Teorema de Helmholtz.
|
|
|
- Óscar Quintero Cárdenas
- hace 7 años
- Vistas:
Transcripción
1 c Rafael R. Boix y Francisco Medina 1 Teorema de Helmholtz. Enunciado Dados un campo escalar D = D(r y un campo vectorial solenoidal C = C(r (esto es, C(r =0 que toman valores no nulos en una región acotada del espacio (esto es, existe una región del espacio de tamaño finito τ tal que D(r =0y C(r =0si r no pertenece a τ, existe un único campo vectorial A = A(r que satisface las tres ecuaciones siguientes: A(r = D(r (1 A(r = C(r (2 lím A(r = 0 r (3 Además, el campo vectorial A = A(r puede escribirse como la suma de un campo vectorial irrotacional A i (r yuncampo vectorial solenoidal A s (r como se indica: A(r =A i (r+a s (r = T (r+ F(r (4 donde el potencial escalar T (r para A i (r y el potencial vector F(r para A s (r vienen dados por: T (r = 1 F(r = 1 τ τ D(r r r dτ (5 C(r r r dτ (6
2 c Rafael R. Boix y Francisco Medina 2 Demostración Existencia del campo vectorial A = A(r Vamos a comprobar que el campo vectorial definido en (4, (5 y (6 verifica las ecuaciones (1, (2 y (3. Con respecto a (1, se obtiene que: ( A(r = 2 T (r+ ( F(r = 2 1 D(r dτ (7 τ r r donde se ha tenido en cuenta que ( F(r = 0. Dadoque en la ecuación (7 el operador 2 actúa sobre las coordenadas de r (r = xu x + yu y + zu z y la integral de volumen se realiza con respecto a las coordenadas de r (r = x u x + yu y + zu z, podemos reescribir (7 como: ( A(r = 1 D(r dτ (8 Pero se cumple que: τ 2 r r ( D(r 2 = 2 D(r ( 1 +2 D(r + ( ( 1 1 D(r 2 = D(r 2 = D(r δ(r r (9 ya que D(r = 2 D(r =0por ser D función de r y actuar sobre las coordenadas de r. Si sustituimos (9 en (8, se obtiene: A(r = D(r δ(r r dτ = D(r δ(r r dτ = D(r (10 τ τ
3 c Rafael R. Boix y Francisco Medina 3 con lo cual, queda verificada la ecuación (1. Para verificar la ecuación (2, obtenemos el rotacional de la ecuación (4, esto es: A(r = ( T (r + ( F(r = ( F(r 2 F(r (11 ya que ( T (r = 0. Vamos a demostrar ahora que es nulo el término F(r que aparece en la ecuación (11. De acuerdo con la ecuación (5: ( F(r = 1 C(r dτ (12 τ r r Por otro lado: ( C(r + C(r ( 1 = C(r = C(r ( 1 = C(r ( 1 (13 donde se ha utilizado que C(r =0yque (1/= (1/ (véase el apartado b del problema 2 del Boletín 0. Pero si hacemos uso de la identidad vectorial A f = ( Af (Af para el caso en que A = C(r y f =1/ r r, sellegaaque: ( 1 C(r = C(r ( C(r ( C(r = (14
4 c Rafael R. Boix y Francisco Medina 4 ya que C(r =0por ser C un campo vectorial solenoidal (enunciado del teorema de Helmholtz. Si ahora sustituimos (13 y (14 en (12, se obtiene que: ( F(r = 1 C(r dτ (15 τ r r Como C(r es nulo si r no pertenece a τ, el integrando de la integral de la ecuación (15 también va a ser nulo si r no pertenece a τ, con lo cual, podemos extender el dominio de integración de dicha integral a una región esférica τ esfera de radio R sin alterar el resultado de la integral, esto es: ( F(r = 1 C(r dτ (16 τ r r esfera Sea S esfera la superficie cerrada esférica que limita a τ esfera.si aplicamos el teorema de la divergencia a la integral de (16, se obtiene que: F(r = 1 C(r r r ds =0 (17 S esfera ya que C(r =0sobre la superficie de S esfera por ser S esfera una superficie exterior a la región τ. Cuando tenemos en cuenta que F(r =0en la ecuación (11, se obtiene que: ( A(r = 2 F(r = 1 C(r dτ (18 τ 2 r r
5 c Rafael R. Boix y Francisco Medina 5 Si ahora aplicamos el razonamiento de la ecuación ( (9 a cada una de las tres componentes cartesianas de 2 C(r r r, se llega a que: ( C(r 2 = C(rδ(r r (19 Y sustituyendo (19 en (18, se llega a que: A(r = C(r δ(r r dτ = C(r (20 τ con lo cual, queda verificada la ecuación (2. Con vistas a verificar la ecuación (3, vamos a obtener primero la expresión de A(r que resulta de sustituir (5 y (6 en (4, esto es: A(r = 1 τ ( D(r r r dτ + 1 ( τ C(r r r dτ (21 Pero se cumple que: ( D(r ( 1 = D(r ( 1 = D(r + D(r = D(r (r r 3 (22 donde se ha utilizado el resultado del apartado a del problema 2 del Boletín 0.
