2º DE SECUNDARIA - MATEMÁTICAS
|
|
|
- José Miguel Fuentes Chávez
- hace 8 años
- Vistas:
Transcripción
1 2º DE SECUNDARIA - MATEMÁTICAS 1. Expresa en forma incompleja: a) 5 h 9 min 16 seg b) 7 h 15 min 25 seg 2. Expresa en forma compleja: a) seg. b) seg. 3. Realiza las siguientes operaciones: 5º º = 8º º = 3º º = 9º º = 4. Realiza la siguiente operación: Al terminar la operación expresa la medida resultante en forma incompleja: 9º º = 5. En una de las carreras de la Gymkhana de colegio, uno de los grupos tardó 1 minuto y 36 segundos, mientras que otro lo hizo en el triple del tiempo. Cuánto tardó este último? 6. En las pruebas de la tarde una participante mantuvo el aro en la cintura 6 min y 30 seg., la participante de otro equipo solo puede mantenerlo la mitad. Cuánto tiempo logró mantener el aro la segunda? 7. Di si son verdaderas o falsas las siguientes igualdades, corrigiendo las falsas: a) 1 Dam 3 = 1000 m 3 b) 9 dm 2 = 0,0009 m 2 c) 25 Km = m d) 12 Hl = 120 L e) 250 g = 25 Kg f) 1 dm3 = 1 L 2º de Secundaria 1 Sofía Gallego
2 8. Calcula la diagonal de un cuadrado sabiendo que cada lado mide 10 cm. 9. Cuál será la altura de la palmera de preescolar? Sabemos que su sombra mide 16 8 m. y una regla de 30 2 cm situado junto a ella, proyecta una sombra de 80 cm. 10. Averigua el lado de un triangulo rectángulo cuya hipotenusa mide 10 cm y uno de los catetos 6 cm. 11. La forma de un terreno es triangular, sus lados miden 5 dam, 12 dam y 13 dam; queremos saber si se trata de un triángulo rectángulo. Podremos afirmarlo? Demuéstralo. 12. Halla la medida de los lados de un triángulo semejante a otro cuyos lados miden 5, 9 y 12 centímetros, con razón de semejanza igual a Los lados de un triángulo miden 10, 12 y 8 centímetros y los de otro 5, 6 y 4 centímetros. Son semejantes? Demuestra tu respuesta. 14. Averigua las dimensiones reales de un salón que mide 4 cm de largo y 5 cm de ancho, en un plano a escala 1: Halla las dimensiones de un salón de 4 metros de largo y 5 de ancho en un plano a escala 1: En un mapa de carreteras cuya escala es de 1: , la distancia entre Oviedo y Gijón es de 3 cm. Cuántos Km. separan estas dos ciudades Asturianas? 17. La Estatua de la Libertad de Nueva York, construida por Bartholdi y cuya estructura metálica interior fue obra de Eiffel en 1886, proyecta una sombra de 124 m. Una regla de 30 cm situada a su lado tiene una sombra de 40 cm. A qué altura se eleva la estatua? 18. Cuál es el ángulo complementario de otro que mide 25º? 19. Se puede construir un triángulo cuyos ángulos midan 15º, 45º y 35º. Razona tu respuesta. 20. En un pentágono regular. Cuál es la suma de sus ángulos interiores?. Cuánto mide cada uno de esos ángulos? 21. Qué son ángulos diedros? 22. Qué son ángulos complementarios? 23. Escribe y explica la fórmula para averiguar la suma de los ángulos de cualquier polígono. 24. Qué es un poliedro?. Escribe y explica además la relación de Euler. 25. Dibuja un prisma señalando y explicando cada una de sus partes. 2º de Secundaria 2 Sofía Gallego
3 26. Dibuja un cono señalando y explicando cada una de sus parte. 27. Dos ángulos de un triángulo miden A = 25º y B = 79º 12. Averigua lo que mide el ángulo que falta. Explica tu respuesta. 28. Dibuja y escribe el área de todas las figuras planas que hemos dado. 29. Calcula el área de las siguientes figuras mediante composición o descomposición en otras más sencillas: 30. a) b) 2º de Secundaria 3 Sofía Gallego
4 31.. El suelo de un baño tiene forma cuadrada de 1,50 m de lado. Se va a instalar una ducha con forma de sector circular de 85 centímetros de radio y cuyo ángulo central es de 90º. Qué superficie del baño queda libre para colocar el resto de los sanitarios? 32. El triángulo inscrito de la circunferencia es rectángulo, y las regiones sombreadas reciben el nombre de lúnulas de Arquímedes. 33. Calcula el área total de la superficie sombreada. 16,7 cm 9,5 cm que puede contener. 6 cm 34. Calcula la cantidad de cartón que se debe emplear para fabricar un recipiente del tipo tetra brik. Sabiendo que de alto mide 16,7 cm, de ancho 9,5 cm, y de fondo 6 cm. 35. El tetra brik del ejercicio 4 contiene zumo de naranja. Calcula el volumen en dm 3 del zumo 36. Queremos construir una caja nueva para los helados que tenga la forma siguiente Cuántos litros de helado puede contener? Ten en cuenta que el radio de un hexágono regular mide lo mismo que un lado Radio 37. La pirámide de Zoser en Saqqara (Egipto) tienen una altura de 160 m y una base cuadrada que mide de lado 250 m. Suponiendo que sus paredes laterales fueran lisas. Cuántos metros cuadrados de piedra se necesitaron para construir toda la superficie exterior y la base? (Primero realiza un dibujo aproximado de la figura) 2º de Secundaria 4 Sofía Gallego
