Fundamentos de Robótica

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Fundamentos de Robótica"

Transcripción

1 Fundamentos de Robótica Cuaterniones Ricardo-Franco Mendoza-Garcia Escuela Universitaria de Ingeniería Mecánica Universidad de Tarapacá Arica, Chile June 9, 2014 R. F. Mendoza-Garcia (Mecánica, UTA) Cuaterniones June 9, / 25

2 Outline Outline 1 Introducción 2 Números Complejos Definición Operaciones El plano complejo Rotores 3 Cuaterniones 4 Referencias R. F. Mendoza-Garcia (Mecánica, UTA) Cuaterniones June 9, / 25

3 Introducción Outline 1 Introducción 2 Números Complejos Definición Operaciones El plano complejo Rotores 3 Cuaterniones 4 Referencias R. F. Mendoza-Garcia (Mecánica, UTA) Cuaterniones June 9, / 25

4 Introducción Introducción Los cuaterniones permiten representar rotaciones con menos parámetros que las matrices de rotación. También permiten la representación de traslaciones. Debido a que su manejo computacional demanda menos memoria que las matrices de transformación homogéneas, son una herramienta matemática común en la implementación de algoritmos de control de robots. Aunque son más abstractos que las transformaciones, son relativamente fáciles de entender remarcando sus analogías con números complejos. R. F. Mendoza-Garcia (Mecánica, UTA) Cuaterniones June 9, / 25

5 Outline 1 Introducción 2 Números Complejos Definición Operaciones El plano complejo Rotores 3 Cuaterniones 4 Referencias R. F. Mendoza-Garcia (Mecánica, UTA) Cuaterniones June 9, / 25

6 Definición Definición El conjunto de números complejos, C, se define como: z = a + bi; a, b R; i 2 = 1 R. F. Mendoza-Garcia (Mecánica, UTA) Cuaterniones June 9, / 25

7 Operaciones Suma (a 1 + b 1 i) + (a 2 + b 2 i) (a 1 + a 2 ) + (b 1 + b 2 )i Resta (a 1 + b 1 i) (a 2 + b 2 i) (a 1 a 2 ) + (b 1 b 2 )i Multiplicación por un escalar λ(a + bi) λa + λbi R. F. Mendoza-Garcia (Mecánica, UTA) Cuaterniones June 9, / 25

8 Operaciones Multiplicación de números complejos z 1 = (a 1 + b 1 i) z 2 = (a 2 + b 2 i) z 1 z 2 = (a 1 + b 1 i)(a 2 + b 2 i) = a 1 a 2 + a 1 b 2 i + b 1 a 2 i + b 1 b 2 i 2 = (a 1 a 2 b 1 b 2 ) + (a 1 b 2 + b 1 a 2 )i Cuadrado de un número complejo z = (a + bi) z 2 = (a + bi)(a + bi) = (a 2 b 2 ) + 2abi R. F. Mendoza-Garcia (Mecánica, UTA) Cuaterniones June 9, / 25

9 Operaciones Conjugado de un número complejo (z ) z = (a + bi) z = (a bi) La multiplicación de un complejo por su conjugado da un resultado especial: Multiplicación de un complejo por su conjugado z = (a + bi) z = (a bi) zz = (a + bi)(a bi) = a 2 abi + abi + b 2 = a 2 + b 2 R. F. Mendoza-Garcia (Mecánica, UTA) Cuaterniones June 9, / 25

10 Operaciones Valor absoluto de un número complejo z = (a + bi) z = zz = (a + bi)(a bi) = a 2 + b 2 R. F. Mendoza-Garcia (Mecánica, UTA) Cuaterniones June 9, / 25

11 Operaciones Cociente de dos números complejos z 1 = (a 1 + b 1 i) z 2 = (a 2 + b 2 i) z 1 = a 1 + b 1 i z 2 a 2 + b 2 i = (a 1 + b 1 i)(a 2 b 2 i) (a 2 + b 2 i)(a 2 b 2 i) = a 1a 2 a 1 b 2 i + b 1 a 2 i b 1 b 2 i 2 a b2 2 = a 1a 2 + b 1 b 2 a b2 2 + b 1a 2 a 1 b 2 a2 2 + i b2 2 R. F. Mendoza-Garcia (Mecánica, UTA) Cuaterniones June 9, / 25

12 Operaciones Potencias de i i 0 = 1 i 1 = i i 2 = 1 i 3 = ii 2 = i i 4 = i 2 i 2 = 1 i 5 = ii 4 = i i 6 = ii 5 = i 2 = 1 Luego, se repite un patrón: (1, i, 1, i, 1,... ) R. F. Mendoza-Garcia (Mecánica, UTA) Cuaterniones June 9, / 25

13 Operaciones... y un patrón similar se repite al incrementar potencias negativas: Potencias de i i 0 = 1 i 1 = i i 2 = 1 i 3 = i i 4 = 1 i 5 = i i 6 = 1 Luego, se repite un patrón: (1, i, 1, i, 1,... ) R. F. Mendoza-Garcia (Mecánica, UTA) Cuaterniones June 9, / 25

14 El plano complejo El plano cartesiano Se repite un patrón similar rotando en sentido anti-horario: (x, y, x, y, x,... ) R. F. Mendoza-Garcia (Mecánica, UTA) Cuaterniones June 9, / 25

15 El plano complejo El plano complejo Se repiten las potencias de i" girando en sentido anti-horario: (1, i, 1, i, 1,... ) R. F. Mendoza-Garcia (Mecánica, UTA) Cuaterniones June 9, / 25

16 El plano complejo Ejemplo de rotación: p = 2 + i q = p i resulta en: p = 2 + i q = pi = (2 + i)i = 2i + i 2 = 1 + 2i s = r i resulta en: r = 2 i s = ri = ( 2 i)i = 2i i 2 = 1 2i... luego se repite la secuencia. r = q i resulta en: q = 1 + 2i r = qi = ( 1 + 2i)i = i + 2i 2 = 2 i t = s i resulta en: s = 1 2i t = si = (1 2i)i = i 2i 2 = 2 + i R. F. Mendoza-Garcia (Mecánica, UTA) Cuaterniones June 9, / 25

