Tamaño: px
Comenzar la demostración a partir de la página:

Download ""

Transcripción

1 Enero 2016 Ing. Rubén Darío Estrella, MBA Cavaliere dell ordine al Merito della Repubblica Italiana (2003) Ingeniero de Sistemas (UNIBE 1993), Administrador (PUCMM 2000), Matemático (PUCMM 2007), Teólogo (UNEV 2002) y Maestro (Salomé Uneña 1985) [email protected] / [email protected]

2 Las dos aplicaciones principales de la estadística inferencial implican el uso de datos de muestra para (1) estimar el valor de un parámetro de población y (2) llegar a una conclusión acerca de una población. Estimador: es una estadística de muestra (como la media de muestra) que se usa para aproximar un parámetro de población. Existen dos tipos de estimadores que se utilizan normalmente: - Estimador puntual - Estimador por intervalo

3 Estimados y Tamaño de Muestra Estimado puntual: es un valor individual (o punto) que se usa para aproximar un parámetro de población. Estimador Puntual: utiliza un número único o valor para localizar una estimación del parámetro. La media de muestra es el mejor estimado de la media de población. Podemos decir que la media de la muestra es un estimador no predispuesto de la media de la población, lo que quiere decir que la distribución de las medias de muestra tiende a centrarse alrededor del valor de la media de la población. (Es decir, las medias de muestra no tienden a sobreestimar sistemáticamente el valor de, y tampoco tienden a subestimar sistemáticamente dicho valor. En vez de ello, tienden a centrarse en el valor de misma).

4 Estimados y Tamaño de Muestra Estimación por intervalo: especifica el rango dentro del cual está el parámetro desconocido. Intervalo de Confianza: denota un rango dentro del cual puede encontrarse el parámetro. Es una gama (o un intervalo) de valores que probablemente contiene el valor verdadero del parámetro de población. Un intervalo de confianza se asocia a un grado de confianza, que es una medida de la certeza que tenemos de que nuestro intervalo contiene el parámetro de población. Nivel de confianza (grado o coeficiente de confianza): es la probabilidad 1- (a menudo expresada como el valor porcentual equivalente) de que el intervalo de confianza contiene el verdadero valor del parámetro. Existen tres niveles de confianza relacionados comúnmente con los intervalos de confianza: 99, 95 y 90%, denominados coeficientes de confianza.

5 Estimados y Tamaño de Muestra Valor Alfa : Es la probabilidad de error o la probabilidad de que un intervalo dado no contenga la media poblacional desconocida. Valor Critico Z: Es el número que está en la frontera que separa las estadísticas de muestra que probablemente ocurrirán, de aquellas que probablemente no ocurrirán. Es un puntaje con la propiedad de que separa un área de /2 de la cola derecha de la distribución normal estándar. Margen de Error E: Es la máxima diferencia probable (con una probabilidad de 1-) entre la media de muestra observada y el verdadero valor de la media de población. El margen de error también se denomina error máximo de la estimación y puede obtenerse multiplicando el valor critico y la desviación estándar de las medias de muestras. E = Z * /n

6 E = Z * /n Intervalo de confianza para estimar (media poblacional real desconocida) cuando es conocida. I. C. para estimar = X' E Caso I. Para estimar el gasto promedio de los clientes en el McDonald's local, los estudiantes de Métodos Cuantitativos toman una muestra de 200 clientes y encuentran un gasto promedio de US$5.67, con una desviación estándar poblacional de US$1.10. Cuál es el intervalo de confianza del 95% para los gastos promedio de todos los clientes? Interprete sus resultados.

7 Caso I. Para estimar el gasto promedio de los clientes en el McDonald's local, los estudiantes de Métodos Cuantitativos toman una muestra de 200 clientes y encuentran un gasto promedio de US$5.67, con una desviación estándar poblacional de US$1.10. Cuál es el intervalo de confianza del 95% para los gastos promedio de todos los clientes? Interprete sus resultados. I. C. para estimar = X' E Datos: E = Z * /n = 1.96 * (1.10/200) = 0.15 n=200 I.C. para estimar = US$ N.C.=95% x'=us$5.67 I.C.=? σ=us$1.10 = US$5.52 US$5.82

8

9 MEGASTAT

10 MEGASTAT Confidence interval - mean 95% confidence level 5.67 mean 1.1 std. dev. 200 n z half-width upper confidence limit lower confidence limit

11

12 Caso I. Para estimar el gasto promedio de los clientes en el McDonald's local, los estudiantes de Métodos Cuantitativos toman una muestra de 200 clientes y encuentran un gasto promedio de US$5.67, con una desviación estándar poblacional de US$1.10. Cuál es el intervalo de confianza del 95% para los gastos promedio de todos los clientes? Interprete sus resultados. I. C. para estimar = X' E E = Z * /n = 1.96 * (1.10/200) = 0.15 I. C. = US$5.52 US$5.82 Los estudiantes poseen un 95% de confianza de que la media poblacional desconocida del gasto de los clientes del McDonal's evaluados se encuentra entre el intervalo US$5.52 US$5.82. Si se construyen todos los NCn intervalos de confianza, el 95% de ellos contendrá la media poblacional desconocida. Esto por supuesto significa que el 5% de todos los intervalos estaría errado - no contendrían la media poblacional, el Valor alfa.

13 Si n > 30, podemos sustituir de la formula del E por la desviación estándar de la muestra s. E = Z * s/n Procedimiento para construir un intervalo de confianza para (basado en una muestra grande: n > 30). 1. Encuentre el valor critico Z que corresponda al grado de confianza deseado. 2. Evalúe el margen de error E = Z * /n. Si se desconoce la desviación estándar de la población, use el valor de la desviación estándar de la muestra s, siempre que n > Con el valor del margen de error calculado y el valor de la media de muestra X', obtenga los valores de X'-E y X'+E. Sustituya estos valores en el formato general del intervalo de confianza: X'-E X'+E = X' E (X'-E,X'+E 4. Redondee los valores resultantes aplicando la regla de redondeo.

14 1. Si usa el conjunto de datos original para construir un intervalo de confianza, redondee los limites del intervalo de confianza a una posición decimal más que las empleadas en el conjunto de datos original. 2. Si desconoce el conjunto de datos original y sólo usa las estadísticas resumidas (n, x', s), redondee los limites del intervalo de confianza de acuerdo al mismo número de posiciones decimales que se usan para la media de muestra.

15 Justificación: La idea básica en que se apoya la construcción de intervalos de confianza tiene que ver con el teorema del limite central, que indica que en el caso de muestras grandes (n > 30), la distribución de las medias de muestra es aproximadamente normal con media y desviación estándar /n. El formato de los intervalos de confianza en realidad es una variación de la ecuación: Z = (X' - )/(/n) X' - = Z (/n) - = Z (/n) - X' (-1) = X' - Z (/n) = X' E Precisión: Un intervalo estrecho ofrece mayor precisión, aunque la probabilidad de que contenga se reduce.