6 c Rafael R. Boix y Francisco Medina 6 Además, se cumple que: ( C(r = C(r ( 1 = C(r ( 1 + C(r = C(r (r r 3 (23 ya que C(r =0. Si sustituimos (22 y (23 en (21, se obtiene que: A(r = 1 D(r (r r dτ + 1 C(r (r r dτ (24 τ r r 3 τ r r 3 Pero hay que tener en cuenta que: r r ] 3 ( 1 r 3 = r r r + O (25 3 Por tanto, el campo vectorial A(r de la ecuación (25 tiene un comportamiento del tipo A(r 1 r α (α 2 cuando r, y en consecuencia, A(r 0 cuando r, con lo que queda verificada la ecuación (3. Unicidad del campo vectorial A = A(r Vamos a demostrar que sólo un campo vectorial A(r satisface las ecuaciones (1 a (3 (siendo este campo necesariamente el campo vectorial definido en las ecuaciones (4 a (6. Supongamos que existen dos campos vectoriales A 1 (r y A 2 (r que satisfacen las ecuaciones (1 a (3. En ese caso, el campo vectorial W(r =A 1 (r A 2 (r debe satisfacer las tres ecuaciones
7 c Rafael R. Boix y Francisco Medina 7 siguientes: W(r = A 1 (r A 2 (r =D(r D(r =0 (26 W(r = A 1 (r A 2 (r =C(r C(r =0 (27 lím W(r = r lím [A 1(r A 2 (r] = 0 (28 r Las ecuaciones (26 a (27 nos indican que el campo vectorial W(r es simultáneamente irrotacional y solenoidal. Por ser irrotacional, W(r debe poderse escribir en términos del potencial escalar U(r como se indica: W(r = U(r (29 Si ahora introducimos (29 en (27, se obtiene que: W(r = ( U(r = 2 U(r =0 (30 lo cual nos demuestra que U(r satisface la ecuación de Laplace. Consideremos una región esférica τ esfera de radio R,que está limitada por una superficie cerrada esférica S esfera. Vamos a calcular la integral de volumen de (U U en τ esfera aplicando el teorema de la divergencia, esto es: (U Udτ = (U U ds τ esfera S esfera = (UW ds =0 (31 S esfera donde la última integral de superficie es nula por ser W = 0 sobre S esfera. Esto último es debido a que S esfera está situada en el infinito, y en el infinito W =0de acuerdo con la ecuación (28.
8 c Rafael R. Boix y Francisco Medina 8 La integral de volumen que aparece en (31 se puede reescribir como: (U Udτ = ( U 2 dτ + 2 Udτ τ esfera τ esfera τ esfera = ( U 2 dτ = W 2 dτ (32 τ esfera τ esfera donde se ha tenido en cuenta que, de acuerdo con la ecuación (30, 2 U =0. Si ahora combinamos los resultados de (31 y (32, se llega a que: W 2 dτ =0 (33 τ esfera Dado que el integrando de la ecuación (33 no puede ser negativo, la única posibilidad es que W =0en todo el dominio de integración, y dado que el dominio de integración τ esfera engloba en la práctica a todo el espacio, se va a cumplir que W =0en todos los puntos del espacio, con lo cual queda demostrado que A 1 = A 2, y también queda demostrado que sólo existe un campo vectorial que satisfaga simultáneamente las ecuaciones (1 a (3.
TEMA 0: Herramientas matemáticas
1 TEMA 0: Herramientas matemáticas Tema 0: Herramientas matemáticas 1. Campos escalares y vectoriales 2. Gradiente 3. Divergencia 4. Rotacional 5. Teoremas de Gauss y de Stokes 5. Representación gráfica
Problemas de Espacios Vectoriales
Problemas de Espacios Vectoriales 1. Qué condiciones tiene que cumplir un súbconjunto no vacío de un espacio vectorial para que sea un subespacio vectorial de este? Pon un ejemplo. Sean E un espacio vectorial
GEOMETRÍA. que pasa por el punto P y es paralelo a π. (0,9 puntos) b) Determinar la ecuación del plano π
GEOMETRÍA 1.- Se considera la recta r : ( x, y, z) = ( t + 1, t,3 t), el plano π: x y z = 0y el punto P (1,1,1). Se pide: a) Determinar la ecuación del plano π 1 que pasa por el punto P y es paralelo a
Espacios Vectoriales Asturias: Red de Universidades Virtuales Iberoamericanas 1
Espacios Vectoriales 201 6Asturias: Red de Universidades Virtuales Iberoamericanas 1 Índice 1 Espacios Vectoriales... 4 1.1 Definición de espacio vectorial... 4 1.2 Definición de subespacio vectorial...
