas
Producto Escalar. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Producto Escalar 1 / 31
Producto Escalar AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Producto Escalar 1 / 31 Objetivos Al finalizar este tema tendrás que: Saber usar el producto escalar. Calcular
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 7 MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio 4, Opción A Reserva, Ejercicio 4,
Espacios vectoriales con producto interno
Espacios vectoriales con producto interno Problemas teóricos En todos los problemas relacionados con el caso complejo se supone que el producto interno es lineal con respecto al segundo argumento. Definición
Matriz asociada a una transformación lineal respecto a un par de bases
Matriz asociada a una transformación lineal respecto a un par de bases Ejercicios Objetivos Comprender cómo se describe una transformación lineal (que actúa en espacios vectoriales de dimensiones finitas)
ALGEBRA LINEAL Y GEOMETRÍA. ISOMETRÍAS LINEALES EN DIMENSIONES 2 Y 3 GRADO DE MATEMÁTICAS. CURSO
ALGEBRA LINEAL Y GEOMETRÍA. ISOMETRÍAS LINEALES EN DIMENSIONES 2 Y 3 GRADO DE MATEMÁTICAS. CURSO 2012-2013 José García-Cuerva Universidad Autónoma de Madrid 13 de febrero de 2013 JOSÉ GARCÍA-CUERVA (U.A.M.)
Matemáticas. Si un error simple ha llevado a un problema más sencillo se disminuirá la puntuación.
UNIVERSIDAD POLITÉCNICA DE CARTAGENA PRUEBAS DE ACCESO A LA UNIVERSIDAD DE LOS MAYORES DE 25 AÑOS CONVOCATORIA 2014 CRITERIOS DE EVALUACIÓN Matemáticas GENERALES: El examen constará de dos opciones (dos
El grupo lineal proyectivo. Homologías. Afinidades.
Tema 3- El grupo lineal proyectivo Homologías Afinidades 31 El grupo lineal proyectivo Recordamos que en el tema anterior hemos definido, para una variedad lineal proyectiva L P n no vacía, el grupo lineal
Tema 1. Espacios Vectoriales. Sistemas de ecuaciones.
Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Álgebra Lineal Escuela Politécnica Superior Universidad de Málaga Emilio Muñoz-Velasco (Basado en los apuntes de Jesús Medina e Inmaculada Fortes)
Capítulo 8: Vectores
Capítulo 8: Vectores 1. Lección 30. Operaciones con vectores 1.1. Vectores El concepto de vector aparece en Física para describir magnitudes, tales como la fuerza que actúa sobre un punto, en las que no
7 Aplicaciones ortogonales
Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1 7 Aplicaciones ortogonales 7.1 Aplicación ortogonal Se llama aplicación ortogonal a un endomorfismo f : V V sobre un espacio vectorial
ap l i c a c i o n e s d e l a s
Unidad 9 ap l i c a c i o n e s d e l a s transformaciones lineales Objetivos: Al inalizar la unidad, el alumno: Relacionará algunas transformaciones especiales con movimientos geométricos de vectores
Conceptos básicos de Geometría
Dr. Eduardo A. RODRÍGUEZ TELLO CINVESTAV-Tamaulipas 15 de enero del 2013 Dr. Eduardo RODRÍGUEZ T. (CINVESTAV) 15 de enero del 2013 1 / 25 1 Geometría Afín Geometría Euclidiana Áreas y ángulos Dr. Eduardo
Tema 1. Espacios Vectoriales. Sistemas de ecuaciones.
Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Álgebra Lineal Escuela Politécnica Superior Universidad de Málaga Emilio Muñoz-Velasco (Basado en los apuntes de Jesús Medina e Inmaculada Fortes)
Matrices. Operaciones con matrices.
