Matemáticas 3º E.S.O. 2013/14
|
|
|
- Blanca Rojas Carrizo
- hace 9 años
- Vistas:
Transcripción
1 Matemáticas º E.S.O. 01/14 TEM 6: Cuerpos geométricos Repaso eamen 1.- Estoy construyendo una piscina de 5 metros de largo, 15 metros de ancho y metros de alto. Quiero cubrir las paredes y el fondo con azulejos de forma cuadrada de de lado. Cuántos azulejos necesitaré? (Sol: azulejos) m 15m 5m Primero hay que calcular la superficie que queremos cubrir: Como se trata de un prisma, Perímetro altura + Área (solamente se cuenta una vez el área de la porque solamente se recubre el suelo de la piscina, ya que por arriba está abierta). BSE: 5m 15m Perímetro m altura m sí: Perímetro altura + Área m hora calculamos la superficie que tienen los azulejos: lado 9 Por último se calcula el número de azulejos que se necesitan para cubrir la piscina: Para ello basta dividir la superficie que se quiere cubrir entre la superficie de los azulejos con los lo vamos a hacer. ntes, como la superficie de la piscina está en metros cuadrados y la de los azulejos en centímetros cuadrados, tenemos que hacer un cambio de unidades para que haya concordancia. 1
2 piscina 55 m piscina azulejo Número de azulejos: ,44 azulejos, pero como los azulejos se compran 9 enteros, podríamos decir que necesitaríamos azulejos.- Una madre compra a su hija una caja de sus bombones favoritos. La caja tiene forma de prisma triangular de 0 de larga y 4 de lado de la. Cuál es la cantidad de papel mínima que se necesita para envolverla? (Sol: 5,84 ) 4 0 Lo que hay que calcular es la superficie de la caja de bombones. prisma Perímetro altura + Área BSE: Perímetro altura 4, ,9 1,84 Como no tenemos la altura del triángulo, hay que calcularla. Para ello se aplica el teorema de Pitágoras: ,46 sí: Perímetro altura + Área , , 84 5,84
3 .- Se va a restaurar el lateral y la parte superior de una torre con forma de prisma octogonal de 0 m de alta. La es un octógono regular de 6 m de lado y metros de apotema. Si la empresa de restauración cobra 75 euros por cada metro cuadrado, cuál será el precio de la restauración? (600 ) 0m m 6m Primero calculamos los metros cuadrados que hay que restaurar: prisma Perímetro altura + Área (solamente ponemos el área de una porque se va a restaurar, además del lateral la torre, la parte superior de la misma). BSE: Perímetro m m 6m perímetro apotema 48 m 48 Como sabemos lo que cuesta restaurar un metro cuadrado (75 ), para calcular el precio de la restauración basta multiplicar el precio del metro cuadrado por el área que hay que restaurar: Precio restauración euros 4.- Una pizzería hace pizzas de varios tamaños y las vende en cajas heagonales de 0 de lado y 4 de alto. Qué cantidad de cartón se necesita para cada caja? (Sol: 596,40 ) 4 0 Habría que calcular el área de la caja: prisma Perímetro altura + Área
4 BSE: Perímetro perímetro apotema 4676, ,98 8,0 Como no tenemos la apotema de la, hay que calcularla, y para ello aplicamos el teorema de Pitágoras. Recordar también que en el heágono el radio mide lo mismo que el lado: ,98 sí el área de la caja es: prisma Perímetro altura + Área , , , Sabiendo que la arista lateral de una pirámide mide 1 y cuya es un heágono regular de 10 de lado, calcula: a) La altura de la cara de la pirámide. (Sol: 1 ) El triángulo rojo es un triángulo rectángulo en el que los catetos y la hipotenusa son: 1 ltura cara lateral rista lateral 1 10 Mitad lado 5 plicando el teorema de Pitágoras obtenemos lo que estamos buscando: b) La altura de la pirámide. (Sol: 8,1 ) Para calcular la altura de la pirámide tenemos otro triángulo rectángulo dentro de ella en el que uno de los catetos es lo que queremos calcular: 4
5 1 ltura pirámide rista lateral 1 10 Radio 10 (recordar que en un heágono el radio mide lo mismo que un lado) 10 plicando el teorema de Pitágoras obtenemos lo que estamos buscando: ,1 6.- Considera una pirámide de cuadrada cuya arista de la mide 40 y cuya arista lateral mide 56. Calcula: a) La apotema de la pirámide. (Sol: 5,1 ) 56 Recordar que la apotema de la pirámide es lo que hemos llamado en clase altura de la cara. Podemos calcularla aplicando el teorema de Pitágoras en el siguiente triángulo: ltura cara lateral rista lateral Mitad lado ,1 b) La altura de la pirámide. (Sol: 48,4 ) De la misma manera, aplicándole el teorema de Pitágoras al siguiente teorema obtenemos lo que buscamos: ltura pirámide ltura cara lateral 5,1 potema : 0 5