16 Caso I. Una muestra consiste en 75 televisores adquiridos hace varios años. Los tiempos de reemplazo de esos televisores tienen una media de 8.2 años y una desviación estándar de 1.1 años (basados en datos de "Getting Things Fixed", Consumer Reports). Construya un intervalo de confianza del 90% para el tiempo de reemplazo medio de todos los televisores de esa época. Caso II. Utilice el grado de confianza y los datos de muestra dados para determinar (a) el margen de error y (b) el intervalo de confianza para la media de la población 1. Estaturas de mujeres: confianza del 95%; n=50, x'=63.4 pulgs., s=2.4 pulgs. 2. Promedios de calificaciones: confianza del 99%; n=75, x'=2.76, s= Puntajes en una prueba: confianza del 90%; n=150, x'=77.6; s=14.2. Ejercicios de la Sección 1 al 10 págs. 175 y 176.

17 Decisiones. Edición Pág. 110 Las decisiones dependen con frecuencia de parámetros que son binarios, parámetros con sólo dos posibles categorías dentro de las cuales pueden clasificarse las respuestas. En este evento, el parámetro de interés es la proporción poblacional. Tanto las proporciones como las probabilidades se expresan en forma decimal o fraccionaria. Al trabajar con porcentajes, los convertimos en proporciones omitiendo el signo de por ciento y dividiendo entre 100. Por ejemplo, la tasa del 48% de personas que no compran libros puede expresarse en forma decimal como 0.48.

18 Estimado puntual para la proporción de población. La proporción de muestra p es el mejor estimado puntual de la proporción de población. p = x/n proporción de muestra de x éxitos en una muestra de tamaño n. Intervalo de confianza para la proporción poblacional. Muchos asuntos de negocios tratan la proporción de la población. Una firma de marketing puede querer averiguar si un cliente (1) compra o (2) no compra el producto. Un banco con frecuencia debe determinar si un depositante (1) pedirá o (2) no pedirá un crédito para auto. Muchas firmas deben determinar la probabilidad de que un proyecto para presupuestar capital (1) generará o (2) no generará un rendimiento positivo.

19 Si n*p y n*(1-p) son mayores que 5, la distribución de las proporciones muestrales será normal y la distribución muestral de la proporción muestral tendrá una media igual a la proporción poblacional y error estándar de: Error estandar de la distribución muestral de las proporciones muestrales: p = p(1-p)/n = pq/n Estimación del Error estándar de la distribución muestral de las proporciones muestrales: sp = p(1-p)/n = pq/n Margen de error del estimado de la proporción de la población: E = (Z)( pq/n)

20 Regla de redondeo para estimados de intervalo de confianza para la proporción de población Redondee los limites del intervalo de confianza a tres dígitos significativos. Intervalo de confianza para estimar la proporción poblacional. I.C. para estimar la proporción poblacional = p E Caso I. E = (Z)( pq/n) En una encuesta de 1068 estadounidenses, 673 dijeron que tenían contestadoras telefónicas (basados en datos de International Mass Retail Association, informados en USA Today). Utilizando estos resultados de muestra, determine: a. El estimado puntual de la proporción de la población de todos los estadounidenses que tienen contestadora telefónica. b. El estimado de intervalo del 95% de la proporción de todos los estadounidenses que tienen contestadora telefónica.

21 I.C. para estimar la proporción poblacional = p E Caso I. E = (Z)( pq/n) En una encuesta de 1068 estadounidenses, 673 dijeron que tenían contestadoras telefónicas (basados en datos de International Mass Retail Association, informados en USA Today). Utilizando estos resultados de muestra, determine: a. El estimado puntual de la proporción de la población de todos los estadounidenses que tienen contestadora telefónica. b. El estimado de intervalo del 95% de la proporción de todos los estadounidenses que tienen contestadora telefónica. a. Estimado puntual para la proporción de población. p = x/n = 673/1068 = b. Intervalo de confianza para estimar la proporción poblacional. E = 1.96 ((0.630)(0.370)/1068) = I.C. para estimar la proporción poblacional: < < < < 0.659

22 Decisiones. Edición Pág. 110 MEGASTAT

23 0.659 upper confidence limit lower confidence limit Estimados y Tamaño de Muestra MEGASTAT Confidence interval - proportion 95% confidence level 0.63 proportion 1068 n z half-width

24 En una encuesta de 1068 estadounidenses, 673 dijeron que tenían contestadoras telefónicas (basados en datos de International Mass Retail Association, informados en USA Today). Utilizando estos resultados de muestra, determine: a. El estimado puntual de la proporción de la población de todos los estadounidenses que tienen contestadora telefónica. b. El estimado de intervalo del 95% de la proporción de todos los estadounidenses que tienen contestadora telefónica. a. Estimado puntual para la proporción de población. p = x/n = 673/1068 = b. Intervalo de confianza para estimar la proporción poblacional. E = 1.96 (((0.630*0.370)/1068)) = I.C. para estimar la proporción poblacional: < < < < Este resultado a menudo se informa en el formato siguiente: "Se estima que el porcentaje de los estadounidenses que tiene contestadora telefonica es del 63%, con un margen de error de mas o menos 2.9 puntos porcentuales. También debe informarse el nivel de confianza, pero eso casi nunca se hace en los medios de comunicación. EJERCICIOS DE LA SECCION 20 AL 25 - PAG. 182.

25 El tamaño de la muestra juega un papel importante al determinar la probabilidad de error así como en la precisión de la estimación. Una vez se ha seleccionado el nivel de confianza, los factores importantes influyen en el tamaño muestral: (1) la varianza de la población ² y (2) el tamaño del error E tolerable que el investigador esta dispuesto a aceptar.

26 Tamaño de la muestra para estimar. Z = (X' - )/(/n) X' - = Z (/n) n(x' - ) = Z n = Z/(X' - ) n = Z²²/(X' - )² n = Z²²/E² n =[Z/E]² E = Error de Muestreo El tamaño de la muestra debe ser entero. Regla de redondeo para el tamaño de muestra n. Al calcular el tamaño de muestra n, si la fórmula anterior no produce un número entero, siempre debe aumentarse el valor de n al siguiente numero entero mayor.

27 n =[Z/E]² El tamaño de la muestra no depende del tamaño de la población (N); el tamaño de muestra depende del grado de confianza deseado, el margen de error deseado y del valor de la desviación estándar. La duplicación del margen de error hace que el tamaño de la muestra requerida se reduzca a la cuarta parte de su valor original. Por otro lado, si se reduce a la mitad el margen de error se cuadruplicará el tamaño de la muestra. Lo que esto implica es que si queremos resultados más exactos, es preciso aumentar sustancialmente el tamaño de la muestra. Dado que las muestras grandes generalmente requieren más tiempo y dinero, a menudo es necesario efectuar un trueque entre el tamaño de la muestra y el margen de error E.

28 n =[Z/E]² Caso I. Un economista desea estimar los ingresos medios durante el primer año de trabajo de un graduado universitario que, en un alarde de sabiduría, tomo un curso de estadística. Cuantos de tales ingresos es necesario encontrar si queremos tener una confianza del 95% en que la media de muestra este a menos de US$500 dólares de la verdadera media de la población? Suponga que un estudio previo revelo que, para tales ingresos, = US$6250. DATOS: N.C.=95% ===> Z=1.96 Queremos que la media de la muestra este dentro de un margen de US$500 de la media de la población. E=US$500 =US$6,250 n = [(1.96 * 6250)/500]²=

29 MEGASTAT

30 Caso II. Que tan grande se requiere que sea una muestra para que proporcione una estimación del 90% del numero promedio de graduados de las universidades de la nación con un error de 2000 estudiantes si una muestra piloto reporta que s=8,659? Caso III. Nielsen Media Research quiere estimar la cantidad media de tiempo (en horas) que los estudiantes universitarios de tiempo completo dedican a ver televisión cada día entre semana. Determine el tamaño de muestra necesario para estimar esa media con un margen de error de 0.25 horas (15 minutos). Suponga que se desea un grado de confianza del 96%, y que un estudio piloto indico que la desviación estándar se estima en 1.87 horas.

