MATRICES Octubre 2015
|
|
|
- Eduardo Sevilla Cordero
- hace 7 años
- Vistas:
Transcripción
1 MATRICES Octubre Sea la matriz a) Prueba que 0 donde I es la matriz identidad y 0 es una matriz con todos sus elementos igual a 0. b) Calcula A 3. (J 007) Sean las matrices 0, 1,, 6 1 a) Consideramos x e y dos variables y a un parámetro. Obtén el sistema de dos ecuaciones y dos incógnitas que resulta de plantear AB C = D b) Estudia el sistema para los distintos valores de a. c) Encuentra la solución para a =. 3. Calcula dos matrices cuadradas A y B sabiendo que y que (J 005)Sea a) Calcula A y expresa el resultado en función de la matriz identidad. b) Utiliza la relación hallada con la matriz identidad para calcular A Sean las matrices 1 0, y 1 donde x e y son desconocidos a) Calcula las matrices ABC y A t C b) Halla x e y para que se verifique ABC = A t C 1 6. (J004) Sea 1 a) Calcula A b) Calcula todos los valores de x e y para los que se verifica que Encuentra, si existen, matrices cuadradas A, de orden, distintas de la matriz identidad, tales que conmuten con la matriz 1 0 Cuántas matrices A existen con esa 1 1 condición? Razona la respuesta. 8. Sea a) Demuestra que donde I es la matriz identidad. b) Halla las matrices A 3 y A 4 expresándolas en función de A y de I.
2 9. Calcula los valores de x para que la matriz 0 verifique la ecuación 0 6 9, donde I y O son, respectivamente, las matrices identidad y nula de orden. 10. En una acería se fabrican tres tipos de productos: aceros en láminas, en rollos o aceros especiales. Estos productos requieren chatarra, carbón y aleaciones en las cantidades que se indican en la tabla siguiente, por cada unidad de producto fabricado: Acero en láminas Acero en rollos Aceros especiales Chatarra Carbón Aleaciones 1 3 a) Si durante el próximo mes se desean fabricar 6 unidades de acero en láminas, 4 unidades de acero en rollos y 3 unidades de aceros especiales, obtener una matriz que indique las cantidades de chatarra, carbón y aleaciones que serán necesarias. b) Si se dispone de 34 unidades de chatarra, 8 de carbón y 9 de aleaciones, cuántas unidades de cada tipo de acero se podrán fabricar con estos materiales? 11. Un almacén surte de frutas a las tiendas A,B y C. A la tienda A le venden 50 kg de manzanas, 60 kg de peras y 40 kg de plátanos. A la tienda B 38 kg de manzanas, 80 kg de peras y 35 kg de plátanos. A la tienda C 50 kg de peras, 35 kg de manzanas y 50 kg de plátanos. Sabiendo que el precio por kg es : 0,70 las manzanas, 1,0 las peras y 0, 85 los plátanos, expresar en forma matricial las ventas de este almacén por tiendas y calcular lo que tiene que cobrar a cada tienda. 1. Sean A una matriz de dimensión 5 4, B una matriz de dimensión m n y C de dimensión 3 7. Si se sabe que se puede obtener la matriz producto ABC, cuál es la dimensión de la matriz B? Y la de la matriz ABC? b) Si A es una matriz, existe siempre el producto A t A? Razone la respuesta 13. Sean las matrices A = B = C = a) Hallar la matriz inversa de A. b) Calcular la matriz X que satisfaga la ecuación: AX + B = C 14. Calcular la matriz X tal que AX = B siendo A y B las matrices A = 3 1 y B = Se cumple que XA = B? 15. Sea la matriz A = Hállese una matriz B tal que A-1 B = A Sean las matrices: A = B =. 3 3
3 a) Compruébese que B es la inversa de A. b) Calcúlese la matriz ( A I ). c) Calcúlese la matriz X tal que AX = B Sean las matrices A = B = a) Determínese si A y B son invertibles y en su caso, calcúlese la matriz inversa. b) Resuélvase la ecuación matricial XA B = I, siendo I la matriz identidad de orden 3. c) Calcúlese A a Calcular los valores de a para los cuales la inversa de la matriz A = coincide 5 4 a con su traspuesta Hallar los valores de a para los que no existe la inversa de la matriz (J 010) Dadas las matrices Halla una matriz X que verifique 1. (J 011) Resuelve: (S 014) Dada la matriz: a) Determina los valores de t para los que existe la matriz inversa de A. b) Calcula la matriz inversa para t =. 3. (S 015) 1A- Calcula todos los valores, si existen, de los parámetros reales a y b que hacen que 0 siendo 1, SOLUCIONES: ) ) ) 1 ) 1 ) 1..., 6 ) )...,1)
4 3) ) ) ) 5) ) 0 ) 6) ) 1 1 ), 0 7) 0 8) ) ) x = ) ) cantidades de chatarra, carbón y aleación b) unidades de chatarra, 4 unidades de carbón y 1 unidad de aleación 11) ) ) , ) 4 3, ) 13) ) ) / 7/ 14) ) 4 5 ) ) ) a) Comprobar que AB = I b) ) ) ) ) ) ) 18) 3 19) b) a = 6 3/ 3 0) 17/ 13/ 1/ 3/ 15/ 6
5 1) ) a) para t = y t = 1 b) ) Se cumple para todos los valores de a y b que cumplan la relación 8, es decir la matriz X será de la forma 3 8
ACTIVIDADES SELECTIVIDAD MATRICES
ACTIVIDADES SELECTIVIDAD MATRICES Ejercicio 1 Para qué valores de m tiene solución la ecuación matricial? (b) Resuelve la ecuación matricial dada para. Ejercicio 2 Siendo I la matriz identidad de orden
Determina si existe, la matriz X que verifica. propiedades que utilices, los siguientes determinantes:
1. Considera las matrices A=( ) ( ). Determina si existe, la matriz X que verifica.sol ( ) 2. Se sabe que ( ).Calcula, indicando las propiedades que utilices, los siguientes determinantes: a) SOL. a) 24
TEMA 1: MATRICES. x 2. Ejercicio y B =, se pueden encontrar matrices C y D para que existan los productos ACB y BDA?.