Algebra lineal y conjuntos convexos
Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar
Semana 09 [1/28] Sucesiones. 29 de abril de Sucesiones
Semana 09 [1/28] 29 de abril de 2007 Semana 09 [2/28] Definición Sucesión Una sucesión real es una función: f : N R n f (n) Observaciones Para distinguir a una sucesión de las demás funciones, se ocupará
. Universidad Tecnológica Nacional - Facultad Regional Rosario. Álgebra y Geometría Analítica EL PLANO
. Universidad Tecnológica Nacional - Facultad Regional Rosario Álgebra y Geometría Analítica EL PLANO Autores: Lic. Martha Fascella Ing. Ricardo F. Sagristá 0 Contenido EL PLANO... 3.- Definición del plano
Ejercicios Resueltos de Cálculo III.
Ejercicios Resueltos de Cálculo III. 1.- Considere y. a) Demuestre que las rectas dadas se cortan. Encuentre el punto de intersección. b) Encuentre una ecuación del plano que contiene a esas rectas. Como
Superficies paramétricas
SESIÓN 7 7.1 Introducción En este curso ya se han estudiando superficies S que corresponden a gráficos de funciones de dos variables con dos tipos de representaciones: Representación explícita de S, cuando
Teoremas de Convergencia
Capítulo 24 Teoremas de Convergencia El teorema de la convergencia monótona (Lema 21.3) establece ciertas condiciones sobre una sucesión de funciones medibles para que se puedan permutar los símbolos y
EJERCICIOS RESUELTOS DE GEOMETRÍA ANALÍTICA
MATEMÁTICAS EJERCICIOS RESUELTOS DE GEOMETRÍA ANALÍTICA GEOMETRÍA ANALÍTICA A Introducción teórica A Módulo y argumento de un vector A Producto escalar A3 Punto medio de un segmento A4 Ecuaciones de la
Tema 2: Teorema de estructura de los grupos abelianos finitamente generados.
ESTRUCTURAS ALGEBRAICAS GRADO EN MATEMÁTICAS. CURSO 215/216 Tema 2: Teorema de estructura de los grupos abelianos finitamente generados. 1.1. Grupo abeliano libre. Bases. Definición 1.1. El grupo Z n con
un conjunto cuyos elementos denominaremos vectores y denotaremos por es un espacio vectorial si verifica las siguientes propiedades:
CAPÍTULO 2: ESPACIOS VECTORIALES 2.1- Definición y propiedades. 2.1.1-Definición: espacio vectorial. Sea un cuerpo conmutativo a cuyos elementos denominaremos escalares o números. No es necesario preocuparse
CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos.
CAPÍTULO IV. CONTINUIDAD DE FUNCIONES SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. 121 A. DEFINICIÓN DE FUNCIÓN CONTINUA. Una función
Figura Trabajo de las fuerzas eléctricas al desplazar en Δ la carga q.
1.4. Trabajo en un campo eléctrico. Potencial Clases de Electromagnetismo. Ariel Becerra Al desplazar una carga de prueba q en un campo eléctrico, las fuerzas eléctricas realizan un trabajo. Este trabajo
Límite superior y límite inferior de una sucesión
Límite superior y límite inferior de una sucesión Objetivos. Definir las nociones de los límites superior e inferior de una sucesión y estudiar sus propiedades básicas. Requisitos. Supremo e ínfimo de
Integración doble Integrales dobles sobre regiones no rectangulares
Nuestra intención es extender la definición de integral doble, de funciones continuas, sobre regiones más generales que el rectángulo. Para ello definiremos dos tipos de regiones en el plano, que llamaremos
Apéndice sobre ecuaciones diferenciales lineales
Apéndice sobre ecuaciones diferenciales lineales Juan-Miguel Gracia 10 de febrero de 2008 Índice 2 Determinante wronskiano. Wronskiano de f 1 (t), f 2 (t),..., f n (t). Derivada de un determinante de funciones.
CONCEPTOS BASICOS DE LA TRANSFORMADA DE LAPLACE LA TRANSFORMADA DE LAPLACE
LA TRANSFORMADA DE LAPLACE Por cálculo integral sabemos que cuando vamos a determinar una integral impropia de la forma,su desarrollo se obtiene realizando un cambio de variable en el límite superior de
Unidad 3: Razones trigonométricas.