17 El plano complejo El plano complejo R. F. Mendoza-Garcia (Mecánica, UTA) Cuaterniones June 9, / 25

18 Rotores Rotores Se pueden hacer rotaciones arbitrarias, θ, mediante la multiplicación por un número complejo: q = cos θ + i sin θ... p = a + bi q = cos θ + i sin θ pq = (a + bi)(cos θ + i sin θ) a + b i = a cos θ b sin θ + (a sin θ + b cos θ)i O mediante representación matricial... [... a b ] [ ] [ ] cos θ sin θ a b b a = sin θ cos θ b a R. F. Mendoza-Garcia (Mecánica, UTA) Cuaterniones June 9, / 25

19 Cuaterniones Outline 1 Introducción 2 Números Complejos Definición Operaciones El plano complejo Rotores 3 Cuaterniones 4 Referencias R. F. Mendoza-Garcia (Mecánica, UTA) Cuaterniones June 9, / 25

20 Cuaterniones Definiciones Los cuaterniones están compuestos de 4 elementos: uno real, q 0, y tres imaginarios, q 1, q 2 y q 3. La parte imaginaria se puede considerar un vector 3D. Para rotar vectores 3D utilizando cuaterniones, se utiliza el siguiente rotor:... aplicado de la siguiente forma: R. F. Mendoza-Garcia (Mecánica, UTA) Cuaterniones June 9, / 25

21 Cuaterniones Definiciones Una rotación Q 1 seguida de una rotación Q 2 se compone simplemente como:,... en ese orden. La multiplicación de cuaterniones no es conmutativa. R. F. Mendoza-Garcia (Mecánica, UTA) Cuaterniones June 9, / 25

22 Cuaterniones Definiciones Además: Traslación seguida de rotación: Rotación seguida de traslación: Con Q y p definidos con respecto al sistema de referencia móvil. Traslación seguida de rotación: Rotación seguida de traslación: Con Q y p definidos con respecto al sistema de referencia fijo. R. F. Mendoza-Garcia (Mecánica, UTA) Cuaterniones June 9, / 25

23 Cuaterniones Ejemplo R. F. Mendoza-Garcia (Mecánica, UTA) Cuaterniones June 9, / 25

24 Referencias Outline 1 Introducción 2 Números Complejos Definición Operaciones El plano complejo Rotores 3 Cuaterniones 4 Referencias R. F. Mendoza-Garcia (Mecánica, UTA) Cuaterniones June 9, / 25

25 Referencias Bibliografía Barrientos, A., Peñín, L.F., Balaguer, C., y Aracil, R., 2007, Fundamentos de Robótica, 2nd edition, McGraw-Hill. R. F. Mendoza-Garcia (Mecánica, UTA) Cuaterniones June 9, / 25

Rotaciones en MatLab mediante Matrices de Rotación y Cuaterniones

Rotaciones en MatLab mediante Matrices de Rotación y Cuaterniones Rotaciones en MatLab mediante Matrices de Rotación y Cuaterniones Carlos Alberto Edo Solera ÍNDICE: 1.- Rotaciones mediante cuaterniones 2.- Álgebra de cuaterniones. 3.- Cuaterniones con MatLab. 1.- Rotaciones

Más detalles

LA FORMA TRIGONOMETRICA DE LOS NUMEROS COMPLEJOS Y EL TEOREMA DE MOIVRE. Capítulo 7 Sec. 7.5 y 7.6

LA FORMA TRIGONOMETRICA DE LOS NUMEROS COMPLEJOS Y EL TEOREMA DE MOIVRE. Capítulo 7 Sec. 7.5 y 7.6 LA FORMA TRIGONOMETRICA DE LOS NUMEROS COMPLEJOS Y EL TEOREMA DE MOIVRE Capítulo 7 Sec. 7.5 y 7.6 El Plano Complejo Se puede utilizar un plano de coordenadas para representar números complejos. Si cada

Más detalles

INGENIERÍA PROFESIONAL EN INOCUIDAD ALIMENTARIA EN COMPETENCIAS PROFESIONALES ASIGNATURA DE ROBÓTICA

INGENIERÍA PROFESIONAL EN INOCUIDAD ALIMENTARIA EN COMPETENCIAS PROFESIONALES ASIGNATURA DE ROBÓTICA INGENIERÍA PROFESIONAL EN INOCUIDAD ALIMENTARIA EN COMPETENCIAS PROFESIONALES ASIGNATURA DE ROBÓTICA UNIDADES DE APRENDIZAJE 1. Competencias Automatizar procesos de producción mediante la implementación

Más detalles

MA3002. Matemáticas Avanzadas para Ingeniería: Números Complejos. Departamento de Matemáticas. Introducción. Igualdad. Suma y resta.

MA3002. Matemáticas Avanzadas para Ingeniería: Números Complejos. Departamento de Matemáticas. Introducción. Igualdad. Suma y resta. MA3002 Los números complejos, simbolizados por C, son una generalización los números reales. Una generalización algebraica muy interesante: Toda ecuación polinomial c n z n + c n 1 z n 1 + + c 1 z + c

Más detalles

Robótica Industrial. Clase 03: Simulación y Programación de Robots Industriales

Robótica Industrial. Clase 03: Simulación y Programación de Robots Industriales Robótica Industrial Clase 03: Simulación y Programación de Robots Industriales Ricardo Mendoza [email protected] Manuel Fuentes [email protected] Escuela Universitaria de Ingeniería Mecánica Universidad

Más detalles

2. El conjunto de los números complejos

2. El conjunto de los números complejos Números complejos 1 Introducción El nacimiento de los números complejos se debió a la necesidad de dar solución a un problema: no todas las ecuaciones polinómicas poseen una solución real El ejemplo más

Más detalles

Matemáticas Discretas TC1003

Matemáticas Discretas TC1003 Matemáticas Discretas TC13 Matrices: Conceptos y Operaciones Básicas Departamento de Matemáticas ITESM Matrices: Conceptos y Operaciones Básicas Matemáticas Discretas - p. 1/25 Una matriz A m n es un arreglo