Matrices. Operaciones con matrices. Ejercicio. Dadas las matrices ( ) ( ) 4 A = B = ( ) C = D = 4 5 ( ) 4 E = F = seleccione las que se pueden sumar y súmelas. Ejercicio. Dadas las matrices ( ) ( ) A =
1. Determina cuáles de los siguientes conjuntos son subespacios vectoriales. Para aquellos que lo sean, halla una base.
EJERCICIOS PROPUESTOS 1. Espacios vectoriales. Sistemas de ecuaciones. 1. Determina cuáles de los siguientes conjuntos son subespacios vectoriales. Para aquellos que lo sean, halla una base. (a) S = {
es el lugar geométrico de los puntos p tales que p 0 p n o p 0 p o. p x ; y ; z perteneciente a y un vector no
El Plano y la Recta en el Espacio Matemática 4º Año Cód. 145-15 P r o f. M a r í a d e l L u j á n M a r t í n e z P r o f. J u a n C a r l o s B u e P r o f. M i r t a R o s i t o P r o f. V e r ó n i
ALGEBRA LINEAL Y GEOMETRÍA I
ALGEBRA LINEAL Y GEOMETRÍA I TEMA 3: Autovalores y Autovectores. Introducción Ya conoces que las aplicaciones lineales entre espacios vectoriales, al elegir bases en ellos, las puedes representar por matrices.
2 Espacios vectoriales
Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1 2 Espacios vectoriales 2.1 Espacio vectorial Un espacio vectorial sobre un cuerpo K (en general R o C) es un conjunto V sobre el que hay
EL ESPACIO AFÍN. se distinguen, además de su origen A y su extremo B, las siguientes
VECTOR FIJO Y VECTOR LIBRE. Sea E el espacio ordinario. EL ESPACIO AFÍN Llamaremos vector fijo a cualquier segmento orientado dado por dos puntos A y B del espacio E. Al punto A lo llamamos origen del
Clase 8 Matrices Álgebra Lineal
Clase 8 Matrices Álgebra Lineal Código Escuela de Matemáticas - Facultad de Ciencias Universidad Nacional de Colombia Matrices Definición Una matriz es un arreglo rectangular de números denominados entradas
TEMA 1 Álgebra de matrices 4 sesiones. TEMA 2 Determinantes 4 sesiones. TEMA 3 Sistemas de ecuaciones 4 sesiones
1.1. MATEMÁTICAS II TEMPORALIZACIÓN Y SECUENCIACIÓN: TEMA 1 Álgebra de matrices 4 sesiones TEMA 2 Determinantes 4 sesiones TEMA 3 Sistemas de ecuaciones 4 sesiones TEMA 4 Vectores en el espacio 4 sesiones
Una forma fácil de recordar esta suma (regla de Sarrus): Primero vamos a estudiar algunas propiedades de los determinantes.
Una forma fácil de recordar esta suma (regla de Sarrus): Ejemplos: Tarea: realizar al menos tres ejercicios de cálculo de determinantes de matrices de 2x2 y otros tres de 3x3. PARA DETERMINANTES DE MATRICES
Definición 1.28 (Determinación de una recta) Una recta en el plano viene determinada por un punto y un vector libre, no nulo, r (P; u )
1.3. La recta en el plano afín La recta está formada por puntos del plano en una dirección dada. La ecuación de la recta es la condición necesaria y suficiente que deben cumplir las coordenadas de un punto
2 Transformaciones en 3D
2 Transformaciones en 3D La manera más fácil de conseguir las transformaciones básicas (traslación, rotación, escalación, en general las transformaciones afines) es utilizando matrices de transformación.
102 EJERCICIOS DE ALGEBRA LINEAL por Francisco Rivero Mendoza Ph.D.
102 EJERCICIOS DE ALGEBRA LINEAL por Francisco Rivero Mendoza Ph.D. Tema 1. Espacios Vectoriales. 1. Dar la definición de cuerpo. Dar tres ejemplos de cuerpos. Dar un ejemplo de un cuerpo finito 2. Defina
1. Algunas deniciones y resultados del álgebra lineal
. Algunas deniciones y resultados del álgebra lineal Denición. (Espacio vectorial o espacio lineal sobre R) Un espacio vectorial o espacio lineal sobre el campo de los números reales, R, es un conjunto
PROGRAMA ANALÍTICO. I. Objetivos El alumno deberá: II. Contenidos del Programa Analítico. Año 2017
Año 2017 PROGRAMA ANALÍTICO Asignatura: ÁLGEBRA Y GEOMETRÍA ANALÍTICA Departamento: Matérias Básicas Unidad Docente Básica: Matemática Bloque: Ciencias Básicas Especialidad: COMÚN A TODAS LAS ESPECIALIDADES
Ecuaciones de la recta en el espacio
Ecuaciones de la recta en el espacio Ecuación vectorial de la recta Sea P(x 1, y 1 ) es un punto de la recta r y uu su vector director, el vector PPXX tiene igual dirección que uu, luego es igual a uu
UNIDAD 2: ESPACIOS VECTORIALES
UNIDAD 2: ESPACIOS VECTORIALES Introducción. Vectores. Adición de vectores. Propiedades. Multiplicación de un vector por un escalar. Propiedades. Módulo o norma de un vector. Vector unitario o versor.