31 Decisiones. Edición Pág. 110 QUE PASA SI SE DESCONOCE? 1.- Podemos utilizar la REGLA PRACTICA DE INTERVALO. En conjuntos de datos representativos, el intervalo del conjunto tiene una anchura aproximada de cuatro desviaciones estándar (4s), así que la desviación estándar se puede aproximar de la siguiente manera: desviación estándar intervalo/4 intervalo/4 Esta expresión proporciona una estimación burda de la desviación estándar, si conocemos los puntajes máximo y mínimo. Si conocemos el valor de la desviación estándar, podemos usarlo para entender mejor los datos, obteniendo estimaciones burdas de los puntajes máximo y mínimo como se indica. mínimo (media) - 2 * (desviación estándar) máximo (media) + 2 * (desviación estándar)

32 QUE PASA SI SE DESCONOCE? Caso I. n =[Z/E]² Si razonamos que los precios de los libros de textos universitario típicamente varían entre US$10 y US$90 dólares. Usted planea estimar el precio de venta medio de un libro de texto universitario. Cuantos libros de textos deberá muestrear si desea tener una confianza del 95% en que la media de la muestra estará a menos de US$2 dólares de la verdadera media de la población? DATOS: intervalo/4 (US$90-US$10)/4 US$20 N.C.=95% ===> Z=1.96 E=US$2 dólares

33 QUE PASA SI SE DESCONOCE? n =[Z/E]² Caso II. Boston Marketing Company lo acaba de contratar para realizar una encuesta con el fin de estimar la cantidad media de dinero que los asistentes al cine de Massachussets gastan (por película). Primero use la regla practica del intervalo para hacer un estimado burdo de la desviación estándar de las cantidades gastadas. Es razonable suponer que las cantidades típicas varían entre US$3 dólares y unos US$15 dólares. Luego utilice esa desviación estándar para determinar el tamaño de muestra que corresponde a una confianza del 98% y a un margen de error de 25 centavos de dólar.

34 Si despejamos a "n" de la expresión del margen de error E. E = (Z) (pq/n) E² = (Z)²(pq/n)² E² = (Z)²(pq/n) E²n = (Z)²(pq) n = [(Z)²(pq)]/E² Cuando se puede obtener un estimado razonable de p utilizando muestras previas, un estudio piloto o los conocimientos de algún experto se utiliza la formula anterior.

35 Cuando no se conoce el estimado puntual p: n = [(Z)²* 0.25]/E² Si no se puede conjeturarse un valor, puede asignarse el valor de 0.5 tanto a p como a q, con lo que el tamaño de muestra resultante será al menos tan grande como necesita ser. La justificación para la asignación de 0.5 es la siguiente: el valor mas alto posible del producto p*q es de 0.25, y ocurre cuando p=0.5 y q=0.5 como se puede observar en la siguiente tabla que usted debe completar: p q p*q

36 Decisiones. Edición Pág. 110 Caso I. Las compañías de seguros se están preocupando porque el creciente uso de teléfonos celulares esta teniendo como resultado un mayor número de accidentes automovilísticos, y están considerando implementar tarifas más altas para conductores que usan tales aparatos. Queremos estimar, con un margen de error de tres puntos porcentuales, el porcentaje de conductores que hablan por teléfono mientras conducen. Suponiendo que queremos tener una confianza del 95% en nuestros resultados, cuántos conductores deberán encuestar? a. Supongamos que tenemos un estimado de p basado en un estudio previo que indicó que el 18% de los conductores habla por teléfono (basados en datos de la revista Prevention). b. Suponga que no tenemos información previa que sugiera un posible valor de p. SOLUCION: a) DATOS: n = [(Z)²(pq)]/E² p=0.18 ; q=0.82 n = [(1.96)²(0.18*0.82]/(0.03)² = N.F.=95% ==> Z=1.96 E=0.03 = tres puntos porcentuales b) DATOS: n = [(Z)²* 0.25]/E² n = [(1.96)²* 0.25]/(0.03)² =

37

38 Decisiones. Edición Pág. 110 Caso II. Una compañía de comunicaciones esta considerando un proyecto para prestar servicio telefónico de larga distancia. Se le pide a usted realizar un sondeo de opinión para estimar el porcentaje de los consumidores que esta satisfecho con su servicio telefónico de larga distancia actual. Usted quiere tener una confianza del 90% en que su porcentaje de muestra estará a menos de 2.5 puntos porcentuales del valor real para la población, y un sondeo sugiere que el porcentaje en cuestión anda alrededor del 85%. Que tan grande deberá ser la muestra?

ESTADÍSTICA II UNIDAD I: ESTIMACIÓN DE PARÁMETROS 3RA PARTE (CLASE 20/09)

ESTADÍSTICA II UNIDAD I: ESTIMACIÓN DE PARÁMETROS 3RA PARTE (CLASE 20/09) ESTADÍSTICA II UNIDAD I: ESTIMACIÓN DE PARÁMETROS 3RA PARTE (CLASE 20/09) Estimación de una media de población: σ conocida Requisitos 1. La muestra es aleatoria simple. (Todas las muestras del mismo tamaño

Más detalles

UNIVERSIDAD DE MANAGUA Al más alto nivel

UNIVERSIDAD DE MANAGUA Al más alto nivel UNIVERSIDAD DE MANAGUA Al más alto nivel Estadística Inferencial Encuentro #9 Tema: Estimación puntual y por Intervalo de confianza Prof.: MSc. Julio Rito Vargas A. Grupos: CCEE y ADMVA /2016 Objetivos:

Más detalles

Febrero 2016 Ing. Rubén Darío Estrella, MBA Cavaliere dell ordine al Merito della Repubblica Italiana (2003) Ingeniero de Sistemas (UNIBE 1993), Administrador (PUCMM 2000), Matemático (PUCMM 2007), Teólogo

Más detalles

Estimación de Parámetros. Jhon Jairo Padilla A., PhD.

Estimación de Parámetros. Jhon Jairo Padilla A., PhD. Estimación de Parámetros Jhon Jairo Padilla A., PhD. Inferencia Estadística La inferencia estadística puede dividirse en dos áreas principales: Estimación de Parámetros Prueba de Hipótesis Estimación de

Más detalles

Estimación de Parámetros. Jhon Jairo Padilla A., PhD.

Estimación de Parámetros. Jhon Jairo Padilla A., PhD. Estimación de Parámetros Jhon Jairo Padilla A., PhD. Inferencia Estadística La inferencia estadística puede dividirse en dos áreas principales: Estimación de Parámetros Prueba de Hipótesis Estimación de

Más detalles

Juan Carlos Colonia INFERENCIA ESTADÍSTICA

Juan Carlos Colonia INFERENCIA ESTADÍSTICA Juan Carlos Colonia INFERENCIA ESTADÍSTICA PARÁMETROS Y ESTADÍSTICAS Es fundamental entender la diferencia entre parámetros y estadísticos. Los parámetros se refieren a la distribución de la población

Más detalles

Técnicas de Muestreo Métodos

Técnicas de Muestreo Métodos Muestreo aleatorio: Técnicas de Muestreo Métodos a) unidad muestral elemental: a.1) muestreo aleatorio simple a.2) muestreo (seudo)aleatorio sistemático a.3) muestreo aleatorio estratificado b) unidad

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación. Facultad de Ciencias Sociales, UdelaR

Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación. Facultad de Ciencias Sociales, UdelaR Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación Facultad de Ciencias Sociales, UdelaR Índice 1. Repaso: estimadores y estimaciones. Propiedades de los estimadores. 2. Estimación puntual.