Más detalles

Materia: Matemática de 5to Tema: Método de Cramer. Marco Teórico

Materia: Matemática de 5to Tema: Método de Cramer. Marco Teórico Materia: Matemática de 5to Tema: Método de Cramer Marco Teórico El determinante se define de una manera aparentemente arbitraria, sin embargo, cuando se mira a la solución general de una matriz, el razonamiento

Más detalles

GUÍA DOCENTE DISEÑO E SISTEMAS DE CONTROL Y ROBÓTICA Grado en Ingeniería Electrónica Industrial y Automática

GUÍA DOCENTE DISEÑO E SISTEMAS DE CONTROL Y ROBÓTICA Grado en Ingeniería Electrónica Industrial y Automática Año académico 2015-16 GUÍA DOCENTE DISEÑO E SISTEMAS DE CONTROL Y ROBÓTICA Grado en Ingeniería Electrónica Industrial y Automática Profesorado: Marcel Tresanchez Ribes Información general de la asignatura

Más detalles

Álgebra Lineal IV: Espacios Vectoriales.

Álgebra Lineal IV: Espacios Vectoriales. Álgebra Lineal IV: Espacios Vectoriales José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato email: jrico@salamancaugtomx

Más detalles

MA3002. Matemáticas Avanzadas para Ingeniería: Números Complejos. Departamento de Matemáticas. Introducción. Igualdad. Suma y resta.

MA3002. Matemáticas Avanzadas para Ingeniería: Números Complejos. Departamento de Matemáticas. Introducción. Igualdad. Suma y resta. MA300 Propiedas Propiedas Los números complejos simbolizados por C son una generalización los números reales. Una generalización algebraica muy interesante: Toda ecuación polinomial c n z n + c n 1 z n

Más detalles

Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 =

Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 1. NÚMEROS NATURALES POTENCIAS DE UN NÚMERO NATURAL Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3 El factor que se repite es la base, y el número de veces que se repite

Más detalles

Álgebra Lineal II: Grupos y campos, prueba de los axiomas del campo de los números complejos, forma polar de números complejos.

Álgebra Lineal II: Grupos y campos, prueba de los axiomas del campo de los números complejos, forma polar de números complejos. Álgebra Lineal II: Grupos y campos, prueba de los axiomas del campo de los números complejos, forma polar de números complejos. José María Rico Martínez Departamento de Ingeniería Mecánica División de

Más detalles

Dinámica del Robot. UCR ECCI CI-2657 Robótica Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Dinámica del Robot. UCR ECCI CI-2657 Robótica Prof. M.Sc. Kryscia Daviana Ramírez Benavides UCR ECCI CI-2657 Robótica Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción La dinámica se ocupa de la relación entre las fuerzas que actúan sobre un cuerpo y el movimiento en el que se origina.

Más detalles

. De R (Reales) a C (Complejos)

. De R (Reales) a C (Complejos) INTRODUCCIÓN Los números complejos se introducen para dar sentido a la raíz cuadrada de números negativos. Así se abre la puerta a un curioso y sorprendente mundo en el que todas las operaciones (salvo

Más detalles

Familiarizar al alumno con las distintas maneras de expresar números complejos.

Familiarizar al alumno con las distintas maneras de expresar números complejos. Capítulo 2 Aritmética compleja Objetivos Familiarizar al alumno con las distintas maneras de expresar números complejos. Manejar con soltura las operaciones aritméticas con números complejos. 2.1. Representaciones

Más detalles

Clase 8 Matrices Álgebra Lineal

Clase 8 Matrices Álgebra Lineal Clase 8 Matrices Álgebra Lineal Código Escuela de Matemáticas - Facultad de Ciencias Universidad Nacional de Colombia Matrices Definición Una matriz es un arreglo rectangular de números denominados entradas

Más detalles

OPTIMIZACIÓN VECTORIAL

OPTIMIZACIÓN VECTORIAL OPTIMIZACIÓN VECTORIAL Métodos de Búsqueda Directa Utilizan sólo valores de la función Métodos del Gradiente Métodos de Segundo Orden Requieren valores aproimados de la primera derivada de f) Además de

Más detalles

UNIVERSIDAD TECNICA LUIS VARGAS TORRES DE ESMERALDAS FACULTAD DE INGENIERÍAS Y TECNOLOGÍAS SILABO DE ALGEBRA LINEAL

UNIVERSIDAD TECNICA LUIS VARGAS TORRES DE ESMERALDAS FACULTAD DE INGENIERÍAS Y TECNOLOGÍAS SILABO DE ALGEBRA LINEAL UNIVERSIDAD TECNICA LUIS VARGAS TORRES DE ESMERALDAS FACULTAD DE INGENIERÍAS Y TECNOLOGÍAS SILABO DE ALGEBRA LINEAL 1. DATOS INFORMATIVOS: Facultad: Ingenierías y Tecnologías Escuela: Ingeniería Mecánica

Más detalles

Visión artificial y Robótica Modelos de movimiento y mapas. Depto. de Ciencia de la Computación e Inteligencia Artificial

Visión artificial y Robótica Modelos de movimiento y mapas. Depto. de Ciencia de la Computación e Inteligencia Artificial Visión artificial y Robótica Modelos de movimiento y mapas Depto. de Ciencia de la Computación e Inteligencia Artificial Contenidos Sistemas de coordenadas Localización de objetos en el espacio Modelos

Más detalles

Algebra Lineal: Transformaciones Lineales. Departamento de Matemáticas. Intro. T. Matricial. T. Lineal. Rango

Algebra Lineal: Transformaciones Lineales. Departamento de Matemáticas. Intro. T. Matricial. T. Lineal. Rango Algebra ducción Des el punto vista l Algebra Lineal, las funciones más importantes son las que preservan las combinaciones lineales. Estas funciones se llamarán. Es esta presentación se tratan con los

Más detalles

NÚMEROS COMPLEJOS: C

NÚMEROS COMPLEJOS: C NÚMEROS COMPLEJOS: C Alejandro Lugon 21 de mayo de 2010 Resumen Este es un pequeño estudio de los números complejos con el objetivo de poder usar las técnicas de solución de ecuaciones y sistemas diferenciales

Más detalles

TEORÍA DE GRAFOS Ingeniería de Sistemas

TEORÍA DE GRAFOS Ingeniería de Sistemas TEORÍA DE GRAFOS Ingeniería de Sistemas Código: MAT-31114 AUTORES Ing. Daniel Zambrano Ing. Viviana Semprún UNIDADES DE LA ASIGNATURA» UNIDAD I. Relaciones» UNIDAD II. Estructuras Algebraicas» UNIDAD III.