TEMA : MATRICES Ejercicio.- 0 2 2 Dadas las matrices A = y B = -2 0 5, calcula BBt AA t. Ejercicio 2.- 0 x 2 Sean las matrices A =, B = y C =, halla x e y para que se 2 y verifique ABC = A t C. Ejercicio
PRUEBAS DE ACCESO A LA UNIVERSIDAD ALGUNOS PROBLEMAS DE MATRICES (CON SOLUCIÓN) a) A = ( 1 0
PRUEBAS DE ACCESO A LA UNIVERSIDAD ALGUNOS PROBLEMAS DE MATRICES (CON SOLUCIÓN) JUNIO 6: OPCIÓN B. Ejercicio. (Puntuación máxima: 3 puntos) Encontrar todas las matrices X cuadradas x que satisfacen la
, siendo A t la matriz traspuesta de A. 5. [2013] [EXT-A] a) Discutir el sistema de ecuaciones lineales según los valores del parámetro m: 1 2.
MasMatescom [4] [EXT-A] a) Resolver la siguiente ecuación matricial X A = B-C, siendo A = 5, B = - y C = - b) Sean F, F y F las filas de una matriz cuadrada de orden cuyo detereminante vale 5 Calcular
Tema 2: Determinantes
Tema : Determinantes.- a) Encontrar los valores de λ para los que la matriz λ A = 0 λ λ 0 es invertible b) Para λ = hallar la inversa de A comprobar el resultado c) Resolver el sistema x 0 A = 0 z 0 para
EJERCICIOS PAU MATEMÁTICAS II ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com
MATRICES Y DETERMINANTES 1- Sea m un número real y considere la matriz: 1 0 0 1 2 1 1 a) Determine todos los valores de m para los que la matriz A tiene inversa. b) Determine, si existe, la inversa de
6. Obtén las matrices A y B que verifiquen el sistema. 7. Encuentra una matriz X que cumpla. siendo. 9. Resuelve la siguiente ecuación matricial:
Ejercicios. Escribe la matriz traspuesta de: 2 3 3 B= 0 4 3 2 4 C= 2 3 2. Se consideran las matrices: 0 3 2 2 2 2 0 2 3 B= 0 4 C=2 4 3 0 2 5 Calcula: 3A, 3A + 2C, A C, C A y A B. 3. Dadas las matrices
TEMA 7: MATRICES. OPERACIONES.
TEMA 7: MATRICES. OPERACIONES. 1. MATRICES. TIPOS DE MATRICES. Se llama matriz de orden m x n (m filas y n columnas) a un conjunto de m n elementos, distribuidos en m filas y n columnas y encerrados entre
EJERCICIOS SOBRE MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES
EJERCICIOS SOBRE MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES ) Dadas las matrices 7 A, 4 5 B y 4 C, comprueba las siguientes igualdades: A (B C)(A B) C A (B+C)(A B)+(A C) (A+B) C(A C)+(B C) ) Dadas
Dada la proporción =, calcula el producto de extremos menos el producto de medios. 4. Halla los determinantes de las siguientes matrices: Solución:
3 Determinantes. Determinantes de orden 2 y 3 por Sarrus Piensa y calcula 3 6 Dada la proporción =, calcula el producto de extremos menos el producto de medios. 4 8 3 8 6 4 = 24 24 = 0 Aplica la teoría.