Unidad 3: Razones trigonométricas 1 Unidad 3: Razones trigonométricas. 1.- Medida de ángulos: grados y radianes. Las unidades de medida de ángulos más usuales son el grado sexagesimal y el radián. Se define
CAMPOS: CIRCULACIÓN Y FLUJO
AMPO: IRULAIÓN Y FLUJO Dado el vector a ( x + y) i ˆ + xy ˆ j calcular su circulación a lo largo de la recta y x+ desde el punto A (, ) al B (, 2). olución: I.T.I. 99, 5, I.T.T. 2 En la trayectoria que
Electrotecnia General Tema 26 TEMA 26 CÁLCULO DE REDES DE DISTRIBUCIÓN II
TEMA 26 CÁLCULO DE REDES DE DISTRIBUCIÓN II 26.1. DISTRIBUCIONES PERFECTAMENTE CERRADAS CON TENSIÓN CONSTANTE Y SECCIÓN UNIFORME. Las distribuciones perfectamente cerradas son aquellas en las que el distribuidor
Definición de la matriz inversa
Definición de la matriz inversa Objetivos Aprender la definición de la matriz inversa Requisitos Multiplicación de matrices, habilidades básicas de resolver sistemas de ecuaciones Ejemplo El número real
Problemas adicionales de Física Cuántica (2010/2011)
Problemas adicionales de Física Cuántica (2010/2011) Mª del Rocío Calero Fernández-Cortés María Jesús Jiménez Donaire Ejercicio 3.- La potencia (en forma de ondas gravitacionales) emitida por un sistema
520142: ALGEBRA y ALGEBRA LINEAL
520142: ALGEBRA y ALGEBRA LINEAL Segundo Semestre 2008, Universidad de Concepción CAPITULO 10: Espacios Vectoriales DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición
2.1. Estructura algebraica de espacio vectorial
Tema 2 Espacios vectoriales de dimensión finita 21 Estructura algebraica de espacio vectorial Los vectores libres en el plano son el sustento geométrico del concepto de espacio vectorial Se trata de segmentos
TEMA 8.- NORMAS DE MATRICES Y
Álgebra II: Tema 8. TEMA 8.- NORMAS DE MATRICES Y NúMERO DE CONDICIóN Índice. Introducción 2. Norma vectorial y norma matricial. 2 2.. Norma matricial inducida por normas vectoriales......... 4 2.2. Algunos
TEMA 3: CÁLCULO DE FUNCIONES DE VARIAS VARIABLES
TEMA : CÁLCULO DE FUNCIONES DE AIAS AIABLES. Hallar f,. f, f,. 4 4. Hallar el valor de la función f, en los puntos de la circunferencia.. Calcular los guientes límites: cos lim,, sen lim,, c, lim con,
Tema 3: Espacios vectoriales
Tema 3: Espacios vectoriales K denotará un cuerpo. Definición. Se dice que un conjunto no vacio V es un espacio vectorial sobre K o que es un K-espacio vectorial si: 1. En V está definida una operación
Espacios Topológicos 1. Punto de Acumulación. Al conjunto de puntos de acumulación de A se le denomina el conjunto derivado de A (A a Notación).
Espacios Topológicos 1 Punto de Acumulación Definición: Sea A un subconjunto arbitrario de R n, se dice que x R n es un punto de acumulación de A si toda bola abierta con centro x contiene un punto A distinto
Espacios Vectoriales
Espacios Vectoriales Espacios Vectoriales Verónica Briceño V. noviembre 2013 Verónica Briceño V. () Espacios Vectoriales noviembre 2013 1 / 47 En esta Presentación... En esta Presentación veremos: Espacios
Espacios vectoriales
Espacios vectoriales [Versión preliminar] Prof. Isabel Arratia Z. Algebra Lineal 1 En el estudio de las matrices y, en particular, de los sistemas de ecuaciones lineales realizamos sumas y multiplicación
ECUACIONES EN DERIVADAS PARCIALES Tópicos previos
ECUACIONES EN DERIVADAS PARCIALES Tópicos previos Para tomar el curso de ecuaciones en derivadas parciales es importante la familiaridad del alumno con los conceptos que se detallan a continuación. Sugerimos
INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA
INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA La matemática es la ciencia del orden y la medida, de bellas cadenas de razonamientos, todos sencillos y fáciles. René Descartes
Teoría Tema 9 Ecuaciones del plano
página 1/11 Teoría Tema 9 Ecuaciones del plano Índice de contenido Determinación lineal de un plano. Ecuación vectorial y paramétrica...2 Ecuación general o implícita del plano...6 Ecuación segmentaria
Base y Dimensión de un Espacio Vectorial
