LÓGICA DE PREDICADOS 5. IDENTIDAD Y FUNCIONES

Tamaño: px
Comenzar la demostración a partir de la página:

Download "LÓGICA DE PREDICADOS 5. IDENTIDAD Y FUNCIONES"

Transcripción

1 Juan Carlos León Universidad de Murcia LÓGICA DE PREDICADOS 5. IDENTIDAD Y FUNCIONES (PARTE 1) Esquema del tema 5.1. La noción lógica de identidad 5.2. Reglas de deducción natural para = 5.3. Cuantificadores numéricos 5.4. Descripciones definidas 5.5. Extensión del método de árboles 5.6. Funciones. Términos 5.7. Árboles con letras funcionales 1

2 Lógica de predicados 5. Identidad y funciones 5.1. La noción lógica de identidad Igualdad e identidad En matemáticas, la identidad se representa por el (engañosamente llamado) signo de igualdad 2+2=4 no significa que 2+2 sea igual que 4, sino que 2+2 es el mismo número que 4: una identidad (numérica), o mismidad En contextos no matemáticos, la identidad se expresa mediante el verbo ser ú por ejemplo, Juan Carlos es el profesor de Lógica 2

3 Proposiciones de identidad Compárese: 1) Sócrates es un filósofo 3) Sócrates es el maestro de Platón 2) París es una ciudad 4) París es la capital de Francia (1) y (2) son proposiciones de sujeto- predicado: la partícula es significa que el objeto a que refiere el sujeto tiene la propiedad expresada por el predicado (se trata de un es predicativo) En cambio, (3) y (4) son proposiciones de identidad: la partícula es significa es el mismo objeto que : es un es de identidad El es de identidad Algunas claves para reconocer un es de identidad: ú Puede reemplazarse por es el mismo objeto que? ú Puede invertirse el orden de las expresiones que flanquean al verbo es, sin que resulte lingüísticamente forzado? Respuestas afirmativas son signo de que tenemos una proposición de identidad 3

4 Extensión del lenguaje Añadimos al alfabeto un nuevo símbolo: ú El signo de identidad: = Y añadimos una nueva cláusula a la definición de fórmula atómica: ú k=j es una fórmula atómica para cualesquiera constantes k y j Ejemplos ú a=b c=a b=b Esta extensión constituye el lenguaje de la llamada lógica de predicados con identidad El predicado de identidad = es como una letra predicativa diádica (que expresa una relación binaria) ú pero seguimos la costumbre matemática de escribirla entre las dos constantes y no delante de ambas ú y, a diferencia de las restantes letras predicativas, = tiene una interpretación fija Teniendo en cuenta las reglas de formación de cfs, = podrá aparecer en expresiones complejas del mismo modo que lo hacen las letras predicativas. Por ejemplo, son cfs ú x x=x x y (Fx Fy x=y) 4

5 Lógica de predicados 5. Identidad y funciones 5.2. Reglas de deducción natural para = Introducción de = (I=) Para cualquier constante k, podemos introducir k=k en cualquier línea de una prueba, sin depender de ningún supuesto Esquema metalingüístico k=k El efecto de esta regla es como el de introducir un teorema: siempre podemos hacerlo, y sin depender de ningún supuesto Intuitivamente, la idea es que, por pura lógica, un objeto será siempre idéntico a sí mismo 5

6 Eliminación de = (E=) Si tenemos como premisas un enunciado de identidad del tipo k=j y una cf que contenga apariciones de una constante k, podemos sustituir en la cf una o más apariciones de k por j, dependiendo de todos los supuestos de ambas premisas Esquema metalingüístico: Γ k=j Δ P(k) Γ,Δ P(j) donde P(j) es el resultado de sustituir k por j, al menos en una de sus apariciones en P(k) O sea, si un objeto es el mismo que otro, cualquier cosa que digamos del uno, podemos decirla del otro Demostración de 5.01 y a=b b=a (conmutatividad) 1 (1) a=b S (2) a=a I= 1 (3) b=a E= 1, a=b, b=c a=c (transitividad) 1 (1) a=b S 2 (2) b=c S 1,2 (3) a=c E= 1,2 6

7 Demostración de Fa x (x=a Fx) (a) Fa x (x=a Fx) 1 (1) Fa S (2) a=a I= 1 (3) a=a Fa I 1,2 1 (4) x (x=a Fx) I 3 (b) x (x=a Fx) Fa 1 (1) x (x=a Fx) S 2 (2) b=a Fb S 2 (3) b=a E 2 2 (4) Fb E 2 2 (5) Fa E= 3,4 1 (6) Fa E 1,2,5 Regla derivada Usaremos únicamente una regla derivada, que es una generalización del esquema 5.01 Conmutativa de la identidad (C=): Γ k=j Γ j=k 7

8 Teoremas 5.04 x x=x (reflexividad) (1) a=a I= (2) x x=x I x y (x=y y=x) (simetría) 5.06 x y z (x=y y=z x=z) (transitividad) Ambos se obtienen fácilmente a partir de 5.01 y x x=a (1) a=a I= (2) x x=a I 1 Nombres sin referencia? Como muestra 5.07, en el lenguaje científico (cuyas proposiciones pretenden tener un valor de verdad), no caben los nombres vacíos (sin referencia), pues el mero uso de un nombre nos compromete con la existencia del objeto nombrado Cuando los científicos descubrieron que el hipotético planeta intramercuriano Vulcano no existía, no pasaron a negar todas las proposiciones que hasta el momento habían afirmado sobre él. Simplemente, su nombre fue eliminado del lenguaje científico En cambio, el lenguaje científico puede usar predicados vacíos, y sostener por ejemplo que no existen unicornios. (Hay incluso un tratado de Compuestos químicos inexistentes) 8

9 Formalización (ejercicio 5.20) Sólo Pérez y el centinela sabían la contraseña. Alguien que sabía la contraseña robó el arma. Luego el arma fue robada por Pérez o por el centinela Convenciones simbólicas a: Pérez Fx: x sabía la contraseña b: el centinela Gx: x robó el arma La primera premisa significa Pérez y el centinela sabían la contraseña, y cualquiera que la supiera será Pérez o el centinela. Donde la partícula será es un será de identidad Formalización: (Fa Fb) x (Fx x=a x=b), x (Fx Gx) Ga Gb Demostración de 5.08 (1) 5.08 (Fa Fb) x (Fx x=a x=b), x (Fx Gx) Ga Gb 1 (1) (Fa Fb) x (Fx x=a x=b) S 2 (2) x (Fx Gx) S 3 (3) Fc Gc S 1 (4) x (Fx x=a x=b) E 1 1 (5) Fc c=a c=b E 4 3 (6) Fc E 3 3 (7) Gc E 3 1,3 (8) c=a c=b MP 5,6 (continúa) 9

