Universidad de Buenos Aires - Facultad de Ciencias Exactas y Naturales - Depto. de Matemática Primer Cuatrimestre de k=1. x, y = x k y k.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Universidad de Buenos Aires - Facultad de Ciencias Exactas y Naturales - Depto. de Matemática Primer Cuatrimestre de k=1. x, y = x k y k."

Transcripción

1 Universidad de Buenos Aires - Facultad de Ciencias Exactas y Naturales - Depto. de Matemática Primer Cuatrimestre de 003 Análisis Funcional Práctica N 5: Espacios de Hilbert 1. Sean H un espacio vectorial y a : H H C una forma sesquilineal, hermitiana y semidefinida positiva. (a) Probar la desigualdad de Cauchy-Schwartz: a(x, y) a(x, x) 1/ a(y, y) 1/ x, y H (b) Probar la desigualdad triangular: a(x + y, x + y) 1/ a(x, x) 1/ + a(y, y) 1/ x, y H (c) Si además a(x, x) = 0 x = 0 (o sea a es definida positiva) entonces x = a(x, x) 1/ es una norma en H.. Probar que son espacios de Hilbert: (a) C n, con producto escalar x, y = x k y k (b) l, con producto escalar x, y = x k y k (c) L (X), donde (X,, µ) es un espacio de medida, con producto escalar f, g = X f g dµ (d) H 1 (Ω) := W 1, (Ω) (definido en el Ejercicio 18 (c) Práctica 1; donde las funciones son a valores reales), con el producto escalar f, g = Ω fg + Ω f g 3. Si H es un espacio vectorial y a : H H C es sesquilineal y hermitiana, vale la fórmula de polarización, x, y H: a(x, y) = 1 4 a(x + y, x + y) a(x y, x y) + i [ a(x + iy, x + iy) a(x iy, x iy) ]} En particular, en H Hilbert, x, y H: x, y = 1 4 x + y x y + i ( x + iy x iy )}

2 4. (a) Sea (E, ) un espacio de Banach. Probar que existe un producto escalar que induce la norma de E (y que hace de E un espacio de Hilbert) si y sólo si verifica la identidad del paralelogramo: x + y + x y = ( x + y ) x, y E (b) (l p, p ), si p y (C[0, 1], ) no son espacios de Hilbert. 5. Sea H un espacio de Hilbert y sea e n } n un conjunto ortonormal. Son equivalentes: (a) e n } n es ortonormal maximal. (b) Si x H, x e n n, entonces x = Ortogonalización de Gram-Schmidt: Sea H un espacio de Hilbert y supongamos que b n } n es un subconjunto linealmente independiente de H que genera un subespacio denso en H. (a) Definamos e 1 = b 1 b 1 y, una vez definido e n, e n+1 = b n+1 b n+1 b n+1, e k e k b n+1, e k e k Probar que e n } n es una base de H. (b) Si f n } n es un conjunto ortonormal tal que para cada n IN, existen λ 1,..., λ n C, con λ n 0, tales que f n = λ i b i entonces f n = α n e n, con α n C, α n = 1 n. i=1 7. Desigualdad de Bessel: Sea H un espacio de Hilbert y sea x n } H un conjunto ortonormal. Probar que N (a) x H y para cada N IN, x, x n x. (b) x H, x, x n converge y x, x n x. 8. Sea H un espacio de Hilbert, si e n } es una base de H entonces x H vale: (a) x = x, e n e n (b) x = x, e n (c) Si y H, x, y = x, e n y, e n 9. (a) Probar que e n } n IN l dado por (e n ) k = δ n k es una base de l. (b) Probar que eint π : n ZZ } es una base de L [ π, π].

3 (c) Probar que 1, cos(nπx), sin(nπx)} es una base de L [ 1, 1] considerado como IR espacio vectorial. 10. (a) El conjunto 1, x, x,...} es linealmente independiente y genera un subespacio denso en el espacio de Hilbert real L [ 1, 1]. Su ortogonalización de Gram- Schmidt e n } n IN satisface que ( ) n + 1 1/ e n (x) = P n (x) donde P n (x) = 1 ( d n n! dx )n (x 1) n son los polinomios de Legendre. (b) El conjunto x n x / e : n 0} es linealmente independiente y genera un subespacio denso en el espacio de Hilbert real L (, ). Su ortogonalización de Gram-Schmidt e n } n IN satisface que e n (x) = 1 πn n! H n(x) e x / donde H n (x) = ( 1) n e x ( d dx )n e x son los polinomios de Hermite y H n = n H n Sean H y K espacios de Hilbert. En H K definimos (h 1, k 1 ), (h, k ) = h 1, h H + k 1, k K Probar que (H K,, ) es un espacio de Hilbert, y que H 0} y 0} K son cerrados y ortogonales en H K. 1. Sean H un espacio de Hilbert, S H un subespacio cerrado propio. (a) Probar que existe x H S tal que x S. (b) Si S = x H : x S} entonces S es un subespacio cerrado y S S = H. (c) (S ) = S (d) Dar contraejemplos de (b) y (c) si S no es cerrado. 13. (a) Sean H un espacio de Hilbert, D H un subconjunto. El subespacio generado por D es denso en H si y sólo si se verifica x, y = 0 y D x = 0 } (b) En l sea S = x l : x n = 0. Probar que S es denso en l. 14. Sean S y T subespacios cerrados y ortogonales de un espacio de Hilbert H. Probar que S T es cerrado. 15. Si x n } n IN es un sistema ortogonal completo en un espacio de Hilbert H y y n } n IN es una sucesión ortogonal en H que verifica entonces y n } n IN es también completo. x n y n < 1, 3