5 38. Averigua el área total y el volumen de la siguiente pirámide regular 39. Averigua la superficie y el volumen de cartón necesarios para hacer un recipiente de roscas de las que se venden en los cines, que tiene las siguientes dimensiones: Radio mayor = 5 cm. Radio menor = 3 cm Generatriz = 6 cm. Altura = 5,6 cm. Altura total del cono aunque no esté dibujada = 8 cm. 40. La altura de un bote de tomate natural triturado mide 10 cm, y el diámetro de la base, 7 cm. Salvo las bases, el bote está recubierto de un papel en el que figura la marca comercial y otras informaciones. Qué superficie de papel, en metros cuadrados, se necesitarán para recubrir botes?. (Primero realiza un dibujo aproximado de la figura) Averigua además el volumen del bote y su área total. 41. El diámetro del planeta Marte es de Km. Cuánto mide su volumen? 42. El diámetro de un cono es de 12 cm, y la altura 8 cm. Calcula su área total y su volumen. Expresa además en litros la capacidad del líquido que puede contener. 43. Una piscina tiene forma cilíndrica y mide de alto 2 m. El diámetro de la base es de 800 cm. Cuántos litros de agua puede contener? (Primero deberás calcular el volumen) 44. Suponiendo que la Tierra tuviera forma esférica el radio sería aproximadamente de Km (Utiliza como radio aproximado 6.500) Calcula la superficie aproximada de la Tierra. 2º de Secundaria 5 Sofía Gallego
RELACIÓN DE EJERCICIOS DE GEOMETRÍA PLANA
RELACIÓN DE EJERCICIOS DE GEOMETRÍA PLANA 1. Halla el perímetro y el área de las siguientes figuras: 2. Entre las dos diagonales de un rombo suman 100 cm, siendo la menor 20 cm más corta que la mayor.
Matemáticas 3º E.S.O. 2014/15
Matemáticas 3º E.S.O. 2014/15 TEMA 5: Figuras planas Ficha número 16 1.- Calcula la altura del siguiente triángulo: (Sol: 12,12 cm) 2.- En un triángulo isósceles la altura sobre el lado desigual mide 50
1º.- Halla el área y el perímetro de las siguientes figuras, calculando previamente el elemento que falta:
Matemáticas 3º E.S.O. pág. 1 HOJA 1: GEOMETRÍA 1º.- Halla el área y el perímetro de las siguientes figuras, calculando previamente el elemento que falta: 2º.- Halla el área de las figuras marcadas: 3º.-
EJERCICIOS DE LOS TEMAS 9 y 10.GEOMETRÍA
1.- Dos triángulos ABC y A C son semejantes y la razón de semejanza entre el primero y el segundo es,4. Calcula las longitudes de los lados que faltan sabiendo que AB = 0 cm, BC = 15 cm y A C = 10 cm.
Ecuaciones: Ejercicios de la 3º Evaluación -- Dtpo de Matemáticas 3º Eso.
Ecuaciones: Ejercicios de la 3º Evaluación -- Dtpo de Sistemas Ejercicios de a reas y volu menes I 1Calcula el volumen, en centímetros cúbicos, de una habitación que tiene 5 m de largo, 40 dm de ancho
EJERCICIOS DE RECUPERACIÓN DE MATEMÁTICAS 2º ESO. 2ª PARTE
EJERCICIOS DE RECUPERACIÓN DE MATEMÁTICAS 2º ESO. 2ª PARTE CURSO 2015/2016 NOMBRE: IES ALCARRIA BAJA. MONDÉJAR UNIDAD 5. LENGUAJE ALGEBRAICO 1º) Traduce a lenguaje algebraico los siguientes enunciados:
EJERCICIOS de ÁREAS y VOLÚMENES 3º ESO
EJERCICIOS de ÁREAS y VOLÚMENES 3º ESO FICHA 1: Teorema de Pitágoras 1. Aplicar el teorema de Pitágoras para responder a las siguientes cuestiones (y hacer un dibujo aproximado, cuando proceda): a) Hallar
ÁREAS Y VOLÚMENES DE CUERPOS GEOMÉTRICOS
ÁREAS Y VOLÚMENES DE CUERPOS GEOMÉTRICOS E J E R C I C I O S P R O P U E S T O S 1 Calcula el área de los ortoedros cuyas longitudes vienen dadas en centímetros. 2 1 2 Calcula el área total de los siguientes
EJERCICIOS MÓDULO 4. Geometría plana. 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9?
Seminario Universitario Matemática EJERCICIOS MÓDULO 4 Geometría plana 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9? ) Cuántos lados tiene un polígono en el cual la suma de
NOMBRE Y APELLIDOS: debe medir el tercero para que ese triángulo sea un triángulo rectángulo?
FICHA REFUERZO TEMA 8: TEOREMA DE PITAGORAS. SEMEJANZA. CURSO: 2 FECHA: NOMBRE Y APELLIDOS: Ejercicio nº 1.-Los dos lados menores de un triángulo miden 8 cm y 15 cm. Cuánto debe medir el tercero para que
DEPARTAMENTO DE MATEMATICAS
1.- Halla la suma de los ángulos interiores de los siguientes polígonos convexos. a) Cuadrilátero b) Heptágono c) Octógono 2.- Halla la medida de los ángulos interiores de: a) Un octógono regular. b) Un
TEMA 9: ÁREAS Y VOLÚMENES DE CUERPOS GEOMÉTRICOS UNIDADES DE ÁREA Y VOLUMEN Unidades de área o superficie Kilómetro cuadrado.
