MATRICES Octubre 2015

Tamaño: px
Comenzar la demostración a partir de la página:

Download "MATRICES Octubre 2015"

Transcripción

1 MATRICES Octubre Sea la matriz a) Prueba que 0 donde I es la matriz identidad y 0 es una matriz con todos sus elementos igual a 0. b) Calcula A 3. (J 007) Sean las matrices 0, 1,, 6 1 a) Consideramos x e y dos variables y a un parámetro. Obtén el sistema de dos ecuaciones y dos incógnitas que resulta de plantear AB C = D b) Estudia el sistema para los distintos valores de a. c) Encuentra la solución para a =. 3. Calcula dos matrices cuadradas A y B sabiendo que y que (J 005)Sea a) Calcula A y expresa el resultado en función de la matriz identidad. b) Utiliza la relación hallada con la matriz identidad para calcular A Sean las matrices 1 0, y 1 donde x e y son desconocidos a) Calcula las matrices ABC y A t C b) Halla x e y para que se verifique ABC = A t C 1 6. (J004) Sea 1 a) Calcula A b) Calcula todos los valores de x e y para los que se verifica que Encuentra, si existen, matrices cuadradas A, de orden, distintas de la matriz identidad, tales que conmuten con la matriz 1 0 Cuántas matrices A existen con esa 1 1 condición? Razona la respuesta. 8. Sea a) Demuestra que donde I es la matriz identidad. b) Halla las matrices A 3 y A 4 expresándolas en función de A y de I.

2 9. Calcula los valores de x para que la matriz 0 verifique la ecuación 0 6 9, donde I y O son, respectivamente, las matrices identidad y nula de orden. 10. En una acería se fabrican tres tipos de productos: aceros en láminas, en rollos o aceros especiales. Estos productos requieren chatarra, carbón y aleaciones en las cantidades que se indican en la tabla siguiente, por cada unidad de producto fabricado: Acero en láminas Acero en rollos Aceros especiales Chatarra Carbón Aleaciones 1 3 a) Si durante el próximo mes se desean fabricar 6 unidades de acero en láminas, 4 unidades de acero en rollos y 3 unidades de aceros especiales, obtener una matriz que indique las cantidades de chatarra, carbón y aleaciones que serán necesarias. b) Si se dispone de 34 unidades de chatarra, 8 de carbón y 9 de aleaciones, cuántas unidades de cada tipo de acero se podrán fabricar con estos materiales? 11. Un almacén surte de frutas a las tiendas A,B y C. A la tienda A le venden 50 kg de manzanas, 60 kg de peras y 40 kg de plátanos. A la tienda B 38 kg de manzanas, 80 kg de peras y 35 kg de plátanos. A la tienda C 50 kg de peras, 35 kg de manzanas y 50 kg de plátanos. Sabiendo que el precio por kg es : 0,70 las manzanas, 1,0 las peras y 0, 85 los plátanos, expresar en forma matricial las ventas de este almacén por tiendas y calcular lo que tiene que cobrar a cada tienda. 1. Sean A una matriz de dimensión 5 4, B una matriz de dimensión m n y C de dimensión 3 7. Si se sabe que se puede obtener la matriz producto ABC, cuál es la dimensión de la matriz B? Y la de la matriz ABC? b) Si A es una matriz, existe siempre el producto A t A? Razone la respuesta 13. Sean las matrices A = B = C = a) Hallar la matriz inversa de A. b) Calcular la matriz X que satisfaga la ecuación: AX + B = C 14. Calcular la matriz X tal que AX = B siendo A y B las matrices A = 3 1 y B = Se cumple que XA = B? 15. Sea la matriz A = Hállese una matriz B tal que A-1 B = A Sean las matrices: A = B =. 3 3

3 a) Compruébese que B es la inversa de A. b) Calcúlese la matriz ( A I ). c) Calcúlese la matriz X tal que AX = B Sean las matrices A = B = a) Determínese si A y B son invertibles y en su caso, calcúlese la matriz inversa. b) Resuélvase la ecuación matricial XA B = I, siendo I la matriz identidad de orden 3. c) Calcúlese A a Calcular los valores de a para los cuales la inversa de la matriz A = coincide 5 4 a con su traspuesta Hallar los valores de a para los que no existe la inversa de la matriz (J 010) Dadas las matrices Halla una matriz X que verifique 1. (J 011) Resuelve: (S 014) Dada la matriz: a) Determina los valores de t para los que existe la matriz inversa de A. b) Calcula la matriz inversa para t =. 3. (S 015) 1A- Calcula todos los valores, si existen, de los parámetros reales a y b que hacen que 0 siendo 1, SOLUCIONES: ) ) ) 1 ) 1 ) 1..., 6 ) )...,1)

4 3) ) ) ) 5) ) 0 ) 6) ) 1 1 ), 0 7) 0 8) ) ) x = ) ) cantidades de chatarra, carbón y aleación b) unidades de chatarra, 4 unidades de carbón y 1 unidad de aleación 11) ) ) , ) 4 3, ) 13) ) ) / 7/ 14) ) 4 5 ) ) ) a) Comprobar que AB = I b) ) ) ) ) ) ) 18) 3 19) b) a = 6 3/ 3 0) 17/ 13/ 1/ 3/ 15/ 6

5 1) ) a) para t = y t = 1 b) ) Se cumple para todos los valores de a y b que cumplan la relación 8, es decir la matriz X será de la forma 3 8

ACTIVIDADES SELECTIVIDAD MATRICES

ACTIVIDADES SELECTIVIDAD MATRICES ACTIVIDADES SELECTIVIDAD MATRICES Ejercicio 1 Para qué valores de m tiene solución la ecuación matricial? (b) Resuelve la ecuación matricial dada para. Ejercicio 2 Siendo I la matriz identidad de orden

Más detalles

Determina si existe, la matriz X que verifica. propiedades que utilices, los siguientes determinantes:

Determina si existe, la matriz X que verifica. propiedades que utilices, los siguientes determinantes: 1. Considera las matrices A=( ) ( ). Determina si existe, la matriz X que verifica.sol ( ) 2. Se sabe que ( ).Calcula, indicando las propiedades que utilices, los siguientes determinantes: a) SOL. a) 24

Más detalles

TEMA 1: MATRICES. x 2. Ejercicio y B =, se pueden encontrar matrices C y D para que existan los productos ACB y BDA?.