Problemas de Selectividad de Matemáticas aplicadas a la Ciencias Sociales Comunidad de Madrid (Resueltos) Isaac Musat Hervás
Problemas de Selectividad de Matemáticas aplicadas a la Ciencias Sociales Comunidad de Madrid (Resueltos) Isaac Musat Hervás 15 de noviembre de 2016 2 Índice general 1. Álgebra 7 1.1. Año 2000.............................
EJERCICIOS DE SELECTIVIDAD LOGSE en EXTREMADURA MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES
EJERCICIOS DE SELECTIVIDAD LOGSE en EXTREMADURA MATRICES DETERMINANTES Y SISTEMAS DE ECUACIONES JUNIO 06/07. a) Calcula el rango de la matriz A según los valores del parámetro a 3 a A = 4 6 8 3 6 9 b)
Matrices y Sistemas Lineales
Matrices y Sistemas Lineales Álvarez S, Caballero MV y Sánchez M a M salvarez@umes, mvictori@umes, marvega@umes 1 ÍNDICE Matemáticas Cero Índice 1 Definiciones 3 11 Matrices 3 12 Sistemas lineales 5 2
1. Justifica por qué no es cierta la igualdad: (A + B)$(A B) = A 2 B 2 cuando A y B son dos matrices cuadradas cualesquiera.
º BTO. C.S. Ejercicios de matrices sistemas. Justifica por qué no es cierta la igualdad: (A + B)$(A B) A B cuando A B son dos matrices cuadradas cualesquiera.. Sea A una matriz de dimensión 3%. (a) Existe
Más ejercicios y soluciones en fisicaymat.wordpress.com MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES
MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES - Considere el sistema 3 5 7 0 3 3 6 0 3 4 6 0 a) Estudie para qué valores del número real a, la única solución del sistema es la nula. b) Resuélvalo, si
Matrices y Sistemas Lineales
Matrices y Sistemas Lineales Álvarez S, Caballero MV y Sánchez M a M salvarez@umes, mvictori@umes, marvega@umes Índice 1 Definiciones 3 11 Matrices 3 12 Sistemas lineales 6 2 Herramientas 8 21 Operaciones
EJERCICIOS DE MATRICES, DETERMINANTES Y PROBLEMAS. 1. (2001) De las matrices,,,
EJERCICIOS DE MATRICES, DETERMINANTES Y PROBLEMAS SELECTIVIDAD 1. (2001) De las matrices,,, determina cuáles tienen inversa y en los casos en que exista, calcula el determinante de dichas matrices. 2.
, calcula: y C = , sabiendo que X y Y son matrices de dimensión 2x3 y A = A = , siendo abc 0.
MasMatescom Colección B Dadas las matrices A - -3, B - - C - - -, calcula: a) A+B-C t ; b) (A+B)C ; c) AB+C ; d) (A-B)(A+C) Resuelve el sistema X + Y A X - 3Y B, sabiendo que X Y son matrices de dimensión
3. A = A = Se dice que dos matrices A y B son semejantes cuando cuando existe una matriz P invertible tal que: AP = PB.
MasMatescom Colección B Resuelve el sistema 5X + 3Y A 3X + Y B, sabiendo que X e Y son matrices cuadradas de orden A 0-4 5 B - - 9 Considera la matriz A 0 3 4-4 -5-3 4 a) Siendo I la matriz identidad 3x3
Ejercicios finales. Álgebra. 1. Escribir la matriz A de dimensiones 5 x 4 y elementos: Sol:
Álgebra Ejercicios finales 1. Escribir la matriz A de dimensiones 5 x 4 y elementos:. Una fábrica de embutidos comercializa tres tipos de productos: salchichón, chorizo y morcilla. Para su fabricación
Es decir, det A = producto de diagonal principal producto de diagonal secundaria. Determinante de una matriz cuadrada de orden 3
1.- DETERMINANTE DE UNA MATRIZ CUADRADA Determinante de una matriz cuadrada de orden 1 Dada una matriz cuadrada de orden 1, A = (a), se define det A = det (a) = a Determinante de una matriz cuadrada de
Curso ON LINE Tema 5 LAS MATRICES
Curso ON LINE Tema LAS MATRICES Introducción a las matrices. Concepto de matri. Terminología: - Elemento, fila, columna dimensión u orden. Representación algebraica de una matri. Igualdad de matrices.
Dada la proporción =, calcula el producto de extremos menos el producto de medios. 4. Halla los determinantes de las siguientes matrices: Solución:
3 Determinantes. Determinantes de orden y 3 por Sarrus Piensa y calcula 3 6 Dada la proporción =, calcula el producto de extremos menos el producto de medios. 4 8 3 8 6 4 = 4 4 = 0 Aplica la teoría. Calcula
EJERCICIOS DE SELECTIVIDAD DE ÁLGEBRA
EJERCICIOS DE SELECTIVIDAD DE ÁLGEBRA 2003 (4) Ejercicio 1. Considera los vectores u = (1,1,1), v = (2,2,a) y w = (2,0,0), (a) [1'25 puntos] Halla los valores de a para que los vectores u, v y w sean linealmente
Matemáticas aplicadas a las CC.SS. II 2º Bachillerato. La igualdad de matrices 3x3 equivale a 9 ecuaciones escalares: { a 3=5.