6 5,1 0 76, , 4 6, 4 48,4 7.- Hallar el área lateral de una pirámide pentagonal que tiene de lado de la 6 y tal que la arista lateral de la pirámide es de 9. (Sol: 17,0 ) lateral Perímetro altura cara 9 Para calcular el área lateral nos hace falta el perímetro de la que se puede calcular fácilmente y la altura de la cara que tampoco nos la dan. 6 Cálculo del perímetro de la : P Cálculo de la altura de la cara: para calcular la altura de la cara, al igual que hemos hecho en los ejercicios anteriores, vamos a aplicarle el teorema de Pitágoras al triángulo rectángulo que he dibujado en rojo dentro de la pirámide cuyos lados son los siguientes elementos de la pirámide: ltura cara lateral rista lateral 9 Mitad lado ,48 Ya tenemos toda la información que nos hace falta para calcular el área lateral: lateral Perímetro altura cara 0 8,48 lateral 54,40 lateral lateral 17,0 6
7 8.- Se quiere levantar un monumento en forma de pirámide. Su será cuadrada, y la altura prevista, de 0 metros. Si se necesitan 811, m de piedra, cuál es la medida de la arista de la? (Sol: 9,01 m) cordaros que cuando el problema os dé como dato el área o el volumen de la figura, debéis escribir la fórmula, ya que con ella podréis calcular alguno de los elementos que os hagan falta para resolver el ejercicio. En este caso nos dan el volumen: altura pirámide Sustituyendo los datos nos queda la siguiente ecuación: altura pirámide 0 811, 811, , 10 81,1 m Pero la es un cuadrado, y sabemos que el área del cuadrado es l. Sustituyendo el área que acabamos calcular el esta fórmula nos vuelve a quedar una ecuación con la que podemos calcular el lado de la, o lo que es lo mismo, la arista de la que es lo que nos piden: l 81,1 l 81, 1 l l 9,01 m 9.- El diámetro de la y la generatriz de un cono miden 1. Halla la altura del cono. (Sol: 11,6 ) La altura del cono se puede calcular aplicándole el teorema de Pitágoras al siguiente triángulo rectángulo que hay dentro del ltura 1 cono (dibujado en rojo): ltura cono Generatriz 1 1 Radio 6,5 (recuerda que el radio de una circunferencia es la mitad del diámetro) 1 6, , 5 16, 75 16, 75 11,6 7
8 10.- Una copa tiene forma de cono de 10, de generatriz y 9,5 de diámetro de la circunferencia superior. a) Cada vez que se limpia, qué superficie de cristal hay que limpiar? (Sol: 15,1 ) Hay que calcular el área lateral del cono. No hace falta calcular el área total porque la copa está abierta, por lo tanto no tiene : lateral π radio generatriz,14 4,75 10, lateral lateral 15,1 b) Qué cantidad de líquido cabe en la copa? (Sol: 1,5 ) radio altura π Pero la altura no nos la da el problema, así que habrá que calcularla, y para ello se aplica el teorema de Pitágoras en el mismo triángulo rectángulo que antes: ltura cono Generatriz 10, - Cálculo de la altura: 10, 4,75 104,04, 56 Radio 4,75 (recuerda que el radio de una circunferencia es la mitad del diámetro) 81, 48 81, 48 9,0 hora ya tenemos toda la información que necesitamos para calcular el volumen: radio altura π,14 4,75 9,0 69,74 1, Una esfera tiene un área de 45. Calcular el radio y el volumen de la esfera. (Sol: 5,88 y 851,14 ) Cálculo del radio: 4 π radio 45 r 4,14 45 r 1,56 45 r r 4, 6 1,56 r 4, 6 r 5,88 Cálculo del volumen: 4 π radio 4,14 5,88 55,4 851,14 8
9 1.- Una esfera tiene un volumen de 10 dm. Calcula el área de la esfera. (Sol: 1,4 ) Para calcular el área necesitamos el radio. Para calcularlo utilizamos la fórmula del volumen de una esfera: 4 π radio 4,14 r ,56 r 0 1,56 r r 0 1,56 r, 9 r, 9 r 1,4 1.- El volumen de un cilindro es 40,18 dm y su altura mide 4 dm. Cuál es su radio? (Sol: 15 dm) π radio altura 40,18,14 r 4 40,18 106,76 r 40,18 r 106,76 r 5,11 r 5, 11 r 15 dm 14.- Una lata de conservas tiene 16,6 de altura y 8,4 de radio de la. a) Qué cantidad de metal se necesita para su construcción? (Sol: 118,8 ) π radio altura + π radio,14 8,4 16,6 +,14 8,4 875, , 1 118,8 b) Cuál es el volumen de la lata? (Sol: 677,87 ) π radio altura,14 8,4 16, 6 677,87 9
Cuerpos Geométricos. 100 Ejercicios para practicar con soluciones. 1 Indica cuáles de las siguientes figuras son prismas y cuáles son pirámides.