TEMA 1: MATRICES. x 2. Ejercicio y B =, se pueden encontrar matrices C y D para que existan los productos ACB y BDA?. TEMA : MATRICES Ejercicio.- 0 2 2 Dadas las matrices A = y B = -2 0 5, calcula BBt AA t. Ejercicio 2.- 0 x 2 Sean las matrices A =, B = y C =, halla x e y para que se 2 y verifique ABC = A t C. Ejercicio

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD ALGUNOS PROBLEMAS DE MATRICES (CON SOLUCIÓN) a) A = ( 1 0

PRUEBAS DE ACCESO A LA UNIVERSIDAD ALGUNOS PROBLEMAS DE MATRICES (CON SOLUCIÓN) a) A = ( 1 0 PRUEBAS DE ACCESO A LA UNIVERSIDAD ALGUNOS PROBLEMAS DE MATRICES (CON SOLUCIÓN) JUNIO 6: OPCIÓN B. Ejercicio. (Puntuación máxima: 3 puntos) Encontrar todas las matrices X cuadradas x que satisfacen la

Más detalles

, siendo A t la matriz traspuesta de A. 5. [2013] [EXT-A] a) Discutir el sistema de ecuaciones lineales según los valores del parámetro m: 1 2.

, siendo A t la matriz traspuesta de A. 5. [2013] [EXT-A] a) Discutir el sistema de ecuaciones lineales según los valores del parámetro m: 1 2. MasMatescom [4] [EXT-A] a) Resolver la siguiente ecuación matricial X A = B-C, siendo A = 5, B = - y C = - b) Sean F, F y F las filas de una matriz cuadrada de orden cuyo detereminante vale 5 Calcular

Más detalles

Tema 2: Determinantes

Tema 2: Determinantes Tema : Determinantes.- a) Encontrar los valores de λ para los que la matriz λ A = 0 λ λ 0 es invertible b) Para λ = hallar la inversa de A comprobar el resultado c) Resolver el sistema x 0 A = 0 z 0 para

Más detalles

EJERCICIOS PAU MATEMÁTICAS II ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com

EJERCICIOS PAU MATEMÁTICAS II ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com MATRICES Y DETERMINANTES 1- Sea m un número real y considere la matriz: 1 0 0 1 2 1 1 a) Determine todos los valores de m para los que la matriz A tiene inversa. b) Determine, si existe, la inversa de

Más detalles

6. Obtén las matrices A y B que verifiquen el sistema. 7. Encuentra una matriz X que cumpla. siendo. 9. Resuelve la siguiente ecuación matricial:

6. Obtén las matrices A y B que verifiquen el sistema. 7. Encuentra una matriz X que cumpla. siendo. 9. Resuelve la siguiente ecuación matricial: Ejercicios. Escribe la matriz traspuesta de: 2 3 3 B= 0 4 3 2 4 C= 2 3 2. Se consideran las matrices: 0 3 2 2 2 2 0 2 3 B= 0 4 C=2 4 3 0 2 5 Calcula: 3A, 3A + 2C, A C, C A y A B. 3. Dadas las matrices

Más detalles

TEMA 7: MATRICES. OPERACIONES.

TEMA 7: MATRICES. OPERACIONES. TEMA 7: MATRICES. OPERACIONES. 1. MATRICES. TIPOS DE MATRICES. Se llama matriz de orden m x n (m filas y n columnas) a un conjunto de m n elementos, distribuidos en m filas y n columnas y encerrados entre

Más detalles

EJERCICIOS SOBRE MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES

EJERCICIOS SOBRE MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES EJERCICIOS SOBRE MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES ) Dadas las matrices 7 A, 4 5 B y 4 C, comprueba las siguientes igualdades: A (B C)(A B) C A (B+C)(A B)+(A C) (A+B) C(A C)+(B C) ) Dadas

Más detalles

Dada la proporción =, calcula el producto de extremos menos el producto de medios. 4. Halla los determinantes de las siguientes matrices: Solución:

Dada la proporción =, calcula el producto de extremos menos el producto de medios. 4. Halla los determinantes de las siguientes matrices: Solución: 3 Determinantes. Determinantes de orden 2 y 3 por Sarrus Piensa y calcula 3 6 Dada la proporción =, calcula el producto de extremos menos el producto de medios. 4 8 3 8 6 4 = 24 24 = 0 Aplica la teoría.

Más detalles

Problemas de Selectividad de Matemáticas aplicadas a la Ciencias Sociales Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas aplicadas a la Ciencias Sociales Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas aplicadas a la Ciencias Sociales Comunidad de Madrid (Resueltos) Isaac Musat Hervás 15 de noviembre de 2016 2 Índice general 1. Álgebra 7 1.1. Año 2000.............................

Más detalles

EJERCICIOS DE SELECTIVIDAD LOGSE en EXTREMADURA MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES

EJERCICIOS DE SELECTIVIDAD LOGSE en EXTREMADURA MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES EJERCICIOS DE SELECTIVIDAD LOGSE en EXTREMADURA MATRICES DETERMINANTES Y SISTEMAS DE ECUACIONES JUNIO 06/07. a) Calcula el rango de la matriz A según los valores del parámetro a 3 a A = 4 6 8 3 6 9 b)

Más detalles

Matrices y Sistemas Lineales

Matrices y Sistemas Lineales Matrices y Sistemas Lineales Álvarez S, Caballero MV y Sánchez M a M salvarez@umes, mvictori@umes, marvega@umes 1 ÍNDICE Matemáticas Cero Índice 1 Definiciones 3 11 Matrices 3 12 Sistemas lineales 5 2

Más detalles

1. Justifica por qué no es cierta la igualdad: (A + B)$(A B) = A 2 B 2 cuando A y B son dos matrices cuadradas cualesquiera.