Ejercicios resueltos 1. MATRICES 1.1. Introducción 1. Halla el valor de a, b y c para que las matrices A= 2 a 3 7 b 1 0 6 4 5 y B= 2 5 7 5 1 0 c 1 4 5 sean iguales. La igualdad de matrices 3x3 equivale
Matrices 1 (Problemas). c
º Bachillerato Matrices 1 (Problemas) 1.- Efectúa las siguientes operaciones con matrices: a) 1 4 5 6 + b) 5 7 9 11 1 1 1 1 1 1 c). 4 d) 6. 1 6 1 18 1 g) 0 0 0 0 a 0 b 0. 0 b 0 0 0 c c 0 0.- Siendo A =
2-2 1., y la matriz S -1, que es la matriz inversa de la matriz S. Indicar la
. [04] [EXT-A] Obtener razonadamente: a) El valor del determinante de la matriz S = - - 5, y la matriz S -, que es la matriz inversa de la matriz S. Indicar la relación entre que el determinante de una
2x-y+3z = 1 x+2y-z = 2
MasMatescom [ANDA] [JUN-A] Un cajero automático contiene sólo billetes de 0, 0 y 50 euros En total hay 30 billetes, con un importe de 3000 euros (a) Es posible que en el cajero haya el triple número de
TEMA 1: MATRICES. Una matriz de orden mxn es un conjunto de m n números reales dispuestos en m filas y n columnas ...
TEMA : MATRICES Una matriz de orden mxn es un conjunto de m n números reales dispuestos en m filas y n columnas a a a... a n a a a... an A... am am am... amn A los números reales a ij se les llama elementos
COLEGIO INTERNACIONAL TORREQUEBRAD.
CUADERNO DE VERANO MATEMÁTICAS 1º Bachillerato ALUMNO: Problema 1: Dado el sistema de ecuaciones con un parámetro real λ e incógnitas x, y, z se pide: a) Calcular para qué valores de λ el sistema sólo
Definición de matriz Una matriz A es un conjunto de números dispuestos en filas y en columnas.
1.- CONCEPTO DE MATRIZ. TIPOS DE MATRICES Definición de matriz Una matriz A es un conjunto de números dispuestos en filas y en columnas. 1 3 4 Por ejemplo, A = es una matriz de 2 filas y 3 columnas 0 5
RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES
RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES REFLEXIONA Y RESUELVE Resolución de sistemas 2 Ò 2 mediante determinantes A A y Resuelve, aplicando x = x e y =, los siguientes sistemas de ecuaciones: A A
Grado en Ciencias Ambientales. Matemáticas. Curso 10/11.
Grado en Ciencias Ambientales. Matemáticas. Curso 0/. Problemas Tema 2. Matrices y Determinantes. Matrices.. Determinar dos matrices cuadradas de orden 2, X e Y tales que: 2 2X 5Y = 2 ; X + 2Y = 4.2. Calcular
Ejercicios de Matrices, determinantes y sistemas de ecuaciones lineales. Álgebra 2008
Ejercicios de Matrices, determinantes sistemas de ecuaciones lineales. Álgebra 8 - Dado el sistema de ecuaciones lineales 5 (a) ['5 puntos] Clasifícalo según los valores del parámetro λ. (b) [ punto] Resuélvelo
EJERCICIOS DE DETERMINANTES
EJERCICIOS DE 1) Si m n = 5, cuál es el valor de cada uno de estos determinantes? Justifica las p q respuestas: 2) Resuelve las siguientes ecuaciones: 3) Calcula el valor de estos determinantes: 4) Halla
(Soluc: a) 30; b) -66; c) 0; d) 0; e) 0; f) 0; g) 2; h) -50; i) 0; j) 0; k) 0; l) 0)
53 EJERCICIOS de DETERMINANTES º BACH. Cálculo de determinantes. Propiedades: 1. Calcular los siguientes determinantes de orden : a) 7 1 b) 4 11 4 6 0 c) 0 0 3 1 d) 3 7 3 7 e) 7 1 4 1 f) 33 55 3 5 g) 13
A1.- Determina a y b sabiendo que el sistema de ecuaciones. x + 3y +z = 1 -x + y +2z = -1 ax + by + z = 4 tiene, al menos, dos soluciones distintas.