TEMA 9: ÁREAS Y VOLÚMENES DE CUERPOS GEOMÉTRICOS UNIDADES DE ÁREA Y VOLUMEN Unidades de área o superficie Kilómetro cuadrado Km 2 1.000.000 m 2 Hectómetro cuadrado hm 2 10.000 m 2 Decámetro cuadrado dam
ESQUEMA GENERAL DE LA CLASIFICACIÓN DE LOS CUERPOS GEOMÉTRICOS REGULARES ESFERA
ESQUEMA GENERAL DE LA CLASIFICACIÓN DE LOS CUERPOS GEOMÉTRICOS POLIEDROS REGULARES Tetraedro ( 4 triángulos equiláteros) Hexaedro o cubo( 6 cuadrados) Octaedro( 8 triángulos equiláteros) Dodecaedro ( 12
Cuerpos Geométricos. 100 Ejercicios para practicar con soluciones. 1 Indica cuáles de las siguientes figuras son prismas y cuáles son pirámides.
Cuerpos Geométricos. 100 Ejercicios para practicar con soluciones 1 Indica cuáles de las siguientes figuras son prismas y cuáles son pirámides. a) b) c) Prisma es un poliedro que tiene por caras dos bases
a 2 = b 2 + c 2 a = hipotenusa ; b, c = catetos
TEMA 6.- GEOMETRÍA Y SEMEJANZA 1.- ÁNGULOS Y TRIÁNGULOS. Ángulo recto Ángulo llano Ángulo agudo Ángulo obtuso (mide 90º) (mide 180º) (mide menos de 90º) (mide más de 90º) Tipos de ángulos Ángulos complementarios
1 Indica, en la ilustración, dos edificios que sean poliedros y tengan formas diferentes. PÁGINA 186
PÁGINA 186 En la Casa de la Cultura se ha montado una exposición fotográfica. En ella se recogen modernos edificios en los que los poliedros y los cuerpos de revolución han sido elevados a la categoría
a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta.
POLIEDROS Ejercicio nº 1.- a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta. b Cuál es la relación llamada fórmula de Euler que hay entre el número de caras,
Matemáticas 3º E.S.O. 2013/14
Matemáticas º E.S.O. 01/14 TEM 6: Cuerpos geométricos Repaso eamen 1.- Estoy construyendo una piscina de 5 metros de largo, 15 metros de ancho y metros de alto. Quiero cubrir las paredes y el fondo con
ÁREAS Y VOLÚMENES DE CUERPOS GEOMÉTRICOS BÁSICOS. POLIEDROS REGULARES Y NO REGULARES
ÁREAS Y VOLÚMENES DE CUERPOS GEOMÉTRICOS BÁSICOS. POLIEDROS REGULARES Y NO REGULARES 1º. Comprueba si se cumple o no la fórmula de Euler en este poliedro. 2º. Rellena la siguiente tabla: Poliedro Caras
1 Cuáles de estas figuras son semejantes? Cuál es la razón de semejanza? 2 a) Son semejantes los triángulos interior y exterior?
Pág. 1 Figuras semejantes 1 uáles de estas figuras son semejantes? uál es la razón de semejanza? F 1 F 2 F 3 2 a) Son semejantes los triángulos interior y eterior? b) uántas unidades medirán los catetos
La razón entre los lados homólogos es la razón de semejanza. Si dos figuras son semejantes la razón entre sus áreas es:
TEMA 7: SEMEJANZA FIGURAS SEMEJANTES Dos figuras son semejantes si sus segmentos correspondientes, u homólogos, son proporcionales y sus ángulos iguales. Es decir; o son iguales, o tienen "la misma forma"
10 SEMEJANZA. TEOREMA DE PITÁGORAS EJERCICIOS
0 SEMEJNZ. TEOREM DE PITÁGORS EJERCICIOS Indica qué rectángulos son semejantes: a) ase cm, altura cm y base 0 cm, altura cm. b) ase 0 m, altura m y base 0 m, altura 8 m. c) ase 0,7 dm, altura 0, dm y base,0
SOLUCIONES MINIMOS 2º ESO TEMA 8 CUERPOS GEOMÉTRICOS
SOLUCIONES MINIMOS º ESO TEMA 8 CUERPOS GEOMÉTRICOS Ejercicio nº 1.- Escribe el nombre de cada uno de los elementos de este poliedro: Ejercicio nº.- Cuáles de las siguientes figuras son poliedros? Por
FÓRMULAS - FIGURAS PLANAS
SUPERFICIES (Círculo F. circulares) 1 FÓRMULAS - FIGURAS PLANAS L. circunferencia = 2 r = d 2 r x n o L. del arco = 360 o r d n o distancia = L x n o vueltas r = L : 2 d = L : n o vueltas = distancia :
MATEMÁTICAS (TIC) REPASO BIMESTRAL (3P) TALLER DE REPASO PARA EL BIMESTRAL 3P
COLEGIO COLOMBO BRITANICO Formación en la Libertad y para la Libertad MATEMÁTICAS (TIC) REPASO BIMESTRAL (3P) GRADO:7 O DOCENTES: Natalia A. Gil V. Nubia E. Niño C. FECHA: 18 / 08 /15 Taller Adicional
Tipo de triángulo según sus ángulos Característica Dibujo
TEMA 7 - LUGARES GEOMÉTRICOS Y FIGURAS PLANAS 1º. Completa la tabla siguiente donde se indica la clasificación de los triángulos según sus ángulos y donde, además, aparezca un dibujo de cada tipo. Tipo
POLIEDROS. ÁREAS Y VOLÚMENES.
7. POLIEDROS. ÁREAS Y VOLÚMENES. EN ESTA UNIDAD VAS A APRENDER CUERPOS GEOMÉTRICOS POLIEDROS POLIEDROS REGULARES PRISMAS PIRÁMIDES CARACTERÍSTICAS DEFINICIÓN ELEMENTOS DEFINICIÓN ELEMENTOS - Tetaedro.
C 1 2 +C 2. 2 = h 2. El teorema de Pitágoras solo se aplica a triángulos rectángulos y relaciona los catetos con la hipotenusa.
TEMA 8: TEOREMA DE PITÁGORAS. SEMEJANZA TEOREMA DE PITÁGORAS Un triángulo rectángulo es aquel que tiene un ángulo recto. A los lados que forman el ángulo recto se les llama catetos y al lado mayor, hipotenusa.
TEMA 12: LONGITUDES Y ÁREAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco.
009 TEMA 1: LONGITUDES Y ÁREAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. Manuel González de León. mgdl 01/01/009 TEMA 1: Longitudes y Áreas. TEMA 1: LONGITUDES Y ÁREAS. 1.
EJERCICIOS TIPO PARA EL EXAMEN DE MATEMATICAS 2º ESO SEPTIEMBRE
EJERCICIOS TIPO PARA EL EXAMEN DE MATEMATICAS º ESO SEPTIEMBRE Ejercicio nº 1.- Calcula: a) mím.c.m. (30, 60, 90) b) máx.c.d. (8, 16, 4) Ejercicio nº.- Resuelve escribiendo el proceso paso a paso: a) (
TALLER # 5 de GEOMETRÍA EUCLIDIANA ÁREAS Y VOLÚMENES. Universidad de Antioquia. Departamento de Matemáticas. Septiembre 2008
TALLER # 5 de GEOMETRÍA EUCLIDIANA ÁREAS Y VOLÚMENES Universidad de Antioquia Departamento de Matemáticas Septiembre 2008 1. Sea ABCD un rectángulo, E punto medio de, a) Calcular el área del rectángulo
15 Figuras y cuerpos
15 Figuras y cuerpos 1 Longitudes 1 Determinar la altura de un triángulo equilatero de lado 4. Calcula su radio y su apotema 4 m 2 Un puente levadizo de entrada a un castillo tiene 6 metros de longitud.
Geometría en el espacio
Geometría en el espacio 3º E.S.O. PARTE TEÓRICA 1.- Define los siguientes conceptos: Poliedro: Vértice de un poliedro: Cara de un poliedro: Arista de un poliedro: Poliedro regular: 2.- Di cuáles son los
Tema 10: Cuerpos geométricos y transformaciones geométricas
Tema 10: Cuerpos geométricos y transformaciones geométricas Regla. Escuadra. Cartabón. Compás. Transportador de ángulos. Calculadora Portaminas. Goma 10.1 Polígonos MATERIAL DE CLASE OBLIGATORIO PROBLEMAS
EJERCICIOS DE MATEMÁTICAS PARA ALUMNOS CON LAS MATEMÁTICAS DE 2º E.S.O. PENDIENTES 2º PARCIAL
de º de E.S.O. (º Parcial) EJERCICIOS DE MATEMÁTICAS PARA ALUMNOS CON LAS MATEMÁTICAS DE º E.S.O. PENDIENTES º PARCIAL Fecha tope para entregarlos: 17 de abril de 015 Examen el 3 de abril de 015 I.E.S.
Á REAS Y PERÍMETROS DE FIGURAS SENCILLAS
Pág. 1 Á REAS Y PERÍMETROS DE FIGURAS SENCILLAS Halla el área y el perímetro de las figuras coloreadas de los siguientes ejercicios: 1 a) b) 5 dm 4 cm 2 cm 5 cm 8 cm 2 a) b) 5 m 8 m 17 m 15 m 3 a) b) 5
6Soluciones a los ejercicios y problemas PÁGINA 139
ÁGIN 9 ág. RTI Figuras semejantes uáles de estas figuras son semejantes? uál es la razón de semejanza? F F F F es semejante a F. La razón de semejanza es. a) Son semejantes los triángulos interior y eterior?
MYP (MIDDLE YEARS PROGRAMME)
MYP (MIDDLE YEARS PROGRAMME) 2014-2015 Fecha 19/05/2015 APUNTES DE GEOMETRÍA 2º ESO 1. EL TEOREMA DE PITÁGORAS El teorema de Pitágoras establece que en todo triángulo rectángulo, el cuadrado de la hipotenusa
PROGRAMA DE REFUERZO 3º Evaluación
COLEGIO INTERNACIONAL SEK EL CASTILLO DEPARTAMENTO DE MATEMÁTICAS PROGRAMA DE REFUERZO 3º Evaluación MATEMÁTICAS 3º de E.S.O. ALUMNO: Ref E3.doc3 Página 1 Matemáticas 3º ESO MATEMÁTICAS 3º E.S.O. (010/011)
Cálculo de perímetros y áreas
Cálculo de perímetros y áreas 1. Calcula el perímetro de las siguientes figuras planas: 2. Calcula el perímetro de las siguientes figuras geométricas: 3. La rueda de un triciclo tiene 30 cm de radio. Cuántos
CUERPOS GEOMÉTRICOS. 2º E.S.O. PUNTOS, RECTAS Y PLANOS EN EL ESPACIO DETERMINACIÓN DE PUNTOS, RECTAS Y PLANOS DETERMINACIÓN DE PUNTOS, RECTAS Y PLANOS
CUERPOS GEOMÉTRICOS. PUNTOS, RECTAS Y PLANOS EN EL ESPACIO 2º E.S.O. DETERMINACIÓN DE PUNTOS, RECTAS Y PLANOS Determinación de puntos: DETERMINACIÓN DE PUNTOS, RECTAS Y PLANOS Determinación de una recta:
Tema 12: Las Áreas de figuras planas. El Teorema de Pitágoras. 1-T 12--1ºESO
Tema 1: Las Áreas de figuras planas. El Teorema de Pitágoras. 1-T 1--1ºESO I.- Perímetro y Área de las figuras planas: Antes de ver todas y cada una de las fórmulas que nos permiten averiguar el área de
10Soluciones a los ejercicios y problemas PÁGINA 215
0Soluciones a los ejercicios y problemas PÁGINA 5 Pág. U nidades de volumen Transforma en metros cúbicos las siguientes cantidades de volumen: a) 0,05 hm b)59 hm c) 5 dm d)0,05 km e) dam f) 58 000 l a)
10 FIGURAS Y CUERPOS GEOMÉTRICOS
10 FIGURAS Y CUERPOS GEOMÉTRICOS EJERCICIOS PROPUESTOS 10.1 Indica cuál de estos poliedros es cóncavo y cuál es convexo. a) Cóncavo b) Convexo 10. Completa la siguiente tabla. Caras (C ) Vértices (V )
5to Parcial de Geometría Euclidiana. 2) Sea p un polígono tal que se puede descomponer en n polígonos simples
5to Parcial de Geometría Euclidiana AREAS y VOLUMENES Definición 55 (Área) Se define el área como una función A definida del conjunto de todos los polígonos P en R + (A : P R + ), con las siguientes propiedades:
A 2 TEMA 10. POLÍGONOS ÁREAS Y PERÍMETROS TRIÁNGULOS CUADRILÁTEROS POLÍGONOS REGULARES CIRCUNFERENCIA CÍRCULO TEOREMA DE PITÁGORAS:
TEMA 10. POLÍGONOS ÁREAS Y PERÍMETROS ELEMENTOS CLASIFICACIÓN TRIÁNGULOS CUADRILÁTEROS POLÍGONOS REGULARES CIRCUNFERENCIA CÍRCULO A b h A b a A perímetro apotema A r TEOREMA DE PITÁGORAS: a b c 1 POLÍGONOS
EJERCICIOS DE MATEMÁTICAS 2º E.S.O. TEOREMA DE PITÁGORAS Y DISTANCIAS
Colegio Ntra. Sra. de las Escuelas Pías Dpto. de Matemáticas EJERCICIOS DE MATEMÁTICAS 2º E.S.O. TEOREMA DE PITÁGORAS Y DISTANCIAS 1. Un ángulo agudo de un triángulo rectángulo mide la mitad que el otro.
13Soluciones a los ejercicios y problemas PÁGINA 250
PÁGINA 50 Pág. 1 Á REAS Y PERÍMETROS DE FIGURAS SENCILLAS Halla el área y el perímetro de las figuras coloreadas de los siguientes ejercicios: 1 a) b) 5 dm 4 cm cm 5 cm 8 cm a) 5 5 dm b) 8 8 cm P 5 4 0
Examen de Matemáticas (1º E.S.O) UNIDAD 13: ÁREAS Y PERÍMETROS. Grupo: 1ºB Fecha: 11/06/2009
I.E.S SAN JOSÉ (CORTEGANA) DEPARTAMENTO DE MATEMÁTICAS Examen de Matemáticas (1º E.S.O) UNIDAD 13: ÁREAS Y PERÍMETROS Nombre y Apellidos: Grupo: 1ºB Fecha: 11/06/009 CALIFICACIÓN: Ejercicio nº 1.- Calcula
RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA
RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA 1.- Figuras Congruentes y Semejantes. Teorema de Thales. Escalas. - Se dice que dos figuras geométricas son congruentes si tienen la misma forma y el mismo
EJERCICIOS. ÁREAS Y VOLÚMENES.
EJERCICIOS. ÁREAS Y VOLÚMENES. Teorema de Tales 1. Sean los triángulos ABC, AB'C'.Calcula el valor desconocido x. 2. Dos triángulos semejantes tienen una superficie de 20cm 2 y 30cm 2 respectivamente.
MATEMÁTICAS 3º ESO PENDIENTES HOJA 1 GEOMETRÍA PLANA. 1.- Calcular el área y el perímetro de los siguientes polígonos:
MATEMÁTICAS º ESO PENDIENTES HOJA GEOMETRÍA PLANA.- Calcular el área y el perímetro de los siguientes polígonos: a) Un cuadrado de lado 5 cm de lado b) Un cuadrado de diagonal 0 cm. c) Un rectángulo de
SeCrece, Inc. Matemáticas. Unidad: Geometría. Grupo: Tornasol
SeCrece, Inc. Matemáticas Unidad: Geometría Grupo: Tornasol I. Propiedades Geométricas a. Tipos de Polígonos Nombres de Polígonos Nombre Lados Ángulos Triángulo 3 3 Cuadrilátero 4 4 Pentágono 5 5 Hexágono
1) Si una pizza de 32cm de diámetro se corta en 8 porciones exactamente iguales, 2) Determine el área de cada una de las partes sombreadas:
Plantear y resolver los siguientes problemas: 1) Si una pizza de 32cm de diámetro se corta en 8 porciones exactamente iguales, determinar el área de cada porción. 2) Determine el área de cada una de las
GEOMETRÍA DE 6º DE E.P. MARISTAS LA INMACULADA.
GEOMETRÍA DE 6º DE E.P. MARISTAS LA INMACULADA. Profesor: Alumno:. Curso: Sección: 1. LAS FIGURAS PLANAS 2. ÁREA DE LAS FIGURAS PLANAS 3. CUERPOS GEOMÉTRICOS . FIGURAS PLANAS 1. Los polígonos y suss elementos
Diagonal: es un segmento que une dos vértices no consecutivos del poliedro. Puede trazarse en una misma cara o entre distintas caras.
CLASIFICASION DE CUERPOS GEOMETRICOS 1 2 Cuerpos Geométrico s Ángulo diedro: es el ángulo formado por dos caras del poliedro. El ángulo formado por tres o más caras que concurren en un vértice, se denomina
Programa Entrenamiento MT-22
Programa Entrenamiento MT- SOLUCIONARIO Guía de ejercitación avanzada SGUICEN0MT-A6V TABLA DE CORRECCIÓN Guía de ejercitación ÍTEM ALTERNATIVA HABILIDAD D E B 4 C 5 C Comprensión 6 B 7 E Comprensión 8
TRABAJO DE REPASO PARA 2º ESO
TRABAJO DE REPASO PARA º ESO NOTA: EL TRABAJO SE ENTREGARÁ EL DÍA DEL EXAMEN DE SEPTIEMBRE. PUEDE SUBIR HASTA UN PUNTO LA NOTA, SIEMPRE Y CUANDO EN EL EXAMEN TENGAS UNA NOTA ENTRE 4 Y. RECUERDA QUE TAMBIÉN
Ángulo inscrito es aquel cuyo vértice está en la circunferencia. Todos los ángulos inscritos que compartan el mismo arco son iguales.
TEMA 8: PROBLEMAS MÉTRICOS EN EL PLANO ÁNGULOS EN LA CIRCUNFERENCIA Ángulo central es aquel cuyo vértice está en el centro de la circunferencia. Ángulo inscrito es aquel cuyo vértice está en la circunferencia.
GEOMETRÍA ESPACIAL Programación
GEOMETRÍA ESPACIAL Programación En clase, con la ayuda del libro, se explicará la teoría y se realizarán ejercicios similares a los de las fichas, de modo que los ejercicios que realizan por la tarde les
PENDIENTES 2º ESO. Tercer examen DEPARTAMENTO DE MATEMÁTICAS. Preparación del tercer examen de recuperación de MATEMÁTICAS DE 2º ESO Curso 2013-2014
014 015 Preparación del tercer examen de recuperación de MATEMÁTICAS DE º ESO PENDIENTES º ESO Tercer examen DEPARTAMENTO DE MATEMÁTICAS 1.- En un triángulo rectángulo, los catetos miden 5 y 1cm, respectivamente.
1. Aplicar el teorema de Pitágoras para responder a las siguientes cuestiones (y hacer un dibujo aproximado,
FICHA 1: Teorema de Pitágoras 1. Aplicar el teorema de Pitágoras para responder a las siguientes cuestiones (y hacer un dibujo aproximado, cuando proceda): a) Hallar la hipotenusa de un triángulo rectángulo
Ámbito Científico-Tecnológico Módulo IV Bloque 4 Unidad 4 Estamos rodeados de cuerpos. geométricos
Ámbito Científico-Tecnológico Módulo IV Bloque 4 Unidad 4 Estamos rodeados de cuerpos. geométricos Cierto, mires por donde mires no podrás dejar de ver cuerpos geométricos de todo tipo. Por eso es importante
8 GEOMETRÍA DEL PLANO
8 GEOMETRÍ DEL PLNO EJERIIOS PR ENTRENRSE Ángulos y triángulos 8.6 Halla la medida del ángulo p en el siguiente triángulo. 6 4 180 6 p 4 p 180 6 4 11 8.7 alcula la suma de los ángulos interiores de un
Problemas geométricos
Problemas geométricos Contenidos 1. Figuras planas Triángulos Paralelogramos Trapecios Trapezoides Polígonos regulares Círculos, sectores y segmentos 2. Cuerpos geométricos Prismas Pirámides Troncos de
Ejercicio nº 1.-Clasifica los siguientes triángulos atendiendo a sus lados y sus ángulos: Ejercicio nº 2.-Dibuja un triángulo obtusángulo e isósceles.
FICHA REFUERZO TEMA 12: FIGURAS PLANAS Y ESPACIALES CURSO: 1 FECHA: NOMBRE Y APELLIDOS: Ejercicio nº 1.-Clasifica los siguientes triángulos atendiendo a sus lados y sus ángulos: Ejercicio nº 2.-Dibuja
ELEMENTOS Y CLASES DE ÁNGULOS
Apellidos: Curso: Grupo: Nombre: Fecha: ELEMENTOS Y CLASES DE ÁNGULOS Dos rectas que se cortan forman 4 regiones llamadas ángulos. Las partes de un ángulo son: los lados: son las semirrectas que lo forman.
Tema 15. Perímetros y áreas
Matemáticas Ejercicios 1º ESO BLOQUE V: GEOMETRÍA Tema 15. Perímetros y áreas 1. Expresa en metros: a) 2000 mm b) 2 hm c) 1 dm e) 0,1 km c) 50 dam 2 d) 0,02 km 2 2. Transforma las siguientes unidades:
CENTRO EDUCATIVO PAULO FREIRE TALLER
CENTRO EDUCATIVO PAULO FREIRE TALLER 1: Una plaza circular está limitada por una circunferencia de longitud 188,4m. Determinar el diámetro y el área de la plaza. 2: Si el área de un círculo es 144 cm 2,
11Soluciones a los ejercicios y problemas
Soluciones a los ejercicios y problemas PÁGINA 9 Pág. P R A C T I C A D e s a r r o l l o s y á r e a s Dibuja el desarrollo plano y calcula el área total de los siguientes cuerpos geométricos: a) b) cm
MEDIDAS DE LONGITUDES Y SUPERFICIES_ADAPT (6ºEP)
Adaptación Unidad 11 _La longitud y la superficie. Página 1 LA LONGITUD. Copia en tu cuaderno y aprende. Adaptación Unidad 11 _La longitud y la superficie. Página 2 1. Copia y completa: metros (m) centímetros
ÁREAS Y VOLÚMENES DE CUERPOS EN EL ESPACIO
ÁREAS Y VOLÚMENES DE CUERPOS EN EL ESPACIO 1. Área y volumen del ortoedro y del cubo. 1.1. Área y volumen del ortoedro. 1.2. Cálculo de la diagonal del ortoedro. 1.3. Área y volumen del cubo. 2. Área y
Geometría. 1 a.- Qué diferencia hay entre una recta y una semirrecta?, y entre una semirrecta y un segmento?
Geometría 1 a.- Qué diferencia hay entre una recta y una semirrecta?, y entre una semirrecta y un segmento? 2 a.- Qué originan dos puntos en una recta?. Cuántas rectas pasan por dos puntos?, y por un punto?
ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS
ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS Ejercicio 1 De la función se sabe que tiene un máximo en, y que su gráfica corta al eje OX en el punto de abscisa y tiene un punto de inflexión en el punto
Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Cuerpos geométricos GUICEN032MT22-A16V1
GUÍ DE EJERCITCIÓN VNZD Cuerpos geométricos Programa Entrenamiento Desafío GUICEN02MT22-16V1 Matemática Una semiesfera tiene un área total de 4π cm 2. Si se corta por la mitad, de manera de formar dos
4. Resolver un triángulo rectángulo e isósceles en el que la hipotenusa tiene 9 pies de longitud.
7 CAPÍTULO SIETE Ejercicios propuestos 7.5 Triángulos 1. Construya de ser posible los siguientes triángulos ABC. En caso de que existan, determine sus cuatro puntos característicos empleando regla y compás.
1 Ángulos en las figuras planas
Unidad 11. Elementos de geometría plana 1 Ángulos en las figuras planas Página 139 1. Cinco de los ángulos de un heágono irregular miden 147, 101, 93, 1 y 134. Halla la medida del seto ángulo. Los seis
8Soluciones a los ejercicios y problemas PÁGINA 179
PÁGIN 179 Pág. 1 T eorema de Pitágoras 1 Calcula el área del cuadrado verde en cada uno de los siguientes casos: 14 cm 2 45 m2 60 m 2 30 cm 2 = 44 cm 2 = 15 m 2 2 Cuál es el área de los siguientes cuadrados?:
República Bolivariana de Venezuela. Ministerio del Poder Popular para la Educación. Unidad Educativa Colegio Roraima. Cátedra Matemática
República Bolivariana de Venezuela Ministerio del Poder Popular para la Educación Unidad Educativa Colegio Roraima Cátedra Matemática Profesora María Eugenia Benítez 1er año Guía 2 1. Escribir los siguientes
Profesor: Fernando Ureña Portero
Optimización de funciones P a s o s p a r a l a r e s o l u c i ó n d e p ro b l e m a : 1. S e p l a n t e a l a f u n c i ón que hay que maximizar o minimizar. 2. S e p l a n t e a u n a e c u a c i
TEMA 7 Las formas y las medidas que nos rodean. 2. Repaso a las figuras planas elementales
TEMA 7 Las formas y las medidas que nos rodean 1. Introducción 1.1. Qué es la geometría? Es una rama de la matemática que se ocupa del estudio de las propiedades de las figuras geométricas en el plano
Se llama lugar geométrico a todos los puntos del plano que cumplen una propiedad geométrica. Ejemplo:
3º ESO E UNIDAD 11.- GEOMETRÍA DEL PLANO PROFESOR: RAFAEL NÚÑEZ ------------------------------------------------------------------------------------------------------------------------------------- 1.-
Guía del estudiante. 9 Hm. 8 Hm
MATEMÁTICAS Grado Séptimo Bimestre II Semana 5 Número de clases 21-25 Clase 21 Tema: Perímetro Actividad 1 Halle el perímetro del terreno del lote que se representa en la siguiente figura. Utilice el espacio
Geometría del espacio
Áreas y volumenes de cuerpos geométricos Un poliedro es un cuerpo geométrico que está limitado por cuatro o más polígonos. Los elementos de un poliedro son: Caras del poliedro: son los polígonos que lo
ARITMÉTICA. 1. Resolver las siguientes ecuaciones en Q. 2 x + 5. d) ( x ) ( x ) x = x + = x. l) ( ) ( )( ) + = + + o) ( x ) 2.
1. Resolver las siguientes ecuaciones en Q. ARITMÉTICA a) b) 3. x + 1 = 3 83 3,90x x = 3 31 c) 0,x + x 4,16 = 6 d) ( x ) ( x ) + 3 1 = + 1 4 e) f) g) x x + = 0,3 0, 6x 3 0, 6 1x + 6x = 0,3 8 0,86x 0,73
Área del rectángulo y del cuadrado
59 Área del rectángulo y del cuadrado El área del rectángulo es el producto de su base por su altura. El área del cuadrado es su lado elevado al cuadrado. 1. Mide con una regla y completa. Área del rectángulo:
ÁREAS DE FIGURAS PLANAS
6. ÁREAS DE FIGURAS PLANAS EN ESTA UNIDAD VAS A APRENDER ÁREAS POLÍGONOS RECTÁNGULO CUADRADO PARALELOGRAMO TRIÁNGULO TRAPECIO ROMBO POLÍGONO IRREGULAR FÓRMULA RESOLUCIÓN DE PROBLEMAS CÍRCULO FÓRMULA FIGURAS
Un poliedro es un cuerpo geométrico que tiene todas sus caras planas y formadas por polígonos.
CUERPOS GEOMÉTRICOS Los cuerpos geométricos son figuras geométricas tridimensionales (tienen alto, ancho y largo) que ocupan un lugar en el espacio. 1. POLIEDROS. 1.1. DEFINICIÓN. Un poliedro es un cuerpo
Figura plana Área Ejemplo Cuadrado. Área =
ersión: Septiembre 01 Áreas y volúmenes Por Sandra Elvia Pérez Márquez Áreas de figuras planas Las aplicaciones de las figuras planas requieren, por lo general, conocer (o calcular) dos características
APLICACIÓN DE DERIVADAS: PROBLEMAS DE OPTIMIZACIÓN CON 2 VARIABLES.
APLICACIÓN DE DERIVADAS: PROBLEMAS DE OPTIMIZACIÓN CON 2 VARIABLES. 001 Hallar 2 números cuya suma es 20, sabiendo que su producto es 002 003 004 005 Halla dos números cuya suma sea 25, tales que el doble
TALLER DE POLÍGONOS Y CÍRCULOS (Areas y Perímetros)
3 TALLER DE POLÍGONOS Y CÍRCULOS (Areas y Perímetros) Ejemplo 1: Un rectángulo tiene 60 m de área y 3m de perimetro. Hallar sus dimensiones.. Ejemplo : La base de un rectángulo es el triple de su altura
14 CUERPOS GEOMÉTRICOS. VOLÚMENES
14 UERPOS GEOMÉTRIOS. VOLÚMENES EJERIIOS PROPUESTOS 14.1 Qué condiciones debe cumplir un prisma triangular para ser regular? ibújalo Para que un prisma triangular se regular su base tiene que ser un triángulo
IES CUADERNO Nº 8 NOMBRE: FECHA: / / Cuerpos geométricos
Cuerpos geométricos Contenidos 1. Poliedros Definición Elementos de un poliedro 2. Tipos de poliedros Prismas Prismas regulares Desarrollo de un prisma recto Paralelepípedos Pirámides Pirámides regulares
EXAMEN A: Ejercicio nº 1.- Página 1 de 25 Indica el valor de los ángulos señalados en cada figura: Ejercicio nº 2.- La siguiente figura es una esfera de centro C y radio 3 unidades. Cómo definirías dicha
Ángulos 1º = 60' = 3600'' 1' = 60''
Ángulos Definición de ángulo Un ángulo es la región del plano comprendida entre dos semirrectas con origen común. A las semirrectas se las llama lados y al origen común vértice. Medida de ángulos Para
8 GEOMETRÍA DEL PLANO
EJEROS PROPUESTOS 8.1 alcula la medida del ángulo que falta en cada figura. 6 A 145 15 105 160 130 En un triángulo, la suma de las medidas de sus ángulos es 180. Ap 180 90 6 8 El ángulo mide 8. En un hexágono,
Ámbito científico tecnológico
Dirección Xeral de Educación, Formación Profesional e Innovación Educativa Educación secundaria para personas adultas Ámbito científico tecnológico Educación a distancia semipresencial Módulo Unidad didáctica
11 POLIEDROS EJERCICIOS. 6 Cuántas caras, vértices y aristas hay en los siguientes poliedros? a) b) c)
11 POLIEROS EJERIIOS 1 ibuja una línea recta en tu cuaderno. escribe algún segmento real en el techo de la clase que se cruce con la línea que has dibujado. 6 uántas caras, vértices y aristas hay en los
TRIGONOMETRÍA. c) 315º = d) 320º = 4.- Expresa los siguientes ángulos como suma de un número entero de vueltas y un ángulo menor
TRIGONOMETRÍA 1.- Expresa en grados los siguientes ángulos medidos en radianes: a) b) c) 5π rad = 4 7π rad = 6 4π rad = 3 10π d) rad = 9 e) 0,25 π rad = f) 1,25 π rad = 2.-Expresa en radianes los siguientes
UNIDAD 12. SEMEJANZA
UNIDAD 12. SEMEJANZA ESQUEMA DE LA UNIDAD FICHA DE TRABAJO A FICHA DE TRABAJO B SOLUCIONES 12 SEMEJANZA ESQUEMA DE LA UNIDAD Nombre y apellidos:... Curso:... Fecha:... FIGURAS SEMEJANTES Dos figuras son
