Competencia Matemática
|
|
|
- María del Carmen Velázquez Ortiz
- hace 8 años
- Vistas:
Transcripción
1 Programa Internacional de Evaluación de Estudiantes 2018 Taller de reforzamiento Manual del Estudiante Matemáticas II Dirección de Educación Media Superior
2 La capacidad matemática en PISA Para PISA la Capacidad Matemática (Mathematical literacy) es la capacidad de un individuo de identificar y comprender el papel de la Matemática en el mundo actual, emitir juicios bien fundamentados y utilizarlas y comprometerse con ellas de manera que puedan satisfacer las necesidades de la vida del sujeto como ciudadano constructivo, comprometido y reflexivo. El eje de la evaluación PISA mide tu capacidad para formular, emplear e interpretar la matemática en varios contextos. Esta capacidad implica razonar apelando a modelizar una situación en términos matemáticos, utilizando conceptos, procedimientos, hechos y herramientas de la disciplina para describir, explicar y predecir fenómenos de varios tipos. Te permite reconocer qué función cumple la matemática en el mundo, elaborar juicios de valor y decisiones bien fundadas, necesarias para participar plenamente en la sociedad, como ciudadanos constructivos, comprometidos y reflexivos. PISA busca evaluar no sólo hasta qué puedes reproducir contenido matemático, sino también cómo puedes extrapolar lo que sabes y aplicarlo en situaciones nuevas y no familiares. Esto es considerado por este estudio como un reflejo de las sociedades y ámbitos de trabajos modernos, que valoran el éxito no por lo que las personas saben, sino qué pueden hacer con lo que saben.
3 Sesión 1 Aritmética y Álgebra LOS LÍQUENES Como consecuencia del calentamiento global del planeta, el hielo de algunos glaciares se está derritiendo. Doce años después de que el hielo haya desaparecido, empiezan a crecer en las rocas unas plantas diminutas, llamadas líquenes. Los líquenes crecen aproximadamente en forma de círculo. La relación entre el diámetro de este círculo y la edad del liquen se puede expresar aproximadamente mediante la fórmula: siendo d el diámetro del liquen en milímetros, y t el número de años transcurridos desde que el hielo ha desaparecido. Aplicando la fórmula, calcula el diámetro que tendrá un liquen 16 años después de que el hielo haya desaparecido. Muestra tus cálculos. Pregunta 2 Ana midió el diámetro de un liquen y obtuvo 35 milímetros. Cuántos años han transcurrido desde que el hielo desapareció de este lugar? Muestra tus cálculos.
4 Sesión 1 Aritmética y Álgebra CHATEAR Mark (de Sydney, Australia) y Hans (de Berlín, Alemania) se comunican a menudo utilizando el chat de Internet. Ambos tienen que conectarse a Internet simultáneamente para poder "chatear". Para encontrar una hora apropiada para chatear, Mark buscó un mapa horario mundial y halló lo siguiente: Cuando son las 7:00 de la tarde en Sydney, qué hora es en Berlín? Respuesta: Pregunta 2 Mark y Hans no pueden chatear entre las 9:00 de la mañana y las 4:30 de la tarde, de sus respectivas horas locales, porque tienen que ir al colegio. Tampoco pueden desde las 11:00 de la noche hasta las 7:00 de la mañana, de sus respectivas horas locales, porque estarán durmiendo. A qué horas podrían chatear Mark y Hans? Escribe las respectivas horas locales en la tabla. Lugar Sydney Berlín Hora
5 Sesión 2 Combinatoria y Probabilidad CARAMELOS DE COLORES La madre de Roberto le deja coger un caramelo de una bolsa. Él no puede ver los caramelos. El número de caramelos de cada color que hay en la bolsa se muestra en el siguiente gráfico. Cuál es la probabilidad de que Roberto extraiga un caramelo rojo? A 10% B 20% C 25% D 50%
6 Sesión 2 Combinatoria y Probabilidad SELECCIÓN En una pizzería se puede elegir una pizza básica con dos ingredientes: queso y tomate. También puedes diseñar tu propia pizza con ingredientes adicionales. Se pueden seleccionar entre cuatro ingredientes adicionales diferentes: aceitunas, jamón, champiñones y salami. Jaime quiere encargar una pizza con dos ingredientes adicionales diferentes. Cuántas combinaciones diferentes podría seleccionar Jaime? Respuesta: combinaciones.
7 Sesión 2 Estadística descriptiva ESTATURA DE LOS ALUMNOS Un día, en clase de matemáticas, se mide la estatura de todos los alumnos. La estatura media de los chicos es de 160 cm y la estatura media de las chicas es de 150 cm. Elena ha sido la más alta (mide 180 cm). Pedro ha sido el más bajo (mide 130 cm). Dos estudiantes faltaron a clase ese día, pero fueron a clase al día siguiente. Se midieron sus estaturas y se volvieron a calcular las medias. Sorprendentemente, la estatura media de las chicas y la estatura media de los chicos no cambió. Pueden deducirse de esta información las conclusiones siguientes? Para cada conclusión, encierra en un círculo la palabra Sí o No
8 Sesión 3 Funciones y gráficas EL COLUMPIO Mohammed está sentado en un columpio. Empieza a columpiarse. Está intentando llegar tan alto como le sea posible. Cuál de estos gráficos representa mejor la altura de sus pies por encima del suelo mientras se columpia?