A1.- Determina a y b sabiendo que el sistema de ecuaciones x + 3y +z = 1 -x + y +z = -1 ax + by + z = 4 tiene, al menos, dos soluciones distintas. Para que el sistema tenga, al menos, dos soluciones distintas
mx-y = m 1. [2014] [EXT] Considere el sistema de ecuaciones lineales
MasMatescom mx-y = m [04] [EXT] Considere el sistema de ecuaciones lineales, para m x+(m-4)y = m+ a) Discuta el sistema de ecuaciones para los diferentes valores del parámetro m b) Resuelva el sistema
EJERCICIOS DE MATRICES
EJERCICIOS DE MATRICES a) º) Escribir los siguientes sistemas en forma matricial: x+ y= x + y = 0 x+ y z = x+ y+ z = 0 ; b) x y= 3 ; c) y + z = ; d) 6x + y = 4 x + z = 3 x = 3 y = 4 z = 5 ; e) x+y+z+t=3
Soluciones de los ejercicios de Selectividad sobre Matrices y Sistemas de Ecuaciones Lineales de Matemáticas Aplicadas a las Ciencias Sociales II
Soluciones de los ejercicios de Selectividad sobre Matrices y Sistemas de Ecuaciones Lineales de Matemáticas Aplicadas a las Ciencias Sociales II Antonio Francisco Roldán López de Hierro * Convocatoria
MATRICES: CÁLCULO DE LA INVERSA MEDIANTE EL DETERMINANTE Y LA ADJUNTA:
MTRICES: TEORÍ COMPLEMEMENTRI Existe otro método para calcular la inversa y que sólo usaremos para matrices cuadradas de orden o de orden 3. Para ello es necesario conocer estos dos conceptos: CÁLCULO
GUÍA DE EJERCICIOS OPERATORIA MATRICES
INSTITUTO DE ESTUDIOS NCRIOS GUILLERMO SUERCSEU Fundado en 99 GUÍ DE EJERCICIOS OPERTORI MTRICES INVESTIGCION DE OPERCIONES SEMESTRE - I.- GUI DE EJERCICIOS DE MTRICES. Sean las matrices y definidas como:
MATEMÁTICAS 2º BACH TECNOL. MATRICES. Profesor: Fernando Ureña Portero MATRICES
CONCEPTO DE MATRIZ Definición: Se denomina matriz A o (a ij ) a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas : Columnas Filas Elemento a ij : Cada uno
INVERSA DE UNA MATRIZ
INVERSA DE UNA MATRIZ Profesores Omar Darío Saldarriaga Ortíz Ivan Darío Gómez Hernán Giraldo 2009 Definición Sean x = x 1 x n y y = y 1 y n vectores de n componentes, definimos el producto interno o producto
. Probar que las matrices de la forma B = k A + r I, donde k y r son números. 2x + az = 0. ax + y = n. Calcular: 0 1
ÁLGEBRA 1 (Junio, 1994) Comprueba que el determinante 3 1 1 1 1 3 1 1 1 1 3 1 1 1 1 3 es nulo sin desarrollarlo Explica el proceso que sigues (Junio, 1994) Considerar la matriz A = 1 1 1 reales e I la
MATRICES 1. Averiguar Si son iguales las siguientes matrices: Dada la matriz A = 131, se pide: 122. , siendo I la matriz unidad de orden 3.
MATRICES Averiguar Si son iguales las siguientes matrices: 5 4 4+ 9+ A = 6 ( )( + ) 3 ( )( ) 5 4 5 4 5 B = + Sea A la matriz de una sola fila ( 5 ) y B la de una sola columna (34 t Escribir los productos
Álgebra Lineal, Ejercicios
Álgebra Lineal, Ejercicios MATRICES 1 Se llama traza de una matriz cuadrada a la suma de los elementos de su diagonal principal Sea G el conjunto de todas las matrices cuadradas de orden n con traza nula
EJERCICIOS DETERMINANTES. 1º/ Calcula el siguiente determinante:
EJERCICIOS DETERMINANTES. 1º/ Calcula el siguiente determinante: 3 7 1 2 0 1 1 3 6 a) Usando la Regla de Sarrus. b) Desarrollando por los elementos de la primera columna. 2º/ Obtén el valor del determinante
Matrices, determinantes y sistemas lineales
Grado en Óptica y Optometría Curso 00-0 Hoja de ejercicios n o Matrices, determinantes y sistemas lineales 0. Dadas las matrices A y B siguientes, calcule A + B, A B, AB, BA, AA, BB. 0 0 A = 3 0 0 B =
1º Ejercicios para practicar:
1º Ejercicios para practicar: 1) Efectúa todos los posibles productos entre las siguientes matrices: 2) Calcula A 2 3A I, siendo A = e I la matriz identidad de orden 2. 3) Realiza la operación B A + C
ÁLGEBRA. 2. [2,5 puntos] Discutir y resolver el siguiente sistema dependiente del parámetro x λy 0 λx y 2 2x λz 0
ÁLGEBRA Junio 94. [,5 puntos] Comprueba que el determinante el proceso que sigues. 3 3 3 3 es nulo sin desarrollarlo. Explica Se basa en la propiedad: si a una línea le sumamos una combinación lineal de
b) y 1 = 10x x 2 y 2 = 25x x 2 d) y 1 = 4x 1 3x 2 y 2 = 2x 1 5x 2
Álgebra lineal Curso 2008-2009 Tema 2 Hoja 1 Tema 2 ÁLGEBRA SUPERIOR 1 Expresar los siguientes sistemas lineales en notación matricial a y 1 = 2x 1 + 3x 2 y 2 = 4x 1 + 2x 2 b y 1 = 10x 1 + 12x 2 y 2 =
Se pide: estudiar su compatibilidad según los valores del parámetro a, y resolverlo cuando sea compatible.(3 puntos).