VECTORES 1.2 CONCEPTOS Y DEFINICIONES FUNDAMENTALES. En este capítulo estudiaremos los vectores y su álgebra.
CAPITULO I CALCULO II VECTORES 1.1 INTRODUCCIÓN Los vectores son un auxiliar utilísimo para la geometría del espacio. En esta unidad partiendo de lo que ya se sabe de vectores en el plano, se contemplan
VECTORES : Las Cantidades Vectoriales cantidades escalares
VECTORES En física hay dos tipos de cantidades: Las Cantidades Vectoriales son aquellas que tiene tanto magnitud como dirección y sentido sobre la dirección), mientras que las cantidades escalares son
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID. PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) MODELO DE EXAMEN (Curso )
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) MODELO DE EXAMEN (Curso 00-003) MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES Y VALORACIÓN INSTRUCCIONES:
ALGEBRA. Escuela Politécnica Superior de Málaga
ALGEBRA. Escuela Politécnica Superior de Málaga Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Espacio vectorial. Espacios vectoriales R n. Dependencia e independencia lineal. Base. Matrices y determinantes.
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 005 MATEMÁTICAS II TEMA : ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio
ETAPAS BÁSICAS DEL ANÁLISIS MATRICIAL DE UN SISTEMA DISCRETO. Mercedes López Salinas
ETAPAS BÁSICAS DEL ANÁLISIS MATRICIAL DE UN SISTEMA DISCRETO Mercedes López Salinas PhD. Ing. Civil [email protected] ELEMENTOS FINITOS Facultad de Ciencia y Tecnología Escuela de Ingeniería Civil y
520142: ALGEBRA y ALGEBRA LINEAL
520142: ALGEBRA y ALGEBRA LINEAL Segundo Semestre 2008, Universidad de Concepción CAPITULO 10: Espacios Vectoriales DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición
Tema 2 Datos multivariantes
Aurea Grané Máster en Estadística Universidade Pedagógica 1 Aurea Grané Máster en Estadística Universidade Pedagógica 2 Tema 2 Datos multivariantes 1 Matrices de datos 2 Datos multivariantes 2 Medias,
Matrices, Determinantes y Sistemas Lineales.
12 de octubre de 2014 Matrices Una matriz A m n es una colección de números ordenados en filas y columnas a 11 a 12 a 1n f 1 a 21 a 22 a 2n f 2....... a m1 a m2 a mn f m c 1 c 2 c n Decimos que la dimensión
Rectas y Planos en el Espacio
Rectas y Planos en el Espacio Rectas y Planos en el Espacio Verónica Briceño V. septiembre 2012 Verónica Briceño V. () Rectas y Planos en el Espacio septiembre 2012 1 / 20 En esta Presentación... En esta
Trabajo Práctico N 5: ESPACIOS VECTORIALES
Trabajo Práctico N 5: ESPACIOS VECTORIALES Ejercicio 1: Determine si los siguientes conjuntos con las operaciones definidas en cada caso son o no espacios vectoriales. Para aquellos que no lo sean, indique
Definición (matriz): Definición (dimensión de una matriz): Si una matriz tiene m renglones y n columnas se dice que es de dimensión m n.
Índice general 1. Álgebra de Matrices 1 1.1. Conceptos Fundamentales............................ 1 1.1.1. Vectores y Matrices........................... 1 1.1.2. Transpuesta................................
Tema 1 CÁLCULO MATRICIAL y ECUACIONES LINEALES
Tema 1 CÁLCULO MATRICIAL y ECUACIONES LINEALES Prof. Rafael López Camino Universidad de Granada 1 Matrices Definición 1.1 Una matriz (real) de n filas y m columnas es una expresión de la forma a 11...