Base y Dimensión de un Espacio Vectorial 201 6Asturias: Red de Universidades Virtuales Iberoamericanas 1 Índice 1 Qué es un sistema generador?... 4 2 Base de un espacio vectorial... 4 3 Dimensión de un
1. Construcción de la Integral
1. Construcción de la Integral La integral de Riemann en R n es una generalización de la integral de funciones de una variable. La definición que vamos a dar reproduce el método de Darboux para funciones
Matemáticas I: Hoja 1
Matemáticas I: Hoja 1 1. Números complejos Hasta ahora, hemos visto que los números reales son aquellos que poseen una expresión decimal y que podemos representar en una recta infinita. No obstante, para
es el lugar geométrico de los puntos p tales que p 0 p n o p 0 p o. p x ; y ; z perteneciente a y un vector no
El Plano y la Recta en el Espacio Matemática 4º Año Cód. 145-15 P r o f. M a r í a d e l L u j á n M a r t í n e z P r o f. J u a n C a r l o s B u e P r o f. M i r t a R o s i t o P r o f. V e r ó n i
Campo de velocidades se puede representar mediante una función potencial φ, escalar
Flujo Potencial Campo de velocidades se puede representar mediante una función potencial φ, escalar Condición necesaria flujo irrotacional, V=0. Hipótesis: Flujo irrotacional, incompresible y permanente
Espacios Vectoriales. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Espacios Vectoriales 1 / 21
Espacios Vectoriales AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Espacios Vectoriales 1 / 21 Objetivos Al finalizar este tema tendrás que: Saber si unos vectores son independientes.
como el número real que resulta del producto matricial y se nota por:
Espacio euclídeo 2 2. ESPACIO EUCLÍDEO 2.. PRODUCTO ESCALAR En el espacio vectorial se define el producto escalar de dos vectores y como el número real que resulta del producto matricial y se nota por:,
Definición Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.
Tema 1 Matrices 1.1. Conceptos básicos y ejemplos Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. NOTA:
APUNTES DE GEOMETRÍA ANALÍTICA
CAPÍTULO 1: LA RECTA EN EL PLANO Conceptos Primitivos: Punto, recta, plano. APUNTES DE GEOMETRÍA ANALÍTICA Definición 1 (Segmento) Llamaremos segmento a la porción de una línea recta comprendida entre
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 5 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad
Introducción a los espacios vectoriales
1 / 64 Introducción a los espacios vectoriales Pablo Olaso Redondo Informática Universidad Francisco de Vitoria November 19, 2015 2 / 64 Espacios vectoriales 1 Las 10 propiedades de un espacio vectorial
Guía n 0: Herramientas de Física y Matemáticas
Guía n 0: Herramientas de Física y Matemáticas Problema Dadas dos partículas en el espacio ubicadas en los puntos de coordenadas p = (0,5, 2) y p 2 = (2,3,). Hallar el vector posición de la partícula respecto
VECTORES EN EL ESPACIO
VECTORES EN EL ESPACIO Página 133 REFLEXIONA Y RESUELVE Relaciones trigonométricas en el triángulo Halla el área de este paralelogramo en función del ángulo a: cm a cm Área = sen a = 40 sen a cm Halla
Capítulo 8: Vectores
Capítulo 8: Vectores 1. Lección 30. Operaciones con vectores 1.1. Vectores El concepto de vector aparece en Física para describir magnitudes, tales como la fuerza que actúa sobre un punto, en las que no
Funciones de Clase C 1
Capítulo 7 Funciones de Clase C 1 Vamos a considerar ahora la extensión a varias variables del concepto de función de clase C 1. Cada vez que establezcamos una propiedad de las funciones diferenciables,
Ejercicio 3.1. Sea el campo de velocidades de un escurrimiento definido por : v = x 2 yē x + x 2 tē y (3.1)
Ejercicio 3.1. Sea el campo de velocidades de un escurrimiento definido por : Se pide: v = x yē x + x tē y (3.1) a. A qué tipo de formalismo corresponde este análisis del escurrimiento, lagrangeano o eulereano?
Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n )
Tema 3 Formas cuadráticas. 3.1. Definición y expresión matricial Definición 3.1.1. Una forma cuadrática sobre R es una aplicación q : R n R que a cada vector x = (x 1, x 2,, x n ) R n le hace corresponder
Introducción. Flujo Eléctrico.