PAU. CASTILLA Y LEON - 1998 a x + y z = z PR-1. Dado el sistema x + ay + z = x 3x + 3y + z = y Se pide: estudiar su compatibilidad según los valores del parámetro a, y resolverlo cuando sea compatible.(3
UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) 2a 2c 2b 2u 2w 2v. a b c. u v w. p q r. a b c.
UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) - Calcular los siguientes determinantes: 3 3 a) b) 3 5 5 3 4 5 Hoja : Matrices y sistemas de ecuaciones lineales
SISTEMAS DE ECUACIONES LINEALES Y MATRICES
y SISTEMAS DE ECUACIONES ES Y MATRICES Sergio Stive Solano 1 Febrero de 2015 1 Visita http://sergiosolanosabie.wikispaces.com y SISTEMAS DE ECUACIONES ES Y MATRICES Sergio Stive Solano 1 Febrero de 2015
Ecuaciones matriciales AX = B y XA = B. Cálculo de la matriz inversa
Ecuaciones matriciales AX = B y XA = B Cálculo de la matriz inversa Objetivos Aprender a resolver ecuaciones matriciales de la forma AX = B y XA = B Aprender a calcular la matriz inversa con la eliminación
Matrices, determinantes y sistemas lineales
UNIVERSIDAD DE MURCIA Departamento de Matemáticas Óptica y Optometría Relación de Problemas n o 7 Curso 008-009 Matrices, determinantes y sistemas lineales 0. Dadas las matrices A y B siguientes, calcule
ÁLGEBRA: Ejercicios de Exámenes
MATEMÁTICAS º BACH CC. Y TECNOL. ÁLGEBRA: Ejercicios de Eáenes CURSO 3-4.-Dadas las atrices, donde B t es la atri traspuesta de B e I la atri unidad de orden 3. a) (6p.)Estudiar según el paráetro el rango
UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD
Opción A Ejercicio 1.- Sea f : R R definida por f(x) = x 3 +ax 2 +bx+c. a) [1 75 puntos] Halla a,b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1 2 y que la recta tangente en
DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES
ALGEBRA DE MATRICES DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES DEFINICIONES 2 Las matrices y los determinantes son herramientas
Ejercicios de la práctica 3
Ejercicios de la práctica 3 Ejercicio 1. Consideremos la siguiente matriz 4 2 4 0 A = 2 10 22 4 5 2 5 2. 24 6 16 8 Si R es la forma escalonada por filas de A, calcular, usando MATLAB, las matrices Q y
x-y+2 = 0 z = [2014] [JUN-A] Sea el plano que pasa por los puntos A(1,-1,1), B(2,3,2), C(3,1,0) y r la recta dada por r x-7 2 = y+6
1. [014] [EXT-A] Sea el punto A(1,1,) y la recta de ecuación r a) Calcular el plano perpendicular a la recta r que pase por A. b) Calcular la distancia del punto A a la recta r. x-y+ = 0 z =.. [014] [EXT-B]
Matrices, determinantes y sistemas lineales
UNIVERSIDAD DE MURCIA Departamento de Matemáticas Óptica y Optometría Relación de Problemas n o 5 Curso 006-007 Matrices, determinantes y sistemas lineales 8. Dadas las matrices A y B siguientes, calcule
x y z 3x 3y 3z b) 3x 3y+2 3z+4. x+2 y+2 z+2
MasMatescom 1 1 1 [2014] [EXT-A] a) Compruebe que la matriz A = es regular (o inversible) y calcule su matriz inversa -2-3 b) Resuelva la ecuación matricial AXA = B, siendo A la matriz anterior y B = 5-2
TRABAJO PRÁCTICO Nº 1. Matrices = 0 = = + 3 = 0 = = 1 = 2 + < = 0
TRABAJO PRÁCTICO Nº 1 Matrices Ejercicio 1: Determine para todo, 1,,3 y para todo 1,,3 : a) La matriz A, donde 0, b) La matriz A, donde c) La matriz C, donde d) La matriz D, donde 0 + 3 0 1 + < 0 e) Para
2. (a) Calcula los puntos del recinto 2x y[20 que hacen mínima la función f(x, y) = 2x + y. Cuántas soluciones hay? (7 puntos)
Alumno... Fecha: 25 Noviembre 2011 Opción A 1. En una empresa se produce queso y mantequilla. Para fabricar una unidad de queso se necesitan 10 unidades de leche y 6 unidades de mano de obra y para fabricar
= λ + 1 y el punto A(0, 7, 5)