9 Sesión 3 Funciones y gráficas FRENADO La distancia aproximada para detener un vehículo en movimiento es la suma de: la distancia recorrida durante el tiempo que transcurre hasta que el conductor comienza a frenar (distancia de tiempo de reacción) la distancia recorrida mientras se frena (distancia de frenado). El siguiente diagrama de caracol muestra la distancia teórica de parada para un vehículo cuando las condiciones para frenar son buenas (un conductor concentrado, frenos y neumáticos en perfectas condiciones, una carretera seca y con un buen firme) y cómo depende esta distancia de la velocidad.
10 Sesión 3 Funciones y gráficas FRENADO Si un vehículo circula a 110 km/h, qué distancia total recorre antes de detenerse? Pregunta 2 Si un vehículo circula a 110 km/h, cuánto tiempo requiere detenerlo completamente? Pregunta 3 Un segundo conductor, circulando en buenas condiciones, recorre en total 70,7 metros hasta detener su vehículo. A qué velocidad circulaba el vehículo antes de que comenzara a frenar?
11 Sesión 4 Geometría CONSTRUYENDO BLOQUES A Susana le gusta construir bloques con cubos pequeños como el que se muestra en el siguiente gráfico: Susana tiene muchos cubos pequeños como éste. Utiliza pegamento para unir los cubos y construir otros bloques. Primero Susana pega ocho cubos para hacer el bloque que se muestra en el gráfico A: C: Luego Susana hace los bloques macizos que se muestran en los gráficos B y
12 Sesión 4 Geometría CONSTRUYENDO BLOQUES Cuántos cubos pequeños necesitará Susana para hacer el bloque que se muestra en el gráfico B? Respuesta: cubos. Pregunta 2 Cuántos cubos pequeños necesitará Susana para construir el bloque macizo que se muestra en el gráfico C? Respuesta: cubos. Pregunta 3 Susana se da cuenta de que ha utilizado más cubos pequeños de los que realmente necesitaba para hacer un bloque como el que se muestra en el gráfico C. Se da cuenta de que podía haber construido un bloque como el del gráfico C pegando los cubos pequeños, pero dejándolo hueco por dentro. Cuál es el mínimo número de cubos que necesita para hacer un bloque como el que se muestra en el gráfico C, pero hueco? Respuesta: cubos. Pregunta 4 Ahora Susana quiere construir un bloque que parezca un bloque macizo y que tenga 6 cubos pequeños de largo, 5 de ancho y 4 de alto. Quiere usar el menor número posible de cubos dejando el mayor hueco posible en el interior. Cuál es el mínimo número de cubos que necesitará Susana para hacer este bloque? Respuesta: cubos.
13 Sesión 4 Geometría GRANJAS Aquí ves una fotografía de una casa de campo con el tejado en forma de pirámide Debajo se muestra un modelo matemático del tejado de la casa con las medidas correspondientes: La planta del ático, ABCD en el modelo, es un cuadrado. Las vigas que sostienen el tejado son las aristas de un bloque (prisma cuadrangular) EFGHKLMN. E es el punto medio de AT, F es el punto medio de BT, G es el punto medio de CT y H es el punto medio de DT. Todas las aristas de la pirámide miden 12 m de longitud.
14 Sesión 4 Geometría GRANJAS Calcula el área del suelo del ático ABCD. El área de la planta del ático ABCD es igual a m2 Pregunta 2 Calcula la longitud de EF, una de las aristas horizontales del bloque. La longitud de EF es igual a m
CONSTRUYENDO BLOQUES
CONSTRUYENDO BLOQUES A Susana le gusta construir bloques con cubos pequeños como el que se muestra en el siguiente gráfico: Susana tiene muchos cubos pequeños como éste. Utiliza pegamento para unir los
MANZANAS. Un granjero plantó árboles de manzana siguiendo un patrón cuadrado. Para protegerlos del viento, plantó pinos alrededor del huerto.
AZAA Un granjero plantó árboles de manzana siguiendo un patrón cuadrado. ara protegerlos del viento, plantó pinos alrededor del huerto. A continuación se presentan diagramas de esta situación, donde podrás
DEPARTAMENTO DE MATEMÁTICAS Curso MATEMÁTICAS 3º ESO Unidades 9 y 10 Geometría
Pág. 1 de 17 BLOQUE 1 OBSERVACIÓN 1.- (PISA) CARPINTERO Un carpintero tiene 32 metros de madera y quiere construir una pequeña valla alrededor de un parterre en el jardín. Está considerando los siguientes
M309: Construyendo bloques
M309: Construyendo bloques A) PRESENTACIÓN DEL PROBLEMA A Susana le gusta construir bloques utilizando bloques pequeños como el que se muestra en el siguiente diagrama: Cubo pequeño Susana tiene muchos
FRENADO. La distancia aproximada para detener un vehículo en movimiento es la suma de:
FRENADO La distancia aproximada para detener un vehículo en movimiento es la suma de: la distancia recorrida durante el tiempo que transcurre hasta que el conductor comienza a frenar (distancia de tiempo
TALLER # 5 de GEOMETRÍA EUCLIDIANA ÁREAS Y VOLÚMENES. Universidad de Antioquia. Departamento de Matemáticas. Septiembre 2008
TALLER # 5 de GEOMETRÍA EUCLIDIANA ÁREAS Y VOLÚMENES Universidad de Antioquia Departamento de Matemáticas Septiembre 2008 1. Sea ABCD un rectángulo, E punto medio de, a) Calcular el área del rectángulo
EJERCICIOS MÓDULO 4. Geometría plana. 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9?