Fundamentos matemáticos. Tema 3 Geometría del plano y del espacio
Fundamentos matemáticos Grado en Ingeniería agrícola y del medio rural Tema 3 Geometría del plano y del espacio José Barrios García Departamento de Análisis Matemático Universidad de La Laguna [email protected]
p = p 2 r 1 r r A = p 3
Unidad 5 Transformaciones 5. Introducción Un fabricante elabora cuatro tipos de productos distintos, de los cuales cada uno requiere tres tipos de materiales. Se identifican los cuatro productos como P,
Proyección ortogonal sobre un vector normalizado (ejercicios teóricos simples)
Proyección ortogonal sobre un vector normalizado (ejercicios teóricos simples) Objetivos Deducir fórmulas para la proyección ortogonal de un vector sobre el subespacio generado por un vector normalizado;
Matrices de rotaciones, simetrías y roto simetrías
Matrices de rotaciones, simetrías y roto simetrías María Jesús DE LA PUENTE Departamento de Álgebra Facultad de Matemáticas Universidad Complutense 28040 Madrid, Spain [email protected] Dedication Resumen
Rectas y Planos en el Espacio
Rectas y Planos en el Espacio Rectas y Planos en el Espacio Verónica Briceño V. octubre 2013 En esta Presentación... En esta Presentación veremos: Rectas En esta Presentación... En esta Presentación veremos:
Cambio de coordenadas
Capítulo Cambio de coordenadas Problema Tenemos 3 puntos P, P y P 3, la idea es representar P en términos de esos puntos y de otros tres Q,Q y Q 3. El problema, es cómo ven P P P 3 a P y cómo Q Q Q 3 a
ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Espacios vectoriales
Resumen teoría Prof. Alcón ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Espacios vectoriales Sea (K, +,.) un cuerpo con característica 0. Podemos pensar K = Q, R o C. Si V es un conjunto cualquiera en el que
Trabajo Práctico N 5: ESPACIOS VECTORIALES
Trabajo Práctico N 5: ESPACIOS VECTORIALES Ejercicio 1: Determine si los siguientes conjuntos con las operaciones definidas en cada caso son o no espacios vectoriales. Para aquellos que no lo sean, indique
EJERCICIOS DE SELECTIVIDAD DE GEOMETRIA
EJERCICIOS DE SELECTIVIDAD DE GEOMETRIA 2003 (4) Ejercicio 1. Considera los vectores u = (1,1,1), v = (2,2,a) y w = (2,0,0), (a) [1'25 puntos] Halla los valores de a para que los vectores u, v y w sean
2.5 Ejercicios... 59
Índice General 1 Espacios vectoriales 1 1.1 Espacios vectoriales y subespacios......................... 1 1.1.1 Preliminares................................. 1 1.1.2 Espacios vectoriales.............................
[ ] 2, 2, 3 [ ( )] 2, 2, 3 CAMPOS: SUPERFICIES ( ) Hallar un vector unitario normal a la superficie x 2 y + 2xz = 4 en el punto (2, 2,3).
CAMPOS SUPERFICIES Hallar un vector unitario normal a la superficie x 2 y + 2xz 4 en el punto (2, 2,3). Solución I.T.I. 98, I.T.T. 99, 02 En primer lugar deberíamos verificar que el punto (2, 2,3) pertenece
Tema 1. 1 Álgebra lineal. Aurea Grané Departamento de Estadística Universidad Carlos III de Madrid. 1.1 Vectores de R n. 1. Vectores. 2.
Aurea Grané. Máster en Estadística. Universidade Pedagógica. 1 Aurea Grané. Máster en Estadística. Universidade Pedagógica. 2 Tema 1 Álgebra lineal 1. Vectores 2. Matrices 1 Álgebra lineal Aurea Grané
VECTORES. A cada clase de vectores equipolentes se denomina vector libre.!