94 GEOMETRÍA ANALÍTICA DEL ESPACIO en las PAU de Asturias Dados los puntos A(1, 0, 1), B(l, 1, 1) y C(l, 6, a), se pide: a) hallar para qué valores del parámetro a están alineados b) hallar si existen
y C= determinar la matriz X que verifica la ecuación matricial A B X=C X+I, siendo I =
EJERCICIOS: TEMA 1: MATRICES. 1º/ Dadas las matrices: A= 2 1 1 0 1 1 1 1, B= 2 0 3 1 y C= 2 1 0 1 determinar la matriz X que verifica la ecuación matricial A B X=C X+I, siendo I = 1 0 0 1. 2º/ Determinar
Matrices, determinantes y sistemas lineales
UNIVERSIDAD DE MURCIA Departamento de Matemáticas Óptica y Optometría Relación de Problemas n o 3 Curso 005-006 Matrices, determinantes y sistemas lineales 54. Dadas las matrices A y B siguientes, calcule
Problemas de Álgebra. 1.1 Matrices, Exámenes de Ciencias Sociales. Problema 1 Sean las matrices A = , B = , C =
Capítulo 1 Problemas de Álgebra 1.1 Matrices, Exámenes de Ciencias Sociales Problema 1 Sean las matrices A = 2 1 0 0 2 1 ), B = 2 1 2 2 ), C = 1 2 0 2 2 0 1. Calcule la matriz P que verifica B P A = C
CONJUNTO R n. = (5, 2, 10) de 3, son linealmente. = (2,1,3) y v 3. = (0,1, 1) y u 3. = (2,0,3, 1), u 3. = (1,1, 0,m), v 2
CONJUNTO R n.- Considerar los vectores u = (, -3, ) y v = (, -, ) de 3 : a) Escribir, si es posible, los vectores (, 7, -4) y (, -5, 4) como combinación lineal de u y v. b) Para qué valores de x es el
RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES
UNIDD 4 RESOLUCIÓN DE SISTEMS MEDINTE DETERMINNTES Página 00 Resolución de sistemas mediante determinantes x y Resuelve, aplicando x = e y =, los siguientes sistemas de ecuaciones: x 5y = 7 5x + 4y = 6x
ALGUNOS PROBLEMAS DE ÁLGEBRA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2015
ÁLGEBRA (Selectividad 015) 1 ALGUNOS PROBLEMAS DE ÁLGEBRA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 015 1 Aragón, junio 15 1 (3 puntos) a) (1,5 puntos) Considera la matriz y los vectores siguientes:
BLOQUE 1 : ÁLGEBRA. EJERCICIO 1 Resuelve la ecuación : EJERCICIO 4 Dado el sistema de ecuaciones :
EJERCICIO 1 Resuelve la ecuación : BLOQUE 1 : ÁLGEBRA = 0 EJERCICIO 2 Dado el sistema de ecuaciones : a) Discutirlo según los distintos valores de k. b) Resolverlo en los casos en que sea posible. EJERCICIO
SISTEMAS LINEALES CLASIFICACIÓN DE LOS SISTEMAS LINEALES. 1. Resolver:
SISTEMAS LINEALES Se llama sistema de ecuaciones, o, sistema de ecuaciones simultáneas al conjunto de dos o más ecuaciones que se verifican para un mismo valor de la, o, las incógnitas. Ejemplo: El sistema:
BLOQUE II : GEOMETRIA EN EL ESPACIO.
MATEMÁTICAS : 2º Curso PROBLEMAS : Bloque II 1 BLOQUE II : GEOMETRIA EN EL ESPACIO. 1.- Sea ABCDA'B'C'D' un cubo.: a) Hállense las coordenadas del centro de la cara CDD'C' en el sistema de referencia R=
Procedimiento para encontrar la inversa de una matriz cuadrada (Método de Gauss-Jordan).
Ejemplo 19: Demuestre que la matriz A es invertible y escríbala como un producto de matrices elementales. Solución: Para resolver el problema, se reduce A a I y se registran las operaciones elementales
Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2013) Selectividad-Opción A Tiempo: 90 minutos
Examen de Matemáticas Aplicadas a las CC. Sociales II Septiembre 2013 Selectividad-Opción A Tiempo: 90 minutos Problema 1 2 puntos Se consideran las matrices A = 3 8. 3 5 0 2 3 0 y B = a Calcúlese la matriz
Definición de la matriz inversa
Definición de la matriz inversa Objetivos Aprender la definición de la matriz inversa Requisitos Multiplicación de matrices, habilidades básicas de resolver sistemas de ecuaciones Ejemplo El número real
Colegio Portocarrero. Curso Departamento de matemáticas. Sistemas, matrices, programación lineal resueltos.
Sistemas, matrices, programación lineal resueltos. Problema 1: Sean las matrices Encuentra el valor o valores de x de forma que B 2 = A Problema 2: En la remodelación de un centro de enseñanza se quiera
Tema 1: MATRICES. OPERACIONES CON MATRICES
Tema 1: MATRICES. OPERACIONES CON MATRICES 1. DEFINICIÓN Y TIPO DE MATRICES DEFINICIÓN. Una matriz es un conjunto de números reales dispuestos en filas y columnas. Si en ese conjunto hay m n números escritos
APLICACIÓN DE LAS MATRICES Modelos de Entrada-Salida de Leontief
APLICACIÓN DE LAS MATRICES Modelos de Entrada-Salida de Leontief El modelo desarrollado por Wassily Leontief, es una aplicación interesante de las matrices, que fue útil para pronosticar los efectos en
UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD
Opción A xcos(x)+b sen(x) Ejercicio 1.- [2 5 puntos] Sabiendo que lím x 0 x 3 es finito, calcula b y el valor del límite. Ejercicio 2.- Sean f : R R y g : R R las funciones definidas mediante f(x) = x(x
hora depende del nivel en que se encuentren y de que el aula disponga o no de puestos de
MATRICES - - MATRICES. Resuelve la ecuación matricial siguiente e indica la dimensión de la matriz X: 0 2 2 4 3 3 2 X = 3 0 2 0 2 4 6 3 0 2. En un centro de estudios de idiomas los alumnos de Francés y
ÁLGEBRA DE MATRICES. Al consejero A no le gusta ninguno de sus colegas como presidente.
ÁLGEBRA DE MATRICES Página 47 REFLEXIONA Y RESUELVE Elección de presidente Ayudándote de la tabla, estudia detalladamente los resultados de la votación, analiza algunas características de los participantes
I.E.S. CASTILLO DE LUNA Curso Segundo de Bachillerato Aplicado a las Ciencias Sociales Mayo-2011 Asignatura completa
I.E.S. CASTILLO DE LUNA Curso 2010-2011 Segundo de Bachillerato Aplicado a las Ciencias Sociales Mayo-2011 Asignatura completa Nombre: Cali cación: Ejercicio 1: (2 puntos) Un vendedor quiere dar salida
Ejercicios de Matrices, determinantes y sistemas de ecuaciones lineales. Álgebra 2008
Ejercicios de Matrices, determinantes sistemas de ecuaciones lineales. Álgebra 8 - Dado el sistema de ecuaciones lineales 5 (a) ['5 puntos] Clasifícalo según los valores del parámetro λ. (b) [ punto] Resuélvelo
Algebra Lineal XXVI: La Regla de Cramer.
Algebra Lineal XXVI: La Regla de Cramer José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato email: jrico@salamancaugtomx
Matrices 3. Matrices. Verónica Briceño V. agosto 2012
3 agosto 2012 En esta Presentación... En esta Presentación veremos: Matriz Inversa En esta Presentación... En esta Presentación veremos: Matriz Inversa Determinante En esta Presentación... En esta Presentación
Definición de la matriz inversa
Definición de la matriz inversa Ejercicios Objetivos Aprender la definición de la matriz inversa Requisitos Multiplicación de matrices, matriz identidad, habilidades básicas de resolver sistemas de ecuaciones
MATRICES Y DETERMINANTES
TEMA 2 MATRICES Y DETERMINANTES Contenidos Criterios de Evaluación 1. Generalidades. 2. Suma de matrices y producto por un número. 3. Producto de matrices. 4. Matriz inversa. 5. Determinantes de segundo
MATRICES. Calcula la matriz X, tal que X B + A = C siendo: Considera las matrices. matriz X que verifica que X A + B = I. Dada la matriz A =
MATRICES. Calcula la matri X, tal que X B + A = C siendo: A, B, 6 C Considera las matrices A B, Calcula la matri X que verifica que X A + B = I. Dada la matri 6 A, calcula, si eisten las siguientes matrices:
EJERCICIOS Y PROBLEMAS PROPUESTOS (ÁLGEBRA)
EJERCICIOS Y PROBLEMAS PROPUESTOS (ÁLGEBRA) 1.- Sea el sistema de inecuaciones x+ y 6 3x y 13 x + 3y 3 x 0 a) Dibuje el recinto cuyos puntos son las soluciones del sistema y obtenga sus vértices. b) Halle