Cuerpos Geométricos. 100 Ejercicios para practicar con soluciones 1 Indica cuáles de las siguientes figuras son prismas y cuáles son pirámides. a) b) c) Prisma es un poliedro que tiene por caras dos bases
VOLUMEN DE CUERPOS GEOMÉTRICOS
ADAPTACIÓN CURRICULAR VOLUMEN DE CUERPOS GEOMÉTRICOS 1. Unidades de medida de volumen. Volumen de prismas. Volumen de pirámides 4. Volumen de cilindros 5. Volumen de conos 6. Volumen de esferas En la adaptación
SOLUCIONES MINIMOS 2º ESO TEMA 8 CUERPOS GEOMÉTRICOS
SOLUCIONES MINIMOS º ESO TEMA 8 CUERPOS GEOMÉTRICOS Ejercicio nº 1.- Escribe el nombre de cada uno de los elementos de este poliedro: Ejercicio nº.- Cuáles de las siguientes figuras son poliedros? Por
CIENCIAS Y TECNOLOGÍA
CIENCIAS Y TECNOLOGÍA PRIMERO GES ACTIVIDADES COMPLEMENTARIAS Primero GES Ciencias y Tecnología. Actividades complementarias Página 1 Primero GES Ciencias y Tecnología. Actividades complementarias Página
FICHA TEMA 9: CUERPOS GEOMETRICOS NOMBRE Y APELLIDOS: Ejercicio nº 1.-Escribe el nombre de cada uno de los elementos de este poliedro:
FICHA TEMA 9: CUERPOS GEOMETRICOS CURSO: 2 FECHA: NOMBRE Y APELLIDOS: Ejercicio nº 1.-Escribe el nombre de cada uno de los elementos de este poliedro: Ejercicio nº 2.- Cuáles de las siguientes figuras
Geometría del espacio
Áreas y volumenes de cuerpos geométricos Un poliedro es un cuerpo geométrico que está limitado por cuatro o más polígonos. Los elementos de un poliedro son: Caras del poliedro: son los polígonos que lo
14 CUERPOS GEOMÉTRICOS. VOLÚMENES
EJERCICIOS PARA ENTRENARSE Poliedros 14.33 Calcula la suma de los ángulos de las caras que concurren en un vértice de los poliedros regulares. Qué observas? TETRAEDO: En un vértice concurren tres triángulos
Unidad 8 Áreas y Volúmenes
Unidad 8 Áreas y Volúmenes PÁGINA 132 SOLUCIONES Unidades de medida. Pasa a centímetros cuadrados las siguientes cantidades. a) b) c) Pasa a metros cúbicos las siguientes unidades. a) b) c) Cuántos litros
Figuras de tres dimensiones
Figuras de tres dimensiones Poliedros: cuerpos geométricos limitados por 4 o más superficies planas que son polígonos. Poliedros regulares: todas las caras de igual forma y tamaño. Solo existen 5. Prismas
VOLÚMENES DE POLIEDROS PRISMA:
VOLÚMENES DE POLIEDROS CONCEPTO: El volumen es la medida de la capacidad que posee un sólido. Todo sólido requiere tres dimensiones: largo, ancho y altura (profundidad ó espesor), es por ello que el volumen
Ecuaciones: Ejercicios de la 3º Evaluación -- Dtpo de Matemáticas 3º Eso.
Ecuaciones: Ejercicios de la 3º Evaluación -- Dtpo de Sistemas Ejercicios de a reas y volu menes I 1Calcula el volumen, en centímetros cúbicos, de una habitación que tiene 5 m de largo, 40 dm de ancho
FORMULARIO (ÁREAS DE FIGURAS PLANAS)
FORMULARIO (ÁREAS DE FIGURAS PLANAS) Rectángulo Triángulo Paralelogramo Cuadrado Cuadrilátero cuyos lados forman ángulos de 90º. Es la porción de plano limitada por tres segmentos de recta. Cuadrilátero
EJERCICIOS de ÁREAS y VOLÚMENES 3º ESO
EJERCICIOS de ÁREAS y VOLÚMENES 3º ESO FICHA 1: Teorema de Pitágoras 1. Aplicar el teorema de Pitágoras para responder a las siguientes cuestiones (y hacer un dibujo aproximado, cuando proceda): a) Hallar
TEMA 7: ACTIVIDADES Y AUTOEVALUACIONES RESUELTAS
MÓDULO - Ámbito Científico-Tecnológico TEMA 7: ACTIVIDADES Y AUTOEVALUACIONES RESUELTAS. REPASO A LAS FIGURAS PLANAS ELEMENTALES Actividad (p. 40). Calcula el área de un triángulo equilátero de lado m.
Perímetros, áreas y volúmenes de figuras y cuerpos geométricos.
Perímetros, áreas y volúmenes de figuras y cuerpos geométricos. Perímetros y áreas de polígonos Triángulo El triángulo es un polígono con tres lados P = b + c + d ( Perímetro es igual a la suma de las
UNIDAD 6 La semejanza y sus aplicaciones
Pág. 1 de 5 I. Manejas la semejanza de figuras (mapas, planos, maquetas) para obtener medidas, incluidas áreas y volúmenes, de una a partir de la otra? 1 uáles de estas figuras son semejantes? Justifícalo
TEMA 6 SEMEJANZA. APLICACIONES -
TEMA 6 SEMEJANZA. APLICACIONES - 1. SEMEJANZA: ESCALAS LECCIÓN I ESCALA: es el cociente entre cada longitud de reproducción (mapa, plano, maqueta) y la correspondiente longitud en la realidad. Es, por
Elementos del cilindro
Definición de cilindro Un cilindro es un cuerpo geométrico engendrado por un rectángulo que gira alrededor de uno de sus lados. Desarrollo del cilindro Elementos del cilindro Eje Es el lado fijo alrededor
EJERCICIOS DE LOS TEMAS 9 y 10.GEOMETRÍA
1.- Dos triángulos ABC y A C son semejantes y la razón de semejanza entre el primero y el segundo es,4. Calcula las longitudes de los lados que faltan sabiendo que AB = 0 cm, BC = 15 cm y A C = 10 cm.
MATEMÁTICAS 2º DE ESO LOE
MATEMÁTICAS º DE ESO LOE TEMA XII: POLIEDROS Y CUERPOS REDONDOS Poliedros: o Elementos. o Tipos. Poliedros regulares. Cubos. Prismas: elementos, clases. Pirámides: elementos, clases. Áreas laterales y
TEMA 5. Geometría. Teoría. Matemáticas
1 La Geometría trata sobre las formas y sus propiedades. A su vez, se puede dividir en: Geometría plana: trata de las figuras en el plano, (dos dimensiones) Geometría tridimensional: trata de figuras en
1. Aplicar el teorema de Pitágoras para responder a las siguientes cuestiones (y hacer un dibujo aproximado, cuando proceda):
FICHA 1: Teorema de Pitágoras 1 1. Aplicar el teorema de Pitágoras para responder a las siguientes cuestiones (y hacer un dibujo aproximado, cuando proceda): a) Hallar la hipotenusa de un triángulo rectángulo
Áreas de cuerpos geométricos
Áreas de cuerpos geométricos Contenidos 1. Área de los prismas Área de los prismas 2. Área de la pirámide y del tronco de pirámide Área de la pirámide Área del tronco de pirámide 3. Área de los cuerpos
1 Resuelve utilizando el método de reducción el siguiente sistema de ecuaciones:
1 Resuelve utilizando el método de reducción el siguiente sistema de ecuaciones: x + y = 0 x y = 10 Multiplicando la 1ª ecuación por y sumando el resultado se obtiene: 6x + y = 0 x y = 10 x = 10 x = 5
10 VOLUMEN DE CUERPOS GEOMÉTRICOS
10 OLUMEN DE CUERPOS GEOMÉTRICOS 10.1.- OLUMEN DE UN CUERPO. OLUMEN, CAPACIDAD Y MASA. DENSIDAD DE UN CUERPO. 10.2.- OLUMEN DE UN ORTOEDRO Y DEL CUBO. 10..- OLUMEN DE PRISMAS Y CILINDROS. 10.4.- OLUMEN
TEMA 7 Las formas y las medidas que nos rodean. 2. Repaso a las figuras planas elementales
TEMA 7 Las formas y las medidas que nos rodean 1. Introducción 1.1. Qué es la geometría? Es una rama de la matemática que se ocupa del estudio de las propiedades de las figuras geométricas en el plano
ESQUEMA GENERAL DE LA CLASIFICACIÓN DE LOS CUERPOS GEOMÉTRICOS REGULARES ESFERA
ESQUEMA GENERAL DE LA CLASIFICACIÓN DE LOS CUERPOS GEOMÉTRICOS POLIEDROS REGULARES Tetraedro ( 4 triángulos equiláteros) Hexaedro o cubo( 6 cuadrados) Octaedro( 8 triángulos equiláteros) Dodecaedro ( 12
ÁREAS Y VOLÚMENES DE CUERPOS GEOMÉTRICOS
ÁREAS Y VOLÚMENES DE CUERPOS GEOMÉTRICOS E J E R C I C I O S P R O P U E S T O S 1 Calcula el área de los ortoedros cuyas longitudes vienen dadas en centímetros. 2 1 2 Calcula el área total de los siguientes
EL VOLUMEN DE LOS CUERPOS GEOMÉTRICOS
EL VOLUMEN DE LOS CUERPOS GEOMÉTRICOS Los cuerpos geométricos tridimensionales ocupan siempre un espacio. La medida de ese espacio recibe el nombre de volumen. Asimismo, los cuerpos que están huecos pueden
1.SISTEMAS DE MEDIDAS: longitud, superficie, volumen. Conversiones.
ÍNDICE DEL TEMA 1.SISTEMAS DE MEDIDAS: longitud, superficie, volumen. Conversiones. 2. FIGURAS PLANAS : 2.1. POLÍGONOS Triángulos Cuadriláteros Polígonos regulares 2.2. CIRCUNFERENCIA Y CÍRCULO: Elementos.
2º. La diagonal de un cuadrado mide 1 metro. Cuántos centímetros mide el lado?
FIGURAS PLANAS. ÁREAS 1º. De las siguientes ternas de números, cuáles son pitagóricas? (Es decir cumplen el teorema de Pitágoras) a) 3, 4, 5 b) 4, 5, 6 c) 5, 12, 13 d) 6, 8, 14 e) 15, 20, 25 2º. La diagonal
2. Obtener la longitud de la base de un triángulo isósceles cuyos lados iguales miden 17 cm y su altura 8 cm.
ACTIVIDAD DE APOYO GEOMETRIA GRADO 11 1. Calcular el valor de la altura del triángulo equilátero y de la diagonal del cuadrado (resultado con dos decimales, bien aproimados): h 6 cm (Sol: 3,46 cm) (Sol:
Determina el nombre de los siguientes poliedros. Cuántas caras tienen? Y cuántas aristas? a) b)
Cuerpos geométricos EJERCICIOS 001 Determina el nombre de los siguientes poliedros. Cuántas caras tienen? Y cuántas aristas? a) b) a) Pirámide cuadrangular: 5 caras y 8 aristas. b) Prisma triangular: 5
Hallar el área de estas figuras
Hallar el área de estas figuras El área de la pirámide es la suma de las áreas de un cuadrado y 4 triángulos. El área del prisma es la suma de las áreas las bases ( pentágonos) y 5 rectángulos. Hallar
Ámbito Científico-Tecnológico Módulo IV Bloque 4 Unidad 4 Estamos rodeados de cuerpos. geométricos
Ámbito Científico-Tecnológico Módulo IV Bloque 4 Unidad 4 Estamos rodeados de cuerpos. geométricos Cierto, mires por donde mires no podrás dejar de ver cuerpos geométricos de todo tipo. Por eso es importante
MATEMÁTICAS 2º ESO. Ejercicios de recuperación para Septiembre ESTOS EJERCICIOS DEBERÁN SER ENTREGADOS AL COMIENZO DEL EXÁMEN DE SEPTIEMBRE.
MATEMÁTICAS º ESO Ejercicios de recuperación para Septiembre ESTOS EJERCICIOS DEBERÁN SER ENTREGADOS AL COMIENZO DEL EXÁMEN DE SEPTIEMBRE. SU PRESENTACIÓN SE VALORARÁ CON UN MAXIMO DE UN 10% DE LA NOTA
PÁGINA 88. Pág. 1. Unidad 9. Problemas métricos en el plano
Soluciones a las actividades de cada epígrafe PÁGINA 88 1 En los siguientes triángulos rectángulos, se dan dos catetos y se pide la hipotenusa (si su medida no es eacta, dala con una cifra decimal): a)
CUERPOS GEOMÉTRICOS. Los cuerpos geométricos son porciones de espacio limitadas por superficies planas o curvas.
CUERPOS GEOMÉTRICOS CUERPOS GEOMÉTRICOS.- Los cuerpos geométricos son porciones de espacio limitadas por superficies planas o curvas. Clasificamos, en el siguiente esquema, los cuerpos geométricos: POLIEDROS.-
TEMA 12: LONGITUDES Y ÁREAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco.
009 TEMA 1: LONGITUDES Y ÁREAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. Manuel González de León. mgdl 01/01/009 TEMA 1: Longitudes y Áreas. TEMA 1: LONGITUDES Y ÁREAS. 1.
Examen de Matemáticas (1º E.S.O) UNIDAD 13: ÁREAS Y PERÍMETROS. Grupo: 1ºB Fecha: 11/06/2009
I.E.S SAN JOSÉ (CORTEGANA) DEPARTAMENTO DE MATEMÁTICAS Examen de Matemáticas (1º E.S.O) UNIDAD 13: ÁREAS Y PERÍMETROS Nombre y Apellidos: Grupo: 1ºB Fecha: 11/06/009 CALIFICACIÓN: Ejercicio nº 1.- Calcula
APUNTES DE GEOMETRÍA
Colegio Sagrado Corazón de Jesús Sevilla MATEMÁTICAS 2º ESO APUNTES DE GEOMETRÍA pág. 1 DEFINICIONES: 1). PUNTO: Intersección de 2 rectas. 2). LÍNEA: Intersección de dos superficies. Las líneas pueden
EJERCICIOS MÓDULO 4. Geometría plana. 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9?
Seminario Universitario Matemática EJERCICIOS MÓDULO 4 Geometría plana 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9? ) Cuántos lados tiene un polígono en el cual la suma de
ÁREAS Y VOLÚMENES DE CUERPOS EN EL ESPACIO
ÁREAS Y VOLÚMENES DE CUERPOS EN EL ESPACIO 1. Área y volumen del ortoedro y del cubo. 1.1. Área y volumen del ortoedro. 1.2. Cálculo de la diagonal del ortoedro. 1.3. Área y volumen del cubo. 2. Área y
Ámbito científico tecnológico
Dirección Xeral de Educación, Formación Profesional e Innovación Educativa Educación secundaria para personas adultas Ámbito científico tecnológico Educación a distancia semipresencial Módulo Unidad didáctica
IES FONTEXERÍA MUROS. 14-II-2014 Nombre y apellidos:.
IES FONTEXERÍA MUROS MATEMÁTICAS º E.S.O-A (Desdoble 1) 1º Examen (ª Evaluación) 14-II-014 Nombre y apellidos:. 1. Completa las siguientes definiciones: a) Un poliedro es un cuerpo geométrico tridimensional
2º DE SECUNDARIA - MATEMÁTICAS
2º DE SECUNDARIA - MATEMÁTICAS 1. Expresa en forma incompleja: a) 5 h 9 min 16 seg b) 7 h 15 min 25 seg 2. Expresa en forma compleja: a)13.820 seg. b) 15.240 seg. 3. Realiza las siguientes operaciones:
Programa Entrenamiento MT-22
Programa Entrenamiento MT- SOLUCIONARIO Guía de ejercitación avanzada SGUICEN0MT-A6V TABLA DE CORRECCIÓN Guía de ejercitación ÍTEM ALTERNATIVA HABILIDAD D E B 4 C 5 C Comprensión 6 B 7 E Comprensión 8
POLIEDROS, PRISMAS Y PIRÁMIDES
POLIEDROS, PRISMAS Y PIRÁMIDES 1. Completa la siguiente tabla. 2. Indica si son verdaderas o falsas (V o F) las siguientes afirmaciones. a) La suma de las caras y los vértices del cubo es 12. b) El menor
TALLER # 5 de GEOMETRÍA EUCLIDIANA ÁREAS Y VOLÚMENES. Universidad de Antioquia. Departamento de Matemáticas. Septiembre 2008
TALLER # 5 de GEOMETRÍA EUCLIDIANA ÁREAS Y VOLÚMENES Universidad de Antioquia Departamento de Matemáticas Septiembre 2008 1. Sea ABCD un rectángulo, E punto medio de, a) Calcular el área del rectángulo
13Soluciones a los ejercicios y problemas PÁGINA 250
PÁGINA 50 Pág. 1 Á REAS Y PERÍMETROS DE FIGURAS SENCILLAS Halla el área y el perímetro de las figuras coloreadas de los siguientes ejercicios: 1 a) b) 5 dm 4 cm cm 5 cm 8 cm a) 5 5 dm b) 8 8 cm P 5 4 0
Tema 10: Cuerpos geométricos y transformaciones geométricas
Tema 10: Cuerpos geométricos y transformaciones geométricas Regla. Escuadra. Cartabón. Compás. Transportador de ángulos. Calculadora Portaminas. Goma 10.1 Polígonos MATERIAL DE CLASE OBLIGATORIO PROBLEMAS
a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta.
POLIEDROS Ejercicio nº 1.- a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta. b Cuál es la relación llamada fórmula de Euler que hay entre el número de caras,
Matemática 3 Colegio N 11 B. Juárez
Unidad 4: RAZONES Y PROPORCIONES Definición de RAZÓN: Se denomina razón entre dos números racionales a y b, al cociente (división) entre ambos, siendo b distinto de 0. a se denomina antecedente Ejemplo
a 2 = b 2 + c 2 a = hipotenusa ; b, c = catetos
TEMA 6.- GEOMETRÍA Y SEMEJANZA 1.- ÁNGULOS Y TRIÁNGULOS. Ángulo recto Ángulo llano Ángulo agudo Ángulo obtuso (mide 90º) (mide 180º) (mide menos de 90º) (mide más de 90º) Tipos de ángulos Ángulos complementarios
IES JOAQUÍN ARAÚJO 2º ESO
IES JOAQUÍN ARAÚJO º ESO 0- Como trabajo de verano planteamos la resolución de estos de ejercicios para afianzar conceptos y desarrollar competencias. El trabajo quedará recogido en un cuaderno que entregarás
VOLUMENES DE CUERPOS GEOMETRICOS
PreUnAB VOLUMENES DE CUERPOS GEOMETRICOS Clase # 20 Octubre 2014 CONCEPTOS PREVIOS Volumen: El volumen es una magnitud definida como la extensión en tres dimensiones de un cuerpo en el espacio. Es, por
P RACTICA. 1 Di cuáles de estos triángulos son: 2 Di cómo son, según sus lados y según sus ángulos, los triángulos siguientes:
P RCTIC Polígonos: clasificación 1 Di cuáles de estos triángulos son: a) cutángulos. b) Rectángulos. c) Obtusángulos isósceles. B C D G E a) cutángulos: C, F y G. b) Rectángulos: D y E. c) Obtusángulos
Áreas de cuerpos geométricos
9 Áreas de cuerpos geométricos Objetivos En esta quincena aprenderás a: Calcular el área de prismas rectos de cualquier número de caras. Calcular el área de pirámides de cualquier número de caras. Calcular
Relación Ecuaciones. Ecuaciones de primer grado. Matemáticas. Resolver las siguientes ecuaciones: 5(x + 1) [1] = x + 3 5x x + 2 [2] 3 {3
Relación Ecuaciones Matemáticas Ecuaciones de primer grado Resolver las siguientes ecuaciones: 5(x + 1) [1] = x + 5x + 9 + x + 8 [] [(x ) ] } = 1 [] x + 1 x + x + 5 7 [] 5x (x 8) = (x + ) [5] x + [] 5x
Tema 10: Cuerpos geométricos.
Tema 10: Cuerpos geométricos. Ejercicio 1. Calcular el área total de una pirámide recta hexagonal regular, sabiendo que la arista de la base mide 5, y la arista lateral, 1. Figura 1. Cálculo de la apotema
EJERCICIOS DE RECUPERACIÓN DE MATEMÁTICAS 2º ESO. 2ª PARTE
EJERCICIOS DE RECUPERACIÓN DE MATEMÁTICAS 2º ESO. 2ª PARTE CURSO 2015/2016 NOMBRE: IES ALCARRIA BAJA. MONDÉJAR UNIDAD 5. LENGUAJE ALGEBRAICO 1º) Traduce a lenguaje algebraico los siguientes enunciados:
Problemas geométricos
Problemas geométricos Contenidos 1. Figuras planas Triángulos Paralelogramos Trapecios Trapezoides Polígonos regulares Círculos, sectores y segmentos 2. Cuerpos geométricos Prismas Pirámides Troncos de
ACTIVIDADES INCLUIDAS EN LA PROPUESTA DIDÁCTICA: DE AMPLIACIÓN
Pág. ENUNCIADOS Se desea fabricar un tubo de 2 m de largo y 5 cm de diámetro soldando los dos bordes de un rectángulo. Cuáles deben ser las dimensiones del rectángulo si en las soldaduras se solapan 5
10 SEMEJANZA. TEOREMA DE PITÁGORAS EJERCICIOS
0 SEMEJNZ. TEOREM DE PITÁGORS EJERCICIOS Indica qué rectángulos son semejantes: a) ase cm, altura cm y base 0 cm, altura cm. b) ase 0 m, altura m y base 0 m, altura 8 m. c) ase 0,7 dm, altura 0, dm y base,0
T. 8 y 9 CUERPOS GEOMÉTRICOS
PRISMAS Y POLIEDROS REGULARES 1. Calcula la diagonal, la superficie y el volumen de un ortoedro de 10 cm de largo, 4 cm de ancho y 5 cm de alto. 2. Calcula el volumen, en cm 3, de una habitación que tiene
RELACIÓN DE EJERCICIOS DE GEOMETRÍA PLANA
RELACIÓN DE EJERCICIOS DE GEOMETRÍA PLANA 1. Halla el perímetro y el área de las siguientes figuras: 2. Entre las dos diagonales de un rombo suman 100 cm, siendo la menor 20 cm más corta que la mayor.
Repaso de Geometría. Ahora formulamos el teorema:
Repaso de Geometría Preliminares: En esta sección trabajaremos con los siguientes temas: I. El Teorema de Pitágoras. II. Fórmulas básicas de geometría: perímetro, área y volumen. I. El Teorema de Pitágoras.
MYP (MIDDLE YEARS PROGRAMME)
MYP (MIDDLE YEARS PROGRAMME) 2014-2015 Fecha 19/05/2015 APUNTES DE GEOMETRÍA 2º ESO 1. EL TEOREMA DE PITÁGORAS El teorema de Pitágoras establece que en todo triángulo rectángulo, el cuadrado de la hipotenusa
Tipo de triángulo según sus ángulos Característica Dibujo
TEMA 7 - LUGARES GEOMÉTRICOS Y FIGURAS PLANAS 1º. Completa la tabla siguiente donde se indica la clasificación de los triángulos según sus ángulos y donde, además, aparezca un dibujo de cada tipo. Tipo
PRISMAS Y CILINDROS. Menú: - Poliedros - Teorema de Euler - Principio de Cavalieri - Prismas: área y volumen - Cilindros: área y volumen
PRISMAS Y CILINDROS OBJETIVO DE LA CLASE: ANALIZAR PRISMAS Y CILINDROS EN CUANTO A SU ÁREA Y VOLUMEN Menú: - Poliedros - Teorema de Euler - Principio de Cavalieri - Prismas: área y volumen - Cilindros:
Cuerpos geométricos son porciones de espacio limitadas por superficies planas o curvas. CUERPOS GEOMÉTRICOS PRISMAS PIRÁMIDES CILINDROS CONOS ESFERAS
UNIDAD DIDÁCTICA CUERPOS GEOMÉTRICOS 1. CUERPOS GEOMÉTRICOS En nuestro entorno observamos continuamente objetos de diversas formas: pelotas, botes, cajas, pirámides, etc. Todos estos objetos son cuerpos
CUERPOS GEOMÉTRICOS. 2º E.S.O. PUNTOS, RECTAS Y PLANOS EN EL ESPACIO DETERMINACIÓN DE PUNTOS, RECTAS Y PLANOS DETERMINACIÓN DE PUNTOS, RECTAS Y PLANOS
CUERPOS GEOMÉTRICOS. PUNTOS, RECTAS Y PLANOS EN EL ESPACIO 2º E.S.O. DETERMINACIÓN DE PUNTOS, RECTAS Y PLANOS Determinación de puntos: DETERMINACIÓN DE PUNTOS, RECTAS Y PLANOS Determinación de una recta:
Cuerpos geométricos. Cuerpos redondos Cuerpos de revolución. Poliedros (más importantes)
Cuerpos geométricos Cuerpos redondos Cuerpos de revolución Poliedros (más importantes) Cuerpo geométrico limitado por caras que son polígonos Cuerpo geométrico que se obtiene a partir de una figura plana
RAZONAMIENTO GEOMÉTRICO
RAZONAMIENTO GEOMÉTRICO Fundamentos de Matemáticas I Razonamiento geométrico Video Previo a la actividad: Áreas y perímetros de cuerpos y figuras planas Video Previo a la actividad: Áreas y perímetros
1 Indica, en la ilustración, dos edificios que sean poliedros y tengan formas diferentes. PÁGINA 186
PÁGINA 186 En la Casa de la Cultura se ha montado una exposición fotográfica. En ella se recogen modernos edificios en los que los poliedros y los cuerpos de revolución han sido elevados a la categoría
NOMBRE Y APELLIDOS: debe medir el tercero para que ese triángulo sea un triángulo rectángulo?
FICHA REFUERZO TEMA 8: TEOREMA DE PITAGORAS. SEMEJANZA. CURSO: 2 FECHA: NOMBRE Y APELLIDOS: Ejercicio nº 1.-Los dos lados menores de un triángulo miden 8 cm y 15 cm. Cuánto debe medir el tercero para que
La razón entre los lados homólogos es la razón de semejanza. Si dos figuras son semejantes la razón entre sus áreas es:
TEMA 7: SEMEJANZA FIGURAS SEMEJANTES Dos figuras son semejantes si sus segmentos correspondientes, u homólogos, son proporcionales y sus ángulos iguales. Es decir; o son iguales, o tienen "la misma forma"
MATEMÁTICAS 3º ESO PENDIENTES HOJA 1 GEOMETRÍA PLANA. 1.- Calcular el área y el perímetro de los siguientes polígonos:
MATEMÁTICAS º ESO PENDIENTES HOJA GEOMETRÍA PLANA.- Calcular el área y el perímetro de los siguientes polígonos: a) Un cuadrado de lado 5 cm de lado b) Un cuadrado de diagonal 0 cm. c) Un rectángulo de
EJERCICIOS Y PROBLEMAS RESUELTOS
Ecuaciones de Segundo Grado -- página 1 EJERCICIOS Y PROBLEMAS RESUELTOS Ejercicio 1: Indica si son ecuaciones de segundo grado las siguientes ecuaciones: a) 5 + 8 + b) + + ( )( + ) c) + 1 a) El primer
Lic. Saúl Villamizar Valencia 53 SÓLIDOS DE REVOLUCIÓN Y ESFERA
Lic. Saúl Villamizar Valencia 53 SÓLIDOS DE REVOLUCIÓN Y ESFERA 54 Actualización Permanente en el Área Matemática 1. Cilindro Definiciones Se llama superficie cilíndrica la engendrada por una recta que
Tema 11 Cuerpos geométricos
Tema 11 Cuerpos geométricos 11.1 Poliedros regulares y semirregulares Tareas 11/11/: todos los ejercicios de la página 08. Además, completa la tabla análoga de los poliedros duales para el icosaedro y
1 a) Aplica a la figura una traslación de vector ( 7, -3). Halla la figura homóloga con respecto a una simetría axial de eje OX
MATEMÁTICAS º.E.S.O Ejercicios de repaso Movimientos en el plano. Geometría a Aplica a la figura una traslación de vector 7, -. Halla la figura homóloga con respecto a una simetría aial de eje OX b Aplica
Matemáticas 3º E.S.O. 2014/15
Matemáticas 3º E.S.O. 2014/15 TEMA 5: Figuras planas Ficha número 16 1.- Calcula la altura del siguiente triángulo: (Sol: 12,12 cm) 2.- En un triángulo isósceles la altura sobre el lado desigual mide 50
GEOMETRÍA ESPACIAL Programación
GEOMETRÍA ESPACIAL Programación En clase, con la ayuda del libro, se explicará la teoría y se realizarán ejercicios similares a los de las fichas, de modo que los ejercicios que realizan por la tarde les
ARITMÉTICA. 1. Resolver las siguientes ecuaciones en Q. 2 x + 5. d) ( x ) ( x ) x = x + = x. l) ( ) ( )( ) + = + + o) ( x ) 2.
1. Resolver las siguientes ecuaciones en Q. ARITMÉTICA a) b) 3. x + 1 = 3 83 3,90x x = 3 31 c) 0,x + x 4,16 = 6 d) ( x ) ( x ) + 3 1 = + 1 4 e) f) g) x x + = 0,3 0, 6x 3 0, 6 1x + 6x = 0,3 8 0,86x 0,73
SeCrece, Inc. Matemáticas. Unidad: Geometría. Grupo: Tornasol
SeCrece, Inc. Matemáticas Unidad: Geometría Grupo: Tornasol I. Propiedades Geométricas a. Tipos de Polígonos Nombres de Polígonos Nombre Lados Ángulos Triángulo 3 3 Cuadrilátero 4 4 Pentágono 5 5 Hexágono
UNIDAD 6 La semejanza y sus aplicaciones
Pág. 1 de 5 I. Manejas la semejanza de figuras (mapas, planos, maquetas) para obtener medidas, incluidas áreas y volúmenes, de una a partir de la otra? 1 uáles de estas figuras son semejantes? Justifícalo
Tema 12: Las Áreas de figuras planas. El Teorema de Pitágoras. 1-T 12--1ºESO
Tema 1: Las Áreas de figuras planas. El Teorema de Pitágoras. 1-T 1--1ºESO I.- Perímetro y Área de las figuras planas: Antes de ver todas y cada una de las fórmulas que nos permiten averiguar el área de
TEMA 11: ÁREA Y FIGURAS GEOMÉTRICAS.
TEMA 11: ÁREA Y FIGURAS GEOMÉTRICAS. LOS POLÍGONOS El polígono es una porción del plano limitado por una línea poligonal cerrada. Un polígono se nombra con las letras mayúsculas situadas en los vértices.
Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales.
Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Los segmentos se determinan por su longitud. Supongamos que tenemos dos
TEOREMA DE LA ALTURA SOBRE LA HIPOTENUSA
TEOREM DE L LTUR SOBRE L HIPOTENUS Ejemplos 1. Si en un triángulo rectángulo sus catetos miden 8m y 15 m respectivamente, calcular las longitudes de: a) La ipotenusa. b) La proyección del cateto menor
EJERCICIOS PROPUESTOS. Escribe las expresiones algebraicas correspondientes. a) Tres números consecutivos. b) Tres números pares consecutivos.
4 POLINOMIOS EJERCICIOS PROPUESTOS 4.1 Relaciona cada enunciado con su epresión algebraica. Múltiplo de 3. Número par. El cuadrado de un número más 3. Un número más 5. El triple de un número más 7. 5 3
POLIEDROS. ÁREAS Y VOLÚMENES.
7. POLIEDROS. ÁREAS Y VOLÚMENES. EN ESTA UNIDAD VAS A APRENDER CUERPOS GEOMÉTRICOS POLIEDROS POLIEDROS REGULARES PRISMAS PIRÁMIDES CARACTERÍSTICAS DEFINICIÓN ELEMENTOS DEFINICIÓN ELEMENTOS - Tetaedro.
Cuerpos geométricos. Volúmenes
4 uerpos geométricos. Volúmenes. Poliedros Un poliedro es un cuerpo geométrico limitado por cuatro o más polígonos planos. Los elementos de un poliedro son: aras: son los polígonos que lo delimitan. ristas:
Geometría. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid
Geometría Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Ángulos Un ángulo es la región del plano limitada por dos semirrectas con el origen común. Lados Vértice Clasificación de los ángulos
SOLUCIONARIO Cuerpos redondos
SOLUCIONARIO Cuerpos redondos SGUICEG07EM2-A16V1 1 TABLA DE CORRECCIÓN GUÍA PRÁCTICA Cuerpos redondos Ítem Alternativa 1 E 2 D A 4 C 5 C 6 D 7 B 8 D 9 B 10 D 11 B 12 C 1 B 14 B 15 A 16 C 17 A 18 E 19 D
Cálculo de perímetros y áreas
Cálculo de perímetros y áreas 1. Calcula el perímetro de las siguientes figuras planas: 2. Calcula el perímetro de las siguientes figuras geométricas: 3. La rueda de un triciclo tiene 30 cm de radio. Cuántos
Figura plana Área Ejemplo Cuadrado. Área =
ersión: Septiembre 01 Áreas y volúmenes Por Sandra Elvia Pérez Márquez Áreas de figuras planas Las aplicaciones de las figuras planas requieren, por lo general, conocer (o calcular) dos características
IDEAS PREVIAS. 1. Planos paralelos. 2.Planos perpendiculares
IDEAS PREVIAS 1. Planos paralelos..planos perpendiculares .Planos oblicuos. CUERPO GEOMÉTRICO Un Sólido o Cuerpo Geométrico es una figura geométrica de tres dimensiones (largo, ancho y alto), que ocupa
11Soluciones a los ejercicios y problemas
Soluciones a los ejercicios y problemas PÁGINA 9 Pág. P R A C T I C A D e s a r r o l l o s y á r e a s Dibuja el desarrollo plano y calcula el área total de los siguientes cuerpos geométricos: a) b) cm