4 Familias Sumables. Sean E un espacio de Banach, (x i ) una familia en E. Definición: x i es de Cauchy si y sólo si ε > 0 F I, F finito, tal que si G 1 y G son subconjuntos finitos de I que contienen a F entonces x i x i < ε i G 1 i G 16. Probar que la siguiente definición es equivalente a la anterior: ε > 0 F I, F finito, tal que si F G I, G finito, entonces x i < ε i G F Definición: x i = x (x E) si y sólo si ε > 0 F I, F finito, tal que si F G I, G finito, entonces x i x < ε i G En este caso se dice que la familia es sumable. 17. En un espacio de Banach E, x i es de Cauchy si y sólo si (x i ) es sumable. 18. Si x = x i, y = y i, λ C, entonces x + y = (x i + y i ) λx = i ) (λx 19. Si x = x i, y H, con H Hilbert, entonces x, y = x i, y 0. Si x i es de Cauchy entonces i I : x i 0} es a lo sumo numerable. 1. l (I) = (x i ) C : x i < }, con x, y = x i y i, es un espacio de Hilbert. (enunciar y probar Hölder para que el producto escalar esté bien definido). Pitágoras: Sea (x i ) una familia ortogonal en un espacio de Hilbert H. (x i ) es sumable si y sólo si ( x i ) es sumable y en tal caso x i = x i 4

5 3. Desigualdad de Bessel: Sea H un espacio de Hilbert.Si (x i ) es una familia ortonormal en H y x H entonces ( x, x i ) es una familia sumable y x, x i x 4. Demostrar que todo espacio de Hilbert H admite una base y que dos bases cualesquiera son coordinables. 5. (a) Un espacio de Hilbert es separable si y sólo si todo sistema ortonormal es a lo sumo numerable. (b) Si #(I) > ℵ 0, l (I) no es separable. 6. Sea H un espacio de Hilbert. (a) Si (x i ) es una base de H, entonces x H x = x, x i x i x = x, x i (b) Si (x i ) es una base de H, entonces H es isométricamente isomorfo a l (I). (c) Todo espacio de Hilbert separable de dimensión infinita es isométricamente isomorfo a l (IN). 5

1 Espacios de Banach:

1 Espacios de Banach: Ecuaciones Diferenciales - 2 cuatrimestre 2003 Resultados preliminares parte II Espacios de Banach: Sea X un IR-espacio vectorial. Definición. Una función : X [0, + ) se dice una norma si. x + y x + y

Más detalles

ELEMENTOS DE ANÁLISIS FUNCIONAL

ELEMENTOS DE ANÁLISIS FUNCIONAL ELEMENTOS DE ANÁLISIS FUNCIONAL Guillermo Ames Universidad Tecnológica Nacional - Facultad Regional Córdoba 2011 TEMA 3: ESPACIOS CON PRODUCTO INTERNO. ESPACIOS DE HILBERT. Espacios producto interno. Espacios

Más detalles

Espacios vectoriales con producto interno

Espacios vectoriales con producto interno Espacios vectoriales con producto interno Problemas teóricos En todos los problemas relacionados con el caso complejo se supone que el producto interno es lineal con respecto al segundo argumento. Definición

Más detalles

TEMA VI: ESPACIOS DE HILBERT

TEMA VI: ESPACIOS DE HILBERT TEMA VI: ESPACIOS DE HILBERT. Espacios con producto escalar Definición: Sea L un espacio vectorial sobre el cuerpo K (R ó C). Por un producto escalar (o interno) sobre L entedemos una aplicación :

Más detalles

1. ESPACIOS DE HILBERT Y OPERADORES

1. ESPACIOS DE HILBERT Y OPERADORES 1. ESPACIOS DE HILBERT Y OPERADORES 1. DEFINICIÓN, PROPIEDADES Y EJEMPLOS Definición. Sea H un espacio vectorial sobre el cuerpo C de los números complejos, un producto escalar sobre H es una aplicación

Más detalles

Espacios de Hilbert: problemas propuestos

Espacios de Hilbert: problemas propuestos Espacios de Hilbert: problemas propuestos ISABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ull.es Índice 6. Problemas propuestos 1 6.1. Espacios con producto interior..................................

Más detalles

Métodos matemáticos: Análisis funcional

Métodos matemáticos: Análisis funcional Métodos matemáticos: Análisis funcional Conceptos y resultados fundamentales Curso 2011/2012 Aquí encontrarás los Teoremas hay que saber para el primer parcial ( 1) así como las definiciones, problemas

Más detalles

Espacios Lineales. José D. Edelstein. Universidade de Santiago de Compostela. Santiago de Compostela, febrero de 2011

Espacios Lineales. José D. Edelstein. Universidade de Santiago de Compostela. Santiago de Compostela, febrero de 2011 Espacios Lineales José D. Edelstein Universidade de Santiago de Compostela FÍSICA MATEMÁTICA Santiago de Compostela, febrero de 2011 Espacios vectoriales. Espacios normados. Espacios de Hilbert. José D.