Más detalles

Curso: Inferencia Estadística (ICO 8306) Profesores: Esteban Calvo Ayudantes: José T. Medina ESTIMACIÓN POR INTERVALO

Curso: Inferencia Estadística (ICO 8306) Profesores: Esteban Calvo Ayudantes: José T. Medina ESTIMACIÓN POR INTERVALO ESTIMACIÓN POR INTERVALO Muchas veces queremos obtener información a través de una muestra para poder hacer inferencias de cómo se comportarían distintos parámetros en la población. Al hacer una encuesta

Más detalles

Anota aquí tus respuestas para esta sección Distribución Z

Anota aquí tus respuestas para esta sección Distribución Z Tarea 2. Estadística Inferencial Cada sección vale 25%. Cada inciso tiene el mismo peso. Hacer la tarea en equipo de dos personas y entregar solo una copia por cada equipo. 1. Cálculo lo siguiente. Ten

Más detalles

Intervalos de confianza Muestras grandes. Estadística Cátedra Prof. Tamara Burdisso

Intervalos de confianza Muestras grandes. Estadística Cátedra Prof. Tamara Burdisso Intervalos de confianza Muestras grandes Por qué un intervalo de confianza? En la Unidad 3 revisamos los conceptos de población y muestra. Los parámetros poblacionales son la media μy la varianza σ 2.

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Probabilidad y Estadística Tema 11 Estimadores puntuales y de intervalo Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Describir los conceptos de los estimadores puntuales y de intervalo.

Más detalles

Estimaciones puntuales. Estadística II

Estimaciones puntuales. Estadística II Estimaciones puntuales Estadística II Estimación Podemos hacer dos tipos de estimaciones concernientes a una población: una estimación puntual y una estimación de intervalo. Una estimación puntual es un

Más detalles

LIMITES O INTERVALOS DE CONFIANZA LUIS FRANCISCO HERNANDEZ CANDELARIA ATENCIA ROMERO

LIMITES O INTERVALOS DE CONFIANZA LUIS FRANCISCO HERNANDEZ CANDELARIA ATENCIA ROMERO LIMITES O INTERVALOS DE CONFIANZA LUIS FRANCISCO HERNANDEZ CANDELARIA ATENCIA ROMERO TRABAJO DE ESTADISTICA PROBABILISTICA PRESENTADO A LA PROFESORA MARIA ESTELA SEVERICHE SINCELEJO CORPORACIÓN UNIVERSITARIA

Más detalles

Cap 7 Intervalos de Confianza

Cap 7 Intervalos de Confianza Cap 7 Intervalos de Confianza Mate 3015 7.1-1 INTERVALOS DE CONFIANZA PARA UNA PROPORCIÓN 7.1-2 Estadísticas inferencial Ahora discutimos estadística inferencial -el proceso de generalizar la información

Más detalles

Distribución Muestral.

Distribución Muestral. Distribución Muestral [email protected] Uno de los objetivos de la Estadística es tratar de inferir el valor real de los parámetros de la población Por ejemplo Cómo podríamos asegurar que una empresa

Más detalles

Curso de Estadística Aplicada a las Ciencias Sociales

Curso de Estadística Aplicada a las Ciencias Sociales Curso de Estadística Aplicada a las Ciencias Sociales Tema 10. Estimación de una proporción Cap. 0 del manual Tema 10. Estimación de una proporción Introducción 1. Distribución en el muestreo de una proporción.

Más detalles

ESTIMACIÓN Y PRUEBA DE HIPÓTESIS INTERVALOS DE CONFIANZA

ESTIMACIÓN Y PRUEBA DE HIPÓTESIS INTERVALOS DE CONFIANZA www.jmontenegro.wordpress.com UNI ESTIMACIÓN Y PRUEBA DE HIPÓTESIS INTERVALOS DE CONFIANZA PROF. JOHNNY MONTENEGRO MOLINA Objetivos Desarrollar el concepto de estimación de parámetros Explicar qué es una

Más detalles

Otra característica poblacional de interés es la varianza de la población, 2, y su raíz cuadrada, la desviación estándar de la población,. La varianza

Otra característica poblacional de interés es la varianza de la población, 2, y su raíz cuadrada, la desviación estándar de la población,. La varianza CARACTERÍSTICAS DE LA POBLACIÓN. Una pregunta práctica en gran parte de la investigación de mercado tiene que ver con el tamaño de la muestra. La encuesta, en principio, no puede ser aplicada sin conocer

Más detalles

UNIVERSIDAD ALONSO DE OJEDA ESTADISTICA II

UNIVERSIDAD ALONSO DE OJEDA ESTADISTICA II UNIVERSIDAD ALONSO DE OJEDA ESTADISTICA II UNIDAD I MUESTREO Y ESTIMACION DE PARAMETROS (GUIA DE ESTUDIO) DR. DENY GONZALEZ MAYO 2016 La Estadística es un conjunto de métodos para la toma de decisiones

Más detalles

de Muestreo de Medias, Inferencia Estadística (Naturaleza de las Pruebas ) (Cap. 7 y Sec. 8.3)

de Muestreo de Medias, Inferencia Estadística (Naturaleza de las Pruebas ) (Cap. 7 y Sec. 8.3) Variabilidad Muestral, Distribuciones de Muestreo de Medias, Inferencia Estadística (Naturaleza de las Pruebas ) (Cap. 7 y Sec. 8.3) Distribución muestral de un estadístico Es la distribución de valores

Más detalles

1. Considera los datos siguientes: 6, 8, 2, 5, 4, 2, 7, 8, 6, 1, 7, 9 calcula lo que se te pide

1. Considera los datos siguientes: 6, 8, 2, 5, 4, 2, 7, 8, 6, 1, 7, 9 calcula lo que se te pide UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO COLEGIO DE CIENCIAS Y HUMANIDADES ACADEMIA DE MATEMÁTICAS Toda cosa grande, majestuosa y bella en este mundo, nace y se forja en el interior el hombre Gibrán Jalil

Más detalles

Estimación por intervalos de la media poblacional con desviación estándar desconocida

Estimación por intervalos de la media poblacional con desviación estándar desconocida ESTIMACIÓN POR INTERVALO Ya estudiamos cómo estimar intervalos de confianza cuando la desviación estándar poblacional es conocida. En ese caso usamos una estimación de la desviación estándar poblacional

Más detalles

CURSO DE MÉTODOS CUANTITATIVOS I

CURSO DE MÉTODOS CUANTITATIVOS I CURSO DE MÉTODOS CUANTITATIVOS I TEMA VI: INTRODUCCIÓN AL MUESTREO Ing. Francis Ortega, MGC Concepto de Población y Muestra POBLACIÓN (N) Es el conjunto de todos los elementos de interés en un estudio

Más detalles

República de Panamá CONTRALORIA GENERAL DE LA REPÚBLICA Instituto Nacional de Estadística y Censo Unidad de Muestreo

República de Panamá CONTRALORIA GENERAL DE LA REPÚBLICA Instituto Nacional de Estadística y Censo Unidad de Muestreo República de Panamá CONTRALORIA GENERAL DE LA REPÚBLICA Instituto Nacional de Estadística y Censo Unidad de Muestreo METODOLOGÍA DEL DISEÑO DE MUESTREO Encuesta entre Empresas no Financieras 2013 1. El

Más detalles

TAMAÑO DE MUESTRA EN LA ESTIMACIÓN DE LA MEDIA DE UNA POBLACIÓN

TAMAÑO DE MUESTRA EN LA ESTIMACIÓN DE LA MEDIA DE UNA POBLACIÓN TAMAÑO DE MUESTRA EN LA ESTIMACIÓN DE LA MEDIA DE UNA POBLACIÓN En este artículo, se trata de explicar una metodología estadística sencilla y sobre todo práctica, para la estimación del tamaño de muestra

Más detalles

Notas de clase Estadística R. Urbán R.