Introducción La descripción cualitativa del campo eléctrico mediante las líneas de fuerza, está relacionada con una ecuación matemática llamada Ley de Gauss, que relaciona el campo eléctrico sobre una
4. Complementos sobre Problemas de Contorno para S.D.O. Lineales. 4. Complementos sobre Problemas de Contorno
para S.D.O. Lineales 4.1. Problemas de contorno para s.d.o. lineales. Teorema de alternativa 4.1. Problemas de contorno. Teorema de alternativa Fijemos A C 0 ([α, β]; L(R N )) y b C 0 ([α, β]; R N ), dos
1 Curvas planas. Solución de los ejercicios propuestos.
1 Curvas planas. Solución de los ejercicios propuestos. 1. Se considera el lugar geométrico de los puntos del plano tales que la suma del cuadrado de las distancias a los puntos P 1 = (, 0) y P = (, 0)
VARIABLE COMPLEJA Y ANÁLISIS FUNCIONAL
VARIABLE COMPLEJA Y ANÁLISIS FUNCIONAL (Curso 00-00) HOJA Ejercicio. Determina en qué recintos es holomorfa la siguiente función: f(x + iy) x + ay + i(bx + cy) En este caso consideramos: u(x, y) x + ay
Tema 2: Espacios Vectoriales
Tema 2: Espacios Vectoriales José M. Salazar Octubre de 2016 Tema 2: Espacios Vectoriales Lección 2. Espacios vectoriales. Subespacios vectoriales. Bases. Lección 3. Coordenadas respecto de una base. Ecuaciones.
Tema 1. Álgebra lineal. Matrices
1 Tema 1. Álgebra lineal. Matrices 0.1 Introducción Los sistemas de ecuaciones lineales aparecen en un gran número de situaciones. Son conocidos los métodos de resolución de los mismos cuando tienen dos
Espacios vectoriales. Capítulo Espacios vectoriales y subespacios Preliminares
Capítulo 1 Espacios vectoriales En diversos conjuntos conocidos, por ejemplo los de vectores en el plano o en el espacio (R 2 y R 3 ), o también el de los polinomios (R[X]), sabemos sumar sus elementos
Colegio Internacional Torrequebrada. Departamento de Matemáticas
Geometría. Problema 1: Calcula la distancia del punto P(1, 1, 1) a la recta Problema 2: Dadas las rectas, se pide: a) Analiza su posición relativa. b) Halla la ecuación general del plano π que contiene
FISICA 2º BACHILLERATO CAMPO ELECTRICO
) CMPO ELÉCTRICO Cuando en el espacio vacío se introduce una partícula cargada, ésta lo perturba, modifica, haciendo cambiar su geometría, de modo que otra partícula cargada que se sitúa en él, estará
Sistemas de Ecuaciones Lineales SISTEMAS DE ECUACIONES LINEALES DEFINICIONES, TIPOS DE SISTEMAS Y DISTINTAS FORMAS DE EXPRESARLOS
SISTEMAS DE ECUACIONES LINEALES DEFINICIONES, TIPOS DE SISTEMAS Y DISTINTAS FORMAS DE EXPRESARLOS 1.- DEFINICIÓN DE SISTEMAS DE ECUACIONES LINEALES Definición: se llama sistema de ecuaciones lineales al
Campos Electromagnéticos Estáticos
Capítulo 3: Campos Electromagnéticos Estáticos Flujo de un campo vectorial Superficie cerrada Ley de Gauss Karl Friedrich Gauss (1777-1855) Flujo de E generado por una carga puntual Superficie arbitraria
Construcción de bases en la suma y la intersección de subespacios (ejemplo)
Construcción de bases en la suma y la intersección de subespacios (ejemplo) Objetivos Aprender a construir bases en S + S y S S, donde S y S están dados como subespacios generados por ciertos vectores
Matriz asociada a una transformación lineal respecto a un par de bases
Matriz asociada a una transformación lineal respecto a un par de bases Objetivos Definir la matriz asociada a una transformación lineal respecto a un par de bases y estudiar la representación matricial
MATEMÁTICAS 1º BACH. C. N. Y S. 25 de enero de 2010 Geometría y Logaritmos
MATEMÁTICAS 1º BACH. C. N. Y S. 5 de enero de 010 Geometría y Logaritmos x yz 1) Tomar logaritmos, y desarrollar, en la siguiente expresión: A 4 ab log x log b 4log a log y ) Quitar logaritmos: log A )
UNIDAD IV DISTANCIA ENTRE DOS PUNTOS
UNIDAD IV DISTANCIA ENTRE DOS PUNTOS Dados los puntos: P(x1, y1) y Q(x2, y2), del plano, hallemos la distancia entre P y Q. Sin pérdida de generalidad, tomemos los puntos P y Q, en el primer cuadrante
Unidad III: Curvas en R2 y ecuaciones paramétricas
Unidad III: Curvas en R2 y ecuaciones paramétricas 2.1 Ecuación paramétrica de la línea recta. La recta constituye una parte fundamental de las matemáticas. Existen numerosas formas de representar una
Capítulo 1 Vectores. 26 Problemas de selección - página 13 (soluciones en la página 99)
Capítulo 1 Vectores 26 Problemas de selección - página 13 (soluciones en la página 99) 21 Problemas de desarrollo - página 22 (soluciones en la página 100) 11 1.A PROBLEMAS DE SELECCIÓN Sección 1.A Problemas