Seminario Universitario Matemática EJERCICIOS MÓDULO 4 Geometría plana 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9? ) Cuántos lados tiene un polígono en el cual la suma de
OPORTUNIDADES PARA APRENDER- FORMA A PROFESORES DE MATEMÁTICA 5TO GRADO DE EDUCACIÓN SECUNDARIA
OPORTUNIDADES PARA APRENDER- FORMA A PROFESORES DE MATEMÁTICA 5TO GRADO DE EDUCACIÓN SECUNDARIA (Información que debe llenar el examinador aquí y en la hoja de respuestas) Código Modular del Centro Educativo
2. Calcula las raíces o soluciones para cada ecuación cuadrática.
Matemáticas 3 Bloque I Instrucciones. Lee y contesta correctamente lo que se te pide. 1. Cuánto tiempo tardará en llegar al suelo un objeto que se deja caer verticalmente desde la azotea de un edificio
CONTENIDOS MÍNIMOS MATEMÁTICAS 2º Y 4º E.S.O.
CONTENIDOS MÍNIMOS MATEMÁTICAS 2º Y 4º E.S.O. Matemáticas 2º E.S.O. a) Contenidos comunes. Utilizar estrategias y técnicas sencillas en la resolución de problemas. b) Números. Conocer los conceptos de
5to Grado - Geometría, Medidas, y Algebra Estándar Básico 3. Evaluación.
5to Grado - Geometría, Medidas, y Algebra Estándar Básico 3. Evaluación. 5.3.1 Identificar y clasificar triángulos de acuerdo a sus ángulos (agudo, recto, obtuso) y lados (escaleno, isósceles, equilátero).
MAXIMOS Y MINIMOS RELATIVOS
MAXIMOS Y MINIMOS RELATIVOS Con cierta frecuencia nos encontramos con la necesidad de buscar la mejor forma de hacer algo. En muchas ocasiones a través de los poderosos mecanismos de cálculo diferencial
Estándares de evaluación en la materia de MATEMÁTICAS de 1º de ESO. Curso 2016/2017.
Estándares de evaluación en la materia de MATEMÁTICAS de 1º de ESO. Curso 2016/2017. Bloque 1. Procesos, métodos y actitudes en matemáticas. Los criterios correspondientes a este bloque son los marcador
Distrito Escolar Unificado de Berkeley GUIA PARA FAMILIAS TARJETA DE CALIFICACIÓN 5 GRADO
Distrito Escolar Unificado de Berkeley El Distrito Escolar Unificado de Berkeley ha hecho algunos cambios en las Tarjetas de Calificaciones de este año escolar. El propósito de esta guía es dar a las familias
Evaluación por competencias. 3º E.S.O. Curso 2010 2011 EXCURSIÓN CICLISTA
Evaluación por s. º E.S.O. Curso 010 011 EXCURSIÓN CICLISTA Un ciclista de fin de semana sabe que su velocidad media, a ritmo normal, es de 0 km/h. En cubrir la distancia entre dos puntos A y B más / de
Manual de Actividades del Taller de Matemáticas 1 IXAYA. Actividades 11,12,13,14,15 Quinto Semestre
Manual de Actividades del Taller de Matemáticas 1 IXAYA Actividades 11,12,13,14,15 Quinto Semestre SUB: Algebra ACTIVIDAD: 11 1.- Cuál es la expresión algebraica que corresponde al siguiente enunciado
relacionados con la vida cotidiana en los que intervenga la proporcionalidad directa o inversa.
OBJETIVOS MÍNIMOS 1. Identificar los múltiplos y divisores de un número. 2. Descomponer un número en factores primos. Calcular el M.C.D. y el M.C.M. 3. Realizar operaciones aritméticas con números enteros.
Unidades de matemáticas
Preguntas planteadas en PIA 2000 anzanas AZAA Un agricultor planta manzanos en un terreno cuadrado. Con objeto de proteger los manzanos del viento planta coníferas alrededor de la totalidad del huerto.
!!!!! PREGUNTAS Y RESPUESTAS PISA - ARITMÉTICA Y ÁLGEBRA
!!!!!! PREGUNTAS Y RESPUESTAS PISA - ARITMÉTICA Y ÁLGEBRA Aritmética y álgebra!! En esta página se presentan los 28 estímulos liberados de aritmética y álgebra del proyecto PISA para la evaluación matemática.
EJERCICIOS DE REPASO DE MATEMÁTICAS 1º ESO
EJERCICIOS DE REPASO DE MATEMÁTICAS º ESO EJERCICIOS DE NÚMEROS NATURALES. ( + 7) + 0. ( 0 ). 6 + 7 + 8. 8 + 6 + ( 6 ) +. 6 ( 70 + 0) 600 6. : + 7 7. + 9 + 8 8. 7 ( ) 66 9. ( + 7) 8 7 0. + 6 0. + ( 9 7)
Para encontrar el área de un rectángulo se debe calcular el producto de su base (ancho) y su altura (longitud).