Más detalles

Análisis Funcional (Ejercicios-01)

Análisis Funcional (Ejercicios-01) Análisis Funcional (Ejercicios-1 1. Sea M un conjunto a lo más numerable y sea (M, 2 M, # el espacio de medida con # la medida de conteo. (i Demuestre que una función medible f es integrable si y sólo

Más detalles

Métodos Matemáticos de la Física III (Espacios de Hilbert)

Métodos Matemáticos de la Física III (Espacios de Hilbert) Métodos Matemáticos de la Física III (Espacios de Hilbert) Profesores: José Santiago: Teoría y problemas grupo 1 (jsantiago @ugr.es) Tutorías: M y J (11:00-13:00 y 14:00-15:00) despacho A03. Fernando Cornet:

Más detalles

Elementos Básicos de Análisis Funcional en. Dr. Oldemar Rodríguez Rojas

Elementos Básicos de Análisis Funcional en. Dr. Oldemar Rodríguez Rojas Elementos Básicos de Análisis Funcional en Análisis Numérico Dr. Oldemar Rodríguez Rojas Agosto 2008 Contents 1 Elementos Básicos de Análisis Funcional 2 1.1 Espacios normados...........................

Más detalles

INTRODUCCIÓN A LOS ESPACIOS DE FUNCIONES. Problemas

INTRODUCCIÓN A LOS ESPACIOS DE FUNCIONES. Problemas Problemas Curso 2013-2014 Problemas 1. Sea E un espacio normado. Si a, b son elementos de E, probar: (a) 1 2 (a + b) 2 1 2 a 2 + 1 2 b 2. (b) a max{ a + b, a b }. 2. Demostrar que en un espacio normado,

Más detalles

ESPACIO VECTORIAL EUCLÍDEO

ESPACIO VECTORIAL EUCLÍDEO ESPACIO VECTORIAL EUCLÍDEO PRODUCTO ESCALAR Sea V un espacio vectorial sobre C. Una aplicación que asocia un número complejo < u, v > a cada pareja de vectores u y v en V, se dice que es un producto escalar

Más detalles

Métodos Matemáticos: Análisis Funcional

Métodos Matemáticos: Análisis Funcional Licenciatura en Ciencias y Técnicas Estadísticas Universidad de Sevilla http://euler.us.es/ renato/clases.html Qué son esos espacios de Hilbert? Qué son esos espacios de Hilbert? David Hilbert Para relajarnos

Más detalles

Espacios Vectoriales Euclídeos. Métodos de los mínimos cuadrados

Espacios Vectoriales Euclídeos. Métodos de los mínimos cuadrados Capítulo 5 Espacios Vectoriales Euclídeos. Métodos de los mínimos cuadrados En este tema iniciamos el estudio de los conceptos geométricos de distancia y perpendicularidad en K n. Empezaremos con las definiciones

Más detalles

Espacios de Hilbert. 1. Propiedades básicas

Espacios de Hilbert. 1. Propiedades básicas Capítulo 9 Espacios de Hilbert 1. Propiedades básicas En este capítulo estudiaremos las propiedades básicas, así como algunas aplicaciones, de la teoría de espacios de Hilbert. Definición 9.1. Decimos

Más detalles

Métodos Matemáticos: Análisis Funcional

Métodos Matemáticos: Análisis Funcional Licenciatura en Ciencias y Técnicas Estadísticas Universidad de Sevilla http://euler.us.es/ renato/clases.html Espacios eucĺıdeos Definición Se dice que un espacio vectorial E es un espacio eucĺıdeo si

Más detalles

MMAF: Espacios normados y espacios de Banach

MMAF: Espacios normados y espacios de Banach MMAF: Espacios normados y espacios de Banach Licenciatura en Estadística R. Álvarez-Nodarse Universidad de Sevilla Curso 2011/2012 Espacios vectoriales Definición Sea V un conjunto de elementos sobre el

Más detalles

Análisis Matemático para Estadística. Hoja 1

Análisis Matemático para Estadística. Hoja 1 Análisis Matemático para Estadística. Hoja Funciones de variable compleja. Teoremas básicos.. Describe el conjunto de puntos del plano complejo que cumplen la ecuación: (a) Im(z + 5i) = ; (b) Re(z + 3

Más detalles

Ejercicios de Análisis Funcional. Curso

Ejercicios de Análisis Funcional. Curso Ejercicios de Análisis Funcional Curso 2010-2011 1 1 Preliminares de espacios normados Problema 1.1. Demostrar que para 1 < p < la norma. p en R 2 verifica la siguiente propiedad: Si x, y R 2 con x y y

Más detalles

Ejercicios de Análisis Funcional

Ejercicios de Análisis Funcional Ejercicios de Análisis Funcional Rafael Payá Albert Departamento de Análisis Matemático Universidad de Granada ANÁLISIS FUNCIONAL Relación de Ejercicios N o 1 1. Dar un ejemplo de una distancia en un espacio

Más detalles

Clase de Álgebra Lineal

Clase de Álgebra Lineal Clase de Álgebra Lineal M.Sc. Carlos Mario De Oro Facultad de Ciencias Básicas Departamento de matemáticas 04.2017 Page 1 Espacios vectoriales Definicion. Espacio Vectorial (E.V.) Un V espacio vectorial

Más detalles

Análisis de Fourier. Resumen de los apuntes de D. Antonio Cañada Villar. Sergio Cruz Blázquez. Curso 2015/2016

Análisis de Fourier. Resumen de los apuntes de D. Antonio Cañada Villar. Sergio Cruz Blázquez. Curso 2015/2016 Análisis de Fourier Resumen de los apuntes de D. Antonio Cañada Villar Curso 2015/2016 Sergio Cruz Blázquez Índice 1 El espacio L 2 (a, b) Definición y primeras notas El espacio L 1 (a, b) L 2 (a, b) como

Más detalles

Espacios de Banach. Problemas para examen

Espacios de Banach. Problemas para examen Espacios de Banach Problemas para examen Se marcan con azul algunos ejercicios que no vimos bien en clase. La lista todavía no es completa; se pueden agregar algunos teoremas y ejercicios que vimos bien