VECTORES Vectores libres del plano Definiciones Sean A y B dos puntos del plano de la geometría elemental. Se llama vector AB al par ordenado A, B. El punto A se denomina origen y al punto B extremo. (
SOLUCIONES. ÁLGEBRA LINEAL Y GEOMETRÍA (Examen Ordinario : ) Grado en Matemáticas Curso
ÁLGEBRA LINEAL Y GEOMETRÍA Eamen Ordinario : 6--7 Grado en Matemáticas Curso 6-7 SOLUCIONES Dados tres puntos distintos alineados A, A, A A R, al número real r tal que A A = r A A lo llamaremos raón simple
Puntos y Vectores. 16 de Marzo de 2012
Geometría en Puntos y Vectores Universidad Autónoma Metropolitana Unidad Iztapalapa 16 de Marzo de 2012 Introducción En Geometría analítica plana las relaciones y las propiedades geométricas se expresan
Operaciones con matrices
Operaciones con matrices Problemas para examen Operaciones lineales con vectores 1. Programación: la suma de dos vectores. Escriba una función que calcule x + y, donde x, y R n. Calcule el número de flops.
1. Operaciones con vectores
1. OPERACIONES CON VECTORES Academia Nakis (Lugones)684-61-61-03. 1 Resumen Geometría en 3D 1. Operaciones con vectores Sean los vectores W 1 = (a 1, b 1, c 1 ),W 2 = (a 2, b 2, c 2 ),W 3 = (a 3, b 3,
EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES
EJERCICIOS DE ÁLGEBRA LINEAL TEMA ESPACIOS VECTORIALES Formas reducidas y escalonada de una matriz SISTEMAS DE ECUACIONES LINEALES ) Encuentre una sucesión de matrices elementales E, E,..., E k tal que
Álgebra y Álgebra II - Segundo Cuatrimestre 2017 Práctico 4 - Espacios Vectoriales
Álgebra y Álgebra II - Segundo Cuatrimestre 2017 Práctico 4 - Espacios Vectoriales (1) Sea n N. Mostrar que el conjunto de polinomios sobre R de grado menor que n es un subespacio vectorial de R[x]. Este
ELEMENTOS DE GEOMETRÍA. Eduardo P. Serrano
ELEMENTOS DE GEOMETRÍA Eduardo P. Serrano Este Apunte de Clase está dirigido a los alumnos de la materia Elementos de Cálculo Numérico para Biólogos. Tiene por objeto exponer algunos conceptos básicos
Problemas resueltos del libro de texto. Tema 8. Geometría Analítica.
Problemas resueltos del libro de texto Tema 8 Geometría Analítica Combinación lineal de vectores 9- Es evidente que sí es combinación lineal de estos dos vectores, ya que -4 y permiten escribir z como
Expresión matricial de las operaciones de simetría
Epresión matricial de las operaciones de simetría Cada una de las operaciones de simetría se puede describir como una transformación de ejes de coordenadas, de tal manera que las coordenadas de la imagen
PROPUESTA A. c) Demuestra, usando el Teorema de Rolle, que la ecuación anterior no puede tener más de tres raíces reales distintas.
PROPUESTA A 1A. a) Enuncia el Teorema de Bolzano y el Teorema de Rolle. (1 punto) b) Demuestra, usando el Teorema de Bolzano, que existen al menos tres raíces reales distintas de la ecuación, x 5 5x +
Espacios Vectoriales
Leandro Marín Octubre 2010 Índice Definición y Ejemplos Paramétricas vs. Impĺıcitas Bases y Coordenadas Para definir un espacio vectorial tenemos que empezar determinando un cuerpo sobre el que esté definido
GUÍA DE ESTUDIOS PARA EL EXAMEN A TITULO DE SUFICIENCIA DE FUNDAMENTOS DE ÁLGEBRA.