Materia: Matemática de Séptimo Tema: Área de rectángulos Qué pasaría si los padres de Ed le estuvieran comprando una cama nueva y él tuviera que decidir qué tamaño de cama es mejor para él? En un principio
PREGUNTAS DE EJEMPLO MATEMÁTICA PRIMER CICLO MEDIO
PREGUNTAS DE EJEMPLO MATEMÁTICA PRIMER CICLO MEDIO MODALIDAD FLEXIBLE DECRETO Nº211 1. En el siguiente sistema de ecuaciones: Cuál es el valor de y? A. 4 B. 0 C. 6 D. 8 2. Cuál es el resultado de ( 5)
Rige a partir de la convocatoria
TABLA DE ESPECIFICACIONES DE HABILIDADES Y CONOCIMIENTOS QUE SE MEDIRÁN EN LAS PRUEBAS DE CERTIFICACIÓN DEL PROGRAMA: I y II Ciclo de la Educación General Básica Abierta Este documento está elaborado con
Materia: Matemática de Séptimo Tema: Circunferencia. Marco teórico
Materia: Matemática de Séptimo Tema: Circunferencia Cómo harías para saber la longitud de la concha de la pizza? Una pizza grande tiene 14 pulgadas de diámetro y se puede cortar en 8 o 10 pedazos, la concha
= 10. = 2 h) 2x 5 = 3 4. = 1 3x. = 3 3 7x. Ecuaciones de primer y segundo grado y problemas. 1. Resuelve las siguientes ecuaciones de primer grado:
Hoja de Ejercicios Ecuaciones de primer y segundo grado y problemas 1. Resuelve las siguientes ecuaciones de primer grado: a) x x1 b) x c) x 10 x d) 1x 1 1 x e) x 0 x1 f) x g) x1 x1 h) x x i) x x 1 j)
C.P.F.P.A. San Francisco de Asís. Dolores. EJERCICIOS 2ª EVALUACIÓN. FÍSICA
EJERCICIOS 2ª EVALUACIÓN. FÍSICA 1. Un tren de alta velocidad (AVE) viaja durante media hora con una velocidad constante de 252 Km/h. A continuación reduce su velocidad hasta pararse en 14 s. a) Describe
MATEMÁTICAS 3º ESO PENDIENTES HOJA 1 GEOMETRÍA PLANA. 1.- Calcular el área y el perímetro de los siguientes polígonos:
MATEMÁTICAS º ESO PENDIENTES HOJA GEOMETRÍA PLANA.- Calcular el área y el perímetro de los siguientes polígonos: a) Un cuadrado de lado 5 cm de lado b) Un cuadrado de diagonal 0 cm. c) Un rectángulo de
El asesinato del profesor de matemáticas
Ficha de trabajo El asesinato del profesor de matemáticas 1 de 15 El asesinato del profesor de matemáticas Autores: Editorial: Año de Publicación: Valoración global (de 1 a 10): Número de páginas: Lugar
PREGUNTAS DE EJEMPLO EDUCACIÓN MATEMÁTICA SEGUNDO NIVEL MEDIO
PREGUNTAS DE EJEMPLO EDUCACIÓN MATEMÁTICA SEGUNDO NIVEL MEDIO VALIDACIÓN DE ESTUDIOS DECRETO Nº257 1. A cuál de las siguientes expresiones es equivalente 12? LEA LA TABLA Y RESPONDA LAS PREGUNTAS 2 A LA
Materia: Matemática de 5to Tema: Ecuación vectorial. Marco Teórico
Materia: Matemática de 5to Tema: Ecuación vectorial Marco Teórico Como ya sabemos y = mx + b es la forma pendiente-intersección de una recta. Mientras que esta ecuación funciona bien en el espacio de dos
M479: Altura de los estudiantes
M479: Altura de los estudiantes A) PRESETACIÓ DEL PROBLEMA Durante una clase de matemáticas se midió la altura de cada uno de los estudiantes. El promedio de la altura de todos los varones fue 60 cm, y
ÁREAS Y VOLÚMENES DE CUERPOS GEOMÉTRICOS BÁSICOS. POLIEDROS REGULARES Y NO REGULARES
ÁREAS Y VOLÚMENES DE CUERPOS GEOMÉTRICOS BÁSICOS. POLIEDROS REGULARES Y NO REGULARES 1º. Comprueba si se cumple o no la fórmula de Euler en este poliedro. 2º. Rellena la siguiente tabla: Poliedro Caras
Matemáticas Currículum Universal
Matemáticas Currículum Universal Índice de contenidos 08-11 años 2013-2014 Matemáticas 08-11 años USOS DE LOS NÚMEROS NATURALES Reconocer la utilidad de los números naturales para contar y ordenar elementos.
CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 6º ED.