1. Justifica por qué no es cierta la igualdad: (A + B)$(A B) = A 2 B 2 cuando A y B son dos matrices cuadradas cualesquiera. º BTO. C.S. Ejercicios de matrices sistemas. Justifica por qué no es cierta la igualdad: (A + B)$(A B) A B cuando A B son dos matrices cuadradas cualesquiera.. Sea A una matriz de dimensión 3%. (a) Existe

Más detalles

Más ejercicios y soluciones en fisicaymat.wordpress.com MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES

Más ejercicios y soluciones en fisicaymat.wordpress.com MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES - Considere el sistema 3 5 7 0 3 3 6 0 3 4 6 0 a) Estudie para qué valores del número real a, la única solución del sistema es la nula. b) Resuélvalo, si

Más detalles

Matrices y Sistemas Lineales

Matrices y Sistemas Lineales Matrices y Sistemas Lineales Álvarez S, Caballero MV y Sánchez M a M salvarez@umes, mvictori@umes, marvega@umes Índice 1 Definiciones 3 11 Matrices 3 12 Sistemas lineales 6 2 Herramientas 8 21 Operaciones

Más detalles

EJERCICIOS DE MATRICES, DETERMINANTES Y PROBLEMAS. 1. (2001) De las matrices,,,

EJERCICIOS DE MATRICES, DETERMINANTES Y PROBLEMAS. 1. (2001) De las matrices,,, EJERCICIOS DE MATRICES, DETERMINANTES Y PROBLEMAS SELECTIVIDAD 1. (2001) De las matrices,,, determina cuáles tienen inversa y en los casos en que exista, calcula el determinante de dichas matrices. 2.

Más detalles

, calcula: y C = , sabiendo que X y Y son matrices de dimensión 2x3 y A = A = , siendo abc 0.

, calcula: y C = , sabiendo que X y Y son matrices de dimensión 2x3 y A = A = , siendo abc 0. MasMatescom Colección B Dadas las matrices A - -3, B - - C - - -, calcula: a) A+B-C t ; b) (A+B)C ; c) AB+C ; d) (A-B)(A+C) Resuelve el sistema X + Y A X - 3Y B, sabiendo que X Y son matrices de dimensión

Más detalles

3. A = A = Se dice que dos matrices A y B son semejantes cuando cuando existe una matriz P invertible tal que: AP = PB.

3. A = A = Se dice que dos matrices A y B son semejantes cuando cuando existe una matriz P invertible tal que: AP = PB. MasMatescom Colección B Resuelve el sistema 5X + 3Y A 3X + Y B, sabiendo que X e Y son matrices cuadradas de orden A 0-4 5 B - - 9 Considera la matriz A 0 3 4-4 -5-3 4 a) Siendo I la matriz identidad 3x3

Más detalles

Ejercicios finales. Álgebra. 1. Escribir la matriz A de dimensiones 5 x 4 y elementos: Sol:

Ejercicios finales. Álgebra. 1. Escribir la matriz A de dimensiones 5 x 4 y elementos: Sol: Álgebra Ejercicios finales 1. Escribir la matriz A de dimensiones 5 x 4 y elementos:. Una fábrica de embutidos comercializa tres tipos de productos: salchichón, chorizo y morcilla. Para su fabricación

Más detalles

Es decir, det A = producto de diagonal principal producto de diagonal secundaria. Determinante de una matriz cuadrada de orden 3

Es decir, det A = producto de diagonal principal producto de diagonal secundaria. Determinante de una matriz cuadrada de orden 3 1.- DETERMINANTE DE UNA MATRIZ CUADRADA Determinante de una matriz cuadrada de orden 1 Dada una matriz cuadrada de orden 1, A = (a), se define det A = det (a) = a Determinante de una matriz cuadrada de

Más detalles

Curso ON LINE Tema 5 LAS MATRICES

Curso ON LINE Tema 5 LAS MATRICES Curso ON LINE Tema LAS MATRICES Introducción a las matrices. Concepto de matri. Terminología: - Elemento, fila, columna dimensión u orden. Representación algebraica de una matri. Igualdad de matrices.

Más detalles

Dada la proporción =, calcula el producto de extremos menos el producto de medios. 4. Halla los determinantes de las siguientes matrices: Solución:

Dada la proporción =, calcula el producto de extremos menos el producto de medios. 4. Halla los determinantes de las siguientes matrices: Solución: 3 Determinantes. Determinantes de orden y 3 por Sarrus Piensa y calcula 3 6 Dada la proporción =, calcula el producto de extremos menos el producto de medios. 4 8 3 8 6 4 = 4 4 = 0 Aplica la teoría. Calcula

Más detalles

EJERCICIOS DE SELECTIVIDAD DE ÁLGEBRA

EJERCICIOS DE SELECTIVIDAD DE ÁLGEBRA EJERCICIOS DE SELECTIVIDAD DE ÁLGEBRA 2003 (4) Ejercicio 1. Considera los vectores u = (1,1,1), v = (2,2,a) y w = (2,0,0), (a) [1'25 puntos] Halla los valores de a para que los vectores u, v y w sean linealmente

Más detalles

Matemáticas aplicadas a las CC.SS. II 2º Bachillerato. La igualdad de matrices 3x3 equivale a 9 ecuaciones escalares: { a 3=5.