10 Demostración de 5.08 (2) 9 (9) c=a S 3,9 (10) Ga E= 7,9 3,9 (11) Ga Gb I (12) c=b S 3,12 (13) Gb E= 7,12 3,12 (14) Ga Gb I 13 1,3 (15) Ga Gb E 8,9,11,12,14 1,2 (16) Ga Gb E 2,3,15 Lógica de predicados 5. Identidad y funciones 5.3. Cuantificadores numéricos 10

11 Hay al menos dos Con la identidad podemos expresar proposiciones como sólo a y b son F, que hubiéramos sido incapaces de representar sin ella Tampoco puede expresarse sin la identidad la afirmación de que hay al menos dos objetos que son F Es fácil comprobar la equivalencia entre estas dos cfs: x Fx x y (Fx Fy) con lo que usar dos variables distintas no garantiza que haya dos objetos diferentes Para decir hay al menos dos Fs necesitamos esto x y (Fx Fy x y) (escribimos x y en lugar de x=y ) Hay al menos n Similarmente, podemos decir hay al menos tres cosas que son F escribiendo x y z (Fx Fy Fz x y x z y z) En general, resultará obvio que para cualquier número n podemos decir que al menos hay n cosas que son F, con el concurso esencial del signo de identidad Pero podremos expresar hay exactamente n cosas que son F? 11

12 Hay a lo sumo uno Decir hay exactamente una cosa que es F equivale a decir hay al menos una y a lo sumo una cosa que es F Ya sabemos que para decir hay al menos un F basta escribir x Fx Y afirmar hay a lo sumo un F es lo mismo que decir si dos cosas cualesquiera son F, serán la misma cosa : x y (Fx Fy x=y) Esta cf permite que no haya nada que sea F, y que haya una sola cosa que sea F; pero si más de una fuera F, la cf resultaría falsa Hay exactamente uno Para decir hay exactamente un F escribiremos pues x Fx x y (Fx Fy x=y) Esa cf es equivalente a estas otras más breves y nítidas x (Fx y (Fy x=y)) x (Fx y (Fy x y)) Indicamos incluso un tercer equivalente más simple aún, aunque menos claro x y (Fy x=y) Podemos convenir en usar la notación 1 x Fx como abreviatura de cualquiera de esas cfs y llamar a este nuevo símbolo cuantificador numéricamente definido 12

13 Hay exactamente n Para decir hay exactamente dos cosas que son F quizá lo más sencillo sea escribir x y (Fx Fy x y z (Fz x=z y=z)) También podríamos usar el cuantificador numérico 1 x y escribir x (Fx 1 y (Fy x y)) Ahora podemos abreviar cualquiera de las dos cfs anteriores con un segundo cuantificador numéricamente definido 2 x Fx Y, obviamente, este procedimiento puede extenderse de modo que para cualquier número finito n tendremos una cf que afirme que exactamente n cosas son F Ejercicios: del 5.09 al a=b, a=c b=c 5.10 a=b a=c b=c 5.11 a=b Fa Fb 5.12 Fa x (x=a Fx) 5.13 x y (Fx x=y Fy) 5.14 x (Fx Gx), Fa, a=b Gb 5.15 x (Fx Gx), Fa, Gb a b 13

14 Ejercicios: del 5.16 al x (Fx x=a x=b), Ga Gb x (Fx Gx) 5.17 x y (Fx Fy x=y), Fa, a b Fb 5.18 x Fx x y (Fx Fy) 5.19 x (Fx y (Fy x=y)) x Fx x y (Fx Fy x=y) Lógica de predicados 5. Identidad y funciones 5.4. Descripciones definidas 14

15 Nombres y descripciones Hasta aquí hemos tratado por igual nombres de objetos y descripciones de objetos (como expresiones que refieren a un objeto), y los hemos simbolizado mediante constantes Pero hay argumentos cuya validez depende de la composición interna de una descripción, ya que ésta se construye a base de indicar que una cierta propiedad le corresponde a un único objeto Por esa razón las denominamos descripciones definidas Ejemplo (ejercicio 5.27) El autor de La Ilíada escribió La Odisea; luego, alguien escribió tanto La Ilíada como La Odisea El argumento es obviamente válido, pero esa validez no se manifiesta si tratamos la descripción el autor de La Ilíada como si fuera un nombre, y lo representamos mediante una constante: Ga x (Fx Gx) (a: el autor de La Ilíada; Fx: x escribió La Ilíada; Gx: x escribió La Odisea) 15

16 Formalización Lo que afirma la premisa es que exactamente una persona escribió La Ilíada, y que esa misma persona escribió La Odisea: x (Fx y (Fy x=y) Gx) El contenido de la descripción está captado por los dos primeros miembros de la conjunción: alguien escribió La Ilíada y es el único que lo ha hecho La conclusión se sigue entonces obviamente La teoría de las descripciones Este tratamiento de las descripciones se debe a B. Russell (1905) Las dos proposiciones ú El actual rey de Francia es calvo ú El actual rey de Francia no es calvo son ambas falsas (y sólo aparentemente contradictorias), ya que no existe actualmente un rey de Francia La teoría de las descripciones definidas de Russell suscita problemas filosóficos que se abordan mejor en el ámbito de la filosofía del lenguaje 16

17 Bertrand Russell 17

EJERCICIOS RESUELTOS 7

EJERCICIOS RESUELTOS 7 LÓGICA II EJERCICIOS RESUELTOS 7 (Los ya resueltos en las clases teóricas aparecen recuadrados) TEMA 5 IDENTIDAD: DERIVACIONES, FORMALIZACIÓN Y ÁRBOLES A) DERIVACIONES 5.01 a=b b=a (conmutatividad) (2)

Más detalles

LÓGICA DE PREDICADOS 5. IDENTIDAD Y FUNCIONES

LÓGICA DE PREDICADOS 5. IDENTIDAD Y FUNCIONES Juan Carlos León Universidad de Murcia LÓGICA DE PREDICADOS 5. IDENTIDAD Y FUNCIONES (PARTE 2) Esquema del tema 5.1. La noción lógica de identidad 5.2. Reglas de deducción natural para = 5.3. Cuantificadores

Más detalles

Lógica de predicados 3. Sintaxis. Juan Carlos León Universidad de Murcia

Lógica de predicados 3. Sintaxis. Juan Carlos León Universidad de Murcia Lógica de predicados 3. Sintaxis Juan Carlos León Universidad de Murcia Esquema del tema 3.1. Fórmulas bien formadas y funciones proposicionales 3.2. Alcance. Variables libres y ligadas 3.3. Teoremas 3.4.

Más detalles

Lógica de predicados 3. Sintaxis

Lógica de predicados 3. Sintaxis Lógica de predicados 3. Sintaxis Juan Carlos León Universidad de Murcia Esquema del tema 3.1. Fórmulas bien formadas y funciones proposicionales 3.2. Alcance. Variables libres y ligadas 3.3. Teoremas 3.4.

Más detalles

LÓGICA FORMAL TEORIAS DE PRIMER ORDEN. Sintaxis y semántica

LÓGICA FORMAL TEORIAS DE PRIMER ORDEN. Sintaxis y semántica LÓGICA FORMAL TEORIAS DE PRIMER ORDEN Sintaxis y semántica Pedro López Departamento de Inteligencia Artificial Facultad de Informática Universidad Politécnica de Madrid Lenguajes de primer orden 1 La lógica

Más detalles

APENDICE REGLAS Y LEYES DE LA LOGICA DE PRIMER ORDEN

APENDICE REGLAS Y LEYES DE LA LOGICA DE PRIMER ORDEN LOGICA (FCE-UBA) APENDICE REGLAS Y LEYES DE LA LOGICA DE PRIMER ORDEN Una regla lógica, o regla de inferencia (deductiva), es una forma válida de razonamiento que es empleada para inferir deductivamente

Más detalles

Lógica de predicados 4. Árboles

Lógica de predicados 4. Árboles Lógica de predicados 4. Árboles Juan Carlos León Universidad de Murcia Esquema del tema 4.1. Reglas de inferencia 4.2. Rutina mecánica 4.3. Árboles e interpretaciones 4.4. Árboles infinitos 1 4.1. Reglas

Más detalles

b) Sea una relación de equivalencia en A y una operación en A. Decimos que y son compatibles si a b a c b c y c a c b para todo a, b, c A

b) Sea una relación de equivalencia en A y una operación en A. Decimos que y son compatibles si a b a c b c y c a c b para todo a, b, c A APENDICE Relaciones y Operaciones Compatibles 1 Definición: a) Sea A un conjunto y una relación entre elementos de A. Decimos que es una relación de equivalencia si es: i Reflexiva: a A, a a. ii Simétrica:

Más detalles

Lógica de predicados 2. Deducción natural (Parte 1)

Lógica de predicados 2. Deducción natural (Parte 1) Lógica de predicados 2. Deducción natural (Parte 1) JUAN CARLOS LEÓN UNIVERSIDAD DE MURCIA Esquema del tema 2.1. Eliminación del cuantificador universal 2.2. Introducción del cuantificador universal 2.3.

Más detalles

Lógica de predicados 1. Lenguaje formal (parte 2)

Lógica de predicados 1. Lenguaje formal (parte 2) Lógica de predicados 1. Lenguaje formal (parte 2) Juan Carlos León Universidad de Murcia Esquema del tema 1.1. Nombres y predicados 1.2. Cuantificadores y variables 1.3. Silogística y lógica de predicados

Más detalles

Axiomas del Cálculo de Predicados

Axiomas del Cálculo de Predicados Axiomas del Cálculo de Predicados Si bien el cálculo proposicional nos permitió analizar cierto tipo de razonamientos y resolver acertijos lógicos, su poder expresivo no es suficiente para comprobar la

Más detalles

Preliminares. 1. Notación simbólica. Conjuntos. También se da en el curso de Conjuntos y Numeros.

Preliminares. 1. Notación simbólica. Conjuntos. También se da en el curso de Conjuntos y Numeros. CAPíTULO 1 Preliminares 1. Notación simbólica. Conjuntos. También se da en el curso de Conjuntos y Numeros. El método matemático es axiomático y deductivo: a partir de unos principios aceptados inicialmente

Más detalles

Clase 02/10/2013 Tomado y editado de los apuntes de Pedro Sánchez Terraf

Clase 02/10/2013 Tomado y editado de los apuntes de Pedro Sánchez Terraf Clase 02/10/2013 Tomado y editado de los apuntes de Pedro Sánchez Terraf Escenas de episodios anteriores objetivo: estudiar formalmente el concepto de demostración matemática. caso de estudio: lenguaje

Más detalles

I. LÓGICA PROPOSICIONAL A) Deducción natural

I. LÓGICA PROPOSICIONAL A) Deducción natural I. LÓGICA PROPOSICIONAL A) Deducción natural Regla de supuestos (S) A A Reglas primitivas Modus ponens (MP) Δ A Γ, Δ B Doble negación (DN) Γ A Γ A Modus tollens (MT) Δ B Γ, Δ A Prueba condicional (PC)

Más detalles

MÉTODOS MATEMÁTICOS DE LA FÍSICA I

MÉTODOS MATEMÁTICOS DE LA FÍSICA I MÉTODOS MATEMÁTICOS DE LA FÍSICA I Ignacio Sánchez Rodríguez Curso 2006-07 TEMA PRELIMINAR ÍNDICE 1. Lenguaje matemático 2 2. Conjuntos 6 3. Aplicaciones 10 4. Relaciones 12 5. Estructuras algebraicas

Más detalles

Resumen de las clases teóricas del turno tarde a cargo de la Prof. Alcón.

Resumen de las clases teóricas del turno tarde a cargo de la Prof. Alcón. Resumen de las clases teóricas del turno tarde a cargo de la Prof. Alcón. 0.1. Definiciones básicas: subconjunto, conjunto vacío, complemento, conjunto de partes A lo largo de esta sección consideraremos

Más detalles

RELACIONES Y FUNCIONES

RELACIONES Y FUNCIONES ELCIONES Y FUNCIONES INTODUCCION a B b c 3 Cuando manejamos esquemas de este tipo, solemos decir que se estableció una relación o correspondencia entre los conjuntos y B en donde al elemento a le corresponde

Más detalles

Lógica proposicional 4. Formalización de argumentos

Lógica proposicional 4. Formalización de argumentos Lógica proposicional 4. Formalización de argumentos Juan Carlos León Universidad de Murcia Aplicación de la lógica Las técnicas para comprobar la validez son el objeto primario de la lógica Pero, mientras

Más detalles

CONJUNTOS CIENTÍFICO, MAT. 2

CONJUNTOS CIENTÍFICO, MAT. 2 CONJUNTOS CIENTÍFICO, MAT. 2 PRIMERAS NOCIONES Conceptos primitivos: Conjunto y elemento de un conjunto. Formas de determinar un conjunto: 1) Decimos que un conjunto está determinado por extensión cuando

Más detalles

REGLAS Y LEYES LOGICAS

REGLAS Y LEYES LOGICAS LOGICA II REGLAS Y LEYES LOGICAS Una regla lógica, o regla de inferencia (deductiva), es una forma válida de razonamiento que es empleada para inferir deductivamente ciertos enunciados a partir de otros.

Más detalles

LÓGICA FORMAL TEORIAS DE PRIMER ORDEN. Axiomática

LÓGICA FORMAL TEORIAS DE PRIMER ORDEN. Axiomática LÓGICA FORMAL TEORIAS DE PRIMER ORDEN Francisco Bueno Pedro López Departamento de Inteligencia Artificial Facultad de Informática Universidad Politécnica de Madrid Teoría de Primer Orden 1 Formalmente,

Más detalles

Curso LÓGICA Examen de recuperación de lógica proposicional

Curso LÓGICA Examen de recuperación de lógica proposicional Curso 2013-2014 LÓGICA Examen de recuperación de lógica proposicional 13-01-2014 1.1. Formalizar en el lenguaje de la lógica proposicional el siguiente razonamiento: (2,5 puntos) Es necesario que estudie

Más detalles

Lógica proposicional 6. La semántica veritativo-funcional

Lógica proposicional 6. La semántica veritativo-funcional Lógica proposicional 6. La semántica veritativo-funcional (Parte 1) Juan Carlos León Universidad de Murcia Esquema del tema 6.1. Noción de interpretación y reglas de valoración. Tablas de verdad 6.2. Consecuencia

Más detalles

Matemática I C.F.E. I.N.E.T. Profesorado de Informática Conjuntos

Matemática I C.F.E. I.N.E.T. Profesorado de Informática Conjuntos Conjuntos Conceptos primitivos: CONJUNTO, ELEMENTO, PERTENECE. Pertenecer- Elemento Sea el conjunto de los ríos del Uruguay. El Río Negro es un río del Uruguay. Entonces, este río es un elemento del conjunto

Más detalles

logica computacional Tema 1: Introducción al Cálculo de Proposiciones

logica computacional Tema 1: Introducción al Cálculo de Proposiciones Tema 1: Introducción al Cálculo de Proposiciones Introducción al concepto de cálculo Un cálculo es una estructura pura; un sistema de relaciones. Un cálculo se compone de lo siguiente: Un conjunto de elementos

Más detalles

El algoritmo de Resolución

El algoritmo de Resolución El algoritmo de Resolución El algoritmo de resolución es casi idéntico al de lógica proposicional: Suponga que quiere demostrar que ϕ es consecuencia lógica de Σ. El método es el siguiente: Transforme

Más detalles

LÓGICA DE PROPOSICIONAL Y PREDICADOS INGENIERÍA DE SISTEMAS

LÓGICA DE PROPOSICIONAL Y PREDICADOS INGENIERÍA DE SISTEMAS LÓGICA DE PROPOSICIONAL Y PREDICADOS INGENIERÍA DE SISTEMAS Patricia Zamora Villalobos John Alexander Coral Llanos Josué Maleaño Trejos Prof. Francisco Carrera Fecha de entrega: miércoles de setiembre

Más detalles

Tema 1: Fundamentos.

Tema 1: Fundamentos. Tema 1: Fundamentos. 1. Nociones básicas de la Teoría de Conjuntos. Definición. Un conjunto es una colección de objetos. A los objetos de un conjunto se les llama elementos del conjunto. Se denominará

Más detalles

Capítulo 2 Conjuntos. 2.1 Introducción. 2.2 Determinación de conjuntos. Definición:

Capítulo 2 Conjuntos. 2.1 Introducción. 2.2 Determinación de conjuntos. Definición: Capítulo 2 Conjuntos 2.1 Introducción El concepto de conjunto, de singular importancia en la ciencia matemática y objeto de estudio de una de sus disciplinas más recientes, está presente, aunque en forma

Más detalles

Relaciones. Estructuras Discretas. Relaciones. Relaciones en un Conjunto. Propiedades de Relaciones en A Reflexividad

Relaciones. Estructuras Discretas. Relaciones. Relaciones en un Conjunto. Propiedades de Relaciones en A Reflexividad Estructuras Discretas Relaciones Definición: relación Relaciones Claudio Lobos, Jocelyn Simmonds clobos,jsimmond@inf.utfsm.cl Universidad Técnica Federico Santa María Estructuras Discretas INF 152 Sean

Más detalles

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO I LOGICA Y CONJUNTOS.

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO I LOGICA Y CONJUNTOS. ALGEBRA y ALGEBRA LINEAL 520142 Primer Semestre CAPITULO I LOGICA Y CONJUNTOS. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas Universidad de Concepción 1 La lógica es

Más detalles

NOTACIÓN MATEMÁTICA INTRODUCCION:

NOTACIÓN MATEMÁTICA INTRODUCCION: INTRODUCCION: NOTACIÓN MATEMÁTICA La matemática tiene, como la mayoría de las ciencias y otras disciplinas del saber, un lenguaje particular, específico, el cual simplifica, en algunos casos, la comunicación,

Más detalles

ÍNDICE INTRODUCCIÓN... 9 INSTRUCCIONES PARA EL LECTOR... 13

ÍNDICE INTRODUCCIÓN... 9 INSTRUCCIONES PARA EL LECTOR... 13 ÍNDICE INTRODUCCIÓN 9 INSTRUCCIONES PARA EL LECTOR 13 CAPÍTULO 1 GENERALIDADES TEOREMA DE LAGRANGE I Grupos 17 II Subgrupos 25 III Orden de un grupo 36 IV Índice de un subgrupo 40 Ejercicios correspondientes

Más detalles

LÓGICA FORMAL TEORIAS DE PRIMER ORDEN. Teoremas. Departamento de Inteligencia Artificial Facultad de Informática Universidad Politécnica de Madrid

LÓGICA FORMAL TEORIAS DE PRIMER ORDEN. Teoremas. Departamento de Inteligencia Artificial Facultad de Informática Universidad Politécnica de Madrid LÓGICA FORMAL TEORIAS DE PRIMER ORDEN Pedro López Departamento de Inteligencia Artificial Facultad de Informática Universidad Politécnica de Madrid Fórmulas elementales 1 Teniendo en cuenta las definiciones:

Más detalles

LÓGICA FORMAL TEORIAS DE PRIMER ORDEN. Teoremas

LÓGICA FORMAL TEORIAS DE PRIMER ORDEN. Teoremas LÓGICA FORMAL TEORIAS DE PRIMER ORDEN Pedro López Departamento de Inteligencia Artificial Facultad de Informática Universidad Politécnica de Madrid Fórmulas elementales 1 Teniendo en cuenta las definiciones:

Más detalles

Lógica de Predicados de Primer Orden

Lógica de Predicados de Primer Orden Lógica de Predicados: Motivación Todo natural es entero y 2 es un natural. Luego 2 es entero. p q r p, q r es claramente un razonamiento válido pero no es posible demostrarlo desde la Lógica Proposicional

Más detalles

Lógica de predicados 1. Lenguaje formal (parte 1)

Lógica de predicados 1. Lenguaje formal (parte 1) Lógica de predicados 1. Lenguaje formal (parte 1) Juan Carlos León Universidad de Murcia Esquema del tema 1.1. Nombres y predicados 1.2. Cuantificadores y variables 1.3. Silogística y lógica de predicados

Más detalles

Aplicaciones de las derivadas. El teorema del valor medio

Aplicaciones de las derivadas. El teorema del valor medio Aplicaciones de las derivadas. El teorema del valor medio Ya hemos hablado en un par de artículos anteriores del concepto de derivada y de su interpretación tanto desde el punto de vista geométrico como

Más detalles

Departamento de Inteligencia Artificial Facultad de Informática Universidad Politécnica de Madrid

Departamento de Inteligencia Artificial Facultad de Informática Universidad Politécnica de Madrid LÓGICA FORMAL Lógica Proposicional: Teorema de Efectividad Departamento de Inteligencia Artificial Facultad de Informática Universidad Politécnica de Madrid Lógica Proposicional 1 La lógica proposicional

Más detalles

Intuicionismo matemático y semántica basada en el concepto de demostración

Intuicionismo matemático y semántica basada en el concepto de demostración Intuicionismo matemático y semántica basada en el concepto de demostración CURSO TEORIA DE LA PRUEBA PARA LENGUAJES DE PROGRAMACION- DC-UBA-2012 Javier Legris CEF-CONICET y FCE-UBA jlegris@retina.ar Luitzen

Más detalles

Notas sobre polinomios

Notas sobre polinomios Notas sobre polinomios Glenier Bello 1. Definiciones y conceptos básicos 1.1. Un polinomio es una función f : C C del tipo f(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0, donde n es un entero no negativo

Más detalles

Centro Asociado Palma de Mallorca. Tutor: Antonio Rivero Cuesta

Centro Asociado Palma de Mallorca. Tutor: Antonio Rivero Cuesta Centro Asociado Palma de Mallorca Lógica y Estructuras Discretas Tutor: Antonio Rivero Cuesta Tema 1 Lógica de Proposiciones y de Predicados de Primer Orden Lógica de Proposiciones Sintaxis Infinitas letras

Más detalles

Álgebra Booleana. Álgebra Booleana. Definiciones. Definiciones. Definiciones. Definiciones. Sistemas Digitales Mario Medina 1

Álgebra Booleana. Álgebra Booleana. Definiciones. Definiciones. Definiciones. Definiciones. Sistemas Digitales Mario Medina 1 Álgebra Booleana Álgebra Booleana Mario Medina C. mariomedina@udec.cl Postulados y axiomas Lemas y teoremas Referencias a otras álgebras Álgebra de Boole: estructura algebraica definida sobre un conjunto

Más detalles

CIENCIAS FORMALES CIENCIAS FÁCTICAS

CIENCIAS FORMALES CIENCIAS FÁCTICAS UNA CLASIFICACIÓN DE LAS CIENCIAS CIENCIAS FORMALES CIENCIAS FÁCTICAS CIENCIAS FORMALES MATEMÁTICA LÓGICA CIENCIAS FÁCTICAS FÍSICA BIOLOGÍA QUÍMICA CIENCIAS SOCIALES OTRAS CIENCIAS FORMALES VOCABULARIO

Más detalles

Operaciones con monomios y polinomios

Operaciones con monomios y polinomios Operaciones con monomios y polinomios Para las operaciones algebraicas se debe de tener en cuenta que existen dos formas para representar cantidades las cuales son números o letras. Al representar una

Más detalles

Introducción. El uso de los símbolos en matemáticas.

Introducción. El uso de los símbolos en matemáticas. Introducción El uso de los símbolos en matemáticas. En el estudio de las matemáticas lo primero que necesitamos es conocer su lenguaje y, en particular, sus símbolos. Algunos símbolos, que reciben el nombre

Más detalles

Matemáticas Discretas Lógica

Matemáticas Discretas Lógica Coordinación de Ciencias Computacionales - INAOE Matemáticas Discretas Lógica Cursos Propedéuticos 2010 Ciencias Computacionales INAOE Lógica undamentos de Lógica Cálculo proposicional Cálculo de predicados

Más detalles

ÁLGEBRA I. Curso Grado en Matemáticas

ÁLGEBRA I. Curso Grado en Matemáticas ÁLGEBRA I. Curso 2012-13 Grado en Matemáticas Relación 1: Lógica Proposicional y Teoría de Conjuntos 1. Establecer las siguientes tautologías: (a) A A A (b) A A A (c) A B B A (d) A B B A (e) (A B) C A

Más detalles

Ampliación Matemática Discreta. Justo Peralta López

Ampliación Matemática Discreta. Justo Peralta López Justo Peralta López UNIVERSIDAD DE ALMERíA DEPARTAMENTO DE ÁGEBRA Y ANÁLISIS MATEMÁTICO 1 Introducción 2 Definición semántica de las proposiciones 3 Diagrama de valores de certeza 4 Evaluación de fórmulas.

Más detalles

Tema de la clase: Lógica Matemática. Introducción

Tema de la clase: Lógica Matemática. Introducción Tema de la clase: Lógica Matemática Instructor: Marcos Villagra Clase # 01 Escriba: Sergio Mercado Fecha 30/10/2017 Introducción Una de las características principales que distinguen a las matemáticas

Más detalles

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- V V V V F F F V F F F V

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- V V V V F F F V F F F V Resumen teoría Prof. Alcón ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Tablas de Verdad: p q p q p p V V V V F V F F F V F V F F F F p q p q V V V V F V F V V F F F p q p q V V V V F F F V V F F V p q p q

Más detalles

Lenguaje artificial. Código inventado para determinadas disciplinas y leyes, para utilizarlo de determinadas maneras.

Lenguaje artificial. Código inventado para determinadas disciplinas y leyes, para utilizarlo de determinadas maneras. LENGUAJE Y RAZONAMIENTO LÓGICO 1. LENGUAJES NATURALES Y ARTIFICIALES. 2. LA LÓGICA COMO CIENCIA DEL LENGUAJE. 3. LÓGICA PROPOSICIONAL. 3.1. Cálculo proposicional. Símbolos elementales. Reglas de formación.

Más detalles

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 1: Lunes 11 Viernes 16 de Marzo. Contenidos

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 1: Lunes 11 Viernes 16 de Marzo. Contenidos Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 1: Lunes 11 Viernes 16 de Marzo Complementos Contenidos Clase 1: Elementos de lógica: Conectivos, tablas de verdad, tautologías y contingencias.

Más detalles

TEMA 1: LÓGICA. p p Operador conjunción. Se lee y y se representa por. Su tabla de verdad es: p q p q

TEMA 1: LÓGICA. p p Operador conjunción. Se lee y y se representa por. Su tabla de verdad es: p q p q TEMA 1: LÓGICA. Definición. La lógica es la ciencia que estudia el razonamiento formalmente válido. Para ello tiene un simbolismo que evita las imprecisiones del lenguaje humano y permite comprobar la

Más detalles

Lenguajes de primer orden. Lógica y Computabilidad. símbolos lógicos y auxiliares: x ( ) Segundo cuatrimestre 2011

Lenguajes de primer orden. Lógica y Computabilidad. símbolos lógicos y auxiliares: x ( ) Segundo cuatrimestre 2011 Lenguajes de primer orden Lógica y Computabilidad Segundo cuatrimestre 2011 Departamento de Computación - FCEyN - UBA Lógica de Primer Orden - clase 1 Lenguaje de lógica de primer orden, términos, fórmulas,

Más detalles

Definición 2.- Las proposiciones se combinan mediante conectivos lógicos para formar otras proposiciones. Los conectivos lógicos básicos son:

Definición 2.- Las proposiciones se combinan mediante conectivos lógicos para formar otras proposiciones. Los conectivos lógicos básicos son: ii Matemática Discreta : Contenidos Capítulo 1 Lógica 1.1 Cálculo proposicional El Cálculo Proposicional se encarga del estudio de las relaciones lógicas entre objetos llamados proposiciones. Definición

Más detalles

de Primer Orden y los problemas de razonamiento (Cap 1 libro) de proposiciones (Cap 2 libro) de predicados (Cap 2 libro)

de Primer Orden y los problemas de razonamiento (Cap 1 libro) de proposiciones (Cap 2 libro) de predicados (Cap 2 libro) Bloque I: El Lenguaje de la Lógica L de Primer Orden. Tema 1: La Lógica L de Primer Orden y los problemas de razonamiento (Cap 1 libro) Tema 2: El lenguaje de la lógica l de proposiciones (Cap 2 libro)

Más detalles

Contenido. BLOQUE I: PRELIMINARES Tema 2 ALGUNAS NOCIONES DE TEORÍA DE CONJUNTOS, RELACIONES Y FUNCIONES Lógica Grado en Ingeniería Informática

Contenido. BLOQUE I: PRELIMINARES Tema 2 ALGUNAS NOCIONES DE TEORÍA DE CONJUNTOS, RELACIONES Y FUNCIONES Lógica Grado en Ingeniería Informática Contenido BLOQUE I: PRELIMINARES Tema 2 ALGUNAS NOCIONES DE TEORÍA DE CONJUNTOS, RELACIONES Y FUNCIONES Lógica Grado en Ingeniería Informática Alessandra Gallinari URJC Nociones de teoría de conjuntos

Más detalles

Capítulo 1: Fundamentos: Lógica y Demostraciones Clase 2: Lógica de Predicados y Métodos de Demostración

Capítulo 1: Fundamentos: Lógica y Demostraciones Clase 2: Lógica de Predicados y Métodos de Demostración Capítulo 1: Fundamentos: Lógica y Demostraciones Clase 2: Lógica de Predicados y Métodos de Demostración Matemática Discreta - CC3101 Profesor: Pablo Barceló P. Barceló Matemática Discreta - Cap. 1: Fundamentos:

Más detalles

2. El Teorema del Valor Medio

2. El Teorema del Valor Medio 2.24 45 2. El Teorema del Valor Medio Comenzaremos esta sección recordando dos versiones del teorema del valor medido para funciones de 1-variable y por tanto ya conocidas: 2.22 Sea f : [a, b] R R una

Más detalles

Cuerpo de Fracciones de un Anillo Íntegro

Cuerpo de Fracciones de un Anillo Íntegro Cuerpo de Fracciones de un Anillo Íntegro René A Hernández Toledo 1997 * Cuando se desarrollan los sistemas numéricos a partir los conjuntos, primeramente se construyen los números naturales. A partir

Más detalles

Resumen de las clases teóricas del turno tarde a cargo de la Prof. Alcón.

Resumen de las clases teóricas del turno tarde a cargo de la Prof. Alcón. Resumen de las clases teóricas del turno tarde a cargo de la Prof. Alcón. 0.1. Elementos de lógica Una proposición es una oración declamativa a la cual se le puede asignar un valor verdad: verdadera (V)

Más detalles

MEL* Sistemas formales y sistemas lógicos 1

MEL* Sistemas formales y sistemas lógicos 1 2.1.1 2 2a (x y) z : z x y 2b x y x y : x y x y 2.1.2 1 1a Hay que expresar cada uno de los operadores de la tabla de 2.1.2.3 en términos de y y las variables x, y. Nótese que se describen como operadores

Más detalles

Resumen de teoría elemental de conjuntos (primera parte) Javier Castro Albano

Resumen de teoría elemental de conjuntos (primera parte) Javier Castro Albano Resumen de teoría elemental de conjuntos (primera parte) Javier Castro Albano 1. Conjuntos, elementos, pertenencia El término conjunto es un término primitivo de la teoría de conjuntos. No se lo define.

Más detalles

Lógica Primer Orden: Deducción (Natural)

Lógica Primer Orden: Deducción (Natural) LÓGICA - 1º Grado en Ingeniería Informática Facultad de Informática Universidad Politécnica de Madrid Lógica Primer Orden: Deducción (Natural) Andrei Paun apaun@fi.upm.es http://web3.fi.upm.es/aulavirtual/

Más detalles

Tema 2: Teoría de la Demostración

Tema 2: Teoría de la Demostración Tema 2: Teoría de la Demostración Conceptos: Estructura deductiva Teoría de la Demostración Sistemas axiomáticos: Kleene Fórmulas válidas Teorema de la Deducción Introducción a la T. de la Demostración

Más detalles

Conjuntos. Un conjunto es una colección de objetos. Si a es un objeto y R es un conjunto entonces por. a R. se entiende que a pertenece a R.

Conjuntos. Un conjunto es una colección de objetos. Si a es un objeto y R es un conjunto entonces por. a R. se entiende que a pertenece a R. Conjuntos Un conjunto es una colección de objetos. Si a es un objeto y R es un conjunto entonces por se entiende que a pertenece a R. a R Normalmente, podremos definir a un conjunto de dos maneras: Por

Más detalles

Ing. Bruno López Takeyas. Relaciones

Ing. Bruno López Takeyas. Relaciones Relaciones Las relaciones son conjuntos, por lo tanto se puede usar la representación de conjuntos para representar relaciones. Una relación n-aria es un conjunto de n-tuplas. Las relaciones binarias con

Más detalles

Lógica proposicional 5. Sintaxis

Lógica proposicional 5. Sintaxis Lógica proposicional 5. Sintaxis Juan Carlos León Universidad de Murcia Esquema del tema 5.1. Sintaxis y semántica 5.2. Fórmulas bien formadas 5.3. Alcance 5.4. Teoremas 5.5. Reglas derivadas 1 Lógica

Más detalles

Álgebra Básica C Grado en Matemáticas Examen 1

Álgebra Básica C Grado en Matemáticas Examen 1 Álgebra Básica C Grado en Matemáticas Examen 1 Lee detenidamente las preguntas antes de contestarlas. Justifica todas tus respuestas. Evita los cálculos innecesarios y las repeticiones. Nombre y apellido(s):

Más detalles

Tema 1.- Nociones preliminares: grupos, anillos, cuerpos. Divisibilidad

Tema 1.- Nociones preliminares: grupos, anillos, cuerpos. Divisibilidad Tema 1.- Nociones preliminares: grupos, anillos, cuerpos. Divisibilidad 1.1 Grupos Al haber alterado el orden de los temas, este apartado ya se ha visto en el tema 9 1.2 Anillos y cuerpos Definición 1.2.1.

Más detalles

Álgebra Booleana. Suma Booleana. El término suma es 1 si al menos uno de sus literales son 1. El término suma es 0 solamente si cada literal es 0.

Álgebra Booleana. Suma Booleana. El término suma es 1 si al menos uno de sus literales son 1. El término suma es 0 solamente si cada literal es 0. Álgebra Booleana El álgebra de Boole son las matemáticas de los sistemas digitales. En el nivel de lógica digital de una computadora, lo que comúnmente se llama hardware y que está formado por los componentes

Más detalles

Conceptos fundamentales de Algebra

Conceptos fundamentales de Algebra CAPÍTULO Conceptos fundamentales de Algebra.. Conjuntos. Notaciones Se supone que el lector tiene conocimientos básicos de la Teoría de conjuntos. La notación que se usará será la usual, así, por ejemplo,

Más detalles

2. Los símbolos de la lógica proposicional.

2. Los símbolos de la lógica proposicional. Bloque I: El Saber Filosófico. Tema 4: La Lógica Formal. 1. Las proposiciones y sus tipos. Una proposición es una oración enunciativa, es decir, una oración que afirma o niega algo y que puede ser verdadera

Más detalles

MATE IV Serie Álgebra 2015/01/26 NOMENCLATURA ALGEBRAICA

MATE IV Serie Álgebra 2015/01/26 NOMENCLATURA ALGEBRAICA NOMENCLATURA ALGEBRAICA Definición (Término). Es una expresión algebraica que consta de un solo símbolo o de varios símbolos no separados entre sí por el signo + o -. Por ejemplo a, 3b, xy, son términos.

Más detalles

Matemáticas Básicas para Computación

Matemáticas Básicas para Computación Matemáticas Básicas para Computación MATEMÁTICAS BÁSICAS PARA COMPUTACIÓN 1 Sesión No. 6 Nombre: Álgebra Booleana Objetivo Durante la sesión el participante identificará las principales características

Más detalles

El álgebra booleana fue estudiada por Pitágoras y George Boole.

El álgebra booleana fue estudiada por Pitágoras y George Boole. ALGEBRA DE BOOLE Centro CFP/ES ALGEBRA DE BOOLE El álgebra booleana fue estudiada por Pitágoras y George Boole. Con el álgebra booleana, partiendo de una serie de sentencias lógicas iniciales verdaderas

Más detalles

Semántica formal para la Lógica de enunciados.

Semántica formal para la Lógica de enunciados. Grupo 2 Semántica formal para la Lógica de enunciados. 55. Cuando decidimos elegir los valores de verdad {V,F} para interpretar las fórmulas de L E, estamos adoptando realmente una decisión capaz de determinar

Más detalles

Relaciones Binarias. Matemática Discreta. Agustín G. Bonifacio UNSL. Relaciones Binarias

Relaciones Binarias. Matemática Discreta. Agustín G. Bonifacio UNSL. Relaciones Binarias UNSL Relaciones Binarias Relaciones Binarias (Sección 3.1 del libro) Definición Una relación (binaria) R de un conjunto X a un conjunto Y es un subconjunto del producto cartesiano X Y. Si (x,y) R, escribimos

Más detalles

LAS MATEMÁTICAS Y SU LENGUAJE. Entender, demostrar y resolver matemáticas

LAS MATEMÁTICAS Y SU LENGUAJE. Entender, demostrar y resolver matemáticas LAS MATEMÁTICAS Y SU LENGUAJE Entender, demostrar y resolver matemáticas El trabajo matemático Utilización de un lenguaje peculiar de significados precisos. Cuidado! A veces similar al cotidiano pero con

Más detalles

Sistema Axiomático para el Cálculo Proposicional

Sistema Axiomático para el Cálculo Proposicional Sistema Axiomático para el Cálculo Proposicional Lógica Matemática José de Jesús Lavalle Martínez 12 de julio de 2011 Resumen Este documento es una traducción de partes de la sección 1.4 AN AXIOM SYSTEM

Más detalles

Conjuntos Finitos e Infinitos

Conjuntos Finitos e Infinitos Araceli Guzmán y Guillermo Garro Facultad de Ciencias UNAM Semestre 2018-1 doyouwantmektalwar.wordpress.com Conjuntos Finitos El segmento inicial de tamaño n, donde n 0, es el conjunto 1 n = {1,..., n}

Más detalles

Funciones y Cardinalidad

Funciones y Cardinalidad Funciones y Cardinalidad Definición 1 Llamaremos función f entre dos conjuntos A y B a una relación que verifica las siguientes propiedades: i) Dom(f) = A ii) Si (a, b), (a, c) f entonces b = c Dicho de

Más detalles

Tema 6: Teoría Semántica

Tema 6: Teoría Semántica Tema 6: Teoría Semántica Sintáxis Lenguaje de de las las proposiciones Lenguaje de de los los predicados Semántica Valores Valores de de verdad verdad Tablas Tablas de de verdad verdad Tautologías Satisfacibilidad

Más detalles

Si un objeto x es elemento de un conjunto A, se escribe: x A.

Si un objeto x es elemento de un conjunto A, se escribe: x A. Conjuntos. Dentro de la teoría se consideran como primitivos o términos no definidos los conjuntos y los elementos. En general, se designan los conjuntos usando letras latinas mayúsculas y los elementos

Más detalles

BLOQUE V. CONTROL Y PROGRAMACIÓN DE SISTEMAS AUTOMÁTICOS

BLOQUE V. CONTROL Y PROGRAMACIÓN DE SISTEMAS AUTOMÁTICOS Bloque V. Control y programación de sistemas automáticos pág. 1 Bloque V. Control y programación de sistemas automáticos pág. 2 BLOQUE V. CONTROL Y PROGRAMACIÓN DE SISTEMAS AUTOMÁTICOS 1. LA INFORMACIÓN

Más detalles

BLOQUE V. CONTROL Y PROGRAMACIÓN DE SISTEMAS AUTOMÁTICOS

BLOQUE V. CONTROL Y PROGRAMACIÓN DE SISTEMAS AUTOMÁTICOS Bloque V. Control y programación de sistemas automáticos pág. 1 BLOQUE V. CONTROL Y PROGRAMACIÓN DE SISTEMAS AUTOMÁTICOS 1. LA INFORMACIÓN BINARIA 1.1. Sistemas de numeración y códigos Def. Sistema de

Más detalles

Tema 5: Teoría de la Demostración en Predicados

Tema 5: Teoría de la Demostración en Predicados Tema 5: Teoría de la Demostración en Predicados Resumen introducción lógica de predicados Resumen introducción lógica de predicados Conceptos: ahora para lógica de predicados de 1 er orden Estructura deductiva

Más detalles

Álgebra Lineal Ma1010

Álgebra Lineal Ma1010 Álgebra Lineal Ma1010 Espacios Vectoriales Departamento de Matemáticas ITESM Espacios Vectoriales Álgebra Lineal - p. 1/80 En esta lectura se introduce el concepto de espacio vectorial. Este concepto generaliza

Más detalles

Práctica 3: Lógica Digital - Combinatorios 1/2

Práctica 3: Lógica Digital - Combinatorios 1/2 Práctica 3: Lógica Digital - Combinatorios 1/2 Matías López Organización del Computador I DC - UBA Verano 2010 Compuertas - NOT Propiedades A NOT A 0 1 1 0 Compuertas - AND Propiedades A B A AND B 0 0

Más detalles

Lógica de predicados

Lógica de predicados Lógica de predicados Cálculo de predicados Hay ciertos argumentos que parecen ser perfectamente lógicos y que no pueden ser especificados usando cálculo proposicional. Ejemplos: Todos los gatos tienen

Más detalles

Introducción a la Lógica

Introducción a la Lógica Tema 0 Introducción a la Lógica En cualquier disciplina científica se necesita distinguir entre argumentos válidos y no válidos. Para ello, se utilizan, a menudo sin saberlo, las reglas de la lógica. Aquí

Más detalles

Cálculo de predicados. Lógica de predicados. Cálculo de predicados. Cálculo de predicados 08/06/2011

Cálculo de predicados. Lógica de predicados. Cálculo de predicados. Cálculo de predicados 08/06/2011 Lógica de predicados Hay ciertos argumentos que parecen ser perfectamente lógicos y que no pueden ser especificados usando cálculo proposicional. Ejemplos: Todos los gatos tienen cola Tomás es un gato

Más detalles

Teoremas: Condiciones Necesarias, Condiciones Suficientes y Condiciones Necesarias y Suficientes

Teoremas: Condiciones Necesarias, Condiciones Suficientes y Condiciones Necesarias y Suficientes FUNCIONES DE VARIABLE COMPLEJA 1 Teoremas: Condiciones Necesarias, Condiciones Suficientes y Condiciones Necesarias y Suficientes Lógica Matemática Una prioridad que tiene la enseñanza de la matemática

Más detalles

GUIA 4: ALGEBRA DE BOOLE

GUIA 4: ALGEBRA DE BOOLE GUIA 4: ALGEBRA DE BOOLE En 1854 George Boole introdujo una notación simbólica para el tratamiento de variables cuyo valor podría ser verdadero o falso (variables binarias) Así el álgebra de Boole nos

Más detalles

Tema 14: Sustitución y Unificación

Tema 14: Sustitución y Unificación Facultad de Informática Grado en Ingeniería Informática Lógica PARTE 4: RESOLUCIÓN Tema 14: Sustitución y Unificación Profesor: Javier Bajo jbajo@fi.upm.es Madrid, España 04/12/2012 Introducción. 2/12

Más detalles

Demostraciones. Demostraciones básicas. José de Jesús Angel Angel

Demostraciones.  Demostraciones básicas. José de Jesús Angel Angel Demostraciones Demostraciones básicas www.math.com.mx José de Jesús Angel Angel jjaa@math.com.mx MathCon c 2007-2017 Contenido 0.1. Demostraciones..................................... 2 0.1.1. Negación

Más detalles

INTRODUCCION A LA INTELIGENCIA ARTIFICIAL MÓDULO 6- CÁLCULO DE PREDICADOS Y LÓGICA DE PRIMER ORDEN

INTRODUCCION A LA INTELIGENCIA ARTIFICIAL MÓDULO 6- CÁLCULO DE PREDICADOS Y LÓGICA DE PRIMER ORDEN INTRODUCCION A LA INTELIGENCIA ARTIFICIAL MÓDULO 6- CÁLCULO DE PREDICADOS Y LÓGICA DE PRIMER ORDEN Referencias: Inteligencia Artificial Russell and Norvig Cap.6. Artificial Intellingence Nils Nilsson Ch.4

Más detalles

LEYES, ESTRUCTURAS BÁSICAS Y COCIENTES LÓGICA DE PROPOSICIONES

LEYES, ESTRUCTURAS BÁSICAS Y COCIENTES LÓGICA DE PROPOSICIONES Todos los derechos de propiedad intelectual de esta obra pertenecen en exclusiva a la Universidad Europea de Madrid, S.L.U. Queda terminantemente prohibida la reproducción, puesta a disposición del público

Más detalles