Más detalles

4.2 Producto escalar.

4.2 Producto escalar. Producto escalar. 147 Este resultado tiene su recíproco, es decir, cualquier matriz cuadrada A define la forma bilineal b(x, y) =x T Ay Si b es simétrica, la matriz A es simétrica. Si b es definida positiva,

Más detalles

Cálculo Numérico III Curso 2010/11

Cálculo Numérico III Curso 2010/11 Cálculo Numérico III Curso 2010/11 Problemas del Tema 1 1. Sean {x 0, x 1,..., x n } IR con x i x j si i j. Hoja de problemas - Parte I a) Hallar el polinomio de grado n que interpola a la función en los

Más detalles

ESPACIOS DE HILBERT. Ramón Bruzual Marisela Domínguez

ESPACIOS DE HILBERT. Ramón Bruzual Marisela Domínguez UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE MATEMÁTICA LABORATORIO DE FORMAS EN GRUPOS ESPACIOS DE HILBERT Ramón Bruzual Marisela Domínguez Caracas, Venezuela Julio 25 Ramón Bruzual

Más detalles

Índice. Funciones de varias variables reales I Espacios normados. Revisando con perspectiva. Se puede hacer de forma más general?

Índice. Funciones de varias variables reales I Espacios normados. Revisando con perspectiva. Se puede hacer de forma más general? Índice Funciones de varias variables reales I Espacios normados José Manuel Mira Departamento de Matemáticas Universidad de Murcia Grado en Matemáticas 2013-2014 (18-09-2013) 1 Espacios normados. El espacio

Más detalles

Problemas con soluciones

Problemas con soluciones Departamento de Matemática, Universidad Técnica Federico Santa María, MAT-223. Problemas con soluciones 1) Muestre que si A es una base de una toplogía en X, entonces la topología generada por A es iqual

Más detalles

José Humberto Serrano Devia Página 1

José Humberto Serrano Devia Página 1 Similitudes entre el espacio y las series de Fourier Funciones Ortogonales En esta sección se muestra la forma en que los conceptos vectoriales de producto interno, o producto escalar, y el de ortogonalidad

Más detalles

Capítulo 1. Espacios de Hilbert Introducción

Capítulo 1. Espacios de Hilbert Introducción Capítulo 1 Espacios de Hilbert 1.1. Introducción Dentro de la familia de espacios vectoriales dotados de una estructura métrica, son los espacios de Hilbert los que, como generalización a cualquier dimensión

Más detalles

Ayudantía 7: Espacios de Hilbert

Ayudantía 7: Espacios de Hilbert Pontificia Universidad Católica de Chile Facultad de Física FIZ0322 Física Cuántica I Ayudantía 7: Espacios de Hilbert Fabián Cádiz 0.1. Espacios vectoriales normados 0.1.1. Norma Sea E un espacio vectorial

Más detalles

Operadores y funcionales lineales: problemas propuestos

Operadores y funcionales lineales: problemas propuestos Operadores y funcionales lineales: problemas propuestos ISABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ull.es Índice 6. Problemas propuestos 1 6.1. Funcionales lineales........................................

Más detalles

Gustavo Rodríguez Gómez. Agosto Dicembre 2011

Gustavo Rodríguez Gómez. Agosto Dicembre 2011 Computación Científica Gustavo Rodríguez Gómez INAOE Agosto Dicembre 2011 1 / 44 Capítulo III Descomposición de Matrices 2 / 44 1 Descomposición de Matrices Notación Matrices Operaciones con Matrices 2

Más detalles

Guía. Álgebra III. Examen parcial III. Forma canónica de Jordan. Producto interno.

Guía. Álgebra III. Examen parcial III. Forma canónica de Jordan. Producto interno. Guía. Álgebra III. Examen parcial III. Forma canónica de Jordan. Producto interno. Teoremas con demostraciones que se pueden incluir en el examen: 1. Fórmula para f(j m (λ)), donde J m (λ) es el bloque

Más detalles

Apéndice 2: Series de Fourier.

Apéndice 2: Series de Fourier. Apéndice 2: Series de Fourier. 19 de noviembre de 2014 1. Conjuntos ortonormales y proyecciones. Sea V un espacio vectorial con un producto interno . Sea {e 1,..., e n } un conjunto ortonormal, V

Más detalles

Parte 2: Definición y ejemplos de topologías.

Parte 2: Definición y ejemplos de topologías. Parte 2: Definición y ejemplos de topologías. 22 de marzo de 2014 1. Definiciones y propiedades básicas. Definición 1 Sea X un conjunto. Una familia T de subconjuntos de X es una topología de X si se cumplen:

Más detalles

102 EJERCICIOS DE ALGEBRA LINEAL por Francisco Rivero Mendoza Ph.D.

102 EJERCICIOS DE ALGEBRA LINEAL por Francisco Rivero Mendoza Ph.D. 102 EJERCICIOS DE ALGEBRA LINEAL por Francisco Rivero Mendoza Ph.D. Tema 1. Espacios Vectoriales. 1. Dar la definición de cuerpo. Dar tres ejemplos de cuerpos. Dar un ejemplo de un cuerpo finito 2. Defina

Más detalles

ELEMENTOS DE ANÁLISIS FUNCIONAL

ELEMENTOS DE ANÁLISIS FUNCIONAL ELEMENTOS DE ANÁLISIS FUNCIONAL Guillermo Ames Universidad Tecnológica Nacional - Facultad Regional Córdoba 2011 TEMA 1: NOCIONES BÁSICAS DE ESPACIOS MÉTRICOS Espacios métricos: definición y ejemplos Definición