. G r e d o s S a n D i e g o V a l l e c a s CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 6º ED. PRIMERA EVALUACIÓN El Sistema de numeración decimal El sistema de numeración decimal. Lectura y escritura
EJERCICIOS DE RECUPERACIÓN DE MATEMÁTICAS 2º ESO. 2ª PARTE
EJERCICIOS DE RECUPERACIÓN DE MATEMÁTICAS 2º ESO. 2ª PARTE CURSO 2015/2016 NOMBRE: IES ALCARRIA BAJA. MONDÉJAR UNIDAD 5. LENGUAJE ALGEBRAICO 1º) Traduce a lenguaje algebraico los siguientes enunciados:
TRABAJO DE REPASO PARA 2º ESO
TRABAJO DE REPASO PARA º ESO NOTA: EL TRABAJO SE ENTREGARÁ EL DÍA DEL EXAMEN DE SEPTIEMBRE. PUEDE SUBIR HASTA UN PUNTO LA NOTA, SIEMPRE Y CUANDO EN EL EXAMEN TENGAS UNA NOTA ENTRE 4 Y. RECUERDA QUE TAMBIÉN
Manual de Actividades del Taller de Matemáticas 1 IXAYA. Actividad 6, 7, 8, 9, 10 Quinto Semestre
Manual de Actividades del Taller de Matemáticas 1 IXAYA Actividad 6, 7, 8, 9, 10 Quinto Semestre SUB: Estadísticas y Gráficas Cambios y Relación ACTIVIDAD: 6 1.- Las calificaciones de un grupo de alumnos
Descubrimos la noción de volumen realizando construcciones con material Base Diez
sexto GRADO - Unidad 2 - Sesión 10 Descubrimos la noción de volumen realizando construcciones con material Base Diez En esta sesión se espera que los niños y las niñas identifiquen la noción de volumen
M465: Tanque de Agua. A) Presentación del problema
M465: Tanque de Agua A) Presentación del problema El diagrama muestra la forma y dimensiones de un tanque de almacenamiento de agua. Al inicio el tanque está vacío. Una llave está llenando el tanque a
!!!!! PREGUNTAS Y RESPUESTAS PISA - COMBINATORIA Y PROBABILIDAD
!!!!!! PREGUNTAS Y RESPUESTAS PISA - COMBINATORIA Y PROBABILIDAD Combinatoria y probabilidad!! En esta página se presentan los 12 estímulos liberados de estadística descriptiva del proyecto PISA para la
Números. 1. Definir e identificar números primos y números compuestos.
MINIMOS DE MATEMÁTICAS DE 2º DE E.S.O. 1. Divisibilidad Números 1. Definir e identificar números primos y números compuestos. 2. Manejar con soltura el vocabulario propio de la divisibilidad: a es múltiplo/divisor
Teorema de Pitágoras Distancia y Puntos Medios
Slide 1 / 78 Slide 2 / 78 Tabla de Contenidos Teorema de Pitágoras Distancia y Puntos Medios Teorema de Pitágoras Fórmula de la Distancia Puntos Medios Haga clic en un tema para ir a esa sección Slide
COMPETENCIA MATEMÁTICA
Servicio de Inspección Educativa 2 0 1 4 / 1 5 EVALUACIÓN DIAGNÓSTICA 2º DE EDUCACIÓN SECUNDARIA COMPETENCIA MATEMÁTICA Nombre y apellidos:... Centro escolar:... Grupo/Aula:... Localidad:... Fecha:...
Criterios de Evaluación MÍNIMOS
s 2º ESO / 2ºPAB Concreción : CE.1 Utilizar números enteros, fracciones, decimales y porcentajes sencillos, sus operaciones y propiedades, para recoger, transformar e intercambiar información y resolver
UNIDAD 12: ESTADISTICA. OBJETIVOS
UNIDAD 12: ESTADISTICA. OBJETIVOS Conocer y manejar los términos básicos del lenguaje de la estadística descriptiva elemental. Conocer y manejar distintas técnicas de organización de datos estadísticos
UNIDAD 12. SEMEJANZA
UNIDAD 12. SEMEJANZA ESQUEMA DE LA UNIDAD FICHA DE TRABAJO A FICHA DE TRABAJO B SOLUCIONES 12 SEMEJANZA ESQUEMA DE LA UNIDAD Nombre y apellidos:... Curso:... Fecha:... FIGURAS SEMEJANTES Dos figuras son
Guía PCA 2: Matemática
Guía PCA 2: Matemática SEXTO AÑO EDUCACIÓN BÁSICA Profesora: ANDREA ARA QUINCHAVIL Nombre: Fecha: EJE NÚMEROS Conocer (3) 1. Cuál es el desarrollo correcto de la siguiente potencia 54? 2. A qué número
Teorema de Pitágoras Distancia y Puntos Medios
Slide 1 / 78 Teorema de Pitágoras Distancia y Puntos Medios Tabla de Contenidos Slide 2 / 78 Teorema de Pitágoras Haga clic en un tema para ir a esa sección Fórmula de la Distancia Puntos Medios Slide
Comparación de medidas de volumen
Unidad 02: Lo que podemos medir, hacia la concepción de magnitud. Grado 03 Matemáticas Clase: Comparación de medidas de volumen Nombre: Introducción Después de ver la animación, colorea la imagen y contesta
PISA (2000, 2003) Ítems liberados. Matemáticas
PISA (2000, 2003) Ítems liberados Matemáticas PISA 2000 - Matemáticas 2000 1. Manzanas 2. Superficie de un continente 3. Velocidad 4. Triángulos 5. Granjas 2003 1. Caminar 2. Cubos 3. Crecer 4. Robos 5.
Slide 1 / 78. Teorema de Pitágoras Distancia y Puntos Medios
Slide 1 / 78 Teorema de Pitágoras Distancia y Puntos Medios Slide 2 / 78 Tabla de Contenidos Teorema de Pitágoras Haga clic en un tema para ir a esa sección Fórmula de la Distancia Puntos Medios Slide
CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 6º ED. PRIMARIA
CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 6º ED. PRIMARIA El cálculo y los problemas se irán trabajando y evaluando a lo largo de todo el año. 1ª EVALUACIÓN CONTENIDOS El Sistema de numeración decimal
Nombre y Apellido:... Puntaje:... Colegio:... Grado:... Teléfono (L B):... Celular: Número de Cédula de Identidad:...
XXII OLIMPIADA NACIONAL DE MATEMÁTICA RONDA REGIONAL 14 DE AGOSTO DE 2010 - NIVEL 1 PEGÁ TU STICKER AQUÍ Nombre y Apellido:............................................ Puntaje:......... Colegio:.......................................................
EJERCICIOS DE LOS TEMAS 9 y 10.GEOMETRÍA
1.- Dos triángulos ABC y A C son semejantes y la razón de semejanza entre el primero y el segundo es,4. Calcula las longitudes de los lados que faltan sabiendo que AB = 0 cm, BC = 15 cm y A C = 10 cm.
COMPETENCIA S Y OBJETIVOS DE M A T E M ÁTICAS DE SEXTO
1 CONSEJERÍA DE EDUCACIÓN CEIP EL ZARGAL C/ Zargal s/n; 18190 CENES DE LA VEGA Telfs. 958893177-78 ; FAX 958893179 [email protected] COMPETENCIA S Y DE M A T E M ÁTICAS DE SEXTO ÍNDICE
TRATAMIENTO DE LA INFORMACION
INSTITUTO EDUCACIONAL JUAN XXIII SECUENCIACION DE CONTENIDOS - MATEMATICA TRATAMIENTO DE LA INFORMACION Clasificar diferentes elementos del entorno por diferentes atributos. Describir objetos del entorno.
RESOLUCIÓN DE SITUACIONES PROBLEMA APLICANDO LOS TEOREMAS DEL SENO Y DEL COSENO REFUERZO Y RECUPERACIÓN
RESOLUCIÓN DE SITUACIONES PROBLEMA APLICANDO LOS TEOREMAS DEL SENO Y DEL COSENO REFUERZO Y RECUPERACIÓN Institución Educativa Eduardo Fernández Botero - Amalfi Diseñado por: MARÍA CRISTINA MARÍN VALDÉS
ESCUELA SECUNDARIA TÉCNICA AGUILA CCT: 28PST0039E TAMPICO, TAMAULIPAS CICLO ESCOLAR CAMBRIDGE UNIVERSITY PRESS
VALOR: Solidaridad TEMARIO PARA EXAMEN SEMESTRAL MATEMÁTICAS TERCER GRADO A, B, C Y D Nombre del alumno: Grupo: No. De lista: Fecha: Firma del Padre o Tutor: I. Analiza cada situación y determina la respuesta
2. Recolección de información - Medidas de posición: moda, media aritmética, mínimo, máximo - Frecuencia absoluta, relativa y porcentual
Prueba Escrita de matemática / Nivel: Sétimo año 1. Estadística - Unidad estadística - Características - Datos u observaciones - Población - Muestra - Variabilidad de los datos - Variables cuantitativas
1. Laura y Rosa están mirando un tarro con forma de cilindro. Lo que ven está representado en la figura.
Sector y Nivel: Matemática 4 Básico Eje: Geometría 1. Laura y Rosa están mirando un tarro con forma de cilindro. Lo que ven está representado en la figura. Desde dónde es posible que estén observando el
Geometría en 2D: Preguntas del capítulo
Geometría en 2D: Preguntas del capítulo 1. Cuáles son algunas de las relaciones especiales entre los ángulos? 2. Qué son perímetro y circunferencia y cómo son relevantes en la vida diaria? 3. Cómo se relaciona
5) Aproxima a las décimas las siguientes raíces utilizando la aproximación por defecto, exceso y redondeo:
Números ) Calcula: a) [8 (6 ) ] : ( 7) b) (8 ) ( 7) ( 6) c) 8 0 : ( ) 6 : d) ( ) 8 (6 ) ( 7) ) Epresa en forma de única potencia: a) ( ) ( ) b) () ( ) c) ( ) : ( ) d) ( ) 6 : ( ) ) Simplifica las epresiones:
15 cm. 5 cm 1 litro = 1,000
1) La expresión algebraica correspondiente al enunciado el largo de un rectángulo es tres unidades más que el doble de su ancho es a) l + 3 = 2a b) l = 3 + 2a c) + 3 = a d) l = + 3 2) Cuántos litros de
Colegio Diocesano San José de Carolinas Privado Concertado
Problemas MRU 1) A cuántos m/s equivale la velocidad de un móvil que se desplaza a 72 km/h? Solución: 20 m/s 2) En el gráfico, se representa un movimiento rectilíneo uniforme, averigüe gráfica y analíticamente
COMPROMISO DIDÁCTICO IES PINTOR ANTONIO LÓPEZ CURSO MATERIA MATEMÁTICAS NIVEL: 2º E.S.O.
COMPROMISO DIDÁCTICO NOMBRE DEL CENTRO IES PINTOR ANTONIO LÓPEZ CURSO 2015-2016 MATERIA MATEMÁTICAS NIVEL: 2º E.S.O. CRITERIOS DE EVALUACIÓN 1. Utilizar estrategias y técnicas de resolución de problemas,
ÁREAS Y VOLÚMENES DE CUERPOS GEOMÉTRICOS
ÁREAS Y VOLÚMENES DE CUERPOS GEOMÉTRICOS E J E R C I C I O S P R O P U E S T O S 1 Calcula el área de los ortoedros cuyas longitudes vienen dadas en centímetros. 2 1 2 Calcula el área total de los siguientes
CONTENIDOS MÍNIMOS BLOQUE 2. NÚMEROS
CONTENIDOS Y CRITERIOS DE EVALUACIÓN DE MATEMÁTICAS 1º DE ESO. Bloque 1: Contenidos Comunes Este bloque de contenidos será desarrollado junto con los otros bloques a lo largo de todas y cada una de las
Guía del estudiante. 9 Hm. 8 Hm
MATEMÁTICAS Grado Séptimo Bimestre II Semana 5 Número de clases 21-25 Clase 21 Tema: Perímetro Actividad 1 Halle el perímetro del terreno del lote que se representa en la siguiente figura. Utilice el espacio
Descubrimos la noción de volumen realizando construcciones con material Base Diez
sexto GRADO - Unidad 2 - Sesión 10 Descubrimos la noción de volumen realizando construcciones con material Base Diez En esta sesión se espera que los niños y las niñas identifiquen la noción de volumen
DIRECCIÓN GENERAL DE DESARROLLO CURRICULAR REFORMA DE LA EDUCACIÓN SECUNDARIA MATEMÁTICAS
DIRECCIÓN GENERAL DE DESARROLLO CURRICULAR REFORMA DE LA EDUCACIÓN SECUNDARIA MATEMÁTICAS Escuela: SECUNDARIA TÉCNICA 40 Fecha: Prof.(a): MARÍA ESTELA GONZÁLEZ OCHOA. Grupo: Alumno(a): TERCER GRADO EXAMEN
Listo para seguir? Intervención de destrezas Cómo estimar y hallar el área
10-1 Listo para seguir? Intervención de destrezas Cómo estimar y hallar el área El área de una figura es la cantidad de superficie que cubre. El área se mide en unidades cuadradas. Estimar el área de una
14 CUERPOS GEOMÉTRICOS. VOLÚMENES
EJERCICIOS PARA ENTRENARSE Poliedros 14.33 Calcula la suma de los ángulos de las caras que concurren en un vértice de los poliedros regulares. Qué observas? TETRAEDO: En un vértice concurren tres triángulos
Calculando el volumen de un prisma recto triangular
Bitácora del Estudiante Calculando el volumen de un prisma recto triangular Realiza las siguientes actividades, mientras trabajas con el tutorial. 1. Qué propiedad de una figura mides utilizando pies cúbicos
1º.- Halla el área y el perímetro de las siguientes figuras, calculando previamente el elemento que falta:
Matemáticas 3º E.S.O. pág. 1 HOJA 1: GEOMETRÍA 1º.- Halla el área y el perímetro de las siguientes figuras, calculando previamente el elemento que falta: 2º.- Halla el área de las figuras marcadas: 3º.-
Semana 8 Bimestre I Número de clases 36 40
Semana 8 Bimestre I Número de clases 36 40 Clase 36 Tema: Valor numérico de una expresión algebraica Actividad 1 1 Lea el ejemplo que se presenta a continuación y observe el proceso que se emplea para
1. A cuántos m/s equivale la velocidad de un móvil que se desplaza a 72 km/h?
1. A cuántos m/s equivale la velocidad de un móvil que se desplaza a 72 km/h? v = 72 km/h Solución del ejercicio n 2 de Movimiento rectilíneo uniforme: 2. Un móvil viaja en línea recta con una velocidad
Contenidos mínimos 1º ES0. 1. Contenidos. Bloque I: Aritmética y álgebra.
Contenidos mínimos 1º ES0. 1. Contenidos. Bloque I: Aritmética y álgebra. 1. Resolver expresiones con números naturales con paréntesis y operaciones combinadas. 2. Reducir expresiones aritméticas y algebraicas
REFUERZO - MATEMÁTICAS OBJETIVOS MÍNIMOS
OBJETIVOS MÍNIMOS Realizar operaciones con números enteros [ ] a) 18 ( 8 ) b) [ 1 ( 1 ) ] c) [ ( 8 9) ] 7 ( ) [ ] Realizar operaciones con fracciones 7 1 a) 1 1 b) c) : 1 7 7 1 1 d) : 1 1 e) 1 : 10 1 f)
PRÁCTICA PARA: BACHILLERATO POR MADUREZ SUFICIENTE BACHILLERATO DE EDUCACIÓN DIVERSIFICADA A DISTANCIA
Ministerio de Educación Pública Dirección de Gestión y Evaluación de la Calidad Departamento de Evaluación Académica y Certificación PRÁCTICA PARA: BACHILLERATO POR MADUREZ SUFICIENTE BACHILLERATO DE EDUCACIÓN
COMPETENCIA S Y OBJETIVOS DE M A T E M ÁTICAS DE TERCERO
1 CONSEJERÍA DE EDUCACIÓN CEIP EL ZARGAL C/ Zargal s/n; 18190 CENES DE LA VEGA Telfs. 958893177-78 ; FAX 958893179 [email protected] COMPETENCIA S Y DE M A T E M ÁTICAS DE TERCERO ÍNDICE
a 2 = b 2 + c 2 a = hipotenusa ; b, c = catetos
TEMA 6.- GEOMETRÍA Y SEMEJANZA 1.- ÁNGULOS Y TRIÁNGULOS. Ángulo recto Ángulo llano Ángulo agudo Ángulo obtuso (mide 90º) (mide 180º) (mide menos de 90º) (mide más de 90º) Tipos de ángulos Ángulos complementarios
Traducir frases lingüísticas a expresiones
Traducir frases lingüísticas a expresiones Realiza las siguientes actividades, mientras trabajas con el tutorial. 1. El Teorema de Pitágoras describe la relación entre la hipotenusa y los catetos de un
MATEMÁTICAS 6 GRADO. Código de Contenido El alumno empleará la lectura, escritura y comparación de diferentes cantidades de cifras numéricas.
MATEMÁTICAS 6 GRADO Código Materia: Matemáticas (Español) = MSP Eje 1= Sentido numérico y pensamiento algebraico. Eje 2= Forma, espacio y medida. Eje 3= Manejo de la información. Código: Materia. Grado.
POLIEDROS, PRISMAS Y PIRÁMIDES
POLIEDROS, PRISMAS Y PIRÁMIDES 1. Completa la siguiente tabla. 2. Indica si son verdaderas o falsas (V o F) las siguientes afirmaciones. a) La suma de las caras y los vértices del cubo es 12. b) El menor
Bloque 1. Contenidos comunes. (Total: 3 sesiones)
4º E.S.O. OPCIÓN A 1.1.1 Contenidos 1.1.1.1 Bloque 1. Contenidos comunes. (Total: 3 sesiones) Planificación y utilización de procesos de razonamiento y estrategias de resolución de problemas, tales como
TRABAJO DE SEPTIEMBRE DE MATEMÁTICAS 2º ESO... NOMBRE Y APELLIDOS...
TRABAJO DE SEPTIEMBRE DE MATEMÁTICAS 2º ESO... NOMBRE Y APELLIDOS... 1ª Realizar las siguientes divisiones: a) 345,83 : 6 = b) 23 : 0, 5 = c) 0,18 : 0,12 = d) 34,15 : 5 = e) 2,16 : 1,8 = f) 13,02 : 0,25=
CENTRO EDUCATIVO PAULO FREIRE TALLER
CENTRO EDUCATIVO PAULO FREIRE TALLER 1: Una plaza circular está limitada por una circunferencia de longitud 188,4m. Determinar el diámetro y el área de la plaza. 2: Si el área de un círculo es 144 cm 2,
BALONCESTO. La siguiente tabla refleja la altura de todos los jugadores de un equipo de baloncesto:
BALONCESTO La siguiente tabla refleja la altura de todos los jugadores de un equipo de baloncesto: altura en cm [180-185) [185-190) [190-195) [195-200) [200-205) nº de jugadores 1 1 2 4 2 MAT211.03 1.-Representa
MATEMÁTICA: TRABAJO PRÁCTICO 2. Funciones. 1) Carlos está enfermo. Veamos la gráfica de la evolución de su temperatura.
ILSE-2º Año- MATEMÁTICA: TRABAJO PRÁCTICO 2 Funciones 1) Carlos está enfermo. Veamos la gráfica de la evolución de su temperatura. a) Cuántos días ha estado enfermo el paciente? (Se considera normal una
Hoja 6: Estadística descriptiva
Hoja : Estadística descriptiva Hoja : Estadística descriptiva May Dada la siguiente distribución de frecuencias, halle: a) la mediana; b) la media. Número (x) Frecuencia (y) May De enero a septiembre la
GRADO: TERCERO JORNADA: MAÑANA Y TARDE FECHA: DÍA MES AÑO
GUÍA DE ESTUDIO PARA LA RECUPERACIÓN ÁREA: MATEMÁTICAS LOGROS DEL GRADO: 1. Apropiación del lenguaje matemático que le permita al estudiante: relacionar, describir, reconocer, analizar y predecir. 2. Desarrollo
MATEMÁTICAS 2º ESO. Criterios de evaluación
MATEMÁTICAS 2º ESO Criterios de evaluación 1. Utilizar estrategias y técnicas de resolución de problemas, tales como el análisis del enunciado, el ensayo y error sistemático, la división del problema en
TAREA DE VERANO MATEMÁTICAS 3º ESO
TAREA DE VERANO MATEMÁTICAS º ESO Realiza las siguientes operaciones 7 7 a) 0 0 0 b) Un embalse está lleno en / de su capacidad. Gracias a las lluvias la cantidad de agua aumenta / de lo que faltaba por
Materia: MATEMÁTICAS. Curso: 3º ESO Nº:
REPASO GLOBAL COLEGIO HISPANO INGLES Rambla General Franco, 9-800 Santa Cruz de Tenerife + 9 76 06 - Fa: + 9 78 77 Materia: MATEMÁTICAS Evaluación: Fecha: Curso: º ESO Nº: NÚMEROS REALES: ) Aproima el
MATEMÁTICAS 3º ESO IES LOS CARDONES PLAN DE RECUPERACIÓN CONTENIDOS MÍNIMOS: FECHA DE ENTREGA 03 de Septiembre de 2013.
MATEMÁTICAS º ESO IES LOS CARDONES 01-01 PLAN DE RECUPERACIÓN CONTENIDOS MÍNIMOS: - ESTRATEGIAS, HABILIDADES, DESTREZAS Y ACTITUDES GENERALES. - NÚMEROS naturales, enteros, racionales y reales. Operaciones.
Matemáticas 3º E.S.O. 2013/14
Matemáticas º E.S.O. 01/14 TEM 6: Cuerpos geométricos Repaso eamen 1.- Estoy construyendo una piscina de 5 metros de largo, 15 metros de ancho y metros de alto. Quiero cubrir las paredes y el fondo con
EJEMPLOS DE PREGUNTAS Y ORIENTACIONES GENERALES PRIMER CICLO DE EDUCACIÓN MEDIA PRUEBA DE MATEMÁTICA 2013
Coordinación Nacional de Normalización de Estudios / División de Educación General EJEMPLOS DE PREGUNTAS Y ORIENTACIONES GENERALES PRIMER CICLO DE EDUCACIÓN MEDIA PRUEBA DE MATEMÁTICA 2013 DESCRIPCIÓN