GUÍA DE ESTUDIOS PARA EL EXAMEN A TITULO DE SUFICIENCIA DE FUNDAMENTOS DE ÁLGEBRA. INSTRUCCIONES El conjunto de ejercicios que a continuación se presenta tienen como objetivo proporcionarte orientación
Subespacios de espacios vectoriales
Subespacios de espacios vectoriales Objetivos. Estudiar la definición, el criterio y algunos ejemplos de subespacios vectoriales. Muchos espacios vectoriales importantes (por ejemplo, espacio de soluciones
Un vector es un segmento orientado que consta de los siguientes elementos:
El conjunto R 3 : Conjunto formado por todas las ternas de números reales. Un vector es un segmento orientado que consta de los siguientes elementos: - Módulo: Es la longitud del vector. - Dirección: es
Problemas de Geometría Proyectiva
Problemas de Geometría Proyectiva José M. Sánchez Abril José M. Rodríguez-Sanjurjo, Jesús M. Ruiz 1995 * I. VARIEDADES PROYECTIVAS Número 1. Se consideran en el plano proyectivo P 2 los cuatro puntos a
Repaso de conceptos de álgebra lineal
MÉTODOS AVANZADOS EN APRENDIZAJE ARTIFICIAL: TEORÍA Y APLICACIONES A PROBLEMAS DE PREDICCIÓN Manuel Sánchez-Montañés Luis Lago Ana González Escuela Politécnica Superior Universidad Autónoma de Madrid Repaso
Algebra Lineal * Working draft: México, D.F., a 17 de noviembre de 2010.
Algebra Lineal * José de Jesús Ángel Ángel jjaa@mathcommx Working draft: México, DF, a 17 de noviembre de 2010 Un resumen de los principales temas tratados en un curso de Álgebra Lineal Contenido 1 Sistemas
UNIDAD 1: ELEMENTOS ALGEBRAICOS 1B : VECTORES
UNIDAD 1: ELEMENTOS ALGEBRAICOS 1B : VECTORES Conceptos A partir de la identificación de puntos de la recta con números reales, se puede avanzar relacionando puntos del plano y del espacio con pares o
TSTC. Dpt. Teoría de la Señal, Telemática y Comunicaciones Tema 2 CINEMÁTICA DE MANIPULADORES
Dpt. Teoría de la Señal, Telemática y Comunicaciones Tema 2 CINEMÁTICA DE MANIPULADORES Secciones 1. Introducción. 2. Coordenadas y Transformaciones Homogéneas. 3. Problema Cinemático Directo. Método de
Espacios vectoriales reales.
Tema 3 Espacios vectoriales reales. 3.1 Espacios vectoriales. Definición 3.1 Un espacio vectorial real V es un conjunto de elementos denominados vectores, junto con dos operaciones, una que recibe el nombre
. Halla los valores de α en cada uno de los siguientes casos: a) (1 punto) u r, v
EJERCICIOS BLOQUE III: GEOMETRÍA (04-M;Jun-A-4) Considera la recta r que pasa por los puntos A (,0, ) y (,,0 ) a) ( punto) Halla la ecuación de la recta s paralela a r que pasa por C (,,) b) (5 puntos)
Álgebra Lineal. Tema 12. Geometría de las transformaciones lineales en R
Álgebra Lineal Tema 12. Geometría de las transformaciones lineales en R Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas AUTORES: J. S ALAS, A. T ORRENTE
TRANSFORMACIONES LINEALES 1. TRANSFORMACIONES NÚCLEO E IMAGEN
RANSFORMACIONES LINEALES 1 RANSFORMACIONES NÚCLEO E IMAGEN DEFINICION : Sean V W espacios vectoriales Una transformación lineal de V en W es una función que asigna a cada vector v V un único vector v W
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: MATEMÁTICAS II
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES Y VALORACIÓN El alumno contestará a
EJERCICIOS BLOQUE III: GEOMETRÍA
EJERCICIOS BLOQUE III: GEOMETRÍA (05-M4;Jun-B-4) Sea el plano π x + y z + 8 a) (5 puntos) Calcula el punto, P simétrico del punto (,,5 ) b) ( punto) Calcula la recta r, simétrica de la recta plano π P
Ejercicios resueltos de Álgebra, hoja 2. Beatriz Graña Otero
Ejercicios resueltos de Álgebra, hoja 2. Beatriz Graña Otero 11 de Diciembre de 2008 2 B.G.O. 104.- Determina si los siguientes subconjuntos del espacio vectorial correspondiente son subvariedades afines:
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 4 MATEMÁTICAS II TEMA : ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio 4, Opción A Reserva, Ejercicio 4,
Lista de problemas de álgebra, 2016
Instituto Politécnico Nacional Escuela Superior de Física y Matemáticas Posgrado en Ciencias Físicomatemáticas Línea de Matemáticas Lista de problemas de álgebra 2016 Egor Maximenko: En mi opinión cualquier