Notas de clase Estadística R. Urbán R. Inferencia estadística Sabemos que una población puede ser caracterizada por los valores de algunos parámetros poblacionales, por ello es lógico que en muchos problemas estadísticos se centre la atención

Más detalles

DISEÑO Y CÁLCULO DE TAMAÑO DE MUESTRA PARA SU APLICACIÓN A LOS ESTUDIOS DE INVESTIGACIÓN. FACILITADOR: JOSÉ CRISTO NOVA

DISEÑO Y CÁLCULO DE TAMAÑO DE MUESTRA PARA SU APLICACIÓN A LOS ESTUDIOS DE INVESTIGACIÓN. FACILITADOR: JOSÉ CRISTO NOVA DISEÑO Y CÁLCULO DE TAMAÑO DE MUESTRA PARA SU APLICACIÓN A LOS ESTUDIOS DE INVESTIGACIÓN. FACILITADOR: JOSÉ CRISTO NOVA INTRODUCCIÓN Los profesionales y docentes del área de la metodología de investigación

Más detalles

Estadística Inferencial. Sesión 2. Distribuciones muestrales

Estadística Inferencial. Sesión 2. Distribuciones muestrales Estadística Inferencial. Sesión 2. Distribuciones muestrales Contextualización. Toda cantidad que se obtiene de una muestra con el propósito de estimar un parámetro poblacional se llama estadístico muestral

Más detalles

SOLUCIÓN EXAMEN IV Nombres: Apellidos: C.I.: Firma: Fecha: 19/11/2004

SOLUCIÓN EXAMEN IV Nombres: Apellidos: C.I.: Firma: Fecha: 19/11/2004 Nombres: Apellidos: C.I.: Firma: Fecha: 19/11/004 MÉTODOS ESTADÍSTICOS I EXAMEN IV PARTE I: Encierre con un círculo la respuesta correcta (0,5 puntos c/u): 1. (V F) Los contrastes de hipótesis de dos muestras

Más detalles

Estimación de Parámetros

Estimación de Parámetros Estimación de Parámetros Jhon Jairo Padilla A., PhD. Inferencia Estadística La inferencia estadística puede dividirse en dos áreas principales: p Estimación de Parámetros Prueba de Hipótesis Estimación

Más detalles

Distribuciones muestrales. Distribución muestral de Medias

Distribuciones muestrales. Distribución muestral de Medias Distribuciones muestrales. Distribución muestral de Medias TEORIA DEL MUESTREO Uno de los propósitos de la estadística inferencial es estimar las características poblacionales desconocidas, examinando

Más detalles

Cuál es el campo de estudio de la prueba de hipótesis?

Cuál es el campo de estudio de la prueba de hipótesis? ESTIMACIÓN Establecer generalizaciones acerca de una población a partir de una muestra es el campo de estudio de la inferencia estadística. La inferencia estadística se divide en estimación y prueba de

Más detalles

Teoría de muestras. Distribución de variables aleatorias en el muestreo. 1. Distribución de medias muestrales

Teoría de muestras. Distribución de variables aleatorias en el muestreo. 1. Distribución de medias muestrales Teoría de muestras Distribución de variables aleatorias en el muestreo 1. Distribución de medias muestrales Dada una variable estadística observada en una población, se puede calcular se media y su desviación

Más detalles

INSTITUTO NACIONAL DE ESTADÍSTICAS (INE) 29 de Abril de 2016

INSTITUTO NACIONAL DE ESTADÍSTICAS (INE) 29 de Abril de 2016 ANEXO ESTADÍSTICO 1 : COEFICIENTES DE VARIACIÓN Y ERROR ASOCIADO AL ESTIMADOR ENCUESTA NACIONAL DE EMPLEO (ENE) INSTITUTO NACIONAL DE ESTADÍSTICAS (INE) 9 de Abril de 016 1 Este anexo estadístico es una

Más detalles

Técnicas Cuantitativas para el Management y los Negocios I

Técnicas Cuantitativas para el Management y los Negocios I Técnicas Cuantitativas para el Management y los Negocios I Licenciado en Administración Mag. María del Carmen Romero 2014 [email protected] Módulo II: ESTADÍSTICA INFERENCIAL Contenidos Módulo

Más detalles

Teoría del muestreo. Tipos de muestras

Teoría del muestreo. Tipos de muestras Teoría del muestreo El total de un grupo de datos de llama población o universo, y una porción representativa de este grupo se llama muestra. Las muestras desempeñan un papel muy importante en los trabajos

Más detalles

Enero 2016 Ing. Rubén Darío Estrella, MBA Cavaliere dell ordine al Merito della Repubblica Italiana (2003) Ingeniero de Sistemas (UNIBE 1993), Administrador (PUCMM 2000), Matemático (PUCMM 2007), Teólogo

Más detalles

Estimación. Introducción. Sea X la variable aleatoria poblacional con distribución de probabilidad f θ donde. es el parámetro poblacional desconocido

Estimación. Introducción. Sea X la variable aleatoria poblacional con distribución de probabilidad f θ donde. es el parámetro poblacional desconocido Tema : Introducción a la Teoría de la Estimación Introducción Sea X la variable aleatoria poblacional con distribución de probabilidad f θ (x), donde θ Θ es el parámetro poblacional desconocido Objetivo:

Más detalles

2. Distribuciones de Muestreo

2. Distribuciones de Muestreo 2. Distribuciones de Muestreo Conceptos básicos Para introducir los conceptos básicos consideremos el siguiente ejemplo: Supongamos que estamos interesados en determinar el número medio de televisores

Más detalles

MODELOS DE SIMULACIÓN ESTADÍSTICOS CLASE 4: DISTRIBUCIÓN t, CHI-CUADRADA y EXPONENCIAL PROFESOR: OSCAR SAAVEDRA ANDRÉS DURANGO.