Más detalles

Maestría en Matemáticas

Maestría en Matemáticas Reactivos Propuestos para Examen de Admisión (ASN) Ingreso en Agosto de 203. Sea R el conjunto de los números reales y S el conjunto de todas las funciones valuadas en los reales con dominio en R. Muestre

Más detalles

UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS Escuela de Matemática Postgrado en Matemática. Espacios con métrica indefinida

UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS Escuela de Matemática Postgrado en Matemática. Espacios con métrica indefinida UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS Escuela de Matemática Postgrado en Matemática Espacios con métrica indefinida Ramón Bruzual Caracas, Venezuela Octubre 2011 Ramón Bruzual Correo-E:

Más detalles

1. Definiciones y propiedades básicas.

1. Definiciones y propiedades básicas. Centro de Matemática Facultad de Ciencias Universidad de la República Introducción a la Topología Curso 2016 PRACTICO 2: TOPOLOGÍA. 1 1. Definiciones y propiedades básicas. Definición 1 Sea X un conjunto.

Más detalles

Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1. Se llama producto escalar sobre un espacio vectorial real V a cualquier aplicación

Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1. Se llama producto escalar sobre un espacio vectorial real V a cualquier aplicación Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1 6 Espacios euclídeos 6.1 Producto escalar. Espacio euclídeo Se llama producto escalar sobre un espacio vectorial real V a cualquier aplicación

Más detalles

Nociones de Análisis Funcional

Nociones de Análisis Funcional UNIVERSIDAD DE SEVILLA Nociones de Análisis Funcional Luis Bernal González Tomás Domínguez Benavides Departamento de Análisis Matemático Lugar y Año: Sevilla, 2010 Disponible en: http://personal.us.es/lbernal/

Más detalles

Espacio vectorial eucĺıdeo

Espacio vectorial eucĺıdeo Espacio vectorial eucĺıdeo José Vicente Romero Bauset ESI-curso 2009/200 José Vicente Romero Bauset ema.- Espacio vectorial eucĺıdeo. Introducción U w U v u V f (x) a n 0 2 + a k coskx + b k senkx k= José

Más detalles

PROBLEMAS DE ESPACIOS DE BANACH

PROBLEMAS DE ESPACIOS DE BANACH UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE MATEMÁTICA LABORATORIO DE FORMAS EN GRUPOS PROBLEMAS DE ESPACIOS DE BANACH Ramón Bruzual Marisela Domínguez Caracas, Venezuela Julio 2005.

Más detalles

Material para el examen parcial 1

Material para el examen parcial 1 Algebra Lineal 2, FAMAT-UG, aug-dic, 2009 Material para el examen parcial 1 (17 oct, 2009) Definiciones: Hay que saber las definiciones precisas de todos los siguientes términos, y conocer ejemplos concretos

Más detalles

1. Ilustre con dibujos e interprete geométricamente las propiedades 2,3 y 4 del producto por un escalar en R 2. u + v = w + v,

1. Ilustre con dibujos e interprete geométricamente las propiedades 2,3 y 4 del producto por un escalar en R 2. u + v = w + v, Geometría Analítica I Grupo 4054 TAREA 3 Parte I 1. Ilustre con dibujos e interprete geométricamente las propiedades 2,3 y 4 del producto por un escalar en R 2. 2. Sea (x, y) R 2 tal que (x, y) (0, 0).

Más detalles

Nociones de Análisis Funcional

Nociones de Análisis Funcional UNIVERSIDAD DE SEVILLA Nociones de Análisis Funcional Luis Bernal González Tomás Domínguez Benavides Departamento de Análisis Matemático Edición: BGDB Lugar y Año: Sevilla, 2009 ISBN: [a completar] Índice

Más detalles

Espacios Euclídeos. Natalia Boal María Luisa Sein-Echaluce Universidad de Zaragoza

Espacios Euclídeos. Natalia Boal María Luisa Sein-Echaluce Universidad de Zaragoza Espacios Euclídeos Natalia Boal María Luisa Sein-Echaluce Universidad de Zaragoza A lo largo de todo el capítulo consideraremos que V un espacio vectorial real de dimensión finita. 1 Producto escalar Definición.

Más detalles

Práctica 5 -Completitud, Continuidad uniforme y Compacidad- A. Completitud

Práctica 5 -Completitud, Continuidad uniforme y Compacidad- A. Completitud Cálculo Avanzado Primer Cuatrimestre de 2011 Práctica 5 -Completitud, Continuidad uniforme y Compacidad- Cuanto más sólido, bien definido y espléndido es el edificio erigido por el entendimiento, más imperioso

Más detalles

PRÁCTICAS DE ANÁLISIS FUNCIONAL

PRÁCTICAS DE ANÁLISIS FUNCIONAL PRÁCTICAS DE ANÁLISIS FUNCIONAL Departamento de Análisis Matemático Curso 1-13 Profesores responsables: Oscar Blasco Pablo Galindo. Práctica 1 Espacios de Hilbert............................... 1 Práctica

Más detalles

Comisión de Pedagogía - Diego Chamorro Análisis Funcional (Nivel 2).

Comisión de Pedagogía - Diego Chamorro Análisis Funcional (Nivel 2). AMARUN www.amarun.org Comisión de Pedagogía - Diego Chamorro Análisis Funcional (Nivel 2). Lección n 3: Lema de Baire y Teorema clásicos del Análisis Funcional EPN, verano 2012 Definición 1 (Espacio de

Más detalles

Teorema de Hahn-Banach

Teorema de Hahn-Banach Capítulo 3 Teorema de Hahn-Banach 3.1. Introducción Una vez introducidos los espacios vectoriales más importantes donde se tiene una estructura métrica a saber, los espacios de Hilbert y los espacios de

Más detalles

Espacios Métricos. 25 de octubre de 2011

Espacios Métricos. 25 de octubre de 2011 Espacios Métricos 25 de octubre de 2011 1. Nociones de espacios métricos Llamaremos espacio métrico a un conjunto X con una función d : X X R 0 (que llamaremos la métrica de X) que verifica las siguientes

Más detalles

ÁLGEBRA LINEAL II Práctica

ÁLGEBRA LINEAL II Práctica ÁLGEBRA LINEAL II Práctica 2.1-2.2 Espacios Euclídeos. Ortogonalidad (Curso 2011 2012) 1. Se considera un espacio euclídeo de dimensión 3, y en él una base {ē 1, ē 2, ē 3 } tal que el módulo de ē 1 y el

Más detalles

Problemas de VC para EDVC elaborados por C. Mora, Tema 4

Problemas de VC para EDVC elaborados por C. Mora, Tema 4 Problemas de VC para EDVC elaborados por C. Mora, Tema 4 Ejercicio Determinar las funciones enteras f para las que Solución f( + w) = f()f(w), w C. En primer lugar, f(0) = f(0 + 0) = f(0)f(0) = f(0) 2,

Más detalles

Examen Extraordinario de Álgebra III, licenciatura

Examen Extraordinario de Álgebra III, licenciatura Examen Extraordinario de Álgebra III, licenciatura El Examen a Título de Suficiencia de Álgebra III abarca los siguientes temas: 1. Formas bilineales y cuadráticas. 2. Valores y vectores propios. 3. Forma

Más detalles

Examen de Admisión a la Maestría / Doctorado 24 de Junio de 2016

Examen de Admisión a la Maestría / Doctorado 24 de Junio de 2016 Examen de Admisión a la Maestría / Doctorado 4 de Junio de 6 Nombre: Instrucciones: En cada reactivo seleccione la respuesta correcta encerrando en un círculo la letra correspondiente. Puede hacer cálculos

Más detalles

Análisis I Apuntes de clase. Preparado por JC Trujillo O.

Análisis I Apuntes de clase. Preparado por JC Trujillo O. Análisis I Apuntes de clase Preparado por JC Trujillo O. Febrero 2014 - Junio 2014 Índice general 1 Estructuras fundamentales del Análisis 5 1 Topología........................................ 5 1.1 Ejemplos....................................

Más detalles

1. Ilustre con dibujos e interprete geométricamente las propiedades 2,3 y 4 del producto por un escalar en R 2. u + v = w + v,

1. Ilustre con dibujos e interprete geométricamente las propiedades 2,3 y 4 del producto por un escalar en R 2. u + v = w + v, Geometría Analítica I Grupo 4054 TAREA 3 Parte I 1. Ilustre con dibujos e interprete geométricamente las propiedades 2,3 y 4 del producto por un escalar en R 2. 2. Sea (x, y) R 2 tal que (x, y) (0, 0).

Más detalles

Variedades Lineales. Se puede generalizar el concepto de dependencia e independencia lineal de R 2 y R 3. Así:

Variedades Lineales. Se puede generalizar el concepto de dependencia e independencia lineal de R 2 y R 3. Así: Semana 3 - Clase 8 2/4/9 Tema 2: Espacios Vectoriales Variedades Lineales Dependencia, independencia lineal Se puede generalizar el concepto de dependencia e independencia lineal de R 2 y R 3 Así: = C

Más detalles

ALGEBRA LINEAL - Práctica N 8 - Segundo cuatrimestre de 2017 Espacios vectoriales con producto interno

ALGEBRA LINEAL - Práctica N 8 - Segundo cuatrimestre de 2017 Espacios vectoriales con producto interno Departamento de Matemática - Facultad de Ciencias Exactas y Naturales - UBA ALGEBRA LINEAL - Práctica N 8 - Segundo cuatrimestre de 07 Espacios vectoriales con producto interno En esta práctica, todos

Más detalles

Espacios vectoriales reales.

Espacios vectoriales reales. Capítulo 4 Espacios vectoriales reales. 4.1 Espacios vectoriales. Definición 86.- Un espacio vectorial real V es un conjunto de elementos denominados vectores, junto con dos operaciones, una que recibe

Más detalles

Notas de Análisis Funcional

Notas de Análisis Funcional Notas de Análisis Funcional Ventura Echandía Liendo. Carlos E. Finol Caracas, Octubre 2002. 2 Contenido 1 Nociones de espacios normados 7 1.1 Espacios métricos y espacios vectoriales............. 7 1.1.1

Más detalles

Espacios de Hilbert y Notación de Dirac

Espacios de Hilbert y Notación de Dirac Espacios de Hilbert y Notación de Dirac Alonso Contreras-Astorga CINVESTAV, México Diciembre 2012 Índice Espacios de Hilbert Operadores lineales en espacios de Hilbert Notación de Dirac 2 / 46 Espacios

Más detalles

Algunos conceptos básicos del Análisis Funcional Memoria

Algunos conceptos básicos del Análisis Funcional Memoria Algunos conceptos básicos del Análisis Funcional Memoria Mar Jiménez Sevilla Universidad Complutense de Madrid Facultad de Ciencias Matemáticas Departamento de Análisis Matemático Índice general Capítulo

Más detalles

Ejercicios de teoría de la medida

Ejercicios de teoría de la medida Ejercicios de teoría de la medida Pedro Alegría Capítulo. Dada una aplicación F : Ω Ω, demostrar que: a) Si A es una σ-álgebra de Ω, A = {B Ω : F B) A} lo es de Ω. b) Si A es una σ-álgebra de Ω, A = F

Más detalles

TEOREMA DE HAHN-BANACH.