Matemáticas aplicadas a las CC.SS. II 2º Bachillerato. La igualdad de matrices 3x3 equivale a 9 ecuaciones escalares: { a 3=5. Ejercicios resueltos 1. MATRICES 1.1. Introducción 1. Halla el valor de a, b y c para que las matrices A= 2 a 3 7 b 1 0 6 4 5 y B= 2 5 7 5 1 0 c 1 4 5 sean iguales. La igualdad de matrices 3x3 equivale

Más detalles

Matrices 1 (Problemas). c

Matrices 1 (Problemas). c º Bachillerato Matrices 1 (Problemas) 1.- Efectúa las siguientes operaciones con matrices: a) 1 4 5 6 + b) 5 7 9 11 1 1 1 1 1 1 c). 4 d) 6. 1 6 1 18 1 g) 0 0 0 0 a 0 b 0. 0 b 0 0 0 c c 0 0.- Siendo A =

Más detalles

2-2 1., y la matriz S -1, que es la matriz inversa de la matriz S. Indicar la

2-2 1., y la matriz S -1, que es la matriz inversa de la matriz S. Indicar la . [04] [EXT-A] Obtener razonadamente: a) El valor del determinante de la matriz S = - - 5, y la matriz S -, que es la matriz inversa de la matriz S. Indicar la relación entre que el determinante de una

Más detalles

2x-y+3z = 1 x+2y-z = 2

2x-y+3z = 1 x+2y-z = 2 MasMatescom [ANDA] [JUN-A] Un cajero automático contiene sólo billetes de 0, 0 y 50 euros En total hay 30 billetes, con un importe de 3000 euros (a) Es posible que en el cajero haya el triple número de

Más detalles

TEMA 1: MATRICES. Una matriz de orden mxn es un conjunto de m n números reales dispuestos en m filas y n columnas ...

TEMA 1: MATRICES. Una matriz de orden mxn es un conjunto de m n números reales dispuestos en m filas y n columnas ... TEMA : MATRICES Una matriz de orden mxn es un conjunto de m n números reales dispuestos en m filas y n columnas a a a... a n a a a... an A... am am am... amn A los números reales a ij se les llama elementos

Más detalles

COLEGIO INTERNACIONAL TORREQUEBRAD.

COLEGIO INTERNACIONAL TORREQUEBRAD. CUADERNO DE VERANO MATEMÁTICAS 1º Bachillerato ALUMNO: Problema 1: Dado el sistema de ecuaciones con un parámetro real λ e incógnitas x, y, z se pide: a) Calcular para qué valores de λ el sistema sólo

Más detalles

Definición de matriz Una matriz A es un conjunto de números dispuestos en filas y en columnas.

Definición de matriz Una matriz A es un conjunto de números dispuestos en filas y en columnas. 1.- CONCEPTO DE MATRIZ. TIPOS DE MATRICES Definición de matriz Una matriz A es un conjunto de números dispuestos en filas y en columnas. 1 3 4 Por ejemplo, A = es una matriz de 2 filas y 3 columnas 0 5

Más detalles

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES REFLEXIONA Y RESUELVE Resolución de sistemas 2 Ò 2 mediante determinantes A A y Resuelve, aplicando x = x e y =, los siguientes sistemas de ecuaciones: A A

Más detalles

Grado en Ciencias Ambientales. Matemáticas. Curso 10/11.

Grado en Ciencias Ambientales. Matemáticas. Curso 10/11. Grado en Ciencias Ambientales. Matemáticas. Curso 0/. Problemas Tema 2. Matrices y Determinantes. Matrices.. Determinar dos matrices cuadradas de orden 2, X e Y tales que: 2 2X 5Y = 2 ; X + 2Y = 4.2. Calcular

Más detalles

Ejercicios de Matrices, determinantes y sistemas de ecuaciones lineales. Álgebra 2008

Ejercicios de Matrices, determinantes y sistemas de ecuaciones lineales. Álgebra 2008 Ejercicios de Matrices, determinantes sistemas de ecuaciones lineales. Álgebra 8 - Dado el sistema de ecuaciones lineales 5 (a) ['5 puntos] Clasifícalo según los valores del parámetro λ. (b) [ punto] Resuélvelo

Más detalles

EJERCICIOS DE DETERMINANTES

EJERCICIOS DE DETERMINANTES EJERCICIOS DE 1) Si m n = 5, cuál es el valor de cada uno de estos determinantes? Justifica las p q respuestas: 2) Resuelve las siguientes ecuaciones: 3) Calcula el valor de estos determinantes: 4) Halla

Más detalles

(Soluc: a) 30; b) -66; c) 0; d) 0; e) 0; f) 0; g) 2; h) -50; i) 0; j) 0; k) 0; l) 0)

(Soluc: a) 30; b) -66; c) 0; d) 0; e) 0; f) 0; g) 2; h) -50; i) 0; j) 0; k) 0; l) 0) 53 EJERCICIOS de DETERMINANTES º BACH. Cálculo de determinantes. Propiedades: 1. Calcular los siguientes determinantes de orden : a) 7 1 b) 4 11 4 6 0 c) 0 0 3 1 d) 3 7 3 7 e) 7 1 4 1 f) 33 55 3 5 g) 13

Más detalles

A1.- Determina a y b sabiendo que el sistema de ecuaciones. x + 3y +z = 1 -x + y +2z = -1 ax + by + z = 4 tiene, al menos, dos soluciones distintas.

A1.- Determina a y b sabiendo que el sistema de ecuaciones. x + 3y +z = 1 -x + y +2z = -1 ax + by + z = 4 tiene, al menos, dos soluciones distintas. A1.- Determina a y b sabiendo que el sistema de ecuaciones x + 3y +z = 1 -x + y +z = -1 ax + by + z = 4 tiene, al menos, dos soluciones distintas. Para que el sistema tenga, al menos, dos soluciones distintas

Más detalles

mx-y = m 1. [2014] [EXT] Considere el sistema de ecuaciones lineales

mx-y = m 1. [2014] [EXT] Considere el sistema de ecuaciones lineales MasMatescom mx-y = m [04] [EXT] Considere el sistema de ecuaciones lineales, para m x+(m-4)y = m+ a) Discuta el sistema de ecuaciones para los diferentes valores del parámetro m b) Resuelva el sistema

Más detalles

EJERCICIOS DE MATRICES

EJERCICIOS DE MATRICES EJERCICIOS DE MATRICES a) º) Escribir los siguientes sistemas en forma matricial: x+ y= x + y = 0 x+ y z = x+ y+ z = 0 ; b) x y= 3 ; c) y + z = ; d) 6x + y = 4 x + z = 3 x = 3 y = 4 z = 5 ; e) x+y+z+t=3