MODELOS DE SIMULACIÓN ESTADÍSTICOS CLASE 4: DISTRIBUCIÓN t, CHI-CUADRADA y EXPONENCIAL PROFESOR: OSCAR SAAVEDRA ANDRÉS DURANGO. DISTRIBUCIÓN t Con frecuencia intentamos estimar la media de una población cuando se desconoce la varianza, en estos casos utilizamos la distribución de t de Student. Si el tamaño de la muestra es suficientemente

Más detalles

TEMA 2: Estimadores y distribuciones en el muestreo. Alfredo García Hiernaux. Grupos 69 y 73 Estadística I. Curso 2006/07

TEMA 2: Estimadores y distribuciones en el muestreo. Alfredo García Hiernaux. Grupos 69 y 73 Estadística I. Curso 2006/07 TEMA 2: Estimadores y distribuciones en el muestreo 1) Introducción 2) Tipos de muestreos 3) Estadísticos INDICE 4) Estimadores y propiedades 5) Distribución muestral 6) Teorema Central del Límite 7) Distribuciones

Más detalles

12. (SEPTIEMBRE 2004) Una muestra aleatoria de 9 tarrinas de helado proporciona los siguientes pesos en gramos

12. (SEPTIEMBRE 2004) Una muestra aleatoria de 9 tarrinas de helado proporciona los siguientes pesos en gramos DEPARTAMENTO DE MATEMÁTICAS UNIDAD 5. Estadística IES Galileo Galilei EJERCICIOS DE SELECTIVIDAD 1. (JUNIO 2000) Una variable aleatoria X tiene distribución normal siendo su desviación típica igual a 3.

Más detalles

ANÁLISIS DE FRECUENCIAS

ANÁLISIS DE FRECUENCIAS ANÁLISIS DE FRECUENCIAS EXPRESIONES PARA EL CÁLCULO DE LOS EVENTOS PARA EL PERÍODO DE RETORNO T Y DE LOS RESPECTIVOS ERRORES ESTÁNDAR DE ESTIMACIÓN REQUERIDOS PARA LA DETERMINACIÓN DE LOS INTERVALOS DE

Más detalles

Estadística Inferencial. Sesión 3. Estimación de parámetros y por intervalos

Estadística Inferencial. Sesión 3. Estimación de parámetros y por intervalos Estadística Inferencial. Sesión 3. Estimación de parámetros y por intervalos Contextualización. Se denomina estadístico a un estimador insesgado de un parámetro poblacional si la media o la esperanza del

Más detalles

Determinación del tamaño de muestra (para una sola muestra)

Determinación del tamaño de muestra (para una sola muestra) STATGRAPHICS Rev. 4/5/007 Determinación del tamaño de muestra (para una sola muestra) Este procedimiento determina un tamaño de muestra adecuado para la estimación o la prueba de hipótesis con respecto

Más detalles

ESTADISTICA INFERENCIAL DR. JORGE ACUÑA A.

ESTADISTICA INFERENCIAL DR. JORGE ACUÑA A. ESTADISTICA INFERENCIAL DR. JORGE ACUÑA A. 1 PROBABILIDAD Probabilidad de un evento es la posibilidad relativa de que este ocurra al realizar el experimento Es la frecuencia de que algo ocurra dividido

Más detalles

Juan José Hernández Ocaña

Juan José Hernández Ocaña Juan José Hernández Ocaña L A e s t a d í s t i c a i n fe r e n c i a l n o s permite estimar los p a r á me t r o s de l a p o b l a c ió n a partir d e l a n á l i s i s d e datos de u n a mu e s t

Más detalles

Prof. Angel Zambrano ENERO 2009 Universidad de Los Andes Escuela de Estadística

Prof. Angel Zambrano ENERO 2009 Universidad de Los Andes Escuela de Estadística Prof. Angel Zambrano ENERO 009 Universidad de Los Andes Escuela de Estadística Muestreo: Es una metodología que apoyándose en la teoría estadística y de acuerdo a las características del estudio, indica

Más detalles

EJERCICIOS RESUELTOS DE ESTADÍSTICA II

EJERCICIOS RESUELTOS DE ESTADÍSTICA II EJERCICIOS RESUELTOS DE ESTADÍSTICA II RESUMEN DE EJERCICIOS DADOS EN CLASES POR: EILEEN JOHANA ARAGONES GENEY DISTRIBUCIONES DOCENTE: JUAN CARLOS VERGARA SCHMALBACH ESTIMACIÓN PRUEBAS DE HIPÓTESIS Grupo

Más detalles

ESTADÍSTICA Y PROBABILIDAD

ESTADÍSTICA Y PROBABILIDAD (distribución normal) 1 1.- Calcular las probabilidades de los siguientes intervalos, empleando para ello las tablas de la distribución de probabilidad normal estándar N(0, 1): (1) P(z 2 14) (2) P(z 0

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales 6. Prueba de hipótesis. Facultad de Ciencias Sociales, UdelaR

Estadística y sus aplicaciones en Ciencias Sociales 6. Prueba de hipótesis. Facultad de Ciencias Sociales, UdelaR Estadística y sus aplicaciones en Ciencias Sociales 6. Prueba de hipótesis Facultad de Ciencias Sociales, UdelaR Índice 1. Introducción: hipótesis estadística, tipos de hipótesis, prueba de hipótesis 2.

Más detalles

Juan Carlos Colonia DISTRIBUCIONES MUESTRALES

Juan Carlos Colonia DISTRIBUCIONES MUESTRALES Juan Carlos Colonia DISTRIBUCIONES MUESTRALES POBLACIÓN Es el conjunto de individuos u objetos que poseen alguna característica común observable y de la cual se desea obtener información. El número de

Más detalles

para una muestra Ref: Apuntes de Estadística, Mtra Leticia de la Torre Instituto Tecnológico de Chiuhuahua

para una muestra Ref: Apuntes de Estadística, Mtra Leticia de la Torre Instituto Tecnológico de Chiuhuahua Pruebas de hipótesis para una muestra Ref: Apuntes de Estadística, Mtra Leticia de la Torre Instituto Tecnológico de Chiuhuahua Las secciones anteriores han mostrado cómo puede estimarse un parámetro de

Más detalles

proporciones y para la Estadística II Equipo Docente: Iris Gallardo Andrés Antivilo Francisco Marro

proporciones y para la Estadística II Equipo Docente: Iris Gallardo Andrés Antivilo Francisco Marro Sesión 12 Intervalo de confianza para proporciones y para la razón de varianzas. IC para a una proporción poblacional o a Qué proporción de adolescentes presenta problemas de delincuencia en una comunidad

Más detalles

Intervalo para la media si se conoce la varianza

Intervalo para la media si se conoce la varianza 178 Bioestadística: Métodos y Aplicaciones nza para la media (caso general): Este se trata del caso con verdadero interés práctico. Por ejemplo sirve para estimar intervalos que contenga la media del colesterol

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 016 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4,

Más detalles

Muestreo y. Distribuciones Muestrales

Muestreo y. Distribuciones Muestrales Muestreo y Distribuciones Muestrales Muestreo Muestreo POBLACION muestra Inferencia Estadística Conteos rápidos, preferencias electorales, etc. Tipos de Muestreo Muestreo No Probabilístico No aplican las

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Probabilidad y Estadística Tema 10 Estadísticos muestrales y sus aplicaciones Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Describir las propiedades de los estadísticos muestrales.

Más detalles

PONTIFICIA UNIVERSIDAD CATÓLICA DE PUERTO RICO DEPARTAMENTO DE FÍSICA MATEMÁTICAS

PONTIFICIA UNIVERSIDAD CATÓLICA DE PUERTO RICO DEPARTAMENTO DE FÍSICA MATEMÁTICAS PONTIFICIA UNIVERSIDAD CATÓLICA DE PUERTO RICO DEPARTAMENTO DE FÍSICA MATEMÁTICAS Nombre: Fecha: Sec. Repaso MAT. 298 Núm. I. Seleccione la respuesta correcta: (3 puntos cada uno) Caso: Sea T= {0, 0, 2,

Más detalles

Cómo se hace la Prueba t a mano?