TEOREMA DE HAHN-BANACH. TEOREMA DE HAHN-BANACH. Sea E un e.v y M un s.v. de E. Toda aplicación lineal T 0 : M F de M en otro e.v. F se extiende a una aplicación lineal T : E F. Por ejemplo, basta considerar un suplementario algebraico

Más detalles

Principio de acotación uniforme

Principio de acotación uniforme Capítulo 4 Principio de acotación uniforme 4.1. Introducción. Teorema de Baire En este último capítulo vamos a establecer una serie de resultados sobre aplicaciones lineales y continuas entre espacios

Más detalles

El espacio euclideano

El espacio euclideano Capítulo 1 El espacio euclideano 1. Definiciones básicas El espacio Euclideano, denotado por R n, está definido por el conjunto (1.1) R n = {x = (x 1, x 2,..., x n ) : x i R}. Es decir, R n es efectivamente

Más detalles

Espacios con producto interno

Espacios con producto interno Espacios con producto interno. En el espacio vectorial R con el producto interno euclideano, calcule: a) < (,, ), (,, )> b) (7,, ) (7,, ) c) d) î ĵ e) (v, v, v ) (w, w, w ) f) ( î ĵ)

Más detalles

Universidad Nacional de Colombia Departamento de Matemáticas Álgebra Lineal - Grupo 01 Taller 4

Universidad Nacional de Colombia Departamento de Matemáticas Álgebra Lineal - Grupo 01 Taller 4 Universidad Nacional de Colombia Departamento de Matemáticas - Álgebra Lineal - Grupo Taller () Es el conjunto de los números reales con las operaciones de suma y multiplicación un R-espacio vectorial?

Más detalles

Topologías. Segundo cuatrimestre Práctica 1. Determine condiciones necesarias y suficientes sobre κ para que τ κ sea una topología sobre

Topologías. Segundo cuatrimestre Práctica 1. Determine condiciones necesarias y suficientes sobre κ para que τ κ sea una topología sobre Topología Segundo cuatrimestre - 2012 Práctica 1 Topologías Ejemplos de topologías 1. Sea X un conjunto. (a) Sea τ = {U P(X) : X \ U es finito} { }. Probar que τ es una topología sobre X, a la que llamamos

Más detalles

ALGEBRA LINEAL - 2do Cuatrimestre 2014 Práctica 2 - Espacios vectoriales

ALGEBRA LINEAL - 2do Cuatrimestre 2014 Práctica 2 - Espacios vectoriales Departamento de Matemática - Facultad de Ciencias Exactas y Naturales - UBA 1 ALGEBRA LINEAL - 2do Cuatrimestre 2014 Práctica 2 - Espacios vectoriales Espacios vectoriales 1. Sea V un espacio vectorial

Más detalles

Tema 1: Espacios vectoriales

Tema 1: Espacios vectoriales PROBLEMAS DE MATEMÁTICAS Parte I: Álgebra Primero de Químicas FACULTAD DE CIENCIAS QUÍMICAS Departamento de Matemáticas Universidad de Castilla-La Mancha Tema 1: Espacios vectoriales 1 Determina si cada

Más detalles

Ortogonalización. 1. Método de Gram-Schmidt. Semana 3 - Clase 9 21/04/09 Tema 2: Espacios Vectoriales

Ortogonalización. 1. Método de Gram-Schmidt. Semana 3 - Clase 9 21/04/09 Tema 2: Espacios Vectoriales Semana - Clase 9 /4/9 Tema : Espacios Vectoriales Ortogonalización Método de Gram-Schmidt Hemos visto que un conjunto de vectores ortogonales forman base para un espacio vectorial Ahora bien, siempre es

Más detalles

Teoría espectral de operadores compactos y autoadjuntos en espacios de Hilbert

Teoría espectral de operadores compactos y autoadjuntos en espacios de Hilbert UNIVERSIDAD COMPLUTENSE DE MADRID Departamento de Análisis Matemático BECA DE COLABORACIÓN Teoría espectral de operadores compactos y autoadjuntos en espacios de Hilbert Blanca Fernández Besoy Trabajo

Más detalles

Operadores y funcionales lineales

Operadores y funcionales lineales Operadores y funcionales lineales ISABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ull.es Índice 1. Introducción 1 2. Funcionales lineales 1 3. Aplicaciones bilineales

Más detalles

Tema 3: Espacios eucĺıdeos

Tema 3: Espacios eucĺıdeos Marisa Serrano, Zulima Fernández Universidad de Oviedo 25 de noviembre de 2009 email: mlserrano@uniovi.es Índice 1 2 3.1 V, R espacio vectorial, la aplicación : V V R ( v, u) v u a) v 1, v 2, u V α, β

Más detalles

Guía Semana 1 1. RESUMEN. Universidad de Chile. Ingeniería Matemática

Guía Semana 1 1. RESUMEN. Universidad de Chile. Ingeniería Matemática 1. RESUMEN FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo en Varias Variables 08-1 Guía Semana 1 Geometría. Dados x, y Ê N, su producto interno canónico (o producto punto) es x

Más detalles

Tema 5: ESPACIOS VECTORIALES

Tema 5: ESPACIOS VECTORIALES Tema 5: ESPACIOS VECTORIALES EUCLÍDEOS Prof. Rafael López Camino Departamento de Geometría y Topología Universidad de Granada Material docente para el alumno Asignatura: Geometría I. Curso 2003/04 Licenciatura:

Más detalles

Operadores Compactos en espacios de Banach libres.

Operadores Compactos en espacios de Banach libres. Universidad de Concepción Dirección de Postgrado Facultad de Ciencias Físicas y Matemáticas - Programa Magíster en Matemática Operadores Compactos en espacios de Banach libres. tesis para optar al grado

Más detalles

Ejercicios tipo test de las lecciones 1 y El vector e = ( 1, 0, λ) está en el plano generado por los vectores u = (1, 2, 1) y

Ejercicios tipo test de las lecciones 1 y El vector e = ( 1, 0, λ) está en el plano generado por los vectores u = (1, 2, 1) y Álgebra lineal y Geometría I Gloria Serrano Sotelo Departamento de MATEMÁTICAS Ejercicios tipo test de las lecciones 1 y 2. 1. El vector e = ( 1, 0, λ) está en el plano generado por los vectores u = (1,

Más detalles

Una norma en un espacio lineal (o vectorial) X es una función. : X R con las siguientes propiedades: (a) x 0, para todo x X (no negatividad);

Una norma en un espacio lineal (o vectorial) X es una función. : X R con las siguientes propiedades: (a) x 0, para todo x X (no negatividad); MATEMÁTICA APLICADA II Segundo cuatrimestre 20 Licenciatura en Física, Universidad Nacional de Rosario Espacios de Banach. Introducción Frecuentemente estamos interesados en qué tan grande. es una función.

Más detalles

Tema 5: Espacios Eucĺıdeos.

Tema 5: Espacios Eucĺıdeos. Espacios Euclídeos 1 Tema 5: Espacios Eucĺıdeos. 1. Producto escalar. Espacios eucĺıdeos. Definición. Sea E un R-espacio vectorial y sea f : E E R una forma bilineal simétrica. Se dice que f es un producto

Más detalles

EL TEOREMA DE NEHARI Y EL TEOREMA DE KRONECKER

EL TEOREMA DE NEHARI Y EL TEOREMA DE KRONECKER UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE MATEMÁTICA EL TEOREMA DE NEHARI Y EL TEOREMA DE KRONECKER Trabajo Especial de Grado presentado ante la ilustre Universidad Central de Venezuela

Más detalles

Práctica 2. Producto interno

Práctica 2. Producto interno Práctica 2. Producto interno 1. (a) Encontrar las condiciones que deben cumplir los coeficientes a 11, a 12, a 21 y a 22 para que la expresión defina un producto interno en R 2. (u, v) = a 11 u 1 v 1 +

Más detalles

Cálculo diferencial e integral 3

Cálculo diferencial e integral 3 Cálculo diferencial e integral 3 Guía 1 1. Sean a 1,..., a n R n. Demuestra que el conjunto { W = x = (x 1,..., x n ) R n es un subespacio vectorial de R n. } n a i x i = 0 i=1 2. Sean W y V subespacios

Más detalles

ANÁLISIS FUNCIONAL. Oscar Blasco

ANÁLISIS FUNCIONAL. Oscar Blasco ANÁLISIS FUNCIONAL Oscar Blasco Contents 1 Introducción a los espacios de Hilbert 5 1.1 Producto escalar: Propiedades y ejemplos........... 5 1.2 Completitud y ortogonalidad................... 9 1.3 Proyecciones

Más detalles

ALGEBRA LINEAL - Práctica N 2 - Segundo Cuatrimestre de 2016

ALGEBRA LINEAL - Práctica N 2 - Segundo Cuatrimestre de 2016 Departamento de Matemática - Facultad de Ciencias Exactas y Naturales - UBA 1 ALGEBRA LINEAL - Práctica N 2 - Segundo Cuatrimestre de 2016 Espacios Vectoriales 1. Sea V un espacio vectorial sobre K k K

Más detalles

Topologías. Segundo cuatrimestre Práctica Encuentre todas las topologías sobre conjuntos de a lo sumo cuatro elementos.

Topologías. Segundo cuatrimestre Práctica Encuentre todas las topologías sobre conjuntos de a lo sumo cuatro elementos. Topología Segundo cuatrimestre - 2011 Práctica 1 Topologías Ejemplos de topologías 1. Encuentre todas las topologías sobre conjuntos de a lo sumo cuatro elementos. 2. Sea X un conjunto. (a) Sea τ = {U

Más detalles

INSTITUTO POLITÉCNICO NACIONAL

INSTITUTO POLITÉCNICO NACIONAL INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERÍA MECÁNICA Y ELÉCTRICA, ESIME ZACATENCO SECCIÓN DE ESTUDIOS DE POSGRADO E INVESTIGACIÓN POSGRADO EN INGENIERÍA ELÉCTRICA CURSO DE PROPÓSITO ESPECIFICO

Más detalles

Ejercicios de análisis funcional

Ejercicios de análisis funcional Ejercicios de análisis funcional Octavio Alberto Agustín Aquino Universidad Tecnológica de la Mixteca 4 de marzo de 2006 Índice 1. Espacios de Hilbert 1 1.1. Algunos resultados preliminares...................

Más detalles

Álgebra Lineal. Maestría en Ciencias Matemáticas. x y + z = 1 x y z = 3 2x y z = 1. x + y + 2z = 1 4x 2ty + 5z = 2 x y + tz = 1

Álgebra Lineal. Maestría en Ciencias Matemáticas. x y + z = 1 x y z = 3 2x y z = 1. x + y + 2z = 1 4x 2ty + 5z = 2 x y + tz = 1 Álgebra Lineal Maestría en Ciencias Matemáticas Resuelva el siguiente sistema usando la factorización LU o P T LU (según sea el caso) x y + z = x y z = 3 2x y z = 2 Calcule A usando el algoritmo de Gauss-Jordan:

Más detalles