Más detalles

Soluciones de los ejercicios de Selectividad sobre Matrices y Sistemas de Ecuaciones Lineales de Matemáticas Aplicadas a las Ciencias Sociales II

Soluciones de los ejercicios de Selectividad sobre Matrices y Sistemas de Ecuaciones Lineales de Matemáticas Aplicadas a las Ciencias Sociales II Soluciones de los ejercicios de Selectividad sobre Matrices y Sistemas de Ecuaciones Lineales de Matemáticas Aplicadas a las Ciencias Sociales II Antonio Francisco Roldán López de Hierro * Convocatoria

Más detalles

MATRICES: CÁLCULO DE LA INVERSA MEDIANTE EL DETERMINANTE Y LA ADJUNTA:

MATRICES: CÁLCULO DE LA INVERSA MEDIANTE EL DETERMINANTE Y LA ADJUNTA: MTRICES: TEORÍ COMPLEMEMENTRI Existe otro método para calcular la inversa y que sólo usaremos para matrices cuadradas de orden o de orden 3. Para ello es necesario conocer estos dos conceptos: CÁLCULO

Más detalles

GUÍA DE EJERCICIOS OPERATORIA MATRICES

GUÍA DE EJERCICIOS OPERATORIA MATRICES INSTITUTO DE ESTUDIOS NCRIOS GUILLERMO SUERCSEU Fundado en 99 GUÍ DE EJERCICIOS OPERTORI MTRICES INVESTIGCION DE OPERCIONES SEMESTRE - I.- GUI DE EJERCICIOS DE MTRICES. Sean las matrices y definidas como:

Más detalles

MATEMÁTICAS 2º BACH TECNOL. MATRICES. Profesor: Fernando Ureña Portero MATRICES

MATEMÁTICAS 2º BACH TECNOL. MATRICES. Profesor: Fernando Ureña Portero MATRICES CONCEPTO DE MATRIZ Definición: Se denomina matriz A o (a ij ) a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas : Columnas Filas Elemento a ij : Cada uno

Más detalles

INVERSA DE UNA MATRIZ

INVERSA DE UNA MATRIZ INVERSA DE UNA MATRIZ Profesores Omar Darío Saldarriaga Ortíz Ivan Darío Gómez Hernán Giraldo 2009 Definición Sean x = x 1 x n y y = y 1 y n vectores de n componentes, definimos el producto interno o producto

Más detalles

. Probar que las matrices de la forma B = k A + r I, donde k y r son números. 2x + az = 0. ax + y = n. Calcular: 0 1

. Probar que las matrices de la forma B = k A + r I, donde k y r son números. 2x + az = 0. ax + y = n. Calcular: 0 1 ÁLGEBRA 1 (Junio, 1994) Comprueba que el determinante 3 1 1 1 1 3 1 1 1 1 3 1 1 1 1 3 es nulo sin desarrollarlo Explica el proceso que sigues (Junio, 1994) Considerar la matriz A = 1 1 1 reales e I la

Más detalles

MATRICES 1. Averiguar Si son iguales las siguientes matrices: Dada la matriz A = 131, se pide: 122. , siendo I la matriz unidad de orden 3.

MATRICES 1. Averiguar Si son iguales las siguientes matrices: Dada la matriz A = 131, se pide: 122. , siendo I la matriz unidad de orden 3. MATRICES Averiguar Si son iguales las siguientes matrices: 5 4 4+ 9+ A = 6 ( )( + ) 3 ( )( ) 5 4 5 4 5 B = + Sea A la matriz de una sola fila ( 5 ) y B la de una sola columna (34 t Escribir los productos

Más detalles

Álgebra Lineal, Ejercicios

Álgebra Lineal, Ejercicios Álgebra Lineal, Ejercicios MATRICES 1 Se llama traza de una matriz cuadrada a la suma de los elementos de su diagonal principal Sea G el conjunto de todas las matrices cuadradas de orden n con traza nula

Más detalles

EJERCICIOS DETERMINANTES. 1º/ Calcula el siguiente determinante:

EJERCICIOS DETERMINANTES. 1º/ Calcula el siguiente determinante: EJERCICIOS DETERMINANTES. 1º/ Calcula el siguiente determinante: 3 7 1 2 0 1 1 3 6 a) Usando la Regla de Sarrus. b) Desarrollando por los elementos de la primera columna. 2º/ Obtén el valor del determinante

Más detalles

Matrices, determinantes y sistemas lineales

Matrices, determinantes y sistemas lineales Grado en Óptica y Optometría Curso 00-0 Hoja de ejercicios n o Matrices, determinantes y sistemas lineales 0. Dadas las matrices A y B siguientes, calcule A + B, A B, AB, BA, AA, BB. 0 0 A = 3 0 0 B =

Más detalles

1º Ejercicios para practicar:

1º Ejercicios para practicar: 1º Ejercicios para practicar: 1) Efectúa todos los posibles productos entre las siguientes matrices: 2) Calcula A 2 3A I, siendo A = e I la matriz identidad de orden 2. 3) Realiza la operación B A + C

Más detalles

ÁLGEBRA. 2. [2,5 puntos] Discutir y resolver el siguiente sistema dependiente del parámetro x λy 0 λx y 2 2x λz 0

ÁLGEBRA. 2. [2,5 puntos] Discutir y resolver el siguiente sistema dependiente del parámetro x λy 0 λx y 2 2x λz 0 ÁLGEBRA Junio 94. [,5 puntos] Comprueba que el determinante el proceso que sigues. 3 3 3 3 es nulo sin desarrollarlo. Explica Se basa en la propiedad: si a una línea le sumamos una combinación lineal de

Más detalles

b) y 1 = 10x x 2 y 2 = 25x x 2 d) y 1 = 4x 1 3x 2 y 2 = 2x 1 5x 2

b) y 1 = 10x x 2 y 2 = 25x x 2 d) y 1 = 4x 1 3x 2 y 2 = 2x 1 5x 2 Álgebra lineal Curso 2008-2009 Tema 2 Hoja 1 Tema 2 ÁLGEBRA SUPERIOR 1 Expresar los siguientes sistemas lineales en notación matricial a y 1 = 2x 1 + 3x 2 y 2 = 4x 1 + 2x 2 b y 1 = 10x 1 + 12x 2 y 2 =

Más detalles

Se pide: estudiar su compatibilidad según los valores del parámetro a, y resolverlo cuando sea compatible.(3 puntos).

Se pide: estudiar su compatibilidad según los valores del parámetro a, y resolverlo cuando sea compatible.(3 puntos). PAU. CASTILLA Y LEON - 1998 a x + y z = z PR-1. Dado el sistema x + ay + z = x 3x + 3y + z = y Se pide: estudiar su compatibilidad según los valores del parámetro a, y resolverlo cuando sea compatible.(3

Más detalles

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) 2a 2c 2b 2u 2w 2v. a b c. u v w. p q r. a b c.

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) 2a 2c 2b 2u 2w 2v. a b c. u v w. p q r. a b c. UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) - Calcular los siguientes determinantes: 3 3 a) b) 3 5 5 3 4 5 Hoja : Matrices y sistemas de ecuaciones lineales

Más detalles

SISTEMAS DE ECUACIONES LINEALES Y MATRICES

SISTEMAS DE ECUACIONES LINEALES Y MATRICES y SISTEMAS DE ECUACIONES ES Y MATRICES Sergio Stive Solano 1 Febrero de 2015 1 Visita http://sergiosolanosabie.wikispaces.com y SISTEMAS DE ECUACIONES ES Y MATRICES Sergio Stive Solano 1 Febrero de 2015

Más detalles

Ecuaciones matriciales AX = B y XA = B. Cálculo de la matriz inversa

Ecuaciones matriciales AX = B y XA = B. Cálculo de la matriz inversa Ecuaciones matriciales AX = B y XA = B Cálculo de la matriz inversa Objetivos Aprender a resolver ecuaciones matriciales de la forma AX = B y XA = B Aprender a calcular la matriz inversa con la eliminación

Más detalles

Matrices, determinantes y sistemas lineales

Matrices, determinantes y sistemas lineales UNIVERSIDAD DE MURCIA Departamento de Matemáticas Óptica y Optometría Relación de Problemas n o 7 Curso 008-009 Matrices, determinantes y sistemas lineales 0. Dadas las matrices A y B siguientes, calcule

Más detalles

ÁLGEBRA: Ejercicios de Exámenes

ÁLGEBRA: Ejercicios de Exámenes MATEMÁTICAS º BACH CC. Y TECNOL. ÁLGEBRA: Ejercicios de Eáenes CURSO 3-4.-Dadas las atrices, donde B t es la atri traspuesta de B e I la atri unidad de orden 3. a) (6p.)Estudiar según el paráetro el rango

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- Sea f : R R definida por f(x) = x 3 +ax 2 +bx+c. a) [1 75 puntos] Halla a,b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1 2 y que la recta tangente en

Más detalles

DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES

DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES ALGEBRA DE MATRICES DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES DEFINICIONES 2 Las matrices y los determinantes son herramientas

Más detalles

Ejercicios de la práctica 3

Ejercicios de la práctica 3 Ejercicios de la práctica 3 Ejercicio 1. Consideremos la siguiente matriz 4 2 4 0 A = 2 10 22 4 5 2 5 2. 24 6 16 8 Si R es la forma escalonada por filas de A, calcular, usando MATLAB, las matrices Q y

Más detalles

x-y+2 = 0 z = [2014] [JUN-A] Sea el plano que pasa por los puntos A(1,-1,1), B(2,3,2), C(3,1,0) y r la recta dada por r x-7 2 = y+6

x-y+2 = 0 z = [2014] [JUN-A] Sea el plano que pasa por los puntos A(1,-1,1), B(2,3,2), C(3,1,0) y r la recta dada por r x-7 2 = y+6 1. [014] [EXT-A] Sea el punto A(1,1,) y la recta de ecuación r a) Calcular el plano perpendicular a la recta r que pase por A. b) Calcular la distancia del punto A a la recta r. x-y+ = 0 z =.. [014] [EXT-B]

Más detalles

Matrices, determinantes y sistemas lineales

Matrices, determinantes y sistemas lineales UNIVERSIDAD DE MURCIA Departamento de Matemáticas Óptica y Optometría Relación de Problemas n o 5 Curso 006-007 Matrices, determinantes y sistemas lineales 8. Dadas las matrices A y B siguientes, calcule

Más detalles

x y z 3x 3y 3z b) 3x 3y+2 3z+4. x+2 y+2 z+2

x y z 3x 3y 3z b) 3x 3y+2 3z+4. x+2 y+2 z+2 MasMatescom 1 1 1 [2014] [EXT-A] a) Compruebe que la matriz A = es regular (o inversible) y calcule su matriz inversa -2-3 b) Resuelva la ecuación matricial AXA = B, siendo A la matriz anterior y B = 5-2

Más detalles

TRABAJO PRÁCTICO Nº 1. Matrices = 0 = = + 3 = 0 = = 1 = 2 + < = 0

TRABAJO PRÁCTICO Nº 1. Matrices = 0 = = + 3 = 0 = = 1 = 2 + < = 0 TRABAJO PRÁCTICO Nº 1 Matrices Ejercicio 1: Determine para todo, 1,,3 y para todo 1,,3 : a) La matriz A, donde 0, b) La matriz A, donde c) La matriz C, donde d) La matriz D, donde 0 + 3 0 1 + < 0 e) Para

Más detalles

2. (a) Calcula los puntos del recinto 2x y[20 que hacen mínima la función f(x, y) = 2x + y. Cuántas soluciones hay? (7 puntos)

2. (a) Calcula los puntos del recinto 2x y[20 que hacen mínima la función f(x, y) = 2x + y. Cuántas soluciones hay? (7 puntos) Alumno... Fecha: 25 Noviembre 2011 Opción A 1. En una empresa se produce queso y mantequilla. Para fabricar una unidad de queso se necesitan 10 unidades de leche y 6 unidades de mano de obra y para fabricar

Más detalles

= λ + 1 y el punto A(0, 7, 5)

= λ + 1 y el punto A(0, 7, 5) 94 GEOMETRÍA ANALÍTICA DEL ESPACIO en las PAU de Asturias Dados los puntos A(1, 0, 1), B(l, 1, 1) y C(l, 6, a), se pide: a) hallar para qué valores del parámetro a están alineados b) hallar si existen

Más detalles

y C= determinar la matriz X que verifica la ecuación matricial A B X=C X+I, siendo I =

y C= determinar la matriz X que verifica la ecuación matricial A B X=C X+I, siendo I = EJERCICIOS: TEMA 1: MATRICES. 1º/ Dadas las matrices: A= 2 1 1 0 1 1 1 1, B= 2 0 3 1 y C= 2 1 0 1 determinar la matriz X que verifica la ecuación matricial A B X=C X+I, siendo I = 1 0 0 1. 2º/ Determinar

Más detalles

Matrices, determinantes y sistemas lineales

Matrices, determinantes y sistemas lineales UNIVERSIDAD DE MURCIA Departamento de Matemáticas Óptica y Optometría Relación de Problemas n o 3 Curso 005-006 Matrices, determinantes y sistemas lineales 54. Dadas las matrices A y B siguientes, calcule

Más detalles

Problemas de Álgebra. 1.1 Matrices, Exámenes de Ciencias Sociales. Problema 1 Sean las matrices A = , B = , C =

Problemas de Álgebra. 1.1 Matrices, Exámenes de Ciencias Sociales. Problema 1 Sean las matrices A = , B = , C = Capítulo 1 Problemas de Álgebra 1.1 Matrices, Exámenes de Ciencias Sociales Problema 1 Sean las matrices A = 2 1 0 0 2 1 ), B = 2 1 2 2 ), C = 1 2 0 2 2 0 1. Calcule la matriz P que verifica B P A = C

Más detalles

CONJUNTO R n. = (5, 2, 10) de 3, son linealmente. = (2,1,3) y v 3. = (0,1, 1) y u 3. = (2,0,3, 1), u 3. = (1,1, 0,m), v 2

CONJUNTO R n. = (5, 2, 10) de 3, son linealmente. = (2,1,3) y v 3. = (0,1, 1) y u 3. = (2,0,3, 1), u 3. = (1,1, 0,m), v 2 CONJUNTO R n.- Considerar los vectores u = (, -3, ) y v = (, -, ) de 3 : a) Escribir, si es posible, los vectores (, 7, -4) y (, -5, 4) como combinación lineal de u y v. b) Para qué valores de x es el

Más detalles

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES UNIDD 4 RESOLUCIÓN DE SISTEMS MEDINTE DETERMINNTES Página 00 Resolución de sistemas mediante determinantes x y Resuelve, aplicando x = e y =, los siguientes sistemas de ecuaciones: x 5y = 7 5x + 4y = 6x

Más detalles

ALGUNOS PROBLEMAS DE ÁLGEBRA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2015

ALGUNOS PROBLEMAS DE ÁLGEBRA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2015 ÁLGEBRA (Selectividad 015) 1 ALGUNOS PROBLEMAS DE ÁLGEBRA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 015 1 Aragón, junio 15 1 (3 puntos) a) (1,5 puntos) Considera la matriz y los vectores siguientes:

Más detalles

BLOQUE 1 : ÁLGEBRA. EJERCICIO 1 Resuelve la ecuación : EJERCICIO 4 Dado el sistema de ecuaciones :

BLOQUE 1 : ÁLGEBRA. EJERCICIO 1 Resuelve la ecuación : EJERCICIO 4 Dado el sistema de ecuaciones : EJERCICIO 1 Resuelve la ecuación : BLOQUE 1 : ÁLGEBRA = 0 EJERCICIO 2 Dado el sistema de ecuaciones : a) Discutirlo según los distintos valores de k. b) Resolverlo en los casos en que sea posible. EJERCICIO

Más detalles

SISTEMAS LINEALES CLASIFICACIÓN DE LOS SISTEMAS LINEALES. 1. Resolver:

SISTEMAS LINEALES CLASIFICACIÓN DE LOS SISTEMAS LINEALES. 1. Resolver: SISTEMAS LINEALES Se llama sistema de ecuaciones, o, sistema de ecuaciones simultáneas al conjunto de dos o más ecuaciones que se verifican para un mismo valor de la, o, las incógnitas. Ejemplo: El sistema:

Más detalles

BLOQUE II : GEOMETRIA EN EL ESPACIO.

BLOQUE II : GEOMETRIA EN EL ESPACIO. MATEMÁTICAS : 2º Curso PROBLEMAS : Bloque II 1 BLOQUE II : GEOMETRIA EN EL ESPACIO. 1.- Sea ABCDA'B'C'D' un cubo.: a) Hállense las coordenadas del centro de la cara CDD'C' en el sistema de referencia R=

Más detalles

Procedimiento para encontrar la inversa de una matriz cuadrada (Método de Gauss-Jordan).

Procedimiento para encontrar la inversa de una matriz cuadrada (Método de Gauss-Jordan). Ejemplo 19: Demuestre que la matriz A es invertible y escríbala como un producto de matrices elementales. Solución: Para resolver el problema, se reduce A a I y se registran las operaciones elementales

Más detalles

Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2013) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2013) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas Aplicadas a las CC. Sociales II Septiembre 2013 Selectividad-Opción A Tiempo: 90 minutos Problema 1 2 puntos Se consideran las matrices A = 3 8. 3 5 0 2 3 0 y B = a Calcúlese la matriz

Más detalles

Definición de la matriz inversa

Definición de la matriz inversa Definición de la matriz inversa Objetivos Aprender la definición de la matriz inversa Requisitos Multiplicación de matrices, habilidades básicas de resolver sistemas de ecuaciones Ejemplo El número real

Más detalles

Colegio Portocarrero. Curso Departamento de matemáticas. Sistemas, matrices, programación lineal resueltos.

Colegio Portocarrero. Curso Departamento de matemáticas. Sistemas, matrices, programación lineal resueltos. Sistemas, matrices, programación lineal resueltos. Problema 1: Sean las matrices Encuentra el valor o valores de x de forma que B 2 = A Problema 2: En la remodelación de un centro de enseñanza se quiera

Más detalles

Tema 1: MATRICES. OPERACIONES CON MATRICES

Tema 1: MATRICES. OPERACIONES CON MATRICES Tema 1: MATRICES. OPERACIONES CON MATRICES 1. DEFINICIÓN Y TIPO DE MATRICES DEFINICIÓN. Una matriz es un conjunto de números reales dispuestos en filas y columnas. Si en ese conjunto hay m n números escritos

Más detalles

APLICACIÓN DE LAS MATRICES Modelos de Entrada-Salida de Leontief

APLICACIÓN DE LAS MATRICES Modelos de Entrada-Salida de Leontief APLICACIÓN DE LAS MATRICES Modelos de Entrada-Salida de Leontief El modelo desarrollado por Wassily Leontief, es una aplicación interesante de las matrices, que fue útil para pronosticar los efectos en

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A xcos(x)+b sen(x) Ejercicio 1.- [2 5 puntos] Sabiendo que lím x 0 x 3 es finito, calcula b y el valor del límite. Ejercicio 2.- Sean f : R R y g : R R las funciones definidas mediante f(x) = x(x

Más detalles

hora depende del nivel en que se encuentren y de que el aula disponga o no de puestos de

hora depende del nivel en que se encuentren y de que el aula disponga o no de puestos de MATRICES - - MATRICES. Resuelve la ecuación matricial siguiente e indica la dimensión de la matriz X: 0 2 2 4 3 3 2 X = 3 0 2 0 2 4 6 3 0 2. En un centro de estudios de idiomas los alumnos de Francés y

Más detalles

ÁLGEBRA DE MATRICES. Al consejero A no le gusta ninguno de sus colegas como presidente.

ÁLGEBRA DE MATRICES. Al consejero A no le gusta ninguno de sus colegas como presidente. ÁLGEBRA DE MATRICES Página 47 REFLEXIONA Y RESUELVE Elección de presidente Ayudándote de la tabla, estudia detalladamente los resultados de la votación, analiza algunas características de los participantes

Más detalles

I.E.S. CASTILLO DE LUNA Curso Segundo de Bachillerato Aplicado a las Ciencias Sociales Mayo-2011 Asignatura completa

I.E.S. CASTILLO DE LUNA Curso Segundo de Bachillerato Aplicado a las Ciencias Sociales Mayo-2011 Asignatura completa I.E.S. CASTILLO DE LUNA Curso 2010-2011 Segundo de Bachillerato Aplicado a las Ciencias Sociales Mayo-2011 Asignatura completa Nombre: Cali cación: Ejercicio 1: (2 puntos) Un vendedor quiere dar salida

Más detalles

Ejercicios de Matrices, determinantes y sistemas de ecuaciones lineales. Álgebra 2008

Ejercicios de Matrices, determinantes y sistemas de ecuaciones lineales. Álgebra 2008 Ejercicios de Matrices, determinantes sistemas de ecuaciones lineales. Álgebra 8 - Dado el sistema de ecuaciones lineales 5 (a) ['5 puntos] Clasifícalo según los valores del parámetro λ. (b) [ punto] Resuélvelo

Más detalles

Algebra Lineal XXVI: La Regla de Cramer.

Algebra Lineal XXVI: La Regla de Cramer. Algebra Lineal XXVI: La Regla de Cramer José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato email: jrico@salamancaugtomx

Más detalles

Matrices 3. Matrices. Verónica Briceño V. agosto 2012

Matrices 3. Matrices. Verónica Briceño V. agosto 2012 3 agosto 2012 En esta Presentación... En esta Presentación veremos: Matriz Inversa En esta Presentación... En esta Presentación veremos: Matriz Inversa Determinante En esta Presentación... En esta Presentación

Más detalles

Definición de la matriz inversa

Definición de la matriz inversa Definición de la matriz inversa Ejercicios Objetivos Aprender la definición de la matriz inversa Requisitos Multiplicación de matrices, matriz identidad, habilidades básicas de resolver sistemas de ecuaciones

Más detalles

MATRICES Y DETERMINANTES

MATRICES Y DETERMINANTES TEMA 2 MATRICES Y DETERMINANTES Contenidos Criterios de Evaluación 1. Generalidades. 2. Suma de matrices y producto por un número. 3. Producto de matrices. 4. Matriz inversa. 5. Determinantes de segundo

Más detalles

MATRICES. Calcula la matriz X, tal que X B + A = C siendo: Considera las matrices. matriz X que verifica que X A + B = I. Dada la matriz A =

MATRICES. Calcula la matriz X, tal que X B + A = C siendo: Considera las matrices. matriz X que verifica que X A + B = I. Dada la matriz A = MATRICES. Calcula la matri X, tal que X B + A = C siendo: A, B, 6 C Considera las matrices A B, Calcula la matri X que verifica que X A + B = I. Dada la matri 6 A, calcula, si eisten las siguientes matrices:

Más detalles

EJERCICIOS Y PROBLEMAS PROPUESTOS (ÁLGEBRA)

EJERCICIOS Y PROBLEMAS PROPUESTOS (ÁLGEBRA) EJERCICIOS Y PROBLEMAS PROPUESTOS (ÁLGEBRA) 1.- Sea el sistema de inecuaciones x+ y 6 3x y 13 x + 3y 3 x 0 a) Dibuje el recinto cuyos puntos son las soluciones del sistema y obtenga sus vértices. b) Halle

Más detalles