Cómo se hace la Prueba t a mano? Cómo se hace la Prueba t a mano? Sujeto Grupo Grupo Grupo Grupo 33 089 74 5476 84 7056 75 565 3 94 8836 75 565 4 5 704 76 5776 5 4 6 76 5776 6 9 8 76 5776 7 4 78 6084 8 65 45 79 64 9 86 7396 80 6400 0

Más detalles

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua ESTADÍSTICA Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal Cuantitativa discreta continua DISTRIBUCIÓN DE FRECUENCIAS Frecuencia absoluta: fi Frecuencia relativa:

Más detalles

para una muestra Ref: Apuntes de Estadística, Mtra Leticia de la Torre Instituto Tecnológico de Chiuhuahua

para una muestra Ref: Apuntes de Estadística, Mtra Leticia de la Torre Instituto Tecnológico de Chiuhuahua Pruebas de hipótesis para una muestra Ref: Apuntes de Estadística, Mtra Leticia de la Torre Instituto Tecnológico de Chiuhuahua En muchas situaciones cuando queremos sacar conclusiones sobre una muestra,

Más detalles

MUESTREO APUNTE. Índice: MUESTREO. Media Varianza Desvío Ejemplo CURVA DE GAUSS ( TEÓRICO) Interpretación de los resultados TAMAÑO DE MUESTRA

MUESTREO APUNTE. Índice: MUESTREO. Media Varianza Desvío Ejemplo CURVA DE GAUSS ( TEÓRICO) Interpretación de los resultados TAMAÑO DE MUESTRA APUNTE MUESTREO Índice: MUESTREO Media Varianza Desvío Ejemplo CURVA DE GAUSS ( TEÓRICO) Interpretación de los resultados TAMAÑO DE MUESTRA Método de Cálculo Ejemplo Ing. Rogelio Hernán Bello Página 1

Más detalles

PROYECTO DE CARRERA: INGENIERÍA INDUSTRIAL ASIGNATURA: ESTADÍSTICAS II GUÍA DE EJERCICIOS N 2

PROYECTO DE CARRERA: INGENIERÍA INDUSTRIAL ASIGNATURA: ESTADÍSTICAS II GUÍA DE EJERCICIOS N 2 PROYECTO DE CARRERA: INGENIERÍA INDUSTRIAL ASIGNATURA: ESTADÍSTICAS II GUÍA DE EJERCICIOS N 2 UNIDAD II: DISTRIBUCIONES MUESTRALES OBJ. 2.1 2.2 2.3 2.4 1.- Un plan de muestreo para aceptar un lote, para

Más detalles

Trabajo Práctico: Intérvalos de Confianza

Trabajo Práctico: Intérvalos de Confianza Trabajo Práctico: Intérvalos de Confianza Autores: Astier Gabriel Mazza Pablo Talijancic Iván Profesor: Roberto Villamayor Curso: 3er Año - Ingeniería Electromecánica. Ejercicio 1: En un conocido restaurante

Más detalles

CALCULO DE INCERTIDUMBRE DE LAS MEDICIONES DE ENSAYOS

CALCULO DE INCERTIDUMBRE DE LAS MEDICIONES DE ENSAYOS Gestor de Calidad Página: 1 de 5 1. Propósito Establecer una guía para el cálculo de la incertidumbre asociada a las mediciones de los ensayos que se realizan en el. Este procedimiento ha sido preparado

Más detalles

Tema 7 Intervalos de confianza Hugo S. Salinas

Tema 7 Intervalos de confianza Hugo S. Salinas Intervalos de confianza Hugo S. Salinas 1 Introducción Hemos definido la inferencia estadística como un proceso que usa información proveniente de la muestra para generalizar y tomar decisiones acerca

Más detalles

Teorema Central del Límite (1)

Teorema Central del Límite (1) Teorema Central del Límite (1) Definición. Cualquier cantidad calculada a partir de las observaciones de una muestra se llama estadístico. La distribución de los valores que puede tomar un estadístico

Más detalles

Intervalos de Confianza

Intervalos de Confianza Intervalos de Confianza Álvaro José Flórez 1 Escuela de Ingeniería Industrial y Estadística Facultad de Ingenierías Febrero - Junio 2012 Intervalo de Confianza Se puede hacer una estimación puntual de

Más detalles

Unidad Temática 2: Unidad 5 Estadística Inferencial Temas 10 y 11

Unidad Temática 2: Unidad 5 Estadística Inferencial Temas 10 y 11 Unidad Temática 2: Unidad 5 Estadística Inferencial Temas 10 y 11 Distribución de Probabilidad Recordamos conceptos: Variable aleatoria: es aquella que se asocia un número o un dato probabilístico, como

Más detalles

ESTIMACION INFERENCIA ESTADISTICA

ESTIMACION INFERENCIA ESTADISTICA P M INFERENCIA ESTADISTICA Desde nuestro punto de vista, el objetivo es expresar, en términos probabilísticos, la incertidumbre de una información relativa a la población obtenida mediante la información

Más detalles

Esta proposición recibe el nombre de hipótesis

Esta proposición recibe el nombre de hipótesis Pruebas de hipótesis tesis. Refs: Apuntes de Estadística, Mtra Leticia de la Torre Instituto Tecnológico de Chiuhuahua, Apuntes de Estadística, Dr. Pedro Juan Rodríguez Esquerdo, Departamento de Matemáticas,

Más detalles

CAPITULO 8 MUESTRAS ALEATORIAS Y NUMEROS ALEATORIOS

CAPITULO 8 MUESTRAS ALEATORIAS Y NUMEROS ALEATORIOS Teoría elemental de muestreo CAPITULO 8 TEORIA DE MUESTREO La teoría de muestreo es el estudio de las relaciones existentes entre una población y las muestras extraídas de ella. Es de gran utilidad en

Más detalles

(1 punto) (1.5 puntos)

(1 punto) (1.5 puntos) Ejercicios de inferencia estadística. 1. Sea la población {1,2,3,4}. a) Construya todas las muestras posibles de tamaño 2, mediante muestreo aleatorio simple. b) Calcule la varianza de las medias muestrales.

Más detalles

Ms. C. Marco Vinicio Rodríguez

Ms. C. Marco Vinicio Rodríguez Ms. C. Marco Vinicio Rodríguez [email protected] http://mvrurural.wordpress.com/ Un estimador es una regla que establece cómo calcular una estimación basada en las mediciones contenidas en una muestra

Más detalles

= P (Z ) - P (Z ) = P (Z 1 25) P (Z -1 25)= P (Z 1 25) [P (Z 1 25)] = P (Z 1 25) [1- P (Z 1 25)] =

= P (Z ) - P (Z ) = P (Z 1 25) P (Z -1 25)= P (Z 1 25) [P (Z 1 25)] = P (Z 1 25) [1- P (Z 1 25)] = El peso en kg de los estudiantes universitarios de una gran ciudad se supone aproximado por una distribución normal con media 60kg y desviación típica 8kg. Se toman 100 muestras aleatorias simples de 64

Más detalles

1.2 Medidas de variación: Rango, desviación estándar y coeficiente de variación

1.2 Medidas de variación: Rango, desviación estándar y coeficiente de variación 1.2 Medidas de variación: Rango, desviación estándar y coeficiente de variación Medidas de Variación Amplitud Coeficiente variación Desviación estándar Rango Valor Z Varianza de Diferencia entre los valores

Más detalles

a. Elija una muestra aleatoria simple de tamaño n=6 de esta población. Use una tabla de números aleatorios o Excel para la

a. Elija una muestra aleatoria simple de tamaño n=6 de esta población. Use una tabla de números aleatorios o Excel para la Ejercicios Unidad I 1. Suponga que estamos investigando sobre el porcentaje de alumnos que trabajan de una población de 20 alumnos de la Universidad de Talca. Base de datos de la población: Nombre Alumno

Más detalles

6. Inferencia con muestras grandes. Informática. Universidad Carlos III de Madrid

6. Inferencia con muestras grandes. Informática. Universidad Carlos III de Madrid 6. Inferencia con muestras grandes 1 Tema 6: Inferencia con muestras grandes 1. Intervalos de confianza para μ con muestras grandes 2. Determinación del tamaño muestral 3. Introducción al contraste de

Más detalles

Estadística Inferencial

Estadística Inferencial Estadística Inferencial 1 Sesión No.2 Nombre: Distribuciones muestrales Contetualización Toda cantidad que se obtiene de una muestra con el propósito de estimar un parámetro poblacional se llama estadístico

Más detalles

Muestreo y Distribuciones en el Muestreo

Muestreo y Distribuciones en el Muestreo Muestreo y Distribuciones en el Muestreo Departamento de Estadística-FACES-ULA 03 de Abril de 2013 Introducción al Muestreo En algunas ocaciones es posible y práctico examinar a cada individuo en el Universo

Más detalles

INFERENCIA ESTADISTICA

INFERENCIA ESTADISTICA INFERENCIA ESTADISTICA ESTIMACION 2 maneras de estimar: Estimaciones puntuales x s 2 Estimaciones por intervalo 2 ESTIMACION Estimaciones por intervalo Limites de Confianza LCI

Más detalles

1. Ejercicios. 2 a parte

1. Ejercicios. 2 a parte 1. Ejercicios. 2 a parte Ejercicio 1 Calcule 1. P (χ 2 9 3 33) 2. P (χ 2 15 7 26). 3. P (15 51 χ 2 8 22). 4. P (χ 2 70 82). Ejercicio 2 Si X χ 2 26, obtenga un intervalo [a, b] que contenga un 95 % de

Más detalles

ESTADÍSTICA INFERENCIAL

ESTADÍSTICA INFERENCIAL ESTADÍSTICA INFERENCIAL ESTADÍSTICA INFERENCIAL 1 Sesión No. 10 Nombre: Pruebas de hipótesis referentes al valor de la media de la población Contextualización En estadística existen dos métodos para la

Más detalles

1. La Distribución Normal

1. La Distribución Normal 1. La Distribución Normal Los espacios muestrales continuos y las variables aleatorias continuas se presentan siempre que se manejan cantidades que se miden en una escala continua; por ejemplo, cuando

Más detalles

Tema 4: Estimación por intervalo (Intervalos de Confianza)

Tema 4: Estimación por intervalo (Intervalos de Confianza) Tema 4: Estimación por intervalo (Intervalos de Confianza (a partir del material de A. Jach (http://www.est.uc3m.es/ajach/ y A. Alonso (http://www.est.uc3m.es/amalonso/ 1 Planteamiento del problema: IC

Más detalles

INFERENCIA ESTADÍSTICA

INFERENCIA ESTADÍSTICA INFERENCIA ESTADÍSTICA 1. DEFINICIÓN DE INFERENCIA ESTADÍSTICA Llamamos Inferencia Estadística al proceso de sacar conclusiones generales para toda una población a partir del estudio de una muestra, así

Más detalles

Conceptos Básicos de Inferencia

Conceptos Básicos de Inferencia Conceptos Básicos de Inferencia Álvaro José Flórez 1 Escuela de Ingeniería Industrial y Estadística Facultad de Ingenierías Febrero - Junio 2012 Inferencia Estadística Cuando obtenemos una muestra, conocemos

Más detalles

Conceptos Básicos de Inferencia

Conceptos Básicos de Inferencia Conceptos Básicos de Inferencia Intervalos de confianza Álvaro José Flórez 1 Escuela de Estadística Facultad de Ingenierías Febrero - Junio 2012 Inferencia Estadística Cuando obtenemos una muestra, conocemos

Más detalles

UNIVERSIDAD TECNICA PARTICULAR DE LOJA ESTADISTICA Y PROBABILIDAD ENSAYO N 8

UNIVERSIDAD TECNICA PARTICULAR DE LOJA ESTADISTICA Y PROBABILIDAD ENSAYO N 8 UNIVERSIDAD TECNICA PARTICULAR DE LOJA ESTADISTICA Y PROBABILIDAD ENSAYO N 8 DOCENTE: Ing. Patricio Puchaicela ALUMNA: Andrea C. Puchaicela G. CURSO: 4to. Ciclo de Electrónica y Telecomunicaciones AÑO

Más detalles

EJERCICIOS DE INTERVALOS DE CON- FIANZA

EJERCICIOS DE INTERVALOS DE CON- FIANZA EJERCICIOS DE INTERVALOS DE CON- FIANZA 1. En Inferencia Estadística: (a) Qué es estimar un parámetro? (b) Qué son el grado de confianza y el margen de error? (c) Si queremos estimar al 1 α % de confianza,

Más detalles

INTERVALO DE CONFIANZA PARA LA DIFERENCIA DE MEDIAS DE DOS DISTRIBUCIONES NORMALES, VARIANZAS DESCONOCIDAS

INTERVALO DE CONFIANZA PARA LA DIFERENCIA DE MEDIAS DE DOS DISTRIBUCIONES NORMALES, VARIANZAS DESCONOCIDAS Imprimir INSTITUTO TECNOLOGICO DE CHIHUAHUA > INTERVALO DE CONFIANZA PARA LA DIFERENCIA DE MEDIAS DE DOS DISTRIBUCIONES NORMALES, VARIANZAS DESCONOCIDAS En esta sección se verá el caso en

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 011 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción B Reserva, Ejercicio

Más detalles

POBLACIÓN Y MUESTRAS EN LA INVESTIGACIÓN

POBLACIÓN Y MUESTRAS EN LA INVESTIGACIÓN POBLACIÓN Y MUESTRAS EN LA INVESTIGACIÓN Adela del Carpio Rivera Doctor en Medicina UNIVERSO Conjunto de individuos u objetos de los que se desea conocer algo en una investigación Población o universo

Más detalles

Muestreo e intervalos de confianza

Muestreo e intervalos de confianza Muestreo e intervalos de confianza Intervalo de confianza para la media (varianza desconocida) Intervalo de confinza para la varianza Grados en Biología y Biología sanitaria M. Marvá. Departamento de Física

Más detalles

Técnicas de Inferencia Estadística II. Tema 2. Contrastes de hipótesis en poblaciones normales

Técnicas de Inferencia Estadística II. Tema 2. Contrastes de hipótesis en poblaciones normales Técnicas de Inferencia Estadística II Tema 2. Contrastes de hipótesis en poblaciones normales M. Concepción Ausín Universidad Carlos III de Madrid Grado en Estadística y Empresa Curso 2010/11 Tema 2. Contrastes

Más detalles