1. NÚMEROS PRIMOS Y COMPUESTOS.
. NÚMEROS PRIMOS Y COMPUESTOS. De acuerdo a las propiedades ya vistas de los divisores, sabemos que: todo natural no nulo es divisor de sí mismo es divisor de todo número natural. Ahora: el natural tiene
ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3
ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3 Matrices y determinantes (Curso 2011 2012) 2. Sea A una matriz diagonal n n y supongamos que todos los elementos de su diagonal son distintos entre sí.
Seminario de problemas-bachillerato. Curso Hoja 8
Seminario de problemas-bachillerato. Curso 202-. Hoja 8 40. Se puede dibujar un triángulo equilátero que tenga los tres vértices sobre puntos de una malla cuadrada? Qué polígonos regulares se pueden dibujar
Integración sobre superficies
Problemas propuestos con solución Integración sobre superficies IABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna [email protected] Índice 1. Parametrizaciones 1 2. Área de una superficie
Tema 7: Geometría Analítica. Rectas.
Tema 7: Geometría Analítica. Rectas. En este tema nos centraremos en estudiar la geometría en el plano, así como los elementos que en este aparecen como son los puntos, segmentos, vectores y rectas. Estudiaremos
PAUTA AUXILIAR Nº4. 1. Sean los puntos,,. Pruebe que no son colineales y encuentre la ecuación
PAUTA AUXILIAR Nº4 1. Sean los puntos,,. Pruebe que no son colineales y encuentre la ecuación vectorial del plano que definen. Encontramos 2 vectores directores: Para ver si son colineales o no, creamos
UNIVERSIDAD AUTÓNOMA DE SINALOA FACULTAD DE AGRONOMÍA HIDRÁULICA
UNIVERSIDAD AUTÓNOMA DE SINALOA FACULTAD DE AGRONOMÍA HIDRÁULICA UNIDAD III. HIDROCINEMÁTICA Introducción. La hidrocinemática o cinemática de los líquidos se ocupa del estudio de las partículas que integran
Topología de R n. Beatriz Porras
Producto escalar, métrica y norma asociada. Topología de R n Beatriz Porras 1 Producto escalar, métrica y norma asociada Consideramos el espacio vectorial R n sobre el cuerpo R; escribimos los vectores
SISTEMAS DE ECUACIONES LINEALES
1 SISTEMAS DE ECUACIONES LINEALES Una ecuación es un enunciado o proposición que plantea la igualdad de dos expresiones, donde al menos una de ellas contiene cantidades desconocidas llamadas variables
Si A es una matriz cuadrada n x n, tal que A 2 = A, e I es la matriz unidad ( n x n ), qué matriz es B 2, si B = 2ª - I?
MATRICES Si A es una matriz cuadrada n x n, tal que A 2 = A, e I es la matriz unidad ( n x n ), qué matriz es B 2, si B = 2ª - I? La multiplicación de matrices cuadradas, tiene la propiedad conmutativa?
C 4 C 3 C 1. V n dσ = C i. i=1
apítulo 2 Divergencia y flujo Sea V = V 1 i + V 2 j + V 3 k = (V 1, V 2, V 3 ) un campo vectorial en el espacio, por ejemplo el campo de velocidades de un fluido en un cierto instante de tiempo, en un
Guía. Álgebra II. Examen parcial III. Transformaciones lineales. Teoremas los más importantes cuyas demostraciones se pueden incluir en el examen
Guía. Álgebra II. Examen parcial III. Transformaciones lineales. Teoremas los más importantes cuyas demostraciones se pueden incluir en el examen 1. Teorema de la representación matricial de una transformación
Tema 3: Sistemas de ecuaciones lineales
Tema 3: Sistemas de ecuaciones lineales 1. Introducción Los sistemas de ecuaciones resuelven problemas relacionados con situaciones de la vida cotidiana que tiene que ver con las Ciencias Sociales. Nos
Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos
Tema 3: Repaso de Álgebra Lineal Parte I Virginia Mazzone Contenidos Vectores y Matrices Bases y Ortonormailizaciòn Norma de Vectores Ecuaciones Lineales Algenraicas Ejercicios Vectores y Matrices Los
JUNIO 2010. Opción A. 1 1.- Dada la parábola y = 3 área máxima que tiene un lado en la recta y los otros dos vértices en la gráfica de la parábola.