Más detalles

DISEÑO CURRICULAR ALGEBRA LINEAL

DISEÑO CURRICULAR ALGEBRA LINEAL DISEÑO CURRICULAR ALGEBRA LINEAL FACULTAD (ES) CARRERA (S) Ingeniería Computación y Sistemas CÓDIGO HORAS TEÓRICAS HORAS PRÁCTICAS UNIDADES DE CRÉDITO SEMESTRE 122443 02 02 03 II PRE-REQUISITO ELABORADO

Más detalles

Cinemática Directa del Robot. CI-2657 Robótica M.Sc. Kryscia Ramírez Benavides

Cinemática Directa del Robot. CI-2657 Robótica M.Sc. Kryscia Ramírez Benavides M.Sc. Kryscia Ramírez Benavides Introducción Consiste en determinar cual es la posición y orientación del extremo final del robot, con respecto a un sistema de coordenadas que se toma como referencia,

Más detalles

Álgebra Lineal III: Sistemas de ecuaciones lineales: Definición y

Álgebra Lineal III: Sistemas de ecuaciones lineales: Definición y Álgebra Lineal III: Sistemas de ecuaciones lineales: Definición y solución. José María Rico Martínez Departamento de Ingeniería Mecánica División de Ingenierías, Campus Irapuato-Salamanca Universidad de

Más detalles

El medir y las Cantidades Físicas escalares y vectores en física. Prof. R. Nitsche C. Física Medica UDO Bolívar

El medir y las Cantidades Físicas escalares y vectores en física. Prof. R. Nitsche C. Física Medica UDO Bolívar El medir y las Cantidades Físicas escalares y vectores en física Prof. R. Nitsche C. Física Medica UDO Bolívar Medir Medir es el requisito de toda ciencia empírica (experimental); medir significa simplemente

Más detalles

Problema Cinemático Directo

Problema Cinemático Directo Problema Cinemático Directo Parámetros Denavit-Hartenberg Denavit-Hartenberg notación Craig Denavit-Hartenberg notación Craig Denavit-Hartenberg notación Craig Denavit-Hartenberg notación Craig Denavit-Hartenberg

Más detalles

6 DINAMICA DEL CUERPO RIGIDO

6 DINAMICA DEL CUERPO RIGIDO 6 DINAMICA DEL CUERPO RIGIDO 6. CINEMATICA 6.. Configuracion de un Cuerpo Rígido: Angulos de Euler Un cuerpo rígido se puede entender como una distribución continua de materia que se subdivide en pequeños

Más detalles

Mapa Curricular: Funciones y Modelos

Mapa Curricular: Funciones y Modelos A.PR.11.2.1 Determina el dominio y el alcance de las funciones a partir de sus diferentes representaciones. A.PR.11.2.2 Identifica y aplica las relaciones entre los puntos importantes de una función (ceros,

Más detalles

NUMEROS COMPLEJOS. Se llama unidad imaginaria a un ente abstracto i, al que se le atribuye la propiedad de que su cuadrado es -1: i ² = -1.

NUMEROS COMPLEJOS. Se llama unidad imaginaria a un ente abstracto i, al que se le atribuye la propiedad de que su cuadrado es -1: i ² = -1. Contenido Apunte de Números complejos o imaginarios: Suma y producto de números complejos. División. Raíz cuadrada. Conjugado. Módulo y argumento. Fórmula De Moivre. Raíces. Primera parte NUMEROS COMPLEJOS

Más detalles

Indagación en diversas fuentes de información acerca de la existencia de los números irracionales. Análisis de situaciones

Indagación en diversas fuentes de información acerca de la existencia de los números irracionales. Análisis de situaciones NÚMEROS REALES OBJETIVOS CONTENIDOS 1.Analizar situaciones Existencia de que números irra- hacen evidente cionales. la existencia de números PROCEDIMIENTOS Indagación en diversas fuentes de información

Más detalles

y cualquier par (x, y) puede escalarse, multiplicarse por un número real s, para obtener otro vector (sx, sy).

y cualquier par (x, y) puede escalarse, multiplicarse por un número real s, para obtener otro vector (sx, sy). UNIDAD II: VECTORES EN DOS Y TRES DIMENSIONES Un espacio vectorial (o espacio lineal) es el objeto básico de estudio en la rama de la matemática llamada álgebra lineal. A los elementos de los espacios

Más detalles

DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES

DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES ALGEBRA DE MATRICES DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES DEFINICIONES 2 Las matrices y los determinantes son herramientas

Más detalles

Algebra Lineal XIX: Rango de una Matriz y Matriz Inversa.

Algebra Lineal XIX: Rango de una Matriz y Matriz Inversa. Algebra Lineal XIX: Rango de una Matriz y Matriz Inversa José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato email:

Más detalles

Conjunto R 3 y operaciones lineales en R 3

Conjunto R 3 y operaciones lineales en R 3 Conjunto R 3 y operaciones lineales en R 3 Objetivos. Definir el conjunto R 3 y operaciones lineales en R 3. Requisitos. Conjunto de los números reales R, propiedades de las operaciones aritméticas en

Más detalles

TRA NSFORMACIO N ES LIN EA LES

TRA NSFORMACIO N ES LIN EA LES TRA NSFORMACIO N ES LIN EA LES C o m p uta c i ó n G r á fica Tipos de Datos Geométricos T Un punto se puede representar con tres números reales [x,y,z] que llamaremos vector coordenado. Los números especifican

Más detalles

Robótica Industrial. Clase 01: Clasificación y Aplicaciones de los Robots Industriales

Robótica Industrial. Clase 01: Clasificación y Aplicaciones de los Robots Industriales Robótica Industrial Clase 01: Clasificación y Aplicaciones de los Robots Industriales Ricardo Mendoza [email protected] Manuel Fuentes [email protected] Escuela Universitaria de Ingeniería Mecánica Universidad

Más detalles

EL NÚMERO COMPLEJO. Los números complejos. Distintas expresiones del número complejo. Operaciones con números complejos.

EL NÚMERO COMPLEJO. Los números complejos. Distintas expresiones del número complejo. Operaciones con números complejos. EL NÚMERO COMPLEJO. Los números complejos. Distintas expresiones del número complejo. Operaciones con números complejos. 1. Introducción Los números complejos o imaginarios nacen de la necesidad de resolver

Más detalles

Tema: Los Grafos y su importancia para la optimización de redes.

Tema: Los Grafos y su importancia para la optimización de redes. Tema: Los Grafos y su importancia para la optimización de redes. Qué son los Grafos? Un grafo es una dupla G= {X,U}, donde X es un conjunto finito y no vacio de elementos llamados vértices y U es el conjunto

Más detalles

MICRODISEÑO CURRICULAR FACULTAD DE CIENCIAS EXACTAS Y APLICADA. Créditos 4 TPS 4 TIS 8 TPT 64 TIT 128

MICRODISEÑO CURRICULAR FACULTAD DE CIENCIAS EXACTAS Y APLICADA. Créditos 4 TPS 4 TIS 8 TPT 64 TIT 128 FACULTAD DE CIENCIAS EXACTAS Y APLICADA 1. IDENTIFICACIÓN Asignatura Algebra Lineal Área Ciencias Básicas Código ALX04 Correquisitos Prerrequisitos Créditos 4 TPS 4 TIS 8 TPT 64 TIT 128 2. JUSTIFICACIÓN

Más detalles

El pipeline de visualización es el conjunto de

El pipeline de visualización es el conjunto de Sistemas de Visualización Pipeline de visualización 3D Definición del modelo geométrico Transformaciones geométricas Transformaciones de visualización Volumen de visualización Proyecciones Pipeline de

Más detalles

PASAPALABRA BLOQUE NÚMEROS

PASAPALABRA BLOQUE NÚMEROS EMPIEZA POR A 1) Rama de las Matemáticas que se encarga del estudio de los números y sus propiedades: ARITMÉTICA 2) Valor de una cifra, independientemente del lugar que ocupe o del signo que la precede:

Más detalles

Números Complejos Matemáticas Básicas 2004

Números Complejos Matemáticas Básicas 2004 Números Complejos Matemáticas Básicas 2004 21 de Octubre de 2004 Los números complejos de la forma (a, 0) Si hacemos corresponder a cada número real a, el número complejo (a, 0), tenemos una relación biunívoca.

Más detalles

FUNDAMENTOS DE ROBÓTICA

FUNDAMENTOS DE ROBÓTICA ASIGNATURA DE GRADO: FUNDAMENTOS DE ROBÓTICA Curso 2015/2016 (Código:71013087) 1.PRESENTACIÓN DE LA ASIGNATURA Se trata de una asignatura cuatrimestral optativa, ubicada en el segundo cuatrimestre del

Más detalles

Bases Matemáticas para la Educación Primaria. Guía de Estudio. Tema 3: Números racionales. Parte I: Fracciones y razones Números racionales

Bases Matemáticas para la Educación Primaria. Guía de Estudio. Tema 3: Números racionales. Parte I: Fracciones y razones Números racionales Bases Matemáticas para la Educación Primaria Guía de Estudio Tema 3: Números racionales Parte I: Fracciones y razones Números racionales 1 Situación introductoria ANÁLISIS DE CONOCIMIENTOS PUESTOS EN JUEGO

Más detalles

Diseño de un motor de rotación gráfico 3D basado en el algoritmo CORDIC

Diseño de un motor de rotación gráfico 3D basado en el algoritmo CORDIC Sistemas Digitales - 66.17 Trabajo Práctico Diseño de un motor de rotación gráfico 3D basado en el algoritmo CORDIC Primer Cuatrimestre de 2013 Sistemas Digitales - 66.17 Facultad de Ingeniería - UBA 2

Más detalles

TSTC. Dpt. Teoría de la Señal, Telemática y Comunicaciones Tema 2 CINEMÁTICA DE MANIPULADORES

TSTC. Dpt. Teoría de la Señal, Telemática y Comunicaciones Tema 2 CINEMÁTICA DE MANIPULADORES Dpt. Teoría de la Señal, Telemática y Comunicaciones Tema 2 CINEMÁTICA DE MANIPULADORES Secciones 1. Introducción. 2. Coordenadas y Transformaciones Homogéneas. 3. Problema Cinemático Directo. Método de

Más detalles

2015, Año del Generalísimo José María Morelos y Pavón

2015, Año del Generalísimo José María Morelos y Pavón Nombre de la Asignatura: ROBOTICA Línea de Investigación o Trabajo: PROCESAMIENTO DE SEÑALES ELECTRICAS Y ELECTRONICAS Tiempo de dedicación del estudiante a las actividades de: DOC-TIS-TPS-CRÉDITOS 48

Más detalles

Guía Docente de Fundamentos Físicos de la Robótica

Guía Docente de Fundamentos Físicos de la Robótica Guía Docente de Fundamentos Físicos de la Robótica 1. ESQUEMA GENERAL 1.1.- Datos identificativos Universidad: Politécnica de Valencia Centro: E.T.S. de Informática Aplicada Título: Ingeniero Técnico en

Más detalles

ROBÓTICA I. Cinemática Directa

ROBÓTICA I. Cinemática Directa Cinemática Directa M. C. Jorge Luis Barahona Avalos 11 de abril de 2011 Universidad Tecnológica de la Mixteca Instituto de Electrónica y Mecatrónica 1 / 34 Índice General 1 Cinemática Directa 2 Cadena

Más detalles

2 o Bachillerato. Conceptos básicos

2 o Bachillerato. Conceptos básicos Física 2 o Bachillerato Conceptos básicos Movimiento. Cambio de posición de un cuerpo respecto de un punto que se toma como referencia. Cinemática. Parte de la Física que estudia el movimiento de los cuerpos

Más detalles

Nombre: Objetivo: Reforzar contenidos aprendidos durante el segundo semestre.

Nombre: Objetivo: Reforzar contenidos aprendidos durante el segundo semestre. ROYAL AMERICAN SCHOOL Asignatura de matemática Miss Pamela Pérez Aguayo Guía de refuerzo Matemática. 5º Básico. II Semestre. Formando personas responsables, respetuosas, honestas y leales Nombre: Objetivo:

Más detalles

En la figura 1 se observan los cambios de polaridad (positivo y negativo) y las variaciones en amplitud de una onda de ca.

En la figura 1 se observan los cambios de polaridad (positivo y negativo) y las variaciones en amplitud de una onda de ca. Página 1 de 7 TENSION ALTERNA En la figura 1 se observan los cambios de polaridad (positivo y negativo) y las variaciones en amplitud de una onda de ca. Puede definirse un voltaje alterno como el que varía

Más detalles

1. NUMEROS COMPLEJOS.

1. NUMEROS COMPLEJOS. Apunte de Números complejos o imaginarios: Representación gráfica. Complejos conjugados y opuestos. Forma trigonométrica, de De Moivre, exponencial. Operaciones. Raíces.Fórmula de Euler. 1. NUMEROS COMPLEJOS.

Más detalles

NÚMEROS COMPLEJOS 1.1. INTRODUCCIÓN 1.2. OPERACIONES CON COMPLEJOS

NÚMEROS COMPLEJOS 1.1. INTRODUCCIÓN 1.2. OPERACIONES CON COMPLEJOS NÚMEROS COMPLEJOS 1.1. INTRODUCCIÓN La ecuación x + 1 0 no tiene solución en el cuerpo de los números reales R ya que no existe un número real x tal que x 1. Necesitamos un conjunto que contenga a R, que

Más detalles

CRITERIOS EVALUACIÓN MATEMÁTICAS

CRITERIOS EVALUACIÓN MATEMÁTICAS CRITERIOS DE EVALUACIÓN ÁREA MATEMÁTICAS NIVEL 6º EDUCACIÓN PRIMARIA Identifica situaciones en las cuales se utilizan los números. Comprende las reglas de formación de números en el sistema de numeración

Más detalles

UNIDAD DE APRENDIZAJE II

UNIDAD DE APRENDIZAJE II UNIDAD DE APRENDIZAJE II Saberes procedimentales 1. Multiplicar y dividir números enteros y fraccionarios 2. Utilizar las propiedad conmutativas y asociativa Saberes declarativos A Concepto de base, potencia

Más detalles

ALGEBRA I, ALGEBRA Y TRIGONOMETRIA , Segundo Semestre CAPITULO 6: POLINOMIOS.

ALGEBRA I, ALGEBRA Y TRIGONOMETRIA , Segundo Semestre CAPITULO 6: POLINOMIOS. ALGEBRA I, ALGEBRA Y TRIGONOMETRIA 520135, 522115 Segundo Semestre CAPITULO 6: POLINOMIOS. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición: Polinomio Sea K

Más detalles

Pontificia Universidad Católica del Ecuador

Pontificia Universidad Católica del Ecuador 1. DATOS INFORMATIVOS: MATERIA: Algebra Lineal y Geometría Analítica CÓDIGO: CARRERA: Civil NIVEL: Primero No. CRÉDITOS: 6 CRÉDITOS TEORÍA: 6 SEMESTRE/AÑO ACADÉMICO: Agosto Diciembre 2008 CRÉDITOS PRÁCTICA:

Más detalles

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 5. Números complejos

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 5. Números complejos Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN 3 Dado el número complejo z3i, su conjugado, z, su opuesto, z, y su inverso,, son: z a) z 3, z 3, z 3 3 3 b) z 3, z 3, z 3 c) z 3, z 3, z 3

Más detalles

Nombre de la asignatura : Matemáticas III (Algebra Lineal) Carrera : Ingeniería en Sistemas Computacionales. Clave de la asignatura : ACM-9303

Nombre de la asignatura : Matemáticas III (Algebra Lineal) Carrera : Ingeniería en Sistemas Computacionales. Clave de la asignatura : ACM-9303 1. D A T O S D E L A A S I G N A T U R A Nombre de la asignatura : Matemáticas III (Algebra Lineal) Carrera : Ingeniería en Sistemas Computacionales Clave de la asignatura : ACM-9303 Horas teoría-horas

Más detalles

DOCENTE: JESÚS E. BARRIOS P.

DOCENTE: JESÚS E. BARRIOS P. DOCENTE: JESÚS E. BARRIOS P. DEFINICIONES Es larga la historia del uso de las matrices para resolver ecuaciones lineales. Un texto matemático chino que proviene del año 300 A. C. a 200 A. C., Nueve capítulos

Más detalles

Opuesto de un número +3 + (-3) = (+5) = 0. N = 0,1, 2,3,4, Conjunto de los números naturales

Opuesto de un número +3 + (-3) = (+5) = 0. N = 0,1, 2,3,4, Conjunto de los números naturales Números enteros Opuesto de un número Los números enteros son una extensión de los números naturales, de tal forma, que los números enteros tienen signo positivo (+) ó negativo (-). Los números positivos

Más detalles

PROGRAMA DE EXAMEN. Unidad Nº1: Matrices y Función Determinante

PROGRAMA DE EXAMEN. Unidad Nº1: Matrices y Función Determinante Ministerio de Cultura y Educación Universidad Nacional de San Juan Fac. de Ciencias Exactas Físicas y Naturales Ciclo Lectivo 2016 PROGRAMA DE EXAMEN Cátedra: ALGEBRA LINEAL Carrera: Licenciatura en Geofísica

Más detalles

CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 5º ED. PRIMARIA

CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 5º ED. PRIMARIA CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 5º ED. PRIMARIA El cálculo y los problemas se irán trabajando y evaluando a lo largo de todo el año. 1ª EVALUACIÓN CONTENIDOS. o Los números de siete y

Más detalles

CENTRO UNIVERSITARIO MONTEJO A.C. SECUNDARIA Temario Matemáticas 1

CENTRO UNIVERSITARIO MONTEJO A.C. SECUNDARIA Temario Matemáticas 1 BLOQUE 1 Convierte números fraccionarios a decimales y viceversa. Conoce y utiliza las convenciones para representar números fraccionarios y decimales en la recta numérica. Representa sucesiones de números

Más detalles

Complejos, C. Reales, R. Fraccionarios

Complejos, C. Reales, R. Fraccionarios NÚMEROS COMPLEJOS Como ya sabemos, conocemos distintos cuerpos numéricos en matemáticas como por ejemplo el cuerpo de los números racionales, irracionales, enteros, negativos,... Sin embargo, para completar

Más detalles

UNIVERSIDAD AUTÓNOMA DE BAJA CALIFORNIA SUR. Ingeniería Aplicada TEÓRICA SERIACIÓN 100% DE OPTATIVAS DISCIPLINARIAS

UNIVERSIDAD AUTÓNOMA DE BAJA CALIFORNIA SUR. Ingeniería Aplicada TEÓRICA SERIACIÓN 100% DE OPTATIVAS DISCIPLINARIAS UNIVERSIDAD AUTÓNOMA DE BAJA CALIFORNIA SUR DEPARTAMENTO ACADÉMICO DE SIS COMPUTACIONALES INGENIERÍA EN TECNOLOGÍA COMPUTACIONAL ASIGNATURA Robótica ÁREA DE Ingeniería Aplicada CONOCIMIENTO ETAPA DE FORMACIÓN

Más detalles

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n )

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n ) Tema 3 Formas cuadráticas. 3.1. Definición y expresión matricial Definición 3.1.1. Una forma cuadrática sobre R es una aplicación q : R n R que a cada vector x = (x 1, x 2,, x n ) R n le hace corresponder

Más detalles

Números imaginarios. Unidad imaginaria. Números imaginarios. Un número imaginario se denota por bi, donde: besunnúmeroreal i es la unidad imaginaria

Números imaginarios. Unidad imaginaria. Números imaginarios. Un número imaginario se denota por bi, donde: besunnúmeroreal i es la unidad imaginaria Números Complejos Números imaginarios Unidad imaginaria Launidadimaginariaeselnúmero ysedesignaporlaletrai. Números imaginarios Un número imaginario se denota por bi, donde: besunnúmeroreal i es la unidad

Más detalles

Mecánica para Ingenieros: Cinemática. 1. La Mecánica como ciencia

Mecánica para Ingenieros: Cinemática. 1. La Mecánica como ciencia Mecánica para Ingenieros: Cinemática 1. La Mecánica como ciencia La Mecánica como ciencia 1. Objeto de la Mecánica 2. Magnitudes físicas y unidades 3. Idealizaciones 4. Leyes de Newton 5. Partes de la

Más detalles

PROGRAMA INSTRUCCIONAL

PROGRAMA INSTRUCCIONAL UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA PROGRAMA INSTRUCCIONAL DATOS BÁSICOS DE LA ASIGNATURA Nombre de la asignatura: Código Semestre U.C. Pre- Requisito ALGEBRA LINEAL

Más detalles

APLICACIÓN DE MATRICES DE TRANSFORMACIÓN EN EL CONTROL DE POSICIÓN CINEMATICO DE UN ROBOT ARTICULADO DE TRES GRADOS DE LIBERTAD

APLICACIÓN DE MATRICES DE TRANSFORMACIÓN EN EL CONTROL DE POSICIÓN CINEMATICO DE UN ROBOT ARTICULADO DE TRES GRADOS DE LIBERTAD APIAIÓN DE MATRIE DE TRANFORMAIÓN EN E ONTRO DE POIIÓN INEMATIO DE UN ROBOT ARTIUADO DE TRE GRADO DE IBERTAD Ing. Martínez Valéz Armano (Prof. Tecnológico e Estuios uperiores e Ecatepec), M. en. ópez Amaro

Más detalles

Q-ALGEBRA Y GEOMETRÍA ANALÍTICA

Q-ALGEBRA Y GEOMETRÍA ANALÍTICA CÁTEDRA Q-ALGEBRA Y GEOMETRÍA ANALÍTICA RESPONSABLE DE LA CÁTEDRA CAPELLO Viviana CARRERA INGENIERIA QUIMICA CARACTERÍSTICAS DE LA ASIGNATURA PLAN DE ESTUDIOS 2005 ORDENANZA CSU. Nº 1028 OBLIGATORIA ELECTIVA

Más detalles

PROGRAMA DE RECUPERACIÓN PEDAGÓGICA

PROGRAMA DE RECUPERACIÓN PEDAGÓGICA 1er grado de primaria Reconoce la relación mayor que, menor que o igual que y ordena los números naturales hasta 20 en forma ascendente y descendente. Descompone números hasta el 20. Aplica diversas estrategias

Más detalles

INDICE Capitulo 1. El concepto del circuito magnético Capitulo 2. Excitación de estructuras ferromagnéticas con corriente directa

INDICE Capitulo 1. El concepto del circuito magnético Capitulo 2. Excitación de estructuras ferromagnéticas con corriente directa INDICE Capitulo 1. El concepto del circuito magnético 1-1. introducción 1 1-2. algunas leyes básicas de electrostática 3 1-3. algunas leyes básicas de magnetostática 8 1-4. otras conclusiones útiles en

Más detalles

Pontificia Universidad Católica del Ecuador

Pontificia Universidad Católica del Ecuador 1. DATOS INFORMATIVOS: MATERIA O MÓDULO: CÓDIGO: CARRERA: NIVEL: Matemática Básica IS Ingeniería de Sistemas Preparatorio No. CRÉDITOS: 10 CRÉDITOS TEORÍA: 10 CRÉDITOS PRÁCTICA: - SEMESTRE / AÑO ACADÉMICO:

Más detalles

Matemáticas. Si un error simple ha llevado a un problema más sencillo se disminuirá la puntuación.

Matemáticas. Si un error simple ha llevado a un problema más sencillo se disminuirá la puntuación. UNIVERSIDAD POLITÉCNICA DE CARTAGENA PRUEBAS DE ACCESO A LA UNIVERSIDAD DE LOS MAYORES DE 25 AÑOS CONVOCATORIA 2014 CRITERIOS DE EVALUACIÓN Matemáticas GENERALES: El examen constará de dos opciones (dos

Más detalles

Tema I 1. EL CUERPO DE LOS REALES, EL CUERPO DE LOS COMPLEJOS

Tema I 1. EL CUERPO DE LOS REALES, EL CUERPO DE LOS COMPLEJOS 1 Tema I 1. EL CUERPO DE LOS REALES, EL CUERPO DE LOS COMPLEJOS 1.1 Los Números Naturales. Los números naturales aparecen por la necesidad que tiene el hombre (primitivo) tanto de contar como de ordenar

Más detalles

Guía para la Evaluación Diagnóstica en Matemáticas. Programa

Guía para la Evaluación Diagnóstica en Matemáticas. Programa UNIVERSIDAD DE GUADALAJARA Centro Universitario de Ciencias Económico Administrativas División de Economía y Sociedad Departamento de Métodos Cuantitativos Academia de Matemáticas Generales Guía para la

Más detalles

Tema 2: Vectores libres

Tema 2: Vectores libres Tema 2: Vectores libres FISICA I, 1º Grado en Ingeniería Aeroespacial Escuela Técnica Superior de Ingeniería Universidad de Sevilla 1 Índice Magnitudes escalares y vectoriales Definición de vector Vectores

Más detalles

Una matriz es un arreglo rectangular de elementos. Por ejemplo:

Una matriz es un arreglo rectangular de elementos. Por ejemplo: 1 MATRICES CONCEPTOS BÁSICOS Definición: Matriz Una matriz es un arreglo rectangular de elementos. Por ejemplo: es una matriz de 3 x 2 (que se lee 3 por 2 ) pues es un arreglo rectangular de números con

Más detalles

Forma polar de números complejos (repaso breve)

Forma polar de números complejos (repaso breve) Forma polar de números complejos (repaso breve) Objetivos. pasar la forma polar de números complejos. quisitos. Números complejos, funciones trigonométricas, valor absoluto de números complejos, circunferencia

Más detalles

PSU Matemática NM-4 Guía 23: Isometrías. Nombre: Curso: Fecha: -

PSU Matemática NM-4 Guía 23: Isometrías. Nombre: Curso: Fecha: - Centro Educacional San Carlos de Aragón. Dpto. Matemática. Prof. Ximena Gallegos H. PSU Matemática NM- Guía : Isometrías Nombre: Curso: Fecha: - Contenido: Isometrías. Aprendizaje Esperado: Analiza traslaciones

Más detalles

VECTORES. BIDIMENSIONAL

VECTORES. BIDIMENSIONAL VETORES. IDIMENSIONL 1. Dado los vectores,,, D, E, F y G que se muestran en la figura, determinar el modulo del vector resultante si = 5N y F = 4N. Rpta. R = 17,35N. 2. En el primer cuadrante de un sistema

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 4. Números reales y números complejos

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 4. Números reales y números complejos CONCEPTOS NÚMEROS COMPLEJOS En el conjunto de los números reales, una ecuación tan sencilla como x + = 0 no se puede resolver ya que es equivalente a x = - y no existe ningún número real cuyo cuadrado

Más detalles

1. Señales y sistemas Sistemas lineales e invariantes en el tiempo (SLI) 13.5

1. Señales y sistemas Sistemas lineales e invariantes en el tiempo (SLI) 13.5 UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA PROGRAMA DE ESTUDIO ANÁLISIS DE SISTEMAS Y SEÑALES 1418 4 09 Asignatura Clave Semestre Créditos Ingeniería Eléctrica Ingeniería de Control

Más detalles

REV00 INGENIERÍA MECATRÓNICA ROBÓTICA II

REV00 INGENIERÍA MECATRÓNICA ROBÓTICA II MANUAL DE LA ASIGNATURA MT-SUP SUP-XXX REV00 INGENIERÍA MECATRÓNICA ROBÓTICA II F-RP RP-CUP CUP-17/REV:00 DIRECTORIO Secretario de Educación Pública Dr. Reyes Taméz Guerra Subsecretario de Educación Superior

Más detalles

Créditos institucionales de la UA: 6 Material visual: Diapositivas. Unidad de competencia I Conceptos preliminares

Créditos institucionales de la UA: 6 Material visual: Diapositivas. Unidad de competencia I Conceptos preliminares UNIDAD ACADÉMICA PROFESIONAL TIANGUISTENCO PROGRAMA DE ESTUDIOS LICENCIATURA DE INGENIERÍA EN PRODUCCIÓN INDUSTRIAL UNIDAD DE APRENDIZAJE (UA): ÁLGEBRA Créditos institucionales de la UA: 6 Material visual:

Más detalles

Espacios Vectoriales

Espacios Vectoriales Espacios Vectoriales Departamento de Matemáticas, CSI/ITESM 7 de junio de 28 Índice 5.. Objetivos................................................ 5.2. Motivación...............................................

Más detalles

Asignatura: Horas: Total (horas): Obligatoria X Teóricas 4.5 Semana 4.5 Optativa Prácticas Semanas 72.0

Asignatura: Horas: Total (horas): Obligatoria X Teóricas 4.5 Semana 4.5 Optativa Prácticas Semanas 72.0 UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTADES DE ECONOMÍA E INGENIERÍA LICENCIATURA EN ECONOMÍA Y NEGOCIOS PROGRAMA DE ESTUDIO Álgebra P81 /P71 /P91 09 Asignatura Clave Semestre Créditos Ciencias

Más detalles

FACULTAD DE INGENIERÍA

FACULTAD DE INGENIERÍA UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA PROGRAMAS DE ASIGNATURAS DEL PROCESO DE ADMISIÓN AL CURSO PREPARATORIO DE INGENIERÍA (CPI) MATEMÁTICA I AÑO 2012 ASIGNATURA: MATEMÁTICA I I. FUNDAMENTACIÓN

Más detalles