Junio 00 (Prueba Específica) JUNIO 00 Opción A.- Dada la parábola y 3 área máima que tiene un lado en la recta y los otros dos vértices en la gráfica de la parábola., y la recta y 9, hallar las dimensiones
May 4, 2012 CAPÍTULO 5: OPTIMIZACIÓN
May 4, 2012 1. Optimización Sin Restricciones En toda esta sección D denota un subconjunto abierto de R n. 1.1. Condiciones Necesarias de Primer Orden. Proposición 1.1. Sea f : D R diferenciable. Si p
1 Método de la bisección. 1.1 Teorema de Bolzano Teorema 1.1 (Bolzano) Contenido
E.T.S. Minas: Métodos Matemáticos Resumen y ejemplos Tema 3: Solución aproximada de ecuaciones Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña
1. Producto escalar. Propiedades Norma de un vector. Espacio normado. 1.2.Ortogonalidad. Ángulos. 1.4.Producto escalar en V 3.
. Producto escalar. Propiedades... Norma de un vector. Espacio normado...ortogonalidad. Ángulos..3.Producto escalar en V..4.Producto escalar en V 3.. Producto vectorial de dos vectores de V 3...Expresión
Julio C. Carrillo E. Profesor Escuela de Matemáticas Universidad Industrial de Santander. Monday, November 5, 2007 at 8:44 am (FA07.
Julio C. Carrillo E. Profesor Escuela de Matemáticas Universidad Industrial de Santander Monday, November 5, 2007 at 8:44 am (FA07.01,02) Para uso exclusivo en el salón de clase. 2007 c Julio C. Carrillo
AUXILIAR 1 PROBLEMA 1
AUXILIAR 1 PROBLEMA 1 Calcular el campo eléctrico en cualquier punto del espacio, producido por una recta de carga infinita (con densidad lineal de carga λ0). Luego, aplicar el teorema de Gauss para obtener
LEY DE COULOMB E INTENSIDAD DE CAMPO ELECTRICO
INDICE Prefacio XIV Visita Guiada 1 Análisis Vectorial 1 2 Ley Coulomb e Intensidad de Campo Eléctrico 26 3 Densidad de Flujo Eléctrico, Ley de Gauss y Divergencia 51 4 Energía y Potencial 80 5 Corriente
Campo Eléctrico en el vacío
Campo Eléctrico en el vacío Electrostática: Interacción entre partículas cargadas q1 q2 Ley de Coulomb En el vacío: K = 8.99 109 N m2/c2 0 = 8.85 10 12 C2/N m2 Balanza de torsión Electrostática: Interacción
Introducción. El uso de los símbolos en matemáticas.
Introducción El uso de los símbolos en matemáticas. En el estudio de las matemáticas lo primero que necesitamos es conocer su lenguaje y, en particular, sus símbolos. Algunos símbolos, que reciben el nombre
Integrales múltiples
ntegrales múltiples Cálculo (2003) El objetivo de este capítulo es definir y aprender a calcular integrales de funciones reales de varias variables, que llamamos integrales múltiples. Las motivación más
Límites y Continuidad de funciones de varias variables
1- Se construe un depósito de propano adosando dos hemisferios a los etremos de un cilindro circular recto Epresar el volumen V de ese depósito en función del radio r del cilindro de su altura h - Determinar
Determinantes. Determinante de orden uno. a 11 = a 11 5 = 5
DETERMINANTES Determinantes Concepto de determinante A cada matriz cuadrada A se le asigna un escalar particular denominado determinante de A, denotado por A o por det (A). A = Determinante de orden uno
IN Guía de Problemas Resueltos de Geometría de Programación Lineal v1.0
IN3701 - Guía de Problemas Resueltos de Geometría de Programación Lineal v1.0 Acá va una pequeña guía con problemas resueltos de Geometría en Programación Lineal con problemas básicamente extraídos del
ÁLGEBRA LINEAL II Algunas soluciones a la práctica 2.3
ÁLGEBRA LINEAL II Algunas soluciones a la práctica 2. Transformaciones ortogonales (Curso 2010 2011) 1. Se considera el espacio vectorial euclídeo IR referido a una base ortonormal. Obtener la expresión
Espacios Vectoriales www.math.com.mx
Espacios Vectoriales Definiciones básicas de Espacios Vectoriales www.math.com.mx José de Jesús Angel Angel [email protected] MathCon c 007-009 Contenido. Espacios Vectoriales.. Idea Básica de Espacio Vectorial.................................
Integrales dobles. Integrales dobles
Integrales dobles Integrales iteradas b g2 (x) a g 1 (x) f(x, y) dydx ó d h2 (y) c h 1 (y) f(x, y) dxdy Los límites interiores de integración pueden ser variables respecto a la variable exterior